JP2020092907A - Apnea state detection system and sound sleep provision system - Google Patents

Apnea state detection system and sound sleep provision system Download PDF

Info

Publication number
JP2020092907A
JP2020092907A JP2018233694A JP2018233694A JP2020092907A JP 2020092907 A JP2020092907 A JP 2020092907A JP 2018233694 A JP2018233694 A JP 2018233694A JP 2018233694 A JP2018233694 A JP 2018233694A JP 2020092907 A JP2020092907 A JP 2020092907A
Authority
JP
Japan
Prior art keywords
interval
pulsation
time
valley
beat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018233694A
Other languages
Japanese (ja)
Other versions
JP7112323B2 (en
Inventor
太志 松井
Taishi Matsui
太志 松井
亮 篠▲崎▼
Akira Shinozaki
亮 篠▲崎▼
賢太郎 安東
Kentaro Ando
賢太郎 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Tool Co
Original Assignee
Union Tool Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Tool Co filed Critical Union Tool Co
Priority to JP2018233694A priority Critical patent/JP7112323B2/en
Publication of JP2020092907A publication Critical patent/JP2020092907A/en
Application granted granted Critical
Publication of JP7112323B2 publication Critical patent/JP7112323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an apnea state detection system capable of grasping the presence/absence of an apnea state by detecting a characteristic of CVHR from pulsation intervals via simple calculation.SOLUTION: An apnea state detection system comprises: pulsation interval measurement means for measuring pulsation intervals of a subject's heart; short-time average pulsation interval calculation means for calculating a short-time average pulsation interval; long-time average pulsation interval calculation means for calculating a long-time average pulsation interval; pulsation interval valley calculation means for calculating a difference between the short-time average pulsation interval and the long-time average pulsation interval; pulsation interval valley determination means for determining that a location, at which a value lower than a predetermined valley depth threshold V exists, of a time series of differences between short-time average pulsation interval and long-time average pulsation interval is a single pulsation interval valley; within-predetermined determination time number-of-valleys integration means for integrating numbers of pulsation interval valleys within a predetermined determination time; and number-of-valleys comparison means for comparing the number of pulsation interval valleys with a predetermined abnormal number-of-valleys threshold P to determine an apnea state when the number of pulsation interval valleys is equal to or larger than the abnormal number-of-valleys threshold P.SELECTED DRAWING: Figure 1

Description

本発明は、無呼吸状態検出システム及び安眠提供システムに関するものである。 The present invention relates to an apnea detection system and a sleep-provision system.

睡眠時無呼吸症候群(SAS)の潜在患者数は、治療が必要なものに限定しても256万人いると言われている。SAS患者の交通事故発生率は、健常者の約7倍と有意に高く、また薬剤抵抗性高血圧、心不全、心房細動、高血圧、冠動脈疾患、糖尿病などの様々な生活習慣病が合併する。無呼吸状態を改善する装置で逐次無呼吸状態を通知し、眠りを改善すれば交通事故を避けることができるし、職場の健康診断などによる検診でSASを早期発見できれば、成人病などによる経済損失を減少できる。 The potential number of patients with sleep apnea syndrome (SAS) is said to be 2.56 million, even if only limited to those in need of treatment. The incidence of traffic accidents in SAS patients is about 7 times higher than that of healthy people, and various lifestyle-related diseases such as drug-resistant hypertension, heart failure, atrial fibrillation, hypertension, coronary artery disease, and diabetes are complicated. A device that improves apnea status can be used to notify the apnea status one after another to improve sleep so that a traffic accident can be avoided.If SAS can be detected early through medical checkups at the workplace, economic loss due to adult diseases etc. Can be reduced.

ところで、SASには、閉塞型睡眠時無呼吸症候群(OSAS)および中枢性睡眠時無呼吸症候群があるが、いずれの場合も拍動間隔に周期的な変動があり、CVHR(Cyclic Variation of Heart Rate)と呼ばれている。このCVHRは25から120秒の周期性があり、心拍変動のパワースペクトラム密度を0.008から0.04Hzまで積分して得られるVLFの帯域と一致している。実際にこの特徴に基づいてSASを検出する方法が提案されている(特許文献1参照)。 By the way, SAS has obstructive sleep apnea syndrome (OSAS) and central sleep apnea syndrome, but in both cases, there is a periodic variation in the beat interval, and CVHR (Cyclic Variation of Heart Rate) )It is called. This CVHR has a periodicity of 25 to 120 seconds, and matches the VLF band obtained by integrating the power spectrum density of heart rate variability from 0.008 to 0.04 Hz. A method for actually detecting SAS based on this feature has been proposed (see Patent Document 1).

このようなCVHRの特徴を利用してSASを検出するには長時間心電図を用いる方法があるが、長時間心電図を取得するには高価なホルター心電計が必要であり、心電図から拍動間隔を導出しさらにVLFを計算するには扱うデータ量が膨大で、多くの人が同時に受診する健康診断では用いることができない。 Although there is a method of using a long-term electrocardiogram to detect SAS by utilizing such characteristics of CVHR, an expensive Holter electrocardiograph is required to obtain a long-term electrocardiogram, and it is necessary to measure the pulse interval from the electrocardiogram. In order to derive VLF and calculate VLF, the amount of data to handle is enormous, and it cannot be used in the medical examination that many people see at the same time.

また、人は睡眠中寝返りが生じ、このようなときに心電図にアーチファクトが混入するため、VLFを正しく計算できないことがある。さらに、OSASではうつぶせ(伏臥位)や横向き(側臥位)で寝ているとき無呼吸状態にならない。 In addition, a person may roll over during sleep, and an artifact may be mixed in the electrocardiogram at such a time, so that VLF may not be calculated correctly. In addition, OSAS does not cause apnea when sleeping in the prone position (prone position) or sideways (sideways position).

またSASは、前述の通り心房細動も合併することがあるので、健康診断においてこれを同時に検出することも期待される。 As described above, SAS may also be associated with atrial fibrillation, so it is expected that SAS will detect this at the same time.

特開2005−160650号公報JP, 2005-160650, A 特許第6150825号公報Japanese Patent No. 6150825

本発明は、上述のような現状に鑑みなされたもので、CVHRの特徴を拍動間隔から簡単な演算で検出して無呼吸状態の有無を把握でき、例えば、人の姿勢も同時に解析してアーチファクトによる誤検出なく眠りを改善したり、健康診断で用いることのできる(特許文献2等に開示される)心房細動検出システムと併用したりすることも可能な実用的な無呼吸状態検出システム及び安眠提供システムを提供するものである。 The present invention has been made in view of the current situation as described above, and it is possible to detect the presence or absence of an apnea state by detecting the characteristics of CVHR by a simple calculation from the pulsation interval, and for example, analyze the posture of a person at the same time. A practical apnea detection system that can improve sleep without erroneous detection due to artifacts, and can also be used in combination with an atrial fibrillation detection system (disclosed in Patent Document 2 etc.) that can be used in health examinations And a sleep and sleep providing system.

添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.

対象者の無呼吸状態を検出する無呼吸状態検出システム1であって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段4と、前記拍動間隔測定手段4により測定した前記拍動間隔から、呼吸の周期程度の所定の時間Xで平均した短時間平均拍動間隔を算出する短時間平均拍動間隔演算手段8と、前記時間Xよりも長い所定の時間Yで平均した長時間平均拍動間隔を算出する長時間平均拍動間隔演算手段9と、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差を演算する拍動間隔谷演算手段10と、前記拍動間隔谷演算手段10で得られた前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、所定の谷深さ閾値Vよりも小さい値が存在している箇所を1個の拍動間隔谷と判定する拍動間隔谷判定手段11と、所定の判定時間内に前記拍動間隔谷判定手段11で判定された拍動間隔谷の数を積算する所定判定時間内谷数積算手段14と、前記所定判定時間内谷数積算手段14で積算した拍動間隔谷の数を所定の異常谷数閾値Pと比較し、前記拍動間隔谷の数が前記異常谷数閾値P以上ならば無呼吸状態であると判定する谷数比較手段16とを備えたことを特徴とする無呼吸状態検出システムに係るものである。 An apnea state detection system 1 for detecting an apnea state of a subject, comprising a beat interval measuring means 4 for measuring a beat interval of a subject's heart, and the beat measured by the beat interval measuring means 4. Short-time average pulsation interval calculating means 8 for calculating a short-time average pulsation interval averaged from a pulsation interval for a predetermined time X of a respiratory cycle, and a length averaged for a predetermined time Y longer than the time X. Long-time average beat interval calculation means 9 for calculating a time-average beat interval, beat interval valley calculation means 10 for calculating a difference between the short-time average beat interval and the long-time average beat interval, In the time series of the difference between the short-term average beat interval and the long-term average beat interval obtained by the beat interval valley calculating means 10, there is a value smaller than a predetermined valley depth threshold V. The pulsation interval valley determining means 11 for determining the existing portion as one pulsation interval valley and a predetermined number for accumulating the number of pulsation interval valleys determined by the pulsation interval valley determining means 11 within a predetermined determination time. The number of valleys in the determination time and the number of valleys in the pulsation interval integrated in the number of valleys in the predetermined determination time 14 are compared with a predetermined threshold value P for the number of abnormal valleys, and the number of the valleys in the pulsation interval is determined as described above. The present invention relates to an apnea state detection system characterized by comprising a valley number comparison means 16 for judging an apnea condition if the abnormal valley number threshold value P or more.

また、請求項1記載の無呼吸状態検出システムにおいて、前記拍動間隔谷判定手段11は、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、前記谷深さ閾値Vよりも小さい値が、所定の谷判定閾値Q以上連続して存在している箇所を1個の拍動間隔谷と判定するように構成されていることを特徴とする無呼吸状態検出システムに係るものである。 Further, in the apnea detection system according to claim 1, the pulsation interval valley determining means 11 includes the valley among the time series of the difference between the short time average pulsation interval and the long time average pulsation interval. An apnea condition characterized in that a value smaller than the depth threshold value V is continuously judged to be a predetermined valley judgment threshold value Q or more as one beat interval valley. It relates to a detection system.

また、請求項1,2いずれか1項に記載の無呼吸状態検出システムにおいて、対象者の姿勢を測定する姿勢測定手段19と、前記姿勢測定手段19から得られた姿勢から立位か伏臥位か側臥位かを判定する体位判定手段23と、前記拍動間隔測定手段4により測定した前記拍動間隔の時系列から、前記体位判定手段23によって得られた体位情報に基づき、立位,伏臥位若しくは側臥位のいずれかの体位のときの拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段8及び前記長時間平均拍動間隔演算手段9に転送する所定体位拍動間隔除外手段24とを備えたことを特徴とする無呼吸状態検出システムに係るものである。 Further, in the apnea detection system according to any one of claims 1 and 2, a posture measuring means 19 for measuring a posture of a subject and a standing or prone position from the posture obtained from the posture measuring means 19. Body position determining means 23 for determining whether the patient is in the lateral or lateral position, and standing or prone position based on the position information obtained by the body position determining means 23 from the time series of the pulsation intervals measured by the pulsation interval measuring means 4. Of the pulsation intervals in any of the postures of the lateral position or the lateral position, and the time series of the pulsation intervals excluding the pulsation intervals is used as the short-time average pulsation interval calculation means 8 and the long-time average. The present invention relates to an apnea state detecting system, characterized in that it comprises a predetermined body position pulsation interval excluding means 24 for transferring to the pulsation interval calculating means 9.

また、請求項1,2いずれか1項に記載の無呼吸状態検出システムにおいて、対象者の姿勢を測定する姿勢測定手段19と、前記姿勢測定手段19から得られた姿勢の時系列から体動を検出する体動検出手段25と、前記拍動間隔測定手段4により測定した前記拍動間隔の時系列から、前記体動検出手段25によって検出された体動が発生した時刻から所定の前後の時間の拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段8及び前記長時間平均拍動間隔演算手段9に転送する体動時拍動間隔除外手段26とを備えたことを特徴とする無呼吸状態検出システムに係るものである。 Further, in the apnea detection system according to any one of claims 1 and 2, body movement is performed from a posture measuring unit 19 for measuring the posture of the subject and a time series of postures obtained from the posture measuring unit 19. From the time series of the pulsation intervals measured by the pulsation interval measuring means 4 and the body motion detection means 25 for detecting A body that excludes the beat interval of time and transfers the time series of the beat interval from which the beat interval is excluded to the short-time average beat interval calculator 8 and the long-time average beat interval calculator 9. The present invention relates to an apnea state detection system, characterized in that it includes a moving beat interval excluding means (26).

また、請求項1,2いずれか1項に記載の無呼吸状態検出システムにおいて、対象者の姿勢を測定する姿勢測定手段19と、
前記姿勢測定手段19から得られた姿勢から立位か伏臥位か側臥位かを判定する体位判定手段23と、前記拍動間隔測定手段4により測定した前記拍動間隔の時系列から、前記体位判定手段23によって得られた体位情報に基づき、立位,伏臥位若しくは側臥位のいずれかの体位のときの拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段8及び前記長時間平均拍動間隔演算手段9に転送する所定体位拍動間隔除外手段24と、
前記姿勢測定手段19から得られた姿勢の時系列から体動を検出する体動検出手段25と、前記拍動間隔測定手段4により測定した前記拍動間隔の時系列から、前記体動検出手段25によって検出された体動が発生した時刻から所定の前後の時間の拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段8及び前記長時間平均拍動間隔演算手段9に転送する体動時拍動間隔除外手段26とを備えたことを特徴とする無呼吸状態検出システムに係るものである。
Further, in the apnea detection system according to any one of claims 1 and 2, a posture measuring means 19 for measuring the posture of the subject,
From the posture obtained from the posture measuring means 19, a posture determining means 23 for determining whether the patient is standing, lying down or lying down, and a time series of the pulsation intervals measured by the pulsation interval measuring means 4, Based on the postural information obtained by the determining means 23, the pulsation interval in any of the standing position, prone position or lateral position is excluded, and the pulsation interval is excluded from the time series of the pulsation interval. A predetermined body position pulsation interval excluding means 24 for transferring to the short time average pulsation interval calculation means 8 and the long time average pulsation interval calculation means 9,
From the body movement detecting means 25 for detecting body movement from the time series of postures obtained from the posture measuring means 19, and the body movement detecting means from the time series of the pulsation intervals measured by the pulsation interval measuring means 4. The pulsation intervals before and after a predetermined time from the time when the body motion detected by 25 is excluded, and the time series of the pulsation intervals excluding the pulsation intervals is used as the short-time average pulsation interval calculation means. The present invention relates to an apnea detection system, characterized in that it comprises 8 and a beat interval excluding means 26 for body movement which is transferred to the long-term average beat interval calculating means 9.

また、請求項1〜5いずれか1項に記載の無呼吸状態検出システムにおいて、前記谷深さ閾値Vは、前記長時間平均拍動間隔演算手段9から算出された長時間平均拍動間隔の関数であることを特徴とする無呼吸状態検出システムに係るものである。 Further, in the apnea detection system according to any one of claims 1 to 5, the valley depth threshold value V is the long-term average pulsation interval calculated by the long-time average pulsation interval calculation means 9. The present invention relates to an apnea detection system characterized by being a function.

また、対象者の無呼吸状態を解消して安眠を提供する安眠提供システムであって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段4と、前記拍動間隔測定手段4により測定した前記拍動間隔から、無呼吸状態であることを判定する解析器3と、音または振動を発生し対象者をわずかに覚醒させることによって無呼吸状態を解消し眠りを改善する刺激手段とを備えたことを特徴とする安眠提供システムに係るものである。 In addition, a sleep and sleep providing system that eliminates the apnea of the subject to provide sleep, comprising: a beat interval measuring means 4 for measuring a beat interval of the heart of the subject; and the beat interval measuring means 4. An analyzer 3 that determines an apnea state from the measured pulsation intervals, and a stimulating means that eliminates the apnea state and improves sleep by generating sound or vibration to slightly awaken the subject. The present invention relates to a sleep and sleep providing system characterized by including.

また、対象者の無呼吸状態を解消して安眠を提供する安眠提供システムであって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段4と、前記拍動間隔測定手段4により測定した前記拍動間隔から、呼吸の周期程度の所定の時間Xで平均した短時間平均拍動間隔を算出する短時間平均拍動間隔演算手段8と、前記時間Xよりも長い所定の時間Yで平均した長時間平均拍動間隔を算出する長時間平均拍動間隔演算手段9と、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差を演算する拍動間隔谷演算手段10と、前記拍動間隔谷演算手段10で得られた前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、所定の谷深さ閾値Vよりも小さい値が存在している箇所を1個の拍動間隔谷と判定する拍動間隔谷判定手段11と、所定の判定時間内に前記拍動間隔谷判定手段11で判定された拍動間隔谷の数を積算する所定判定時間内谷数積算手段14と、前記所定判定時間内谷数積算手段14で積算した拍動間隔谷の数を所定の異常谷数閾値Pと比較し、前記拍動間隔谷の数が前記異常谷数閾値P以上ならば無呼吸状態であると判定する谷数比較手段16と、前記谷数比較手段16が無呼吸状態であると判定したときに、音または振動を発生し対象者をわずかに覚醒させることによって無呼吸状態を解消し眠りを改善する刺激手段とを備えたことを特徴とする安眠提供システムに係るものである。 In addition, a sleep and sleep providing system that eliminates the apnea of the subject to provide sleep, comprising: a beat interval measuring means 4 for measuring a beat interval of the heart of the subject; and the beat interval measuring means 4. From the measured pulsation intervals, short-time average pulsation interval calculation means 8 for calculating short-time average pulsation intervals averaged over a predetermined time X of a respiratory cycle, and a predetermined time Y longer than the time X. Long-time average beat interval calculation means 9 for calculating the long-time average beat interval, and beat interval valley calculation means for calculating the difference between the short-time average beat interval and the long-term average beat interval. 10 and a value smaller than a predetermined valley depth threshold V in the time series of the difference between the short-time average beat interval and the long-term average beat interval obtained by the beat interval valley calculating means 10. And the number of the beat interval valleys judged by the beat interval valley judging means 11 within a predetermined judgment time. And the number of pulsation interval valleys accumulated by the predetermined judgment time inner valley number integration means 14 is compared with a predetermined abnormal valley number threshold P, and the pulsation interval valley is calculated. The number of abnormal valleys is greater than or equal to the abnormal valley number threshold P, the number-of-valleys comparison means 16 determines an apnea state, and when the number-of-valleys comparison means 16 determines an apnea state, a sound or vibration is generated. The present invention relates to a sleep-providing system, which comprises a stimulating means for eliminating apnea and improving sleep by slightly awakening a subject.

本発明は上述のように構成したから、CVHRの特徴を拍動間隔から簡単な演算で検出して無呼吸状態の有無を把握できる実用的な無呼吸状態検出システム及び安眠提供システムとなる。 Since the present invention is configured as described above, it becomes a practical apnea state detection system and a sleep asleep providing system that can detect the presence or absence of an apnea state by detecting the characteristics of CVHR from the pulsation interval by a simple calculation.

本実施例の構成概略説明図である。It is a structure schematic explanatory drawing of a present Example. 別例1の構成概略説明図である。It is a schematic structure explanatory view of example 1 of another. 別例2の構成概略説明図である。It is a schematic structure explanatory drawing of the example 2 of another. 別例3の構成概略説明図である。It is a schematic structure explanatory view of example 3 of another. CVHRが生じている拍動間隔の時系列を示すグラフである。It is a graph which shows the time series of the beating interval in which CVHR has occurred. 無呼吸状態の検出方法を説明するためのグラフである。It is a graph for explaining a method for detecting an apnea. 体動によって生じる拍動間隔の変化を説明するためのグラフである。It is a graph for demonstrating the change of the pulsation interval caused by body movement.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 A preferred embodiment of the present invention will be briefly described with reference to the drawings showing the operation of the present invention.

睡眠時無呼吸症候群(SAS)のために無呼吸状態になると、CVHRと呼ばれる拍動間隔が周期的に大きく増大減少する変動が生じる(変化に山と谷が生じる。)。図5はCVHRが生じている拍動間隔の時系列を示すもので、横軸は時刻、縦軸は拍動間隔であり、CVHRの発生箇所を括弧で示している。従って、拍動間隔の周期的な変動を探索し(CVHRが生じていることが確認できれば)、SASによる無呼吸状態を検出できる。具体的には、拍動間隔の時系列中に所定深さの谷(深い谷)が周期的に出現するかどうか調べれば良い。 When apnea is caused by sleep apnea syndrome (SAS), there is a cyclically large increase and decrease in the interval between beats called CVHR (changes have peaks and valleys). FIG. 5 shows a time series of beat intervals in which CVHR occurs. The horizontal axis represents time, the vertical axis represents beat intervals, and the place where CVHR occurs is shown in parentheses. Therefore, it is possible to detect the apnea state by SAS by searching for the periodic fluctuation of the beat interval (if it can be confirmed that CVHR is occurring). Specifically, it suffices to check whether valleys with a predetermined depth (deep valleys) periodically appear in the time series of pulsation intervals.

本発明者等は、短時間平均拍動間隔と長時間平均拍動間隔との差の時系列中で、所定の谷深さ閾値Vよりも小さい値が存在している箇所(好ましくは谷深さ閾値Vよりも小さい値が所定の谷判定閾値Q以上連続している箇所)を1個の拍動間隔谷とし、所定の判定時間内の拍動間隔谷の数が所定の異常谷数閾値P以上ある場合にCVHRが生じていると判断することが可能であることを確認した。 The present inventors have found that in the time series of the difference between the short-term average pulsation interval and the long-term average pulsation interval, there is a value smaller than a predetermined valley depth threshold V (preferably the valley depth. (Where a value smaller than the threshold value V continues for a predetermined valley judgment threshold value Q or more) is defined as one beat interval valley, and the number of beat interval valleys within a predetermined judgment time is a predetermined abnormal valley number threshold value. It was confirmed that it was possible to determine that CVHR had occurred when P or more.

従って、本発明によれば、CVHRが生じていること、即ち、無呼吸状態であることを拍動間隔を用いた簡単な演算で検出可能となる。 Therefore, according to the present invention, the occurrence of CVHR, that is, the apnea state can be detected by a simple calculation using the pulsation interval.

本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、対象者の無呼吸状態を検出する無呼吸状態検出システム1であって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段4と、前記拍動間隔測定手段4により測定した前記拍動間隔から、呼吸の周期程度の所定の時間Xで平均した短時間平均拍動間隔を算出する短時間平均拍動間隔演算手段8と、前記時間Xよりも長い所定の時間Yで平均した長時間平均拍動間隔を算出する長時間平均拍動間隔演算手段9と、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差を演算する拍動間隔谷演算手段10と、前記拍動間隔谷演算手段10で得られた前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、所定の谷深さ閾値Vよりも小さい値が存在している箇所を1個の拍動間隔谷と判定する拍動間隔谷判定手段11と、所定の判定時間内に前記拍動間隔谷判定手段11で判定された拍動間隔谷の数を積算する所定判定時間内谷数積算手段14と、前記所定判定時間内谷数積算手段14で積算した拍動間隔谷の数を所定の異常谷数閾値Pと比較し、前記拍動間隔谷の数が前記異常谷数閾値P以上ならば無呼吸状態であると判定する谷数比較手段16とを備えたものである。 The present embodiment is an apnea state detection system 1 for detecting an apnea state of a subject, which is a beat interval measuring means 4 for measuring a beat interval of a subject's heart, and the beat interval measuring means 4. A short-time average pulsation interval calculation means 8 for calculating a short-time average pulsation interval averaged over a predetermined time X of a breathing cycle from the pulsation interval measured by the above; and a predetermined time longer than the time X. Long-time average beat interval calculation means 9 for calculating the long-time average beat interval averaged by Y, and beat interval valley calculation for calculating the difference between the short-time average beat interval and the long-term average beat interval In the time series of the difference between the short time average beat interval and the long time average beat interval obtained by the means 10 and the beat interval valley calculating means 10, the difference is smaller than a predetermined valley depth threshold value V. The beat interval valley determining means 11 that determines a place where a value exists as one beat interval valley and the beat interval valley that is determined by the beat interval valley determining means 11 within a predetermined determination time The number of valleys within a predetermined judgment time for accumulating the number of valleys, and the number of valleys of the pulsation interval accumulated by the means for accumulating valleys within the predetermined judgment time 14 are compared with a predetermined threshold value P of abnormal valleys to determine the pulsation interval. If the number of valleys is equal to or greater than the abnormal valley number threshold P, the number of valleys comparing means 16 for determining an apnea is provided.

具体的には、本実施例は、図1に図示したように、拍動間隔測定手段4が設けられた拍動間隔測定用のセンサ2と、短時間平均拍動間隔演算手段8と長時間平均拍動間隔演算手段9と拍動間隔谷演算手段10と拍動間隔谷判定手段11と所定判定時間内谷数積算手段14と谷数比較手段16とが設けられた解析器3とで構成されている。 Specifically, in the present embodiment, as shown in FIG. 1, a beat interval measuring sensor 2 provided with a beat interval measuring means 4, a short-time average beat interval calculating means 8 and a long time mean. The analyzer 3 is provided with an average beat interval calculation means 9, a beat interval valley calculation means 10, a beat interval valley determination means 11, a valley number integration means 14 within a predetermined determination time, and a valley number comparison means 16. Has been done.

各部を具体的に説明する。 Each part will be specifically described.

センサ2には、拍動間隔測定手段4と、この拍動間隔測定手段4によって測定された拍動間隔データを一時的に保存する拍動間隔保存手段5と、この一時的に保存した拍動間隔データを解析器3の拍動間隔受信手段7に送信する拍動間隔送信手段6とが設けられている。 The sensor 2 has a beat interval measuring means 4, a beat interval saving means 5 for temporarily saving the beat interval data measured by the beat interval measuring means 4, and the temporarily saved beat. A beat interval transmitting means 6 for transmitting the interval data to the beat interval receiving means 7 of the analyzer 3 is provided.

拍動間隔測定手段4は、例えばマイコン等を用いて電極から得られた電圧の変化をもとにした心電図から一つのR波とこれに隣り合う他のR波との間隔、または、一つのS波とこれに隣り合う他のS波との間隔から拍動間隔を測定するように構成されている。従って、センサを小型化して電極を介して皮膚に貼り付ければ、センサを衣服の下に隠すことができ、睡眠に支障を来すことなく測定できる。なお、拍動間隔測定手段4は、例えば赤外線の反射光から脈波を測定し、そのピーク間隔などから拍動間隔を測定するように構成してもよい。この場合、耳たぶや手首や腕などにクリップやバンドでセンサを固定するだけで良く、装着しやすいものとなる。 The pulsation interval measuring means 4 uses, for example, a microcomputer or the like to measure the interval between one R wave and another R wave adjacent to it from the electrocardiogram based on the change in the voltage obtained from the electrodes, or one R wave. The pulsation interval is measured from the interval between the S wave and another S wave adjacent thereto. Therefore, if the sensor is miniaturized and attached to the skin via the electrode, the sensor can be hidden under the clothes, and the measurement can be performed without disturbing sleep. The pulsation interval measuring means 4 may be configured to measure the pulse wave from reflected light of infrared rays and measure the pulsation interval from the peak interval or the like. In this case, it suffices to fix the sensor to the earlobe, wrist, arm or the like with a clip or band, and it is easy to wear.

拍動間隔測定手段4によって測定された拍動間隔データは、拍動間隔保存手段5へ逐次転送され一時保存される。検査のためにセンサ2のみを対象者に適用する場合、一時保存する拍動間隔データは半日間程度分となる。この場合、拍動間隔保存手段5は、半導体メモリやテープなどを採用できる。ホルター心電計とは異なり、心電図波形を保存する必要がなく、拍動間隔保存手段5として半導体メモリを用いた場合、非常に小型で低消費電力のメモリを用いることができるので、小型かつ軽量で対象者の負担にならないセンサ2を構成することが可能となる。検査のため、若しくは、無呼吸を改善するための装置を動作させるため、対象者の拍動間隔データからリアルタイムで無呼吸状態か否か判定したい場合は、拍動間隔保存手段5は外部へ拍動間隔データを転送するための一時バッファであるので、例えば、拍動間隔測定手段4のために用いられるマイコン内のランダムアクセスメモリでも良い。この場合は、センサ2をさらに小型かつ軽量化でき、対象者の負担を一層低減できる。 The beat interval data measured by the beat interval measuring means 4 is sequentially transferred to the beat interval saving means 5 and temporarily saved. When only the sensor 2 is applied to the subject for the examination, the pulsation interval data temporarily stored is about half a day. In this case, the beat interval storage means 5 can employ a semiconductor memory, a tape, or the like. Unlike the Holter electrocardiograph, there is no need to store the electrocardiogram waveform, and when a semiconductor memory is used as the beat interval storing means 5, a very small and low power consumption memory can be used, so it is small and lightweight. Thus, it is possible to configure the sensor 2 that does not burden the target person. When it is desired to determine whether or not the subject is in an apnea state in real time from the pulsation interval data of the subject in order to perform an examination or to operate a device for improving the apnea, the pulsation interval storage means 5 outputs the pulse to the outside. Since it is a temporary buffer for transferring motion interval data, it may be, for example, a random access memory in the microcomputer used for the beat interval measuring means 4. In this case, the sensor 2 can be made smaller and lighter, and the burden on the subject can be further reduced.

拍動間隔保存手段5で一時保存された拍動間隔データは、拍動間隔送信手段6へ転送される。 The beat interval data temporarily stored by the beat interval storing means 5 is transferred to the beat interval transmitting means 6.

拍動間隔送信手段6は、拍動間隔保存手段5から転送された拍動間隔データを受け取り、解析器3に設けた拍動間隔受信手段7へ転送する。転送方法としては、電波や光を用いた無線や、USBやRS-232Cなどの有線接続を用いることができる。センサ2と解析器3との接続に無線接続を用いたとき、センサ2と解析器3とを物理的に分離でき、センサ2を取り付けられた対象者の負担が小さくなる。従って、検査のため、若しくは、無呼吸を改善するための装置を動作させるため対象者の拍動間隔データからリアルタイムで無呼吸状態か否か判定したい場合に好適である。また、電話回線やインターネットなどの公衆回線を用いることも可能であり、この場合、対象者に対して遠隔に無呼吸状態を検出することが可能となる。また、センサ2と解析器3との接続に有線接続を用いた場合は、拍動間隔データを確実かつ高速に転送できるので、拍動間隔保存手段5に保存された半日間程度分の拍動間隔データを、拍動間隔送信手段6を介して拍動間隔受信手段7へ転送するのに好適である。 The beat interval transmitting means 6 receives the beat interval data transferred from the beat interval storing means 5, and transfers it to the beat interval receiving means 7 provided in the analyzer 3. As a transfer method, wireless using electric waves or light, or wired connection such as USB or RS-232C can be used. When the wireless connection is used to connect the sensor 2 and the analyzer 3, the sensor 2 and the analyzer 3 can be physically separated, and the burden on the subject to whom the sensor 2 is attached is reduced. Therefore, it is suitable when it is desired to determine in real time whether or not an apnea is present from the pulsation interval data of the subject for inspection or for operating a device for improving apnea. It is also possible to use a public line such as a telephone line or the Internet, and in this case, it becomes possible to detect the apnea state remotely to the target person. Further, when a wired connection is used to connect the sensor 2 and the analyzer 3, the beat interval data can be transferred reliably and at high speed. It is suitable for transferring the interval data to the beat interval receiving means 7 via the beat interval transmitting means 6.

解析器3には、拍動間隔受信手段7と、短時間平均拍動間隔演算手段8と長時間平均拍動間隔演算手段9と拍動間隔谷演算手段10と拍動間隔谷判定手段11と所定拍動間隔谷深さ保存手段12と所定谷内拍動間隔数保存手段13と所定判定時間内谷数積算手段14と谷数比較手段16と所定谷数保存手段17とが設けられている。解析器3は一連の計算、比較、表示を行う電子計算機や計測器であり、上記各手段を備えた専用の機器、パーソナルコンピュータ、タブレット型のコンピュータ、スマートフォン、携帯電話もしくはインターネット上のサーバなどを採用することができる。 The analyzer 3 includes a beat interval receiving means 7, a short-time average beat interval calculating means 8, a long-time average beat interval calculating means 9, a beat interval valley calculating means 10, and a beat interval valley determining means 11. A predetermined pulsation interval valley depth storage means 12, a predetermined valley pulsation interval number storage means 13, a predetermined determination time inner valley number accumulation means 14, a valley number comparison means 16 and a predetermined valley number storage means 17 are provided. The analyzer 3 is an electronic computer or measuring instrument that performs a series of calculations, comparisons, and displays, and includes a dedicated device equipped with each of the above means, a personal computer, a tablet computer, a smartphone, a mobile phone, or a server on the Internet. Can be adopted.

拍動間隔受信手段7は、センサ2の拍動間隔送信手段6から拍動間隔データを受信し、短時間平均拍動間隔演算手段8と長時間平均拍動間隔演算手段9とへ転送する。 The beat interval receiving means 7 receives the beat interval data from the beat interval sending means 6 of the sensor 2, and transfers it to the short-time average beat interval calculating means 8 and the long-time average beat interval calculating means 9.

短時間平均拍動間隔演算手段8は、呼吸の周期程度の時間である所定の短時間(時間X)で平均した短時間平均拍動間隔SRを算出する。 The short-time average pulsation interval calculation means 8 calculates a short-time average pulsation interval SR averaged over a predetermined short time (time X) that is a time of about a respiratory cycle.

長時間平均拍動間隔演算手段9は、呼吸の周期程度の時間よりも十分長い所定の長時間(時間Y)で平均した長時間平均拍動間隔LRを算出する。 The long-term average pulsation interval calculating means 9 calculates the long-term average pulsation interval LR averaged over a predetermined long time (time Y) that is sufficiently longer than the time of the respiratory cycle.

短時間平均拍動間隔演算手段8及び長時間平均拍動間隔演算手段9のいずれの手段も算出したデータを拍動間隔谷演算手段10へ転送する。 The data calculated by both the short-time average beat interval calculation means 8 and the long-term average beat interval calculation means 9 are transferred to the beat interval valley calculation means 10.

また、詳細は後述するが、本実施例では、時間Xは例えば4秒から8秒程度に設定する。時間Yを例えばCVHRの周期である25秒から120秒程度に設定する。従って、例えば拍動間隔測定手段4で拍動が検出された毎に測定され蓄積された拍動間隔データを用い、演算時点から過去4秒分の平均拍動間隔を短時間平均拍動間隔SRとし、過去25秒分の平均拍動間隔を長時間平均拍動間隔LRとすることができる。また、短時間平均拍動間隔演算手段8及び長時間平均拍動間隔演算手段9の演算間隔は、例えば拍動が検出された毎に測定された拍動間隔と同間隔とすることができる。 Further, as will be described later in detail, in this embodiment, the time X is set to, for example, about 4 seconds to 8 seconds. The time Y is set to, for example, the CVHR cycle of 25 seconds to 120 seconds. Therefore, for example, by using the beat interval data measured and accumulated every time the beat is detected by the beat interval measuring means 4, the average beat interval for the past 4 seconds from the time of calculation is calculated as the short-term average beat interval SR. Then, the average beat interval for the past 25 seconds can be set as the long-term average beat interval LR. The calculation intervals of the short-time average beat interval calculation means 8 and the long-time average beat interval calculation means 9 may be the same as the beat intervals measured each time a beat is detected, for example.

拍動間隔谷演算手段10は、短時間平均拍動間隔演算手段8で算出された短時間平均拍動間隔SRと長時間平均拍動間隔演算手段9で算出された長時間平均拍動間隔LRの平均拍動間隔差SR-LRを演算し、その結果を拍動間隔谷判定手段11へ転送する。 The beat interval valley calculating means 10 includes a short time average beat interval SR calculated by the short time average beat interval calculating means 8 and a long time average beat interval LR calculated by the long time average beat interval calculating means 9. The average beat interval difference SR-LR of is calculated, and the result is transferred to the beat interval valley determining means 11.

拍動間隔谷判定手段11は、拍動間隔谷演算手段10で演算された平均拍動間隔差SR-LR(の時系列)のうち、所定拍動間隔谷深さ保存手段12に保存された所定の谷深さ閾値Vよりも小さい値(拍動間隔)が、所定谷内拍動間隔数保存手段13に保存された所定の谷判定閾値Q以上連続しているとき、これを1個の拍動間隔谷と判定し、拍動間隔谷判定結果データを所定判定時間内谷数積算手段14へ転送する。所定拍動間隔谷深さ保存手段12に保存された所定の谷深さ閾値Vは解析器3内で保存されているが、この谷深さ閾値Vはユーザが設定しても良い。そうすれば、無呼吸状態の検出感度を調整できる。 The beat interval valley determining means 11 is stored in the predetermined beat interval valley depth saving means 12 of (mean time series of) the mean beat interval differences SR-LR calculated by the beat interval valley calculating means 10. When the value (beat interval) smaller than the predetermined valley depth threshold value V continues for the predetermined valley determination threshold value Q stored in the predetermined valley inner beat interval number storage means 13, this is counted as one beat. It is determined to be a moving interval valley, and the pulsating interval valley judgment result data is transferred to the valley number integrating means 14 within a predetermined judgment time. The predetermined valley depth threshold V stored in the predetermined beat interval valley depth storage means 12 is stored in the analyzer 3, but the valley depth threshold V may be set by the user. Then, the apnea detection sensitivity can be adjusted.

なお、拍動間隔谷判定手段11は、谷深さ閾値Vよりも小さい値が所定数連続する場合に限らず、1つだけ存在した場合にこれを1個の拍動間隔谷と判定するように構成しても良い。 The pulsation interval valley determining means 11 determines not only when the value smaller than the valley depth threshold value V continues for a predetermined number, but when only one value exists, it is determined as one pulsation interval valley. It may be configured as.

谷深さ閾値Vは、拍動間隔の長時間平均拍動間隔LRの関数V=V(LR)としてもよい。関数V(LR)としては、例えば、αを定数としてV(LR)=αLRやV(LR)=αLRなどを採用できる。所定谷内拍動間隔数保存手段13に保存された所定の拍動間隔数は、後述するように、突発的な拍動間隔谷の検出を防止し、誤検出を防止するために用いられる。従って、対象者の状態によって適宜設定すれば、感度と特異度のバランスのとれた無呼吸状態検出システムを構成できる。 The valley depth threshold V may be a function V=V(LR) of the long-term average beat interval LR of beat intervals. As the function V(LR), for example, V(LR)=αLR or V(LR)=αLR 2 with α being a constant can be adopted. The predetermined number of pulsation intervals stored in the predetermined number-of-valley-intervals storage unit 13 is used to prevent the detection of sudden pulsation interval valleys and to prevent erroneous detection, as described later. Therefore, an apnea detection system in which the sensitivity and the specificity are well balanced can be configured by appropriately setting it according to the condition of the subject.

所定判定時間内谷数積算手段14は、所定判定時間内に拍動間隔谷判定結果データに幾つの拍動間隔谷が含まれるかカウントし、その結果を谷数比較手段16へ転送する。 The valley number accumulating means 14 within the predetermined determination time counts how many beat interval valleys are included in the beat interval valley determination result data within the predetermined determination time, and transfers the result to the valley number comparing means 16.

谷数比較手段16は、所定谷数保存手段17に保存された所定の異常谷数閾値Pと比較し、拍動間隔谷の数が異常谷数閾値P以上ならば無呼吸状態であると判定する。異常谷数閾値Pを小さくすれば、感度は上がるが誤検出の恐れが生じる。また、異常谷数閾値Pを大きくすれば、無呼吸状態における拍動間隔変動周期の短い対象者の無呼吸状態を、より正確に検出することができる。従って、対象者の状態に応じて異常谷数閾値Pを適宜設定すれば、無呼吸状態検出システムの誤検出を避けることができる。 The valley number comparing means 16 compares with the predetermined abnormal valley number threshold value P stored in the predetermined valley number saving means 17, and if the number of pulsation interval valleys is equal to or more than the abnormal valley number threshold value P, it is determined to be an apnea state. To do. If the threshold value P for the abnormal valley number is made small, the sensitivity is increased, but there is a risk of erroneous detection. Further, by increasing the abnormal valley threshold P, it is possible to more accurately detect the apnea state of the subject having a short beat interval variation cycle in the apnea state. Therefore, if the abnormal valley threshold P is appropriately set according to the condition of the subject, it is possible to avoid erroneous detection of the apnea detection system.

谷数比較手段16で判定した無呼吸状態の有無は、無呼吸状態の有無を通知する通知手段18へ転送される。谷数比較手段16と通知手段18は同じ筐体(解析器3)内に配置されていてもよい。この場合、転送方法はプリント配線基板上の配線による。あるいは、谷数比較手段16が含まれる解析器3と、通知手段18とは別体であってもよい。この場合、転送方法としては、電波や光を用いた無線や、USBやRS-232Cなどの有線接続を用いることができる。無線を用いたとき、通知手段18と解析器3を物理的に分離でき、通知手段18のみを枕元に置くことで対象者にとって利便性の高い無呼吸状態検出システムとなる。また、電話回線やインターネットなどの公衆回線を用いることも可能であり、この場合、対象者に対して遠隔に無呼吸状態を検出しつつ、結果のみを対象者へ通知することができるので、対象者は解析器3の配置などの手間がない。有線接続を用いたとき、解析器3から通知手段18へ電力供給もできるので、無呼吸状態を検出した場合にベッドを揺らすなどが可能になり、通知方法の多様性が増す。 The presence/absence of the apnea state determined by the valley number comparing means 16 is transferred to the notifying means 18 for notifying the presence/absence of the apnea state. The valley number comparing means 16 and the notifying means 18 may be arranged in the same housing (analyzer 3). In this case, the transfer method depends on the wiring on the printed wiring board. Alternatively, the analyzer 3 including the valley number comparing means 16 and the notifying means 18 may be separate bodies. In this case, the transfer method may be wireless using electric waves or light, or wired connection such as USB or RS-232C. When wireless is used, the notifying means 18 and the analyzer 3 can be physically separated, and by placing only the notifying means 18 at the bedside, the apnea detection system is highly convenient for the subject. It is also possible to use a public line such as a telephone line or the Internet. In this case, it is possible to notify the subject only of the result while detecting the apnea condition remotely to the subject. The person has no trouble in disposing the analyzer 3. When a wired connection is used, power can be supplied from the analyzer 3 to the notification means 18, so that the bed can be swung when an apnea condition is detected, and the variety of notification methods is increased.

通知手段18としては、例えば文字や画像などを表示するディスプレイを用いることができる。この場合、拍動間隔データと無呼吸状態の有無をグラフ表示し、いつ無呼吸状態になったのかをわかりやすく示すことができる。また、通知手段18として、光や音や振動を用いることもできる。この場合、無呼吸状態を直ちに通知できる。 As the notification means 18, for example, a display that displays characters or images can be used. In this case, the pulsation interval data and the presence/absence of an apnea condition can be displayed in a graph to clearly indicate when the apnea condition occurs. In addition, light, sound, or vibration can be used as the notification means 18. In this case, the apnea condition can be immediately notified.

また、通知手段18と共に、若しくは、通知手段18を設けずに、無呼吸状態を検出した際に対象者をわずかに覚醒する程度(睡眠状態を継続できる程度)に、音や振動を発生させたり、枕やベッドをわずかに傾けたりする刺激手段を設けた場合には、無呼吸状態を検出した際に対象者の無呼吸状態を解消し眠りを改善する効果が得られることになり、対象者の無呼吸状態を解消して安眠を提供する安眠提供システムを実現可能となる。 In addition, with or without the notification means 18, when the apnea is detected, the sound or vibration is generated to such an extent that the subject is slightly awakened (to the extent that the sleep state can be continued). If a stimulating means such as slightly tilting the pillow or the bed is provided, when the apnea condition is detected, the effect of eliminating the apnea condition of the subject and improving sleep can be obtained. It becomes possible to realize a sleep-sleeping system that eliminates the apnea condition and provides sleep.

本実施例による無呼吸状態の検出方法について詳述する。 The apnea detection method according to this embodiment will be described in detail.

上述したように、SASによる無呼吸状態を検出するには、拍動間隔の時系列中に所定深さの谷(深い谷)が周期的に出現するかどうか調べれば良い。 As described above, in order to detect an apnea state by SAS, it is sufficient to check whether valleys with a predetermined depth (deep valleys) periodically appear in the time series of pulsation intervals.

この方法を図6に従って説明する。「深い谷」を検出するには、谷の深さの測り方が必要である。谷の深さを測るための深さの基準として、拍動間隔の日内変動を考慮し、所定の長時間における拍動間隔の平均を用いる。所定の長時間(時間Y)は、CVHRの周期である25秒から120秒程度が好適である。拍動間隔と、谷の深さを測るための基準とした所定の長時間における拍動間隔の平均との差が、所定の値より小さいひとまとまりを1つの谷とすることができる。しかし、拍動間隔には常に呼吸性不整脈が含まれるため、これに伴う拍動間隔の増減がいちいち谷として識別される恐れがある。そこで、呼吸性不整脈の影響を小さくするため、所定の短時間(時間X)における拍動間隔の平均を用いる。所定の短時間は、呼吸の周期が4秒程度なので、4秒から8秒が好適である。前述したいずれの拍動間隔の平均も、次のように求めることができる。 This method will be described with reference to FIG. To detect "deep valleys", it is necessary to measure the depth of the valleys. As a depth standard for measuring the depth of the valley, the average of the beating intervals for a predetermined long time is used in consideration of the daily variation of the beating intervals. The predetermined long time (time Y) is preferably about 25 to 120 seconds, which is the CVHR cycle. One valley can be a group of which the difference between the pulsation interval and the average of the pulsation intervals over a predetermined long time, which is a reference for measuring the depth of the valley, is smaller than a predetermined value. However, since the pulsation interval always includes respiratory arrhythmia, the increase or decrease in the pulsation interval due to this may be identified as a valley. Therefore, in order to reduce the influence of respiratory arrhythmia, the average of pulsation intervals in a predetermined short time (time X) is used. Since the breathing cycle is about 4 seconds, the predetermined short time is preferably 4 to 8 seconds. The average of any of the beat intervals described above can be obtained as follows.

つまり、時刻tの拍動間隔の平均Rバー(t)を求める方法は単純平均でも良く、拍動間隔の時系列をR(t)、平均時間をTとして、 That is, the method of obtaining the average R bar (t) of the beat intervals at the time t may be a simple average, and the time series of the beat intervals is R(t i ) and the average time is T.

Figure 2020092907
Figure 2020092907

を採用することができる。ここで、インデックスiは何番目に測定されたかを表し、tはi番目に測定された時刻である。また、n(t,T)は、時刻t−Tから時刻tまでに測定された拍動間隔の個数を表す。また、片側ガウス分布を用いた加重平均でも良い。この場合時刻tの平均拍動間隔Rバー(t)は、 Can be adopted. Here, the index i represents the number of the measured time, and t i is the time of the measured number i. Further, n(t,T) represents the number of pulsation intervals measured from time t−T to time t. Alternatively, a weighted average using a one-sided Gaussian distribution may be used. In this case, the average beat interval R bar (t) at time t is

Figure 2020092907
Figure 2020092907

で表され、時間的により一層滑らかな平均拍動間隔Rバー(t)が得られる。図6では、所定の短時間における拍動間隔の平均、短時間平均拍動間隔SRを、T=5sとした式(1)を使って求め、所定の長時間における拍動間隔の平均、長時間平均拍動間隔LRを、T=60sとした式(1)を使って求めたものを示している。 , The smoother average beat interval R bar (t) is obtained. In FIG. 6, the average of pulsation intervals in a predetermined short time and the short-term average pulsation interval SR are obtained by using the equation (1) with T=5 s, and the average and long pulsation intervals in a predetermined long time are calculated. The time-averaged beating interval LR is shown using equation (1) with T=60 s.

無呼吸によって生じる拍動間隔の「深い谷」は、短時間平均拍動間隔SRと長時間平均拍動間隔LRとの差が、所定の値V(谷深さ閾値V)よりも小さい、SR−LR<Vの部分である。ところで、拍動間隔の変動は、心拍数が大きければ(平均拍動間隔が小さければ)小さく、心拍数が小さければ(平均拍動間隔が大きければ)大きい。従って、「深い谷」を判定するための所定の値Vは、長時間における拍動間隔の平均LRに応じて変化する、関数V=V(LR)でもよい。関数V(LR)としては、例えば、αを定数としてV(LR)=αLRやV(LR)=αLRなどを採用できる。 In the "deep valley" of the beat interval caused by apnea, the difference between the short-term average beat interval SR and the long-term average beat interval LR is smaller than a predetermined value V (valley depth threshold value V) SR. It is a part of −LR<V. By the way, the fluctuation of the beat interval is small when the heart rate is large (when the average beat interval is small), and is large when the heart rate is small (when the average beat interval is large). Therefore, the predetermined value V for determining the “deep valley” may be a function V=V(LR) that changes according to the average LR of the beat intervals for a long time. As the function V(LR), for example, V(LR)=αLR or V(LR)=αLR 2 with α being a constant can be adopted.

図6では、V(LR)=−0.00009LRとして、AとBの2カ所の谷を検出している。さらに、SR−LR<Vによって探索した谷であっても、レム睡眠時によって生じた突発的な谷である可能性がある。これを避けるために、SR−LR<Vに含まれる拍動間隔のデータが、所定の数Q(谷判定閾値Q)以上連続しているときに、無呼吸状態によって生じた「深い谷」の候補と判定する。所定の数Qは、突発的な谷を検出しないためであるから、2以上が好適である。図6のAとBの箇所は、拍動間隔データ(SR−LRの時系列)が連続で2以上含まれている。最後に、SASの特徴であるCVHRは、拍動間隔が周期的に大きく増大減少することであるので、所定の判定時間内に、所定の数P(異常谷数閾値P)以上の「深い谷」を検出したときに無呼吸状態と判定すればよい。所定の判定時間は、CVHRの周期が25秒から120秒程度であることから、120秒以上が好適である。所定の数Pは、「深い谷」が繰り返しているか調べたいので、2以上が好適である。図6では、120秒の間にAとBの2カ所の「深い谷」があり、無呼吸と判定できる。 In FIG. 6, V(LR)=−0.00009LR 2 , and two valleys A and B are detected. Furthermore, even a valley searched by SR-LR<V may be a sudden valley caused by REM sleep. In order to avoid this, when the data of the beat interval included in SR-LR<V is continuous for a predetermined number Q (valley determination threshold value Q) or more, the "deep valley" caused by the apnea condition Judge as a candidate. The predetermined number Q is preferably 2 or more because it does not detect a sudden valley. At points A and B in FIG. 6, two or more beat interval data (SR-LR time series) are continuously included. Finally, the CVHR, which is a feature of SAS, is that the pulsation intervals increase and decrease periodically, so within a predetermined judgment time, a "deep valley" equal to or greater than a predetermined number P (abnormal valley number threshold P) is reached. It is sufficient to determine that the apnea state is detected. The predetermined determination time is preferably 120 seconds or more because the CVHR cycle is about 25 seconds to 120 seconds. The predetermined number P is preferably 2 or more because it is desired to check whether the "deep valley" is repeated. In FIG. 6, there are two “deep valleys”, A and B, within 120 seconds, and it can be determined to be apnea.

図2に本実施例の別例1を示す。 FIG. 2 shows another example 1 of this embodiment.

閉塞型睡眠時無呼吸症候群(OSAS)である対象者が、側臥位や伏臥位で睡眠しているときは、無呼吸状態にならない。従って、対象者の姿勢が仰臥位かどうか検知できれば、より一層誤検出の少ない無呼吸状態検出システムを構成できる。 Subjects with Obstructive Sleep Apnea Syndrome (OSAS) do not have apnea when sleeping in the lateral or prone position. Therefore, if it is possible to detect whether or not the posture of the subject is in the supine position, it is possible to configure an apnea detection system with fewer false detections.

図2に示す別例1は、図1の無呼吸状態検出システム1に、拍動間隔を測定するのと同時に対象者の姿勢を測定する姿勢測定手段19と、姿勢測定手段19によって得られた姿勢から、立位か伏臥位か側臥位かを判定する体位判定手段23と、拍動間隔測定手段4により測定した拍動間隔の時系列から、体位判定手段23によって得られた姿勢状態(体位情報)に基づき、立位,伏臥位若しくは側臥位のいずれか、または、立位,伏臥位及び側臥位すべての状態のとき(仰臥位でないとき)の拍動間隔を除外し、当該拍動間隔が除外された除外後の前記拍動間隔の時系列を短時間平均拍動間隔演算手段8及び長時間平均拍動間隔演算手段9に転送する所定体位拍動間隔除外手段24とを備えたものである。 Another example 1 shown in FIG. 2 is obtained by the posture measuring means 19 for measuring the pulsation interval and at the same time the posture of the target person in the apnea detection system 1 of FIG. 1, and the posture measuring means 19. Based on the posture, the posture determining means 23 for determining whether the patient is standing, lying down or lying down, and the posture state obtained by the posture determining means 23 from the time series of the pulsation intervals measured by the pulsation interval measuring means 4 (position Based on the information), either the standing position, the prone position or the lateral position, or the pulsation interval in the standing position, the prone position and the lateral position (when not in the supine position) is excluded, and the pulsation interval. And a predetermined posture pulsation interval excluding means 24 for transferring the time series of the pulsation intervals after exclusion to the short-term average pulsation interval calculation means 8 and the long-term average pulsation interval calculation means 9. Is.

具体的に、図2に示すセンサ2には、本実施例(図1)のセンサ2に、姿勢測定手段19と姿勢保存手段20と姿勢送信手段21とが付加されている。また、図1の解析器3に、姿勢受信手段22と体位判定手段23と所定体位拍動間隔除外手段24とが付加されている。 Specifically, in the sensor 2 shown in FIG. 2, a posture measuring unit 19, a posture storing unit 20, and a posture transmitting unit 21 are added to the sensor 2 of this embodiment (FIG. 1). Further, a posture receiving means 22, a body posture determining means 23 and a predetermined body posture pulsation interval excluding means 24 are added to the analyzer 3 of FIG.

センサ2の姿勢測定手段19は、対象者の姿勢を測定できるデバイスであり、例えばMEMSの3軸加速度センサを使用することができる。このようなセンサは軽量、小型、低消費電力なので、被験者の負担は小さいものになる。 The posture measuring means 19 of the sensor 2 is a device capable of measuring the posture of the target person, and for example, a three-axis acceleration sensor of MEMS can be used. Since such a sensor is lightweight, small in size, and has low power consumption, the burden on the subject is small.

姿勢測定手段19によって測定された姿勢データは、姿勢保存手段20へ逐次転送され一時保存される。センサ2を軽量、小型かつ低消費電力とするため、姿勢保存手段20は拍動間隔保存手段5と共通でもよい。 The posture data measured by the posture measuring unit 19 is sequentially transferred to the posture storing unit 20 and temporarily stored. The posture storing means 20 may be common with the beat interval storing means 5 in order to make the sensor 2 lightweight, compact, and low in power consumption.

姿勢保存手段20で一時保存された姿勢データは、姿勢送信手段21へ転送される。この転送経路は、センサ2を軽量、小型かつ低消費電力とするため、拍動間隔保存手段5と拍動間隔送信手段6の転送経路と共通でもよい。 The posture data temporarily stored in the posture storing means 20 is transferred to the posture transmitting means 21. This transfer path may be the same as the transfer path of the beat interval storing means 5 and the beat interval transmitting means 6 in order to make the sensor 2 lightweight, compact, and low in power consumption.

姿勢送信手段21は、姿勢保存手段20から転送された姿勢データを受け取り、解析器3に設けた姿勢受信手段22へ転送する。センサ2を軽量、小型かつ低消費電力とするため、姿勢送信手段21と拍動間隔送信手段6とを一体とし、更に、姿勢受信手段22と拍動間隔受信手段7とを一体としても良い。このとき、姿勢送信手段21から姿勢受信手段22への転送経路は、拍動間隔送信手段6から拍動間隔受信手段7への転送経路と共通となる。 The posture transmitting means 21 receives the posture data transferred from the posture storing means 20, and transfers the posture data to the posture receiving means 22 provided in the analyzer 3. In order to make the sensor 2 lightweight, small, and low in power consumption, the posture transmitting means 21 and the beat interval transmitting means 6 may be integrated, and the posture receiving means 22 and the beat interval receiving means 7 may be integrated. At this time, the transfer path from the attitude transmitting means 21 to the attitude receiving means 22 is common with the transfer path from the beat interval transmitting means 6 to the beat interval receiving means 7.

姿勢受信手段22で受信した姿勢データは体位判定手段23へ転送される。体位判定手段23は、対象者が仰臥位で寝ているかどうかを判定する。例えば、姿勢測定手段19が重力に対しても感度を持つ3軸加速度センサで構成され、x,y,z軸の出力それぞれを、対象者の右から左、対象者の足から頭、対象者の胸から背中の方向へ一致させ、出力値を(A,A,A)とする。もし、対象者が臥位であれば、対象者の足から頭の方向には重力加速度は0に近いので、 The posture data received by the posture receiving means 22 is transferred to the body position determining means 23. The posture determining means 23 determines whether or not the subject is sleeping in the supine position. For example, the posture measuring means 19 is composed of a triaxial acceleration sensor that is sensitive to gravity, and outputs the x-, y-, and z-axes of the subject from right to left, from the subject's feet to the head, and from the subject. The output values are (A x , A y , A z ) by making them match from the chest to the back. If the subject is in a supine position, the gravitational acceleration is close to 0 in the direction from the subject's foot to head,

Figure 2020092907
Figure 2020092907

を満たす。対象者が仰臥位かそれ以外かは、AとAの合成ベクトルの向く角度から判定できる。合成ベクトルの角度θを Meet Whether the subject is in the supine position or not can be determined from the angle at which the combined vector of A x and A z faces. The angle θ of the composite vector

Figure 2020092907
Figure 2020092907

として、 As

Figure 2020092907
Figure 2020092907

ならば仰臥位と判定できる。つまり式(3)と式(5)を満たせば仰臥位である。 If so, it can be determined to be supine. In other words, if you satisfy Eqs. (3) and (5), you are in a supine position.

体位判定手段23は前述のように、姿勢データが仰臥位かそれ以外かを判定し、所定体位拍動間隔除外手段24へ判定結果を転送する。 As described above, the posture determining means 23 determines whether the posture data is in the supine position or not, and transfers the determination result to the predetermined posture pulsation interval excluding means 24.

所定体位拍動間隔除外手段24は、体位判定手段23から姿勢データが仰臥位かどうかを受けとると共に、拍動間隔受信手段7から拍動間隔データを受け取り、拍動間隔データから対象者の姿勢が仰臥位でない時間の拍動間隔を除外し、除外後の拍動間隔データを短時間平均拍動間隔演算手段8及び長時間平均拍動間隔演算手段9へ転送する。 The predetermined posture pulsation interval excluding means 24 receives whether or not the posture data is in the supine position from the posture determining means 23, receives the pulsation interval data from the pulsation interval receiving means 7, and determines the posture of the subject from the pulsation interval data. The pulsation intervals in the non-supine position are excluded, and the excluded pulsation interval data is transferred to the short-time average pulsation interval calculating means 8 and the long-time average pulsation interval calculating means 9.

従って、別例1においては、一層誤検出の少ない無呼吸状態検出システムを実現可能となる。 Therefore, in the other example 1, it becomes possible to realize the apnea state detection system with less erroneous detection.

図3に本実施例の別例2を示す。 FIG. 3 shows another example 2 of this embodiment.

対象者が寝返りなどの大きな体動を生じたとき、拍動間隔は大きく増減する。図7は対象者の寝返りによって生じた拍動間隔の変化と、体動の大きさを示していて、横軸は時刻、左縦軸は体動、右縦軸は拍動間隔である。ここで、体動の大きさは重力加速度を1Gとした単位で表している。寝返りが生じたとき(図7中、Pで図示)、体動は0.3Gを超えていて、同時におよそ1000ms程度だった拍動間隔が700ms程度まで低下している。このような拍動間隔の変化はCVHRで生じる拍動間隔の増減に酷似している。大きな体動時の拍動間隔を除外すれば、誤検出の少ない無呼吸状態検出システムを構成することができる。 When the subject has a large body movement such as rolling over, the pulsation interval greatly increases or decreases. FIG. 7 shows changes in pulsation intervals caused by the subject's turning over and the magnitude of body movements. The horizontal axis represents time, the left vertical axis represents body movements, and the right vertical axis represents pulsation intervals. Here, the magnitude of body movement is expressed in a unit where the gravitational acceleration is 1 G. When rolling over occurs (indicated by P in FIG. 7), the body movement exceeds 0.3 G, and at the same time, the beat interval, which was about 1000 ms, is reduced to about 700 ms. Such changes in beat intervals closely resemble the changes in beat intervals that occur in CVHR. By excluding the pulsation intervals during large body movements, it is possible to configure an apnea detection system with few false detections.

図3に示す別例2は、図1に示す無呼吸状態検出システム1に、拍動間隔を測定するのと同時に対象者の姿勢を測定する姿勢測定手段19と、姿勢測定手段から得られた姿勢の時系列から体動を検出する体動検出手段25と、拍動間隔測定手段4により測定した心臓の拍動間隔の時系列から、体動検出手段25によって検出された体動が発生した時刻から所定の前後の時間の拍動間隔を除外し、除外後の拍動間隔の時系列を短時間平均拍動間隔演算手段8と長時間平均拍動間隔演算手段9とに転送する体動時拍動間隔除外手段26とを備えたものである。 Another example 2 shown in FIG. 3 is obtained from the apnea state detection system 1 shown in FIG. 1 by the posture measuring means 19 for measuring the pulsation interval and at the same time the posture of the subject, and the posture measuring means. From the body movement detecting means 25 for detecting body movement from the time series of posture, and the time series of the heartbeat intervals measured by the heartbeat interval measuring means 4, the body movement detected by the body motion detecting means 25 occurs. Body movements in which the beat intervals before and after a predetermined time from the time are excluded and the time series of the beat intervals after exclusion are transferred to the short-time average beat interval calculation means 8 and the long-time average beat interval calculation means 9. The time pulsation interval excluding means 26 is provided.

具体的には、センサ2は別例1(図2)と同様であり、解析器3には、図1の解析器3に対して、姿勢受信手段22と体動検出手段25と体動時拍動間隔除外手段26とが付加されている。 Specifically, the sensor 2 is the same as that of the another example 1 (FIG. 2), and the analyzer 3 is different from the analyzer 3 of FIG. 1 in that the posture receiving means 22, the body movement detecting means 25, and the body movement detecting means A beat interval excluding means 26 is added.

センサ2の姿勢測定手段19は、対象者の体動を測定できるデバイスであり、例えばMEMSの3軸加速度センサを使用するのが好適である。このようなセンサは軽量、小型、低消費電力なので、被験者の負担は小さいものになる。 The posture measuring means 19 of the sensor 2 is a device capable of measuring the body movement of the subject, and it is preferable to use, for example, a MEMS triaxial acceleration sensor. Since such a sensor is lightweight, small in size, and has low power consumption, the burden on the subject is small.

センサ2の姿勢測定手段19で測定された姿勢データは、姿勢保存手段20と姿勢送信手段21とを通して、解析器3の姿勢受信手段22へ転送される。 The posture data measured by the posture measuring means 19 of the sensor 2 is transferred to the posture receiving means 22 of the analyzer 3 through the posture storing means 20 and the posture transmitting means 21.

解析器3の姿勢受信手段22で受信した姿勢データは、体動検出手段25へ転送される。 The posture data received by the posture receiving means 22 of the analyzer 3 is transferred to the body movement detecting means 25.

体動検出手段25は、姿勢データから体動の有無を探索する。対象者が、例えば寝返りをうつとき、対象者は加速度運動する。センサ2が対象者に常に密着していれば姿勢測定手段19が、寝返りに伴う加速度を検出できる。姿勢測定手段19が3軸加速度センサで構成され、x,y,z軸の出力それぞれを(A,A,A)とし、静止状態の加速度センサが重力のみを検出するため√(A +A +A )=1であることを使って、 The body movement detecting means 25 searches the posture data for the presence or absence of body movement. When the subject is turning over, for example, the subject accelerates. If the sensor 2 is always in close contact with the target person, the posture measuring means 19 can detect the acceleration associated with turning over. The attitude measuring means 19 is composed of a triaxial acceleration sensor, and outputs of the x, y, and z axes are (A x , A y , A z ), respectively, and the acceleration sensor in a stationary state detects only gravity. Using x 2 +A y 2 +A z 2 )=1,

Figure 2020092907
Figure 2020092907

と定義する。図7からもわかるように、Mが所定の値よりも大きければ体動があると判定できる。ここで言う所定の値は0.1から0.3が好適である。体動検出手段25は、このように体動の有無を検出し、その結果を体動時拍動間隔除外手段26へ転送する。 It is defined as. As can be seen from FIG. 7, if M is larger than a predetermined value, it can be determined that there is body movement. The predetermined value referred to here is preferably 0.1 to 0.3. The body movement detecting means 25 thus detects the presence or absence of body movement, and transfers the result to the body movement beat interval excluding means 26.

体動時拍動間隔除外手段26は、体動検出手段25から体動の有無を受け取ると共に、拍動間隔受信手段7から拍動間隔データを受け取り、体動のあった時刻から所定の前後の時間にある拍動間隔データを除外する。体動のあった前後は一定時間拍動間隔が変動するためである。ここで言う所定の時間は60秒以上が好適である。体動時拍動間隔除外手段26は体動に関する拍動間隔を除外した後、この拍動間隔データを短時間平均拍動間隔演算手順8及び長時間平均拍動間隔演算手段9へ転送する。 The beat interval excluding means 26 during body movement receives the presence/absence of body movement from the body movement detecting means 25, receives the beat duration data from the beat duration receiving means 7, and detects the time before and after the time when the body movement is present. Exclude beat interval data at time. This is because the pulsation interval fluctuates for a certain period of time before and after body movement. The predetermined time referred to here is preferably 60 seconds or more. The pulsation interval excluding means for body movement 26 excludes pulsation intervals relating to body movement, and then transfers the pulsation interval data to the short-time average pulsation interval calculation procedure 8 and the long-time average pulsation interval calculation means 9.

従って、別例2においては、一層誤検出の少ない無呼吸状態検出システムを実現可能となる。 Therefore, in the second example, an apnea detection system with less erroneous detection can be realized.

図4は、別例1及び別例2の構成を共に備えた別例3である。 FIG. 4 is another example 3 having both the configurations of the first example and the second example.

別例1(または別例2)のセンサ2と、図1における解析器3に姿勢受信手段22と体位判定手段23と所定体位拍動間隔除外手段24と体動検出手段25と体動時拍動間隔除外手段26とを備えたものとを用いれば、より一層誤検出の少ない無呼吸状態検出システム1を構成できる。 The sensor 2 of another example (or another example 2), the analyzer 3 in FIG. 1, the posture receiving means 22, the body posture determining means 23, the predetermined body posture pulsation interval excluding means 24, the body movement detecting means 25, and the body movement time beat. The apnea detection system 1 with less erroneous detection can be configured by using the one including the motion interval excluding means 26.

なお、解析器3の所定体位拍動間隔除外手段24と体動時拍動間隔除外手段26の順序(拍動間隔を除外する順序)は当然入れ替えても良い。 The order of the predetermined body position pulsation interval excluding means 24 and the body movement pulsation interval excluding means 26 of the analyzer 3 (the order of excluding the pulsation intervals) may be replaced with each other.

本実施例は上述のように構成したから、CVHRの特徴を拍動間隔から簡単な演算で検出して無呼吸状態の有無を把握できる実用的なものとなる。 Since the present embodiment is configured as described above, it becomes a practical one in which the characteristic of CVHR can be detected from the pulsation interval by a simple calculation to grasp the presence or absence of an apnea condition.

1 無呼吸状態検出システム
3 解析器
4 拍動間隔測定手段
8 短時間平均拍動間隔演算手段
9 長時間平均拍動間隔演算手段
10 拍動間隔谷演算手段
11 拍動間隔谷判定手段
14 所定判定時間内谷数積算手段
16 谷数比較手段
19 姿勢測定手段
23 体位判定手段
24 所定体位拍動間隔除外手段
25 体動検出手段
26 体動時拍動間隔除外手段
1 Apnea State Detection System 3 Analyzer 4 Beat Interval Measuring Means 8 Short Time Average Beat Interval Calculation Means 9 Long Time Average Beat Interval Calculation Means
10 beat interval valley calculation means
11 Beat interval valley judgment means
14 Predetermined judgment time Uchidani count integration means
16 Valley comparison means
19 Attitude measuring means
23 Position determination means
24 Predetermined posture beat interval excluding means
25 Body movement detection means
26 Means for excluding beat intervals during body movement

Claims (8)

対象者の無呼吸状態を検出する無呼吸状態検出システムであって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段と、前記拍動間隔測定手段により測定した前記拍動間隔から、呼吸の周期程度の所定の時間Xで平均した短時間平均拍動間隔を算出する短時間平均拍動間隔演算手段と、前記時間Xよりも長い所定の時間Yで平均した長時間平均拍動間隔を算出する長時間平均拍動間隔演算手段と、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差を演算する拍動間隔谷演算手段と、前記拍動間隔谷演算手段で得られた前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、所定の谷深さ閾値Vよりも小さい値が存在している箇所を1個の拍動間隔谷と判定する拍動間隔谷判定手段と、所定の判定時間内に前記拍動間隔谷判定手段で判定された拍動間隔谷の数を積算する所定判定時間内谷数積算手段と、前記所定判定時間内谷数積算手段で積算した拍動間隔谷の数を所定の異常谷数閾値Pと比較し、前記拍動間隔谷の数が前記異常谷数閾値P以上ならば無呼吸状態であると判定する谷数比較手段とを備えたことを特徴とする無呼吸状態検出システム。 An apnea state detection system for detecting an apnea state of a subject, comprising a beat interval measuring means for measuring a beat interval of a subject's heart, and a beat interval measured by the beat interval measuring means. A short-time average pulsation interval calculating means for calculating a short-time average pulsation interval averaged over a predetermined time X such as a breathing cycle, and a long-time average pulsation averaged over a predetermined time Y longer than the time X. Long-time average beat interval calculating means, beat interval valley calculating means for calculating the difference between the short-time average beat interval and the long-time average beat interval, and beat interval valley calculating means In the time series of the difference between the short-time average pulsation interval and the long-time average pulsation interval obtained in step 1, a point where a value smaller than a predetermined valley depth threshold V exists is one beat. A beat interval valley determining means for determining a motion interval valley, and a predetermined determination time inner valley number integrating means for integrating the number of beat interval valleys determined by the beat interval valley determining means within a predetermined determination time, The number of pulsation interval valleys accumulated by the valley number accumulating means within the predetermined determination time is compared with a predetermined abnormal valley number threshold P, and if the number of pulsation interval valleys is the abnormal valley number threshold P or more, an apnea state. An apnea detection system comprising: a valley number comparing means for determining that 請求項1記載の無呼吸状態検出システムにおいて、前記拍動間隔谷判定手段は、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、前記谷深さ閾値Vよりも小さい値が、所定の谷判定閾値Q以上連続して存在している箇所を1個の拍動間隔谷と判定するように構成されていることを特徴とする無呼吸状態検出システム。 The apnea detection system according to claim 1, wherein the pulsation interval valley determination means is configured to detect the valley depth threshold value in a time series of a difference between the short-time average pulsation interval and the long-time average pulsation interval. An apnea detection system characterized in that a value smaller than V is continuously judged to be a predetermined valley judgment threshold value Q or more as one beat interval valley. 請求項1,2いずれか1項に記載の無呼吸状態検出システムにおいて、対象者の姿勢を測定する姿勢測定手段と、前記姿勢測定手段から得られた姿勢から立位か伏臥位か側臥位かを判定する体位判定手段と、前記拍動間隔測定手段により測定した前記拍動間隔の時系列から、前記体位判定手段によって得られた体位情報に基づき、立位,伏臥位若しくは側臥位のいずれかの体位のときの拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段及び前記長時間平均拍動間隔演算手段に転送する所定体位拍動間隔除外手段とを備えたことを特徴とする無呼吸状態検出システム。 The apnea detection system according to any one of claims 1 and 2, wherein the posture measuring means for measuring the posture of the subject and whether the posture obtained from the posture measuring means is standing, prone or lying down. From the time series of the pulsation intervals measured by the pulsation interval measuring means, based on the position information obtained by the physiologic position determining means, either standing position, prone position or lateral position. The pulsation intervals in the body position are excluded, and the time series of the pulsation intervals excluding the pulsation intervals is transferred to the short-time average beat interval calculation means and the long-time average beat interval calculation means. An apnea state detection system, comprising: predetermined body position pulsation interval excluding means. 請求項1,2いずれか1項に記載の無呼吸状態検出システムにおいて、対象者の姿勢を測定する姿勢測定手段と、前記姿勢測定手段から得られた姿勢の時系列から体動を検出する体動検出手段と、前記拍動間隔測定手段により測定した前記拍動間隔の時系列から、前記体動検出手段によって検出された体動が発生した時刻から所定の前後の時間の拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段及び前記長時間平均拍動間隔演算手段に転送する体動時拍動間隔除外手段とを備えたことを特徴とする無呼吸状態検出システム。 The apnea detection system according to any one of claims 1 and 2, wherein a posture measuring unit that measures the posture of the target person, and a body that detects body movement from a time series of postures obtained from the posture measuring unit. From the time series of the pulsation intervals measured by the motion detection means and the pulsation interval measurement means, exclude pulsation intervals before and after a predetermined time from the time when the body motion detected by the body motion detection means occurs. And a beat interval excluding means for body movement for transferring the time series of the beat intervals excluding the beat intervals to the short-time average beat interval calculating means and the long-time average beat interval calculating means. An apnea detection system characterized by being provided. 請求項1,2いずれか1項に記載の無呼吸状態検出システムにおいて、対象者の姿勢を測定する姿勢測定手段と、
前記姿勢測定手段から得られた姿勢から立位か伏臥位か側臥位かを判定する体位判定手段と、前記拍動間隔測定手段により測定した前記拍動間隔の時系列から、前記体位判定手段によって得られた体位情報に基づき、立位,伏臥位若しくは側臥位のいずれかの体位のときの拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段及び前記長時間平均拍動間隔演算手段に転送する所定体位拍動間隔除外手段と、
前記姿勢測定手段から得られた姿勢の時系列から体動を検出する体動検出手段と、前記拍動間隔測定手段により測定した前記拍動間隔の時系列から、前記体動検出手段によって検出された体動が発生した時刻から所定の前後の時間の拍動間隔を除外し、当該拍動間隔が除外された前記拍動間隔の時系列を前記短時間平均拍動間隔演算手段及び前記長時間平均拍動間隔演算手段に転送する体動時拍動間隔除外手段とを備えたことを特徴とする無呼吸状態検出システム。
In the apnea detection system according to any one of claims 1 and 2, a posture measuring means for measuring the posture of the subject,
From the posture obtained from the posture measuring means, a posture determining means for determining whether the posture is prone or prone or lying down, and from the time series of the pulsation intervals measured by the pulsation interval measuring means, by the posture determining means. Based on the obtained posture information, the pulsation interval in any of the standing, prone or lateral postures is excluded, and the time series of the pulsation intervals excluding the pulsation interval is set to the short time. An average pulsation interval calculating means and a predetermined posture pulsation interval excluding means for transferring to the long-term average pulsation interval calculating means;
The body movement detecting means for detecting body movement from the time series of postures obtained from the posture measuring means, and the time series of the pulsation intervals measured by the pulsation interval measuring means are detected by the body movement detecting means. The pulsation intervals before and after a predetermined time from the time when the body movement occurred are excluded, and the time series of the pulsation intervals excluding the pulsation intervals is used as the short-time average beat interval calculation means and the long time. An apnea detection system, characterized in that it comprises means for excluding pulsation intervals during body movement that are transferred to means for calculating average pulsation intervals.
請求項1〜5いずれか1項に記載の無呼吸状態検出システムにおいて、前記谷深さ閾値Vは、前記長時間平均拍動間隔演算手段から算出された長時間平均拍動間隔の関数であることを特徴とする無呼吸状態検出システム。 The apnea detection system according to any one of claims 1 to 5, wherein the valley depth threshold value V is a function of the long-term average pulsation interval calculated by the long-time average pulsation interval calculation means. An apnea detection system characterized by the above. 対象者の無呼吸状態を解消して安眠を提供する安眠提供システムであって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段と、前記拍動間隔測定手段により測定した前記拍動間隔から、無呼吸状態であることを判定する解析器と、音または振動を発生し対象者をわずかに覚醒させることによって無呼吸状態を解消し眠りを改善する刺激手段とを備えたことを特徴とする安眠提供システム。 A sleep and sleep providing system for eliminating sleep apnea of a subject to provide sleep, comprising a beat interval measuring means for measuring a beat interval of a subject's heart, and the beat measured by the beat interval measuring means. It was equipped with an analyzer that determines apnea from the motion interval, and a stimulating means that eliminates apnea and improves sleep by generating sound or vibration to slightly awaken the subject. A system that provides a good night's sleep. 対象者の無呼吸状態を解消して安眠を提供する安眠提供システムであって、対象者の心臓の拍動間隔を測定する拍動間隔測定手段と、前記拍動間隔測定手段により測定した前記拍動間隔から、呼吸の周期程度の所定の時間Xで平均した短時間平均拍動間隔を算出する短時間平均拍動間隔演算手段と、前記時間Xよりも長い所定の時間Yで平均した長時間平均拍動間隔を算出する長時間平均拍動間隔演算手段と、前記短時間平均拍動間隔と前記長時間平均拍動間隔との差を演算する拍動間隔谷演算手段と、前記拍動間隔谷演算手段で得られた前記短時間平均拍動間隔と前記長時間平均拍動間隔との差の時系列のうち、所定の谷深さ閾値Vよりも小さい値が存在している箇所を1個の拍動間隔谷と判定する拍動間隔谷判定手段と、所定の判定時間内に前記拍動間隔谷判定手段で判定された拍動間隔谷の数を積算する所定判定時間内谷数積算手段と、前記所定判定時間内谷数積算手段で積算した拍動間隔谷の数を所定の異常谷数閾値Pと比較し、前記拍動間隔谷の数が前記異常谷数閾値P以上ならば無呼吸状態であると判定する谷数比較手段と、前記谷数比較手段が無呼吸状態であると判定したときに、音または振動を発生し対象者をわずかに覚醒させることによって無呼吸状態を解消し眠りを改善する刺激手段とを備えたことを特徴とする安眠提供システム。 A sleep and sleep providing system for eliminating sleep apnea of a subject to provide sleep, comprising a beat interval measuring means for measuring a beat interval of a subject's heart, and the beat measured by the beat interval measuring means. A short-time average pulsation interval calculating means for calculating a short-time average pulsation interval averaged from a pulsation interval for a predetermined time X of a breathing cycle, and a long time averaged for a predetermined time Y longer than the time X. A long-time average beat interval calculating means for calculating an average beat interval, a beat interval valley calculating means for calculating a difference between the short-time average beat interval and the long-term average beat interval, and the beat interval In the time series of the difference between the short-time average pulsation interval and the long-time average pulsation interval obtained by the valley calculating means, a point having a value smaller than a predetermined valley depth threshold V exists 1 Beat interval gap valley determining means for determining the beat interval valleys, and integration of the number of valleys within a predetermined determination time for integrating the number of the beat interval valleys determined by the beat interval valley determining means within a predetermined determination time Means, and the number of pulsation interval valleys accumulated by the number of valleys within the predetermined determination time is compared with a predetermined abnormal valley number threshold P, and if the number of pulsation interval valleys is equal to or greater than the abnormal valley number threshold P. When the number-of-valleys comparing means for determining an apnea state and the number-of-valleys comparing means determines the state of apnea, a sound or a vibration is generated to slightly awaken the subject to change the apnea state. A sleep-restoration system, which is provided with a stimulating means for solving the problem and improving sleep.
JP2018233694A 2018-12-13 2018-12-13 Apnea detection system and restful sleep system Active JP7112323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233694A JP7112323B2 (en) 2018-12-13 2018-12-13 Apnea detection system and restful sleep system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233694A JP7112323B2 (en) 2018-12-13 2018-12-13 Apnea detection system and restful sleep system

Publications (2)

Publication Number Publication Date
JP2020092907A true JP2020092907A (en) 2020-06-18
JP7112323B2 JP7112323B2 (en) 2022-08-03

Family

ID=71084285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233694A Active JP7112323B2 (en) 2018-12-13 2018-12-13 Apnea detection system and restful sleep system

Country Status (1)

Country Link
JP (1) JP7112323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190462A1 (en) * 2021-03-09 2022-09-15 株式会社日立製作所 Biological information detection device, biological information detection method, and driver monitoring system
CN116369874A (en) * 2023-03-27 2023-07-04 浙江想能睡眠科技股份有限公司 Human health detection method, system and storage medium based on mattress data

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612591A (en) * 2003-10-08 2009-12-30 花王株式会社 The tertiary amine manufacturing is with film-type catalyst and the manufacture method of using the tertiary amine of this catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167185A (en) * 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Oximeter system
JP2010051387A (en) * 2008-08-26 2010-03-11 Nagoya City Univ Device for detecting cvhr accompanying apnea attack or infrequent respiration attack of sleep-disordered respiration
WO2011027438A1 (en) * 2009-09-02 2011-03-10 株式会社東芝 Pulse measuring device
US20160113838A1 (en) * 2013-05-07 2016-04-28 President And Fellows Of Havard College Systems and methods for inhibiting apneic and hypoxic events

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167185A (en) * 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Oximeter system
JP2010051387A (en) * 2008-08-26 2010-03-11 Nagoya City Univ Device for detecting cvhr accompanying apnea attack or infrequent respiration attack of sleep-disordered respiration
WO2011027438A1 (en) * 2009-09-02 2011-03-10 株式会社東芝 Pulse measuring device
US20160113838A1 (en) * 2013-05-07 2016-04-28 President And Fellows Of Havard College Systems and methods for inhibiting apneic and hypoxic events

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190462A1 (en) * 2021-03-09 2022-09-15 株式会社日立製作所 Biological information detection device, biological information detection method, and driver monitoring system
CN116369874A (en) * 2023-03-27 2023-07-04 浙江想能睡眠科技股份有限公司 Human health detection method, system and storage medium based on mattress data
CN116369874B (en) * 2023-03-27 2023-12-12 浙江想能睡眠科技股份有限公司 Human health detection method, system and storage medium based on mattress data

Also Published As

Publication number Publication date
JP7112323B2 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
JP5174348B2 (en) Method and apparatus for monitoring heart related condition parameters
KR102313552B1 (en) Apparatus and method for sleep monitoring
EP3187116B1 (en) Method for assessing depressive state and device for assessing depressive state
DK2696754T3 (en) Stress-measuring device and method
JP4357503B2 (en) Biological information measuring device, biological information measuring method, and biological information measuring program
US9295412B2 (en) Wearable health monitoring device and methods for step detection
Šprager et al. Heartbeat and respiration detection from optical interferometric signals by using a multimethod approach
US20160038061A1 (en) Method for detecting falls and a fall detector
EP3927234B1 (en) A sleep monitoring system and method
CN109328034B (en) Determining system and method for determining sleep stage of subject
KR20150129765A (en) Method for determining a person&#39;s sleeping phase which is favourable for waking up
US10631739B2 (en) Monitoring vital signs
KR101410989B1 (en) Methode for ECG and Stress Detection
JP7112323B2 (en) Apnea detection system and restful sleep system
Seeberg et al. A novel method for continuous, noninvasive, cuff-less measurement of blood pressure: evaluation in patients with nonalcoholic fatty liver disease
JP6813837B2 (en) Activity rhythm judgment method and activity rhythm judgment device
JP6784368B2 (en) Depression state determination method and depression state determination device
US20220248967A1 (en) Detecting and Measuring Snoring
Puranik et al. Wearable device for yogic breathing with real-time heart rate and posture monitoring
Chen et al. The past, present, and future of sleep quality assessment and monitoring
Choi et al. Ambulatory stress monitoring with minimally-invasive wearable sensors
US20230009478A1 (en) Estimation of tidal volume using load cells on a hospital bed
JP6775359B2 (en) How to operate the nausea detector and the nausea detector

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7112323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150