JP2020092697A - Oxo fatty acid composition and production method - Google Patents

Oxo fatty acid composition and production method Download PDF

Info

Publication number
JP2020092697A
JP2020092697A JP2019209991A JP2019209991A JP2020092697A JP 2020092697 A JP2020092697 A JP 2020092697A JP 2019209991 A JP2019209991 A JP 2019209991A JP 2019209991 A JP2019209991 A JP 2019209991A JP 2020092697 A JP2020092697 A JP 2020092697A
Authority
JP
Japan
Prior art keywords
oxo
fatty acid
reaction
oda
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019209991A
Other languages
Japanese (ja)
Inventor
青木 秀之
Hideyuki Aoki
秀之 青木
功志 西岡
Katsuyuki Nishioka
功志 西岡
彩 宮島
Aya Miyajima
彩 宮島
遠藤 泰志
Yasushi Endo
泰志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikeda Shokken KK
Original Assignee
Ikeda Shokken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Shokken KK filed Critical Ikeda Shokken KK
Publication of JP2020092697A publication Critical patent/JP2020092697A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method for efficiently producing an oxo fatty acid-containing composition in a short time.SOLUTION: A method for producing an oxo fatty acid or an oxo fatty acid-containing composition includes treating a fatty acid with a lipoxygenase in the presence of a reductant and with a dissolved oxygen concentration being reduced.SELECTED DRAWING: None

Description

本発明は、オキソ脂肪酸組成物及び製造方法等に関する。 The present invention relates to an oxo fatty acid composition, a production method and the like.

近年、肉や乳製品などの動物性脂肪を多く摂る食事の欧米化や車社会による運動不足などが原因で、血中の中性脂肪の値が高くなる高中性脂肪血症、肝臓に脂肪が過剰に蓄積した脂肪肝、血糖値が高くなる糖尿病が増加しており、これらの疾病を予防するニーズが高まっている。 In recent years, due to westernization of diets that consume a lot of animal fat such as meat and dairy products and lack of exercise due to car society, hypertriglyceridemia in which blood triglyceride level becomes high, fat in the liver Excessive accumulation of fatty liver and diabetes causing high blood sugar level are increasing, and there is an increasing need to prevent these diseases.

オキソ脂肪酸の一種である、9-オキソ-10,12-オクタデカジエン酸(9-oxo-ODA)や13-オキソ-9,11-オクタデカジエン酸(13-oxo-ODA)は、トマトやその加工品に微量に含まれる不飽和脂肪酸であり、脂肪肝や高中性脂肪血症などの脂質代謝異常の改善効果や血糖値の改善効果が報告され、注目されている(非特許文献1)。特に、13-oxo-ODAは、9-oxo-ODAよりもその効果が高いとされている。しかしながら、トマト中の9-oxo-ODAや13-oxo-ODAの含量は低いことから(非特許文献2)、脂質代謝異常を改善するためには、トマトやその加工品を多量に摂取する必要がある。そこで9-oxo-ODAや13-oxo-ODAを高含有する素材の調製方法が考えられている。 One of the oxo fatty acids, 9-oxo-10,12-octadecadienoic acid (9-oxo-ODA) and 13-oxo-9,11-octadecadienoic acid (13-oxo-ODA), is a tomato and It is an unsaturated fatty acid contained in a small amount in the processed product, and attention has been given to the effect of improving lipid metabolism abnormalities such as fatty liver and hypertriglyceridemia and the effect of improving blood glucose level (Non-patent Document 1). .. In particular, 13-oxo-ODA is said to be more effective than 9-oxo-ODA. However, since the content of 9-oxo-ODA and 13-oxo-ODA in tomato is low (Non-Patent Document 2), it is necessary to ingest a large amount of tomato and processed products thereof in order to improve abnormal lipid metabolism. There is. Therefore, a method for preparing a material containing a large amount of 9-oxo-ODA or 13-oxo-ODA has been considered.

例えば、マンガン、亜鉛などの金属存在下、20℃未満の温度(特許文献1の実施例では、5〜15℃)で、リノール酸を含む原料にリポキシゲナーゼを含む酵素材料を作用させることによるオキソ脂肪酸の製造方法が報告されている(特許文献1)。しかしながら、該方法では、リノール酸からオキソ脂肪酸への変換率が約5%(W/W)であり反応効率が良くないこと、また、反応時間が8時間以上と長い等の問題点がある。 For example, an oxo fatty acid obtained by reacting a raw material containing linoleic acid with an enzyme material containing lipoxygenase at a temperature of less than 20° C. (5 to 15° C. in Examples of Patent Document 1) in the presence of metals such as manganese and zinc. Has been reported (Patent Document 1). However, this method has problems that the conversion rate of linoleic acid to oxo fatty acid is about 5% (W/W) and the reaction efficiency is not good, and that the reaction time is as long as 8 hours or more.

また、他の方法として、リノール酸又はリノール酸のエステル体を含む原料を糸状菌により発酵させることによるオキソ脂肪酸の製造方法が報告されている(特許文献2)。しかしながら、該方法では、発酵物中のオキソ脂肪酸含量が数ng/mgと低いこと、また、発酵を行うため発酵時間が24時間以上と長い等の問題点がある。 As another method, a method for producing an oxo fatty acid by fermenting a raw material containing linoleic acid or an ester of linoleic acid with a filamentous fungus has been reported (Patent Document 2). However, this method has problems that the content of oxo fatty acid in the fermented product is as low as several ng/mg, and that the fermentation time is as long as 24 hours or more because fermentation is performed.

さらに、リノール酸などの不飽和脂肪酸と植物抽出物を反応させることによる、オキソ脂肪酸の製造方法が報告されている(特許文献3)。しかしながら、該方法では、不飽和脂肪酸の過酸化物やヒドロキシ誘導体の生成量は明らかにしているが、オキソ脂肪酸については、生成されている記載のみでリノール酸からオキソ脂肪酸への変換率については一切明記されていない。 Furthermore, a method for producing an oxo fatty acid by reacting an unsaturated fatty acid such as linoleic acid with a plant extract has been reported (Patent Document 3). However, in this method, although the production amount of unsaturated fatty acid peroxides and hydroxy derivatives was clarified, only the description of oxo fatty acid was produced, and the conversion rate of linoleic acid to oxo fatty acid was not reported at all. Not specified.

特開2016−178913JP, 2016-178913, A 特許第6008983号Patent No. 6009883 特開2017−209053JP, 2017-209053, A

PLoS One, Vol.7,(2012), e31317PLoS One, Vol. 7, (2012), e31317. Bioscience,Biotechnology,and Biochemistry Vol.75,No.8(2011), 1621−1624Bioscience, Biotechnology, and Biochemistry Vol. 75, no. 8 (2011), 1621-1624

本発明の目的は、血中及び肝臓中の中性脂肪低下、血糖値の改善効果を有するオキソ脂肪酸及びオキソ脂肪酸含有組成物を短時間で効率よく製造する方法等を提供することである。 An object of the present invention is to provide a method for efficiently producing an oxo fatty acid and an oxo fatty acid-containing composition which have the effects of lowering neutral fat in blood and liver and improving blood glucose levels in a short time.

本発明者は、鋭意研究を重ねた結果、還元剤の存在下、及び、溶存酸素濃度低減下で、リノール酸等の脂肪酸にリポキシゲナーゼを作用させることにより、オキソ脂肪酸を短時間で効率よく製造する方法を初めて見出し、本発明を完成した。 As a result of intensive studies, the present inventor efficiently produces oxo fatty acids in a short time by causing lipoxygenase to act on fatty acids such as linoleic acid in the presence of a reducing agent and under reduced dissolved oxygen concentration. The method was found for the first time and the present invention was completed.

すなわち、本発明は、還元剤の存在下、及び、溶存酸素濃度低減下で、脂肪酸にリポキシゲナーゼを作用させることを含む、オキソ脂肪酸又はオキソ脂肪酸含有組成物の製造方法等に関する。 That is, the present invention relates to a method for producing an oxo-fatty acid or an oxo-fatty acid-containing composition, which comprises allowing lipoxygenase to act on a fatty acid in the presence of a reducing agent and a reduction in the dissolved oxygen concentration.

本発明は、以下の[1]〜[6]の態様に関する。
[1]還元剤の存在下、及び、溶存酸素濃度低減下で、脂肪酸にリポキシゲナーゼを作用させることを含む、オキソ脂肪酸又はオキソ脂肪酸含有組成物の製造方法。
[2]還元剤が、アスコルビン酸及びその塩、イソアスコルビン酸及びその塩、並びにヨウ化カリウムから成る群から選択される少なくとも1種であることを特徴とする、[1]に記載の製造方法。
[3]脂肪酸が、不飽和脂肪酸であることを特徴とする、[1]又は[2]に記載の製造方法。
[4][1]〜[3]のいずれか一項に記載の製造方法により製造される、オキソ脂肪酸含有組成物。
[5]リノール酸からオキソ脂肪酸への変換率が6%(W/W)以上である、[4]に記載のオキソ脂肪酸含有組成物。
[6][4]又は[5]に記載のオキソ脂肪酸含有組成物を含む飲食品、化粧品、医薬部外品、医薬品又は飼料。
The present invention relates to the following aspects [1] to [6].
[1] A method for producing an oxo-fatty acid or an oxo-fatty acid-containing composition, which comprises allowing lipoxygenase to act on a fatty acid in the presence of a reducing agent and under reduced dissolved oxygen concentration.
[2] The production method according to [1], wherein the reducing agent is at least one selected from the group consisting of ascorbic acid and salts thereof, isoascorbic acid and salts thereof, and potassium iodide. ..
[3] The production method according to [1] or [2], wherein the fatty acid is an unsaturated fatty acid.
[4] An oxo fatty acid-containing composition produced by the production method according to any one of [1] to [3].
[5] The oxo fatty acid-containing composition according to [4], wherein the conversion rate of linoleic acid to oxo fatty acid is 6% (W/W) or more.
[6] A food or drink, a cosmetic, a quasi drug, a drug, or a feed containing the oxo-fatty acid-containing composition according to [4] or [5].

本発明の製造方法によって、短時間で効率よくリノール酸からオキソ脂肪酸へ変換することが可能となり、オキソ脂肪酸を高濃度で含有する組成物を提供することができる。 The production method of the present invention enables efficient conversion of linoleic acid to oxo fatty acid in a short time, and can provide a composition containing a high concentration of oxo fatty acid.

以下に、本発明の実施の形態を詳細に説明する。本発明は、第一に、還元剤の存在下、及び、溶存酸素濃度低減下で、脂肪酸にリポキシゲナーゼを作用させることを含む、オキソ脂肪酸又はオキソ脂肪酸含有組成物の製造方法に係る。 Embodiments of the present invention will be described in detail below. The present invention firstly relates to a method for producing an oxo-fatty acid or an oxo-fatty acid-containing composition, which comprises allowing lipoxygenase to act on a fatty acid in the presence of a reducing agent and under a reduced dissolved oxygen concentration.

本発明で使用される脂肪酸は、リポキシゲナーゼが作用することによって、最終的にオキソ脂肪酸を産生させることのできる脂肪酸であればよく、特定の化合物に何ら限定されるものではない。例えば、リノール酸、α-リノレン酸、γ-リノレン酸、アラキドン酸等の不飽和脂肪酸が挙げられる。また、脂肪酸の形態は、遊離脂肪酸、エステル体、糖脂質等が挙げられる。また、その製造方法・過程は任意であり、例えば、トリグリセリド、リン脂質等にリパーゼを作用させ、遊離させた遊離脂肪酸や、大豆等の不飽和脂肪酸を含む原材料をRhizopus属等の麹菌で発酵させ、遊離させた遊離脂肪酸も使用できる。更に、脂肪酸は任意の成分を含む当業者に公知の適当な溶液として本発明方法の反応系に提供することが出来る。当該反応系で使用される反応液中の脂肪酸濃度は、リポキシゲナーゼ濃度、減圧度(反応開始時の溶存酸素濃度)、還元剤濃度、及び、反応時間・温度等の各種反応条件に応じて、当業者が適宜決められる。例えば、反応液中のリノール酸等の脂肪酸の濃度は、0.1mg/mL以上、好ましくは0.2mg/mL以上、より好ましくは0.5mg/mL以上とすることができる。脂肪酸の添加方法は、反応開始時に一括添加しても良いが、一定時間に添加する逐次添加でもよい。尚、脂肪酸濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。 The fatty acid used in the present invention may be any fatty acid that can finally produce an oxo fatty acid by the action of lipoxygenase, and is not limited to a particular compound. Examples thereof include unsaturated fatty acids such as linoleic acid, α-linolenic acid, γ-linolenic acid, and arachidonic acid. The fatty acid may be in the form of free fatty acid, ester, glycolipid and the like. In addition, the production method/process is arbitrary, for example, by allowing lipase to act on triglycerides, phospholipids, etc., and fermenting raw materials containing free fatty acids released and unsaturated fatty acids such as soybeans with Aspergillus oryzae such as Rhizopus. Alternatively, free fatty acids that have been liberated can also be used. Further, the fatty acid can be provided to the reaction system of the method of the present invention as a suitable solution known to those skilled in the art containing optional components. The fatty acid concentration in the reaction solution used in the reaction system depends on various reaction conditions such as lipoxygenase concentration, decompression degree (dissolved oxygen concentration at the start of reaction), reducing agent concentration, and reaction time/temperature. The trader can be appropriately determined. For example, the concentration of fatty acids such as linoleic acid in the reaction solution can be 0.1 mg/mL or more, preferably 0.2 mg/mL or more, more preferably 0.5 mg/mL or more. The fatty acid may be added all at once at the start of the reaction, or may be added sequentially at a fixed time. The upper limit of the fatty acid concentration can be appropriately set by those skilled in the art in consideration of economical efficiency.

本発明の製造方法で使用されるリポキシゲナーゼは、例えば、大豆、黒大豆、小豆、インゲン豆、ライマメ、エンドウ豆、キュウリ、ジャガイモ、西洋ワサビ、カブ等由来のリポキシゲナーゼ等の当業者に公知の任意のものが挙げられる。特に豆類のリポキシゲナーゼが望ましい。本発明で使用されるリポキシゲナーゼは、市販の精製酵素でもよいが、リポキシゲナーゼを含む大豆等に加水し、粉砕機等で破砕した破砕物や、その破砕物をろ過により固形分を取り除いた抽出物、さらには当該抽出物をカラムクロマトグラフィーにより精製を行い大豆等より単離したリポキシゲナーゼも使用することが出来る。更に、リポキシゲナーゼは適当な緩衝液等の当業者に公知の適当な溶液として反応系に提供することが出来る。当該反応に使用される反応液中のリポキシゲナーゼ濃度は、脂肪酸濃度、減圧度(反応開始時の溶存酸素濃度)、還元剤の濃度、及び、反応時間・温度等の各種反応条件に応じて、当業者が適宜決められる。リポキシゲナーゼ濃度を高濃度にすることによって反応を短時間に完了させることが出来、逆に反応時間が長時間でも良い場合は、リポキシゲナーゼ濃度は低濃度で良い。例えば、反応液中の大豆由来のリポキシゲナーゼの濃度は、1,000U/mL以上、好ましくは1,500U/mL以上、より好ましくは3,000U/mL以上、最も好ましくは5,000U/mL以上とすることができる。また、リポキシゲナーゼ濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。 Lipoxygenase used in the production method of the present invention, for example, soybean, black soybean, adzuki bean, kidney beans, lima beans, peas, cucumber, potato, horseradish, any of the known to those skilled in the art such as turnips derived lipoxygenase. There are things. Particularly, legume lipoxygenase is preferable. The lipoxygenase used in the present invention may be a commercially available purified enzyme, but it is added to soybeans containing lipoxygenase, etc., and the crushed product is crushed by a crusher or the like, or the crushed product is an extract obtained by removing the solid content by filtration, Further, lipoxygenase isolated from soybean or the like by purifying the extract by column chromatography can also be used. Furthermore, lipoxygenase can be provided to the reaction system as a suitable solution known to those skilled in the art, such as a suitable buffer. The concentration of lipoxygenase in the reaction solution used in the reaction depends on various reaction conditions such as fatty acid concentration, decompression degree (dissolved oxygen concentration at the start of the reaction), reducing agent concentration, and reaction time/temperature. The trader can be appropriately determined. The reaction can be completed in a short time by increasing the concentration of lipoxygenase, and conversely, when the reaction time is long, the concentration of lipoxygenase can be low. For example, the concentration of soybean-derived lipoxygenase in the reaction solution is 1,000 U/mL or more, preferably 1,500 U/mL or more, more preferably 3,000 U/mL or more, and most preferably 5,000 U/mL or more. can do. Further, the upper limit of the lipoxygenase concentration can be appropriately set by those skilled in the art in consideration of economical efficiency and the like.

尚、リポキシゲナーゼの活性を示す1ユニット(U)とは、基質として1mMのリノール酸を含む0.2MTris-HCl緩衝液(pH9.0)において、25℃での分光光度計による234nmの吸光度が0.001/分の増加量を示すものと定義する。 Incidentally, 1 unit (U) showing the activity of lipoxygenase means that in a 0.2M Tris-HCl buffer solution (pH 9.0) containing 1 mM linoleic acid as a substrate, the absorbance at 234 nm by a spectrophotometer at 25° C. is 0. It is defined as indicating an increment of 0.001/min.

本発明の製造方法で使用される還元剤は、本発明に所望の効果を損なわない限り、当業者に公知の任意の化合物、例えば、アスコルビン酸又はその塩、アスコルビン酸の構造異性体であるイソアスコルビン酸又はその塩、アスコルビン酸の誘導体であるアスコルビン酸2-リン酸、アスコルビン酸2-グルコシド、アスコルビン酸ステアリン酸エステル、アスコルビン酸パルミチン酸エステル等や、ヨウ化カリウム、ヨウ化水素、亜硫酸ナトリウム等、並びに、これら化合物の組み合わせから適宜選択されるが、特にアスコルビン酸又はその塩、イソアスコルビン酸又はその塩が望ましい。更に、還元剤は任意の成分を含む当業者に公知の適当な溶液として反応系に提供することが出来る。当該反応に使用される反応液中の還元剤濃度は、脂肪酸濃度、減圧度(反応開始時の溶存酸素濃度)、リポキシゲナーゼ濃度、及び、反応時間・温度等の各種反応条件に応じて、当業者が適宜決められる。還元剤濃度を高濃度することによって反応を短時間に完了させることが出来、逆に反応時間が長時間でも良い場合は、還元剤濃度は低濃度で良い。尚、還元剤の濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。例えば、反応液中のアスコルビン酸等の濃度は、0.1mg/mL以上、好ましくは0.5mg/mL以上、より好ましくは1mg/mL以上、最も好ましくは2mg/mL以上とすることができる。より具体的には、反応液中の還元剤の濃度は、好ましくは、0.1〜10mg/mL、より好ましくは、0.4〜8mg/mLである。還元剤の添加方法は、反応開始時に一括添加しても良いが、一定時間に添加する逐次添加でもよい。 The reducing agent used in the production method of the present invention is any compound known to those skilled in the art, for example, ascorbic acid or a salt thereof, or a structural isomer of ascorbic acid, as long as the desired effect of the present invention is not impaired. Ascorbic acid or its salts, ascorbic acid 2-phosphoric acid, ascorbic acid 2-glucoside, ascorbic acid stearic acid ester, ascorbic acid palmitic acid ester, etc., potassium iodide, hydrogen iodide, sodium sulfite, etc. , And a combination of these compounds, ascorbic acid or a salt thereof, and isoascorbic acid or a salt thereof are particularly preferable. Further, the reducing agent can be provided to the reaction system as a suitable solution known to those skilled in the art containing optional components. The reducing agent concentration in the reaction solution used in the reaction depends on various reaction conditions such as fatty acid concentration, degree of reduced pressure (dissolved oxygen concentration at the start of reaction), lipoxygenase concentration, and reaction time/temperature. Is determined as appropriate. The reaction can be completed in a short time by increasing the concentration of the reducing agent, and conversely, when the reaction time is long, the reducing agent concentration can be low. The upper limit of the concentration of the reducing agent can be appropriately set by those skilled in the art in consideration of economical efficiency. For example, the concentration of ascorbic acid or the like in the reaction solution can be 0.1 mg/mL or more, preferably 0.5 mg/mL or more, more preferably 1 mg/mL or more, and most preferably 2 mg/mL or more. More specifically, the concentration of the reducing agent in the reaction solution is preferably 0.1 to 10 mg/mL, more preferably 0.4 to 8 mg/mL. The reducing agent may be added all at once at the start of the reaction, or may be added sequentially at a fixed time.

本発明の製造方法に於いて「溶存酸素濃度低減」とは、反応開始時の反応液中の溶存酸素濃度が通常圧下の溶存酸素濃度に比べて低下している状態を意味する。かかる溶存酸素濃度は、オキソ脂肪酸が製造される範囲で任意に設定することができる。例えば、4〜10ppm、好ましくは、5〜8ppm、より好ましくは、6〜7ppmである。尚、溶存酸素濃度の測定は、例えば、隔膜電極法、蛍光法、滴定法等の当業者に公知の任意の手段・方法で測定することが出来る。 In the production method of the present invention, "reduced dissolved oxygen concentration" means a state in which the dissolved oxygen concentration in the reaction solution at the start of the reaction is lower than the dissolved oxygen concentration under normal pressure. The dissolved oxygen concentration can be arbitrarily set within the range where oxo fatty acids are produced. For example, it is 4 to 10 ppm, preferably 5 to 8 ppm, and more preferably 6 to 7 ppm. The dissolved oxygen concentration can be measured by any means and method known to those skilled in the art, such as a diaphragm electrode method, a fluorescence method, and a titration method.

このような「溶存酸素濃度低減」の状態は、本発明の製造方法に於ける反応系の圧力を当業者に公知の任意の方法で適当に調節(低下)することによって容易に達成することが出来る。例えば、上記のような溶存酸素濃度低減の状態は、反応系の圧力を、常圧(約0.1MPa(G):8.3ppm)に対して、−0.025〜−0.090MPa(G)、好ましくは、−0.050〜−0.085MPa(G)、より好ましくは、−0.060〜−0.080MPa(G)程度の減圧度とすることによって容易に得ることが出来る。 Such a state of "reduced dissolved oxygen concentration" can be easily achieved by appropriately adjusting (decreasing) the pressure of the reaction system in the production method of the present invention by any method known to those skilled in the art. I can. For example, in the state of reducing the dissolved oxygen concentration as described above, the pressure of the reaction system is -0.025 to -0.090 MPa (G) with respect to normal pressure (about 0.1 MPa (G): 8.3 ppm). ), preferably -0.050 to -0.085 MPa (G), and more preferably about -0.060 to -0.080 MPa (G).

本発明の製造方法における反応温度及びpHは、オキソ脂肪酸が産生される任意の温度及びpHでよい。例えば、大豆由来のリポキシゲナーゼには、アイソザイムL-1、L-2、L-3があるが、L-1を使用する場合、反応温度0〜60℃、好ましくは、15〜45℃、より好ましくは、20〜35℃、反応pH6〜10、好ましくはpH7〜9が望ましく、L-2を使用する場合、反応温度0〜50℃、好ましくは、15〜45℃、より好ましくは、20〜35℃、反応pH4〜9、好ましくはpH7〜9が望ましく、L-3を使用する場合、反応温度0〜60℃、好ましくは、15〜45℃、より好ましくは、20〜35℃、pH5〜10、好ましくはpH7〜9であることが望ましい。また、当該反応時間もオキソ脂肪酸が産生される任意の時間でよいが、好ましくは30分程度、より好ましくは60分程度、さらに好ましくは120分程度、最も好ましくは240分程度であることが望ましい。 The reaction temperature and pH in the production method of the present invention may be any temperature and pH at which oxo fatty acids are produced. For example, soybean-derived lipoxygenase includes isozymes L-1, L-2, and L-3. When L-1 is used, the reaction temperature is 0 to 60°C, preferably 15 to 45°C, more preferably Is 20 to 35° C., reaction pH 6 to 10, preferably pH 7 to 9, and when L-2 is used, reaction temperature is 0 to 50° C., preferably 15 to 45° C., more preferably 20 to 35° C. ℃, reaction pH 4-9, preferably pH 7-9 is desirable, when using L-3, reaction temperature 0-60 ℃, preferably 15-45 ℃, more preferably 20-35 ℃, pH 5-10. It is desirable that the pH is preferably 7-9. Further, the reaction time may be any time at which oxo fatty acid is produced, but it is preferably about 30 minutes, more preferably about 60 minutes, further preferably about 120 minutes, most preferably about 240 minutes. ..

本明細書中に特に記載されていない限り、本発明方法に於ける諸条件は当業者が適宜設定することが出来る。また、本発明方法の所望の結果が得られる限り、反応系(反応液)には、上記の各成分以外に、前記酵素等試薬成分の安定性を高める等の目的で、当業者に公知の任意の成分が含まれていても良い。 Unless otherwise specified in the present specification, various conditions in the method of the present invention can be appropriately set by those skilled in the art. Further, as long as the desired result of the method of the present invention is obtained, the reaction system (reaction solution) is known to those skilled in the art for the purpose of increasing the stability of the reagent components such as the enzyme in addition to the above-mentioned components. Arbitrary components may be included.

本発明方法で製造されたオキソ脂肪酸含有組成物に於いては、リノール酸からオキソ脂肪酸への変換率が6%(W/W)以上、更には、約20%(W/W)程度迄高くすることが出来、オキソ脂肪酸を高濃度で含むことを特徴とする。該組成物はそのままの形態でも利用可能であるが、更に、当業者に公知の任意の方法・手段によって、含まれるオキソ脂肪酸を容易に単離・精製することが出来る。例えば、トリグリセリド等にリパーゼを作用させ遊離させた遊離脂肪酸の場合、ヘキサン、アセトン等で抽出後、溶媒を除去し得られる抽出液としても利用可能である。また、大豆を発酵させ、遊離させた遊離脂肪酸の場合、加熱殺菌、マイクロ波殺菌等を行ったもの、また、凍結乾燥、風乾等による乾燥品としたり、さらに粉砕後、粉末状にしたり、ペースト状にしたり、アルコール等による抽出を行って得られる抽出液としても利用可能である。さらに抽出液をクロマトグラフィー、分子蒸留、真空蒸留等によりオキソ脂肪酸を高度に精製した精製品としての利用も可能である。 In the oxo fatty acid-containing composition produced by the method of the present invention, the conversion rate of linoleic acid to oxo fatty acid is 6% (W/W) or higher, and further, it is as high as about 20% (W/W). It is characterized by containing oxo fatty acid in a high concentration. The composition can be used as it is, but the oxo fatty acid contained therein can be easily isolated and purified by any method and means known to those skilled in the art. For example, in the case of a free fatty acid obtained by allowing lipase to act on triglyceride or the like, it can be used as an extract obtained by removing the solvent after extraction with hexane, acetone or the like. Also, in the case of free fatty acids fermented and released from soybeans, those that have been subjected to heat sterilization, microwave sterilization, etc., or freeze-dried, dried products such as air-dried, etc., further crushed into powder form, paste It can also be used as an extract obtained by forming into a shape or extracting with alcohol or the like. Furthermore, the extract can be used as a purified product obtained by highly purifying oxo fatty acids by chromatography, molecular distillation, vacuum distillation and the like.

本発明方法で製造されたオキソ脂肪酸又はオキソ脂肪酸含有組成物を一成分として含む、任意の形態の飲食品を当業者に公知の任意の方法によって容易に製造することが出来る。例えば、かかるオキソ脂肪酸又はオキソ脂肪酸含有組成物は、トマトジュース、野菜ジュース等の飲料、ゼリー、ビスケット、キャンディ、チョコレート等の菓子、ハンバーグ、コロッケ等の惣菜、ヨーグルト、チーズ等の乳製品、トマトソース、ケチャップ、ドレッシング等の調味料のほか、タブレット、カプセル、顆粒等の保健機能食品、機能性食品、栄養補助食品などに含有させることができる。 A food or drink in any form containing the oxo fatty acid or the oxo fatty acid-containing composition produced by the method of the present invention as one component can be easily produced by any method known to those skilled in the art. For example, such oxo fatty acid or oxo fatty acid-containing composition is a beverage such as tomato juice, vegetable juice, jelly, biscuits, candy, confectionery such as chocolate, hamburger, croquette and other prepared foods, yogurt, cheese and other dairy products, tomato sauce. In addition to seasonings such as ketchup and dressing, it can be contained in health functional foods such as tablets, capsules and granules, functional foods, dietary supplements and the like.

更に、本発明方法で製造されたオキソ脂肪酸又はオキソ脂肪酸含有組成物は、化粧品、医薬部外品、医薬品又は飼料等の一成分として用いることもできる。形態としては、アンプル、カプセル、丸剤、錠剤、粉末、顆粒、固形、液剤、ゲル、エアロゾル等とすることができるほか、各種製品中に配合することができる。これら製品は当業者に公知の任意の方法で容易に調製することが出来、賦形剤、結合剤、潤沢剤等を適宜配合することができる。 Furthermore, the oxo fatty acid or the oxo fatty acid-containing composition produced by the method of the present invention can also be used as one component of cosmetics, quasi drugs, pharmaceuticals, feeds and the like. The form may be an ampoule, capsule, pill, tablet, powder, granule, solid, liquid, gel, aerosol, or the like, and may be incorporated in various products. These products can be easily prepared by any method known to those skilled in the art, and excipients, binders, lubricants and the like can be appropriately added.

なお、該オキソ脂肪酸又はオキソ脂肪酸含有組成物の用途・利用方法に関しては、上記の事例になんら限定されるものではない。 Note that the use and usage of the oxo fatty acid or the oxo fatty acid-containing composition is not limited to the above cases.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

(減圧度(反応開始時の溶存酸素濃度)の影響)
リポキシゲナーゼ溶液(大豆由来リポキシダーゼ 190,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLに対し、リノール酸溶液(リノール酸(富士フィルム和光純薬製、一級試薬:純度88%) 70mgにTween20 70mg及び、純水 4mLを加え混合した後、更に0.01M水酸化カルシウム水溶液13.75mLを加え、全量が25mLになるまで0.05Mホウ酸緩衝液を加え混合調製した)2.5mLとアスコルビン酸溶液(7mg/mL)15mLを加え、各種減圧度(反応開始時の溶存酸素濃度)(常圧(8.3ppm)、−0.025MPa(G)(7.9ppm)、−0.050MPa(G)(7.3ppm)、−0.075MPa(G)(6.6ppm)及び、−0.097MPa(G)(4.3ppm))にて、30℃・2時間反応させた。反応終了後、5M塩酸10mLを添加し反応を停止した。反応停止後、反応溶液を分液漏斗に入れ、ヘキサン/2−プロパノール(3:2)20mLを添加、13-oxo-ODAを抽出し、同様な抽出操作を2回実施した。次いで反応溶液にヘキサン/2−プロパノール(7:2)20mLを添加し、再度、13-oxo-ODAを抽出した。次に抽出溶液に対し、蒸留水45mLを添加し、水洗を行い、これを3回繰り返した。水洗後の抽出液は、減圧乾固し13-oxo-ODA含有組成物である実施品1〜5を得た。
(Effect of decompression degree (dissolved oxygen concentration at the start of reaction))
37.5 mL of lipoxygenase solution (soybean-derived lipoxidase 190,000 unit (Tokyo Kasei) dissolved in 0.05M borate buffer (pH 8)) was added to linoleic acid solution (linoleic acid (Fuji Film Wako Pure Chemical, first-class (Reagent: 88% purity) 70 mg of Tween 20 and 4 mL of pure water were added and mixed, and then 13.75 mL of 0.01 M calcium hydroxide aqueous solution was further added, and 0.05 M borate buffer solution was added until the total amount became 25 mL. 2.5 mL of mixed preparation) and 15 mL of ascorbic acid solution (7 mg/mL) were added, and various decompression degree (dissolved oxygen concentration at the start of reaction) (normal pressure (8.3 ppm), -0.025 MPa (G) (7 0.9 ppm), -0.050 MPa (G) (7.3 ppm), -0.075 MPa (G) (6.6 ppm), and -0.097 MPa (G) (4.3 ppm)) at 30°C. The reaction was performed for 2 hours. After the reaction was completed, 10 mL of 5M hydrochloric acid was added to stop the reaction. After stopping the reaction, the reaction solution was placed in a separating funnel, 20 mL of hexane/2-propanol (3:2) was added, 13-oxo-ODA was extracted, and the same extraction operation was performed twice. Then, 20 mL of hexane/2-propanol (7:2) was added to the reaction solution, and 13-oxo-ODA was extracted again. Next, 45 mL of distilled water was added to the extraction solution and washed with water, and this was repeated 3 times. The extract after washing with water was dried under reduced pressure to obtain 13-oxo-ODA-containing compositions, which were practical products 1 to 5.

(実施品1〜5の13-oxo-ODAの産生量)
実施例1で調製した実施品1〜5について、下記の条件で13-oxo-ODAの分析を行った。その結果、表1に示されるように、減圧度が高くなる(反応開始時の溶存酸素濃度が低くなる)と共に反応液中の13-oxo-ODAの産生量が増加し、特に減圧度が−0.075MPa(G)(反応開始時の溶存酸素濃度6.6ppm)の場合に最も13-oxo-ODAの産生量が多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。但し、減圧度が高すぎる(反応開始時の溶存酸素濃度が低すぎる)と、13-oxo-ODAの産生量の低下が認められた。
(Production amount of 13-oxo-ODA of products 1 to 5)
The products 1 to 5 prepared in Example 1 were analyzed for 13-oxo-ODA under the following conditions. As a result, as shown in Table 1, as the degree of decompression increases (dissolved oxygen concentration at the start of the reaction decreases), the amount of 13-oxo-ODA produced in the reaction solution increases, and especially the degree of decompression decreases- In the case of 0.075 MPa (G) (dissolved oxygen concentration at the start of the reaction 6.6 ppm), the production amount of 13-oxo-ODA was the highest, and the conversion rate of linoleic acid to 13-oxo-ODA was high. Was recognized. However, when the degree of vacuum was too high (the dissolved oxygen concentration at the start of the reaction was too low), a decrease in the amount of 13-oxo-ODA produced was observed.

<13-OXO-ODA分析方法>
カラム:InertSustainC18(ジーエルサイエンス製、4.6mm×25cm)
溶離液:0.1%ギ酸含有 80%アセトニトリル水溶液
流速:1.0mL/min
検出:UV272nm
カラムオーブン温度:30℃
インジェクション量:10μL
分析時間:15分

<リノール酸からオキソ脂肪酸への変換率>
リノール酸からオキソ脂肪酸の変換率は、以下の式から求めた。

(式) リノール酸からオキソ脂肪酸の変換率(%)(W/W)=
反応で産生されたオキソ脂肪酸量/反応で使用したリノール酸量×100%
<13-OXO-ODA analysis method>
Column: InertSustain C18 (GL Science, 4.6 mm x 25 cm)
Eluent: 0.1% formic acid-containing 80% acetonitrile aqueous solution Flow rate: 1.0 mL/min
Detection: UV272nm
Column oven temperature: 30°C
Injection volume: 10 μL
Analysis time: 15 minutes

<Conversion rate of linoleic acid to oxo fatty acid>
The conversion rate from linoleic acid to oxo fatty acid was obtained from the following formula.

(Formula) Conversion rate of oxo fatty acid from linoleic acid (%) (W/W)=
Amount of oxo fatty acid produced in reaction/Amount of linoleic acid used in reaction x 100%

Figure 2020092697
Figure 2020092697

(リポキシゲナーゼ添加量の影響)
各量のリポキシゲナーゼ(95,000unit、190,000unit、380,000unit、570,000unit、950,000unit)を含むリポキシゲナーゼ溶液37.5mLを用い、リノール酸溶液2.5mLとアスコルビン酸溶液(7mg/mL)15mLを加え、減圧度−0.075MPa(G)にて、30℃・2時間反応させた。反応後、実施例1と同様に、13-oxo-ODA含有組成物を調製し、実施品6〜10を得た。
(Effect of the amount of lipoxygenase added)
Using 37.5 mL of lipoxygenase solution containing each amount of lipoxygenase (95,000 unit, 190,000 unit, 380,000 unit, 570,000 unit, 950,000 unit), 2.5 mL of linoleic acid solution and ascorbic acid solution (7 mg/mL) 15 mL was added, and the mixture was reacted at 30° C. for 2 hours at a reduced pressure of −0.075 MPa (G). After the reaction, a 13-oxo-ODA-containing composition was prepared in the same manner as in Example 1 to obtain Examples 6 to 10.

(実施品6〜10の13-oxo-ODAの産生量)
実施例3で調製した実施品6〜10について、実施例2と同様な条件にて13-oxo-ODAの分析を行った。その結果、表2に示されるように、反応液中のリポキシゲナーゼ濃度が高くなると共に、13-oxo-ODAの産生量が多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。
(Production amount of 13-oxo-ODA of implementation products 6 to 10)
The products 6 to 10 prepared in Example 3 were analyzed for 13-oxo-ODA under the same conditions as in Example 2. As a result, as shown in Table 2, the concentration of lipoxygenase in the reaction solution increased, the amount of 13-oxo-ODA produced increased, and the conversion rate of linoleic acid to 13-oxo-ODA increased. Was recognized.

Figure 2020092697
Figure 2020092697

(還元剤の影響)
各種還元剤(イソアスコルビン酸:129.6mg、アスコルビン酸:105mg、ヨウ化カリウム:150mg、システイン:105mg)を含む還元剤溶液15mLを用い、リポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLとリノール酸溶液2.5mLを加え、減圧度−0.075MPa(G)にて、30℃・2時間反応させた。反応後、実施例1と同様に、13-oxo-ODA含有組成物を調製し、実施品11〜14を得た。尚、反応液中の各還元剤の濃度は、夫々、2.4mg/mL、1.9mg/mL、2.7mg/mL、及び1.9mg/mLであった。
(Influence of reducing agent)
15 mL of a reducing agent solution containing various reducing agents (isoascorbic acid: 129.6 mg, ascorbic acid: 105 mg, potassium iodide: 150 mg, cysteine: 105 mg) was used to prepare a lipoxygenase solution (lipoxydase 380,000 unit (manufactured by Tokyo Kasei)). 37.5 mL of a 0.05 M borate buffer solution (pH 8) and 2.5 mL of linoleic acid solution were added, and the mixture was reacted at 30° C. for 2 hours at a reduced pressure of −0.075 MPa (G). After the reaction, a 13-oxo-ODA-containing composition was prepared in the same manner as in Example 1 to obtain Examples 11 to 14. The concentrations of the reducing agents in the reaction solution were 2.4 mg/mL, 1.9 mg/mL, 2.7 mg/mL, and 1.9 mg/mL, respectively.

(実施品11〜14の13-oxo-ODAの産生量)
実施例5で調製した実施品11〜14について、実施例2と同様な条件にて13-oxo-ODAの分析を行った。その結果、表3に示されるように、各種還元剤により13-oxo-ODAの産生が認められた。特に還元剤にアスコルビン酸とイソアスコルビン酸を使用した場合、13-oxo-ODAの産生量がよくなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。また、還元剤にヨウ化カリウムを使用した場合、13-oxo-ODAと共に9-oxo-ODAの産生が認められた。
(Production amount of 13-oxo-ODA of Example products 11 to 14)
With respect to the products 11 to 14 prepared in Example 5, 13-oxo-ODA was analyzed under the same conditions as in Example 2. As a result, as shown in Table 3, production of 13-oxo-ODA was observed with various reducing agents. In particular, when ascorbic acid and isoascorbic acid were used as reducing agents, it was confirmed that the production amount of 13-oxo-ODA was improved and the conversion rate of linoleic acid to 13-oxo-ODA was increased. Further, when potassium iodide was used as the reducing agent, production of 9-oxo-ODA together with 13-oxo-ODA was observed.

Figure 2020092697
Figure 2020092697

(アスコルビン酸添加量の影響)
各量のアスコルビン酸(26.3mg、52.5mg、105mg、210mg、420mg)を含むアスコルビン酸溶液15mLを用い、リポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLとリノール酸溶液2.5mLを加え、減圧度−0.075MPa(G)にて、30℃・2時間反応させた。反応後、実施例1と同様に、13-oxo-ODA含有組成物を調製し、実施品15〜19を得た。
(Effect of ascorbic acid addition)
Using 15 mL of ascorbic acid solution containing each amount of ascorbic acid (26.3 mg, 52.5 mg, 105 mg, 210 mg, 420 mg), a lipoxygenase solution (lipoxydase 380,000 unit (manufactured by Tokyo Kasei)) was added as a 0.05 M borate buffer solution. (dissolved in (pH 8)) 37.5 mL and 2.5 mL of linoleic acid solution were added, and the mixture was reacted at 30° C. for 2 hours at a reduced pressure degree of −0.075 MPa (G). After the reaction, a 13-oxo-ODA-containing composition was prepared in the same manner as in Example 1 to obtain Examples 15 to 19.

(実施品15〜19の13-oxo-ODAの産生量)
実施例7で調製した実施品15〜19について、実施例2と同様な条件にて13-oxo-ODAの分析を行った。その結果、表4に示されるように、反応液中のアスコルビン酸濃度を高くすることによって13-oxo-ODAの産生量が増加し、特にアスコルビン酸濃度が1.91mg/mLの場合に13-oxo-ODAの産生量が最も多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。
(Production amount of 13-oxo-ODA of products 15 to 19)
The products 15 to 19 prepared in Example 7 were analyzed for 13-oxo-ODA under the same conditions as in Example 2. As a result, as shown in Table 4, the production amount of 13-oxo-ODA was increased by increasing the ascorbic acid concentration in the reaction solution, and particularly when the ascorbic acid concentration was 1.91 mg/mL. It was confirmed that the production amount of oxo-ODA was the highest and the conversion rate of linoleic acid to 13-oxo-ODA was high.

Figure 2020092697
Figure 2020092697

(リノール酸及び、アスコルビン酸添加方法の影響)
リポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLを用い、リノール酸溶液2.5mLとアスコルビン酸溶液(105mg)15mLを加え、減圧度−0.075MPa(G)にて、30℃、4時間で反応させて、13-oxo-ODA含有組成物である実施品20を得た。また、リポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLを用い、リノール酸溶液2.5mLとアスコルビン酸溶液(21mg)11mLを加え、減圧度−0.075MPa(G)にて、30℃で反応させた後、更に、反応30分後、60分後、120分後、180分後に、アスコルビン酸溶液(21mg)1mLを順次追加し、同様に減圧下で4時間反応させて、13-oxo-ODA含有組成物である実施品21を得た。さらにリポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLを用い、リノール酸溶液(1.4mg)0.5mLとアスコルビン酸溶液(105mg)13mLを加え、減圧度−0.075MPa(G)にて、30℃で反応させた後、更に、反応30分後、60分後、90分後、120分後に、リノール酸溶液(1.4mg)1mLを順次追加し、同様に減圧下で4時間反応させて、13-oxo-ODA含有組成物である実施品22を得た。
(Influence of linoleic acid and ascorbic acid addition method)
Using 37.5 mL of lipoxygenase solution (dissolving lipoxydase 380,000 unit (manufactured by Tokyo Kasei) in 0.05M borate buffer (pH 8)), 2.5 mL of linoleic acid solution and 15 mL of ascorbic acid solution (105 mg) were added, The reaction was performed at a degree of vacuum of −0.075 MPa (G) at 30° C. for 4 hours to obtain a working product 20 which was a 13-oxo-ODA-containing composition. Further, 37.5 mL of a lipoxygenase solution (lipoxydase 380,000 unit (manufactured by Tokyo Kasei) dissolved in 0.05M borate buffer (pH 8)) was used, and 2.5 mL of a linoleic acid solution and 11 mL of an ascorbic acid solution (21 mg) were used. In addition, after reacting at 30° C. at a degree of vacuum of −0.075 MPa (G), further, 30 minutes, 60 minutes, 120 minutes, and 180 minutes after the reaction, 1 mL of an ascorbic acid solution (21 mg) was sequentially added. In addition, the mixture was similarly reacted under reduced pressure for 4 hours to obtain a working product 21 which was a 13-oxo-ODA-containing composition. Further, 37.5 mL of a lipoxygenase solution (lipoxydase 380,000 unit (manufactured by Tokyo Kasei) dissolved in 0.05 M borate buffer (pH 8)) was used, and 0.5 mL of a linoleic acid solution (1.4 mg) and an ascorbic acid solution ( (105 mg) 13 mL was added, and the mixture was reacted at 30° C. under a reduced pressure of −0.075 MPa (G), and further after 30 minutes, 60 minutes, 90 minutes, and 120 minutes of the reaction, the linoleic acid solution (1 0.4 mg) 1 mL was sequentially added, and the mixture was similarly reacted under reduced pressure for 4 hours to obtain a working product 22 which was a 13-oxo-ODA-containing composition.

(実施品20〜22の13-oxo-ODAの産生量)
実施例9で調製した実施品20〜22について、実施例2と同様な条件にて13-oxo-ODAの分析を行った。その結果、表5に示されるように、アスコルビン酸を反応開始時に一括添加した場合と一定時間に逐次添加した場合のリノール酸から13-oxo-ODAへの変換率は同等であり、アスコルビン酸は、反応開始時に一括添加しても、一定時間に逐次添加してもよいことが認められた。また、リノール酸を反応開始時に一括添加した場合と一定時間に逐次添加した場合のリノール酸から13-oxo-ODAへの変換率についても同等であり、リノール酸は、反応開始時に一括添加しても、一定時間に逐次添加してもよいことが認められた。
(Production amount of 13-oxo-ODA of product 20 to 22)
The products 20 to 22 prepared in Example 9 were analyzed for 13-oxo-ODA under the same conditions as in Example 2. As a result, as shown in Table 5, the conversion rates of linoleic acid to 13-oxo-ODA were the same when ascorbic acid was added all at once at the start of the reaction and when it was sequentially added at a fixed time. It was confirmed that they may be added all at once at the start of the reaction or may be added sequentially at a fixed time. In addition, the conversion rates of linoleic acid to 13-oxo-ODA were similar when linoleic acid was added all at once at the start of the reaction and when they were added sequentially at a fixed time. It was also found that they may be added sequentially at a fixed time.

Figure 2020092697
Figure 2020092697

(酵素処理時間の影響)
各種酵素処理時間(0.5時間、1時間、2時間、3時間、4時間、6時間)にて、リポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8)に溶解)37.5mLとリノール酸溶液2.5mLとアスコルビン酸溶液(7mg/mL)15mLを加え、減圧度−0.075MPa(G)にて、30℃で反応させた。反応後、実施例1と同様に、13-oxo-ODA含有組成物を調製し、実施品23〜28を得た。
(Effect of enzyme treatment time)
At various enzyme treatment times (0.5 hours, 1 hour, 2 hours, 3 hours, 4 hours, 6 hours), a lipoxygenase solution (lipoxydase 380,000 unit (manufactured by Tokyo Kasei) was added to 0.05M borate buffer ( (dissolved in pH 8)) 37.5 mL, linoleic acid solution 2.5 mL, and ascorbic acid solution (7 mg/mL) 15 mL were added, and the mixture was reacted at 30° C. under a reduced pressure degree of −0.075 MPa (G). After the reaction, a 13-oxo-ODA-containing composition was prepared in the same manner as in Example 1 to obtain Examples 23 to 28.

(実施品23〜28の13-oxo-ODAの産生量)
実施例11で調製した実施品23〜28について、実施例2と同様な条件にて13-oxo-ODAの分析を行った。その結果、表6に示されるように、反応時間が長くなると共に13-oxo-ODAの産生量がよく、特に酵素処理時間が4時間の場合に13-oxo-ODAの産生量が最も多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。
(Production amount of 13-oxo-ODA of implementation products 23 to 28)
The products 23 to 28 prepared in Example 11 were analyzed for 13-oxo-ODA under the same conditions as in Example 2. As a result, as shown in Table 6, the reaction time was long and the amount of 13-oxo-ODA produced was good. Especially, when the enzyme treatment time was 4 hours, the amount of 13-oxo-ODA produced was the highest. It was confirmed that the conversion rate from linoleic acid to 13-oxo-ODA was high.

Figure 2020092697
Figure 2020092697

(酵素反応温度の影響)
各種酵素反応温度(18℃、23℃、30℃)にて、リポキシゲナーゼ溶液(リポキシダーゼ 380,000unit(東京化成製)を0.05Mホウ酸緩衝液(pH8) に溶解)37.5mLを用い、リノール酸溶液2.5mLとアスコルビン酸溶液(21mg)11mLを加え、減圧度−0.075MPa(G)にて、30℃で反応させた。反応30分後、60分後、120分後、180分後に、アスコルビン酸溶液(21mg/mL)1mLを加え、同様に減圧下で4時間反応した。反応後、実施例1と同様に、13-oxo-ODA含有組成物を調製し、実施品29〜31を得た。
(Effect of enzyme reaction temperature)
At various enzyme reaction temperatures (18° C., 23° C., 30° C.), 37.5 mL of a lipoxygenase solution (lipoxydase 380,000 unit (manufactured by Tokyo Kasei) dissolved in 0.05 M borate buffer (pH 8)) was used. A linoleic acid solution (2.5 mL) and an ascorbic acid solution (21 mg) (11 mL) were added, and the mixture was reacted at 30° C. under a reduced pressure degree of −0.075 MPa (G). After 30 minutes, 60 minutes, 120 minutes, and 180 minutes after the reaction, 1 mL of ascorbic acid solution (21 mg/mL) was added, and the mixture was similarly reacted under reduced pressure for 4 hours. After the reaction, a 13-oxo-ODA-containing composition was prepared in the same manner as in Example 1 to obtain Examples 29 to 31.

(実施品29〜31の13-oxo-ODAの産生量)
実施例13で調製した実施品29〜31について、実施例2と同様な条件にて13-oxo-ODAの分析を行った。その結果、表7に示されるように、反応温度が高くなると共に13-oxo-ODAの産生量がよく、特に酵素反応温度が23℃の場合に13-oxo-ODAの産生量が最も多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。
(Production amount of 13-oxo-ODA of implementation products 29 to 31)
The products 29 to 31 prepared in Example 13 were analyzed for 13-oxo-ODA under the same conditions as in Example 2. As a result, as shown in Table 7, as the reaction temperature increased, the amount of 13-oxo-ODA produced was good, and particularly when the enzyme reaction temperature was 23°C, the amount of 13-oxo-ODA produced was the highest. It was confirmed that the conversion rate from linoleic acid to 13-oxo-ODA was high.

Figure 2020092697
Figure 2020092697

本発明では、減圧度(反応開始時の溶存酸素濃度)の影響を調べた結果、実施例2で示されたように、一定の範囲で減圧度が高くなる(反応開始時の溶存酸素濃度が低くなる)と共に13-oxo-ODAの産生量が増加し、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。また、リポキシゲナーゼ添加濃度の影響を調べた結果、実施例4で示されたように、反応液中のリポキシゲナーゼ濃度が高くなると共に、13-oxo-ODAの産生量が多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。また、還元剤による影響を調べた結果、実施例6及び8で示されたように、反応液中にアスコルビン酸等の還元剤を存在させると、13-oxo-ODAの産生量が多くなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。更にリノール酸及び、アスコルビン酸の添加方法の影響を調べた結果、実施例10で示されたように、リノール酸やアスコルビン酸は、反応開始時に一括添加しても、一定時間に逐次添加してもよいことが認められた。 In the present invention, as a result of examining the influence of the degree of reduced pressure (dissolved oxygen concentration at the start of the reaction), as shown in Example 2, the degree of reduced pressure increases within a certain range (the dissolved oxygen concentration at the start of the reaction is It was observed that the production rate of 13-oxo-ODA increased with the decrease (decreased) and the conversion rate of linoleic acid to 13-oxo-ODA increased. Further, as a result of examining the influence of the lipoxygenase addition concentration, as shown in Example 4, the lipoxygenase concentration in the reaction solution was increased, the production amount of 13-oxo-ODA was increased, and 13-ox from linoleic acid was increased. It was observed that the conversion rate to oxo-ODA was high. Further, as a result of examining the influence of the reducing agent, as shown in Examples 6 and 8, when a reducing agent such as ascorbic acid was present in the reaction solution, the amount of 13-oxo-ODA produced increased, It was observed that the conversion rate from linoleic acid to 13-oxo-ODA was high. Furthermore, as a result of investigating the influence of the addition method of linoleic acid and ascorbic acid, as shown in Example 10, linoleic acid and ascorbic acid were added all at once at the start of the reaction or sequentially added at a fixed time. It was recognized that it was good.

反応時間(酵素処理時間)の影響を調べた結果、実施例12で示されたように、反応時間が長くなると共に13-oxo-ODAの産生量がよくなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。即ち、特許文献1に示されるような従来技術では、反応時間が8時間以上でリノール酸から13-oxo-ODAへの変換率を、約5%(W/W)までしか高めることができなかったが、本発明方法では、リノール酸からオキソ脂肪酸への変換率を、反応時間0.5時間で約8%(W/W)まで、反応時間1時間で10%以上(W/W)まで高めることができた。また、反応温度(酵素反応温度)の影響を調べた結果、実施例14で示されたように、反応温度が高くなると共に13-oxo-ODAの産生量がよくなり、リノール酸から13-oxo-ODAへの変換率が高くなることが認められた。 As a result of examining the influence of the reaction time (enzyme treatment time), as shown in Example 12, as the reaction time became longer, the production amount of 13-oxo-ODA was improved, and 13-oxo-ODA was converted from linoleic acid. It was confirmed that the conversion rate to That is, in the conventional technique as shown in Patent Document 1, the conversion rate from linoleic acid to 13-oxo-ODA can be increased only to about 5% (W/W) when the reaction time is 8 hours or more. However, in the method of the present invention, the conversion rate of linoleic acid to oxo fatty acid is about 8% (W/W) in a reaction time of 0.5 hours and 10% or more (W/W) in a reaction time of 1 hour. I was able to raise it. In addition, as a result of examining the influence of the reaction temperature (enzyme reaction temperature), as shown in Example 14, as the reaction temperature increased, the amount of 13-oxo-ODA produced increased, and linoleic acid produced 13-oxo. -It was confirmed that the conversion rate to ODA was high.

本発明方法で製造されるオキソ脂肪酸又はそれを有効成分として含むオキソ脂肪酸含有組成物は、血中及び肝臓中の中性脂肪低下、血糖値の改善効果等を奏し、該組成物は生活習慣病改善に有用である。 The oxo-fatty acid produced by the method of the present invention or an oxo-fatty acid-containing composition containing the oxo-fatty acid as an active ingredient exerts the effects of lowering neutral fat in blood and liver, improving blood glucose level, and the like, and the composition is a lifestyle-related disease. It is useful for improvement.

Claims (6)

還元剤の存在下、及び、溶存酸素濃度低減下で、脂肪酸にリポキシゲナーゼを作用させることを含む、オキソ脂肪酸又はオキソ脂肪酸含有組成物の製造方法。 A method for producing an oxo fatty acid or an oxo fatty acid-containing composition, which comprises allowing lipoxygenase to act on a fatty acid in the presence of a reducing agent and under reduced dissolved oxygen concentration. 還元剤が、アスコルビン酸及びその塩、イソアスコルビン酸及びその塩、並びにヨウ化カリウムから成る群から選択される少なくとも1種であることを特徴とする、請求項1に記載の製造方法。 The method according to claim 1, wherein the reducing agent is at least one selected from the group consisting of ascorbic acid and salts thereof, isoascorbic acid and salts thereof, and potassium iodide. 脂肪酸が、不飽和脂肪酸であることを特徴とする、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the fatty acid is an unsaturated fatty acid. 請求項1〜3のいずれか一項に記載の製造方法により製造される、オキソ脂肪酸含有組成物。 An oxo fatty acid-containing composition produced by the production method according to claim 1. リノール酸からオキソ脂肪酸への変換率が6%(W/W)以上である、請求項4に記載のオキソ脂肪酸含有組成物。 The oxo fatty acid-containing composition according to claim 4, wherein the conversion rate from linoleic acid to oxo fatty acid is 6% (W/W) or more. 請求項4又は5に記載のオキソ脂肪酸含有組成物を含む飲食品、化粧品、医薬部外品、医薬品又は飼料。 A food or drink, a cosmetic, a quasi drug, a drug, or a feed containing the oxo-fatty acid-containing composition according to claim 4.
JP2019209991A 2018-11-29 2019-11-20 Oxo fatty acid composition and production method Pending JP2020092697A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224256 2018-11-29
JP2018224256 2018-11-29

Publications (1)

Publication Number Publication Date
JP2020092697A true JP2020092697A (en) 2020-06-18

Family

ID=71084213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209991A Pending JP2020092697A (en) 2018-11-29 2019-11-20 Oxo fatty acid composition and production method

Country Status (1)

Country Link
JP (1) JP2020092697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632978A (en) * 2021-07-12 2021-11-12 宮本哲也 PPAR action substance and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632978A (en) * 2021-07-12 2021-11-12 宮本哲也 PPAR action substance and method for producing the same

Similar Documents

Publication Publication Date Title
AU2014202880B2 (en) Production and purification of esters of polyunsaturated fatty acids
CA2595917C (en) Method for producing a dha-containing fatty acid composition
JP2009500022A (en) Polyunsaturated fatty acid-containing oil products and their use and production
JP5934483B2 (en) Phospholipid-binding DHA increasing agent
US10314871B2 (en) Isolation of Omega-7 fatty acid ethyl esters from natural oils
CA2499138C (en) Conjugated linoleic acid compositions
JP2020092697A (en) Oxo fatty acid composition and production method
CN106900888B (en) Oil composition containing odd-carbon fatty acid structure fat and application thereof
JP6710098B2 (en) Nutritional composition and dietary supplement
TWI774898B (en) Vegetable-based lipid composition, paint or varnish comprising the same, and process for producing the same
TWI778199B (en) Dha enriched polyunsaturated fatty acid compositions
JPH0488963A (en) Functional healthy food and feed
JP5099946B2 (en) Method for producing antitumor composition
TWI821982B (en) Dha enriched polyunsaturated fatty acid compositions
TWI774897B (en) Vegetble-based lipid composition, and process for producing the same
TWI706727B (en) Vegetable-based lipid composition, nutraceutical composition comprising the same, food product comprising the same, and process for producing the same
CN111278984B (en) Homo-polymer of fatty acid hydroxide and method for producing the same
CN117412947A (en) Method for producing high-grade trioctyl essence
KR101216731B1 (en) A method for deodorization of fish oil from squids

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221101