JP2020089053A - 電力変換装置および電力変換システム - Google Patents

電力変換装置および電力変換システム Download PDF

Info

Publication number
JP2020089053A
JP2020089053A JP2018219868A JP2018219868A JP2020089053A JP 2020089053 A JP2020089053 A JP 2020089053A JP 2018219868 A JP2018219868 A JP 2018219868A JP 2018219868 A JP2018219868 A JP 2018219868A JP 2020089053 A JP2020089053 A JP 2020089053A
Authority
JP
Japan
Prior art keywords
power
power conversion
side winding
switching
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018219868A
Other languages
English (en)
Inventor
ゴー・テックチャン
Teck Chiang Goh
修二 戸村
Shuji Tomura
修二 戸村
深田 雅一
Masakazu Fukada
雅一 深田
北村 康宏
Yasuhiro Kitamura
康宏 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2018219868A priority Critical patent/JP2020089053A/ja
Publication of JP2020089053A publication Critical patent/JP2020089053A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、電力変換装置に用いられる電子部品に印加される電圧、または、電力変換装置に用いられる電子部品に流れる電流を小さくすることを目的とする。あるいは、本発明は、電力変換装置に用いられる部品の数を削減することを目的とする。【解決手段】車載用電力変換モジュール100は、電力調整回路10と、電力調整回路10に接続された交流側巻線18と、交流側巻線18に磁気的に結合する複数の直流側巻線(20U,20L)と、各直流側巻線に対応して設けられ、各直流側巻線に接続されたスイッチング回路(141,142)とを備える。各直流側巻線は、交流側巻線18に磁気的に結合し、直列に接続された第1直流側巻線(20U−1,20L−1)および第2直流側巻線(20U−2,20L−2)を備え、第1直流側巻線および第2直流側巻線の接続点と、各スイッチング回路との間にバッテリ22が接続されている。【選択図】図2

Description

本発明は、電力変換装置および電力変換システムに関し、特に、バッテリを充電し、または、バッテリから負荷装置に電力を供給する装置に関する。
ハイブリッド自動車や電気自動車等の電動車両が広く用いられている。電動車両には、駆動用モータジェネレータに電力を供給するためのバッテリが搭載されている。ハイブリッド自動車では、エンジンの駆動力や回生制動によって発電した電力によってバッテリが充電される。また、プラグイン機能のある電動車両では、商用電源システムから供給される電力によってバッテリが充電される。バッテリを充電するため、電動車両には電力変換装置が搭載されている。電力変換装置は、バッテリ充電のために入力された電圧を適切な電圧に変換してバッテリに印加する。
以下の特許文献1には、2つのスイッチング回路を各回路に接続された巻線によって磁気的に結合させ、2つのスイッチング回路の間で電力を伝送させる電力変換装置が示されている。特許文献2には、電力変換装置としての多相昇圧コンバータが記載されている。この多相昇圧コンバータでは、負荷回路に電流を供給する複数のスイッチング素子を用いることで、スイッチング素子に流れる電流が低減される。特許文献3には、第1および第2の昇圧コンバータのパルス幅変調による力率改善を行いつつ、第1および第2の昇圧コンバータの周波数を調整することにより出力電圧を制御する電力変換装置が示されている。特許文献4には、トランスによって結合された2つの電力変換部を備え、各電力変換部のスイッチングによって、直流電力を交流電力に変換し、または、交流電力を直流電力に変換する絶縁型電力変換装置が記載されている。この絶縁型電力変換装置では、交流電力が入出力される側の電力変換部における損失が低減されるように、各電力変換部のスイッチングが行われる。
また、以下の非特許文献1には、本願発明に関連する技術として、複数のスイッチング回路の入力端子、および複数のスイッチング回路の出力端子を並列接続する技術等が記載されている。
特開2011−193713号公報 特開2017−158372号公報 特開2010−183726号公報 特開2016−226162号公報
"A 22 kW on-board charger for automotive applications based on a modular design"Fraunhofer IISB Germany, IEEE Conference on Energy Convension Oct. 2014
近年、ハイブリッド自動車や電気自動車等の電動車両については、バッテリの出力電圧を大きくすることで、走行時やバッテリ充電時に各回路に流れる電流を小さくし、電力損失を低減する設計が検討されている。しかし、バッテリの出力電圧を大きくすると、各回路に用いられるスイッチング素子等の電子部品の耐電圧を大きくする必要が生じる。また、電力損失の低減に加えて、充電電力を大きくして高速な充電を行うことも検討されており、電子部品の許容電流を大きくする必要も生じている。耐電圧や許容電流が大きい電子部品は、耐電圧や許容電流が小さい電子部品に比べてコストが嵩む傾向にあり、電子部品に費やされるコストが上昇してしまうという問題が生じる。
また、電動車両に用いられる電力変換装置では、ユーザが操作する部位を絶縁したり、入出力電圧が異なる複数の回路を結合したりするため複数のトランスが用いられる。そして、バッテリの出力電圧を昇圧または降圧するために、誘導起電力を発生させるための巻線がトランスに加えて用いられ、部品の数が多くなってしまうことがある。
本発明は、電力変換装置に用いられる電子部品に印加される電圧、または、電力変換装置に用いられる電子部品に流れる電流を小さくすることを目的とする。あるいは、本発明は、電力変換装置に用いられる部品の数を削減することを目的とする。
本発明に係る電力変換装置は、入力される交流電力をスイッチングによって調整する電力調整回路と、前記電力調整回路に接続された交流側巻線と、前記交流側巻線に磁気的に結合する複数の直流側巻線と、各前記直流側巻線に対応して設けられ、各前記直流側巻線に接続されたスイッチング回路と、を備え、各前記直流側巻線は、直列に接続された第1直流側巻線および第2直流側巻線を備え、前記第1直流側巻線および前記第2直流側巻線の接続点と、各前記スイッチング回路との間にバッテリが接続されていることを特徴とする。
望ましくは、各前記スイッチング回路に対応して設けられ、各前記スイッチング回路に接続されたインバータ回路を備え、各前記インバータ回路は共通の負荷装置に接続されている。
望ましくは、各前記スイッチング回路は、電力変換モードであって、前記バッテリから出力される電力に対するスイッチングによって、前記バッテリから自らに隣接する回路に電力を供給する電力変換モード、または、充電モードであって、前記電力調整回路から前記交流側巻線、および、自らに対応する前記直流側巻線を介して供給される電力に対するスイッチングによって前記バッテリを充電する充電モード、のいずれかのモードで動作する。
望ましくは、前記電力変換装置を複数備える電力変換システムにおいて、複数の前記電力変換装置は、共通の負荷装置に接続されており、複数の前記電力変換装置のそれぞれにおける前記電力調整回路の一端に、複数相の交流電圧のうちの対応する1相の相電圧が印加されており、複数の前記電力変換装置のそれぞれにおける前記電力調整回路の他端が共通に接続されている。
本発明によれば、電力変換装置に用いられる電子部品に印加される電圧、または、電力変換装置に用いられる電子部品に流れる電流を小さくすることができる。あるいは、本発明によれば、電力変換装置に用いられる部品の数を削減することができる。
車載用電力変換モジュールの構成を示す図である。 車載用電力変換モジュールの回路構成を示す図である。 双方向スイッチの構成例を示す図である。 交流接続点aと交流接続点bとの間に現れるスイッチング電圧Vabの時間波形を示す図である。 第1の応用実施形態に係る電力変換システムの構成を示す図である。 第1の応用実施形態に係る電力変換システムの回路構成の一部を示す図である。 第2の応用実施形態に係る電力変換システムの構成を示す図である。 第2の応用実施形態に係る電力変換システムの回路構成の一部を示す図である。 シミュレーション結果を示す図である。 シミュレーション結果を示す図である。 シミュレーション結果を示す図である。
各図を参照して本発明の各実施形態について説明する。本願明細書に示された「上」、「下」の用語は図面における上下を示し、図面に表された部品の取り付け位置を限定するものではない。また、複数の図面に示された同一の構成要素については同一の符号を付して説明の重複を避ける。
(1)車載用電力変換モジュールの概要
図1には、本発明の実施形態に係る車載用電力変換モジュール100が示されている。車載用電力変換モジュール100は、ハイブリッド自動車、電気自動車等の電動車両に搭載される。車載用電力変換モジュール100は、電力調整回路10、トランス12、DC/DCコンバータ14およびインバータ16を備える。インバータ16には車両駆動用のモータジェネレータ38が接続されている。トランス12およびDC/DCコンバータ14にはバッテリ22が接続されている。
トランス12は、磁気的に結合する交流側巻線18および直流側巻線20を備える。電力調整回路10には交流側巻線18が接続されている。DC/DCコンバータ14には直流側巻線20が接続されている。すなわち、電力調整回路10およびDC/DCコンバータ14はトランス12によって結合され、電力調整回路10とDC/DCコンバータ14との間で、トランス12を介した電力伝送が行われる。
バッテリ22の正極端子は、直流側巻線20を形成する導線の中途の点(中途点)に接続されている。バッテリ22の負極端子は、直流側巻線20の一端からDC/DCコンバータ14に至る負極線に接続されている。
車載用電力変換モジュール100は、電力変換モードまたは充電モードのいずれかのモードで動作する。電力変換モードは電動車両の走行中における動作モードである。電力変換モードにおいて車載用電力変換モジュール100は、バッテリ22から出力される電力をモータジェネレータ38に供給し、電動車両を力行させる。モータジェネレータ38は電動車両を力行させる他、発電によって電動車両を制動する。車載用電力変換モジュール100は、モータジェネレータ38が発電した電力をバッテリ22に供給してバッテリ22を充電する。
電力変換モードでは、電力調整回路10のスイッチング動作がオフとなり、電力調整回路10の動作が停止する。直流側巻線20は昇圧リアクトルとして用いられる。DC/DCコンバータ14のスイッチングによって、直流側巻線20に誘導起電力が発生する。DC/DCコンバータ14は、バッテリ22の出力電圧に誘導起電力を加えた昇圧電圧をインバータ16に出力する。インバータ16は、昇圧電圧に基づく直流電力を3相交流電力に変換し、モータジェネレータ38に供給する。
また、インバータ16は、モータジェネレータ38から出力された3相交流電力(発電電力)を整流することで得られる直流電力をDC/DCコンバータ14に出力する。DC/DCコンバータ14は、インバータ16から出力された電圧を降圧し、降圧後の電圧に基づく電力をバッテリ22に出力する。これによってバッテリ22が充電される。
充電モードは、電動車両が運転中でないときにバッテリ22を充電する動作モードである。車載用電力変換モジュール100が充電モードで動作するときは、電力調整回路10に交流電源24が接続される。交流電源24は、商用電源システム等の電力供給システムであってよい。充電モードでは、インバータ16のスイッチング動作はオフとなり、インバータ16の動作が停止する。電力調整回路10は、交流電源24から出力される交流電力の力率を適切なものとし、トランス12を介してDC/DCコンバータ14に出力する。トランス12から供給される電力が、DC/DCコンバータ14のスイッチング動作によってバッテリ22に供給される。
(2)回路構成
図2には、電力調整回路10、トランス12、DC/DCコンバータ14、およびインバータ16の具体的な回路構成が示されている。電力調整回路10は、リアクトル26、ハーフブリッジα1およびα2を備える。ハーフブリッジα1は、直列接続された双方向スイッチαS1およびαS2を備え、ハーフブリッジα2は、直列接続された双方向スイッチαS3およびαS4を備える。ハーフブリッジα1およびα2は並列接続されている。双方向スイッチαS1およびαS2の接続点(交流接続点a)は、リアクトル26を介して正相端子A1に接続されている。双方向スイッチαS3およびαS4の接続点(交流接続点b)は逆相端子A2に接続されている。正相端子A1および逆相端子A2には交流電源24が接続される。
ハーフブリッジα1およびα2の両端には交流側巻線18が接続されている。交流側巻線18は、直列接続された上・交流側巻線18Uおよび下・交流側巻線18Lを備える。直流側巻線20は、上・直流側巻線20Uおよび下・直流側巻線20Lを備える。上・直流側巻線20Uの中途点と下・直流側巻線20Lの中途点とは接続されている。上・直流側巻線20Uは上・交流側巻線18Uに磁気的に結合し、下・直流側巻線20Lは下・交流側巻線18Lに磁気的に結合する。
双方向スイッチαS1〜αS4は、オンのときに双方向に電流が流れるスイッチである。双方向スイッチαS1〜αS4は、例えば、図3に示されている2つのMOSFET1およびMOSFET2によって構成される。MOSFET1のソース端子は、MOSFET2のドレイン端子に接続されている。MOSFET1およびMOSFET2のそれぞれのソース端子とドレイン端子との間には、ソース端子の側をアノード端子として、ダイオードDが接続されている。2つのMOSFETの代わりに、その他の半導体スイッチング素子が用いられてもよい。半導体スイッチング素子としてバイポーラトランジスタが用いられた場合、MOSFETのドレイン端子、ソース端子およびゲート端子が、それぞれ、コレクタ端子、エミッタ端子およびベース端子に対応する。
DC/DCコンバータ14は、第1スイッチング回路141および第2スイッチング回路142を備える。第1スイッチング回路141は、ハーフブリッジX1、ハーフブリッジX2および中間コンデンサ32を備える。ハーフブリッジX1は、直列接続されたスイッチング素子XS1およびXS2を備え、ハーフブリッジX2は、直列接続されスイッチング素子XS3およびXS4を備えている。ハーフブリッジX1およびX2は並列接続されている。スイッチング素子XS1およびXS2の接続点と、スイッチング素子XS3およびXS4の接続点との間には、上・直流側巻線20Uが接続されている。ハーフブリッジX1およびX2の両端には中間コンデンサ32が接続されている。
第2スイッチング回路142は、ハーフブリッジY1、ハーフブリッジY2および中間コンデンサ34を備える。ハーフブリッジY1は、直列接続されたスイッチング素子YS1およびYS2を備え、ハーフブリッジY2は、直列接続されたスイッチング素子YS3およびYS4を備える。ハーフブリッジY1およびY2は並列接続されている。スイッチング素子YS1およびYS2の接続点と、スイッチング素子YS3およびYS4の接続点との間には、下・直流側巻線20Lが接続されている。ハーフブリッジY1およびY2の両端には中間コンデンサ34が接続されている。
スイッチング素子XS2およびXS4の接続点は第1負極線28に接続され、スイッチング素子YS2およびYS4の接続点は第2負極線30に接続されている。第1負極線28および第2負極線30のそれぞれの一端は、バッテリ22の負極端子に接続されている。上・直流側巻線20Uおよび下・直流側巻線20Lのそれぞれの中途点、すなわち、上・直流側巻線20Uおよび下・直流側巻線20Lの接続点にはバッテリ22の正極端子が接続されている。
インバータ16は、第1インバータ回路163および第2インバータ回路164を備える。第1インバータ回路163は、ハーフブリッジU、VおよびWを備える。ハーフブリッジUは、直列接続されたスイッチング素子US1およびUS2を備える。ハーフブリッジVは、直列接続されたスイッチング素子VS3およびVS4を備える。ハーフブリッジWは、直列接続されたスイッチング素子WS5およびVS6を備える。ハーフブリッジU、VおよびWは並列接続されている。
スイッチンング素子US1、VS3およびWS5の接続点は、中間コンデンサ32の上端、すなわち、スイッチング素子XS1およびXS3の接続点に接続され、スイッチング素子US2、VS4およびWS6の接続点は、第1負極線28に接続されている。
スイッチング素子US1およびUS2の接続点はU相端子uに接続されている。スイッチング素子VS3およびVS4の接続点はV相端子vに接続されている。スイッチング素子WS5およびWS6の接続点はW相端子wに接続されている。U相端子u、V相端子vおよびW相端子wには、モータジェネレータ38が接続されている。
第2インバータ回路164は、第1インバータ回路163と同様の構成を有している。第2インバータ回路164は、ハーフブリッジO、PおよびQを備える。ハーフブリッジOは、直列接続されたスイッチング素子OS1およびOS2を備える。ハーフブリッジPは、直列接続されたスイッチング素子PS3およびPS4を備える。ハーフブリッジQは、直列接続されたスイッチング素子QS5およびQS6を備える。スイッチングO、PおよびQは並列接続されている。
スイッチンング素子OS1、PS3およびQS5の接続点は、中間コンデンサ34の上端、すなわち、スイッチング素子YS1およびYS3の接続点に接続され、スイッチング素子OS2、PS4およびQS6の接続点は、第2負極線30に接続されている。
スイッチング素子OS1およびOS2の接続点はU相端子uに接続されている。スイッチング素子PS3およびPS4の接続点はV相端子vに接続されている。スイッチング素子QS5およびQS6の接続点はW相端子wに接続されている。
DC/DCコンバータ14およびインバータ16が備える各スイッチング素子(XS1〜XS4,YS1〜YS4,US1,US2,VS3,VS4,WS5,WS6,OS1,OS2,PS3,PS4,QS5,QS6)には、MOSFETが用いられている。各ハーフブリッジでは、図2において上側に示されているMOSFETのソース端子が、下側に示されているMOSFETのドレイン端子に接続されている。各MOSFETのドレイン端子とソース端子との間には、ソース端子側をアノード端子としてダイオードが接続されている。
各スイッチング素子については、MOSFETの代わりに、その他の半導体スイッチング素子が用いられてもよい。半導体スイッチング素子としてバイポーラトランジスタが用いられた場合、MOSFETのドレイン端子、ソース端子およびゲート端子が、それぞれ、コレクタ端子、エミッタ端子およびベース端子に対応する。
(3)基本動作
電力調整回路10が備える各双方向スイッチは、制御部36によってオフからオンに制御され、または、オンからオフに制御される。DC/DCコンバータ14およびインバータ16が備える各スイッチング素子は、制御部36によってオフからオンに制御され、または、オンからオフに制御される。
電力調整回路10のハーフブリッジα1を構成する双方向スイッチαS1およびαS2は、一方がオフからオンになったときに他方がオンからオフになり、一方がオンからオフになったときに、他方がオフからオンになる。すなわち、双方向スイッチαS1およびαS2は交互にオンオフする。同様に、電力調整回路10のハーフブリッジα2を構成する双方向スイッチαS3およびαS4は交互にオンオフする。DC/DCコンバータ14およびインバータ16を構成する各ハーフブリッジに含まれる2つのスイッチング素子も交互にオンオフする。
第1スイッチング回路141のスイッチング動作と第2スイッチング回路142のスイッチング動作とは同期している。すなわち、スイッチング素子XS1〜XS4がオンオフするタイミングは、それぞれ、スイッチング素子YS1〜YS4がオンオフするタイミングと同一である。
また、第1インバータ回路163のスイッチング動作と第2インバータ回路164のスイッチング動作とは同期している。すなわち、スイッチング素子US1,US2,VS3,VS4,WS5およびWS6がオンオフするタイミングは、それぞれ、スイッチング素子OS1,OS2,PS3,PS4,QS5およびQS6がオンオフするタイミングと同一である。
(4)充電モード
車載用電力変換モジュール100の充電モードでの動作について説明する。充電モードにおいて制御部36は、インバータ16の動作を停止する。すなわち、充電モードでは、インバータ16が備えるスイッチング素子(US1,US2,VS3,VS4,WS5,WS6,OS1,OS2,PS3,PS4,QS5,QS6)がオフに維持される。充電モードでは、交流電源24から供給される交流電力の力率を電力調整回路10が調整しながら、電力調整回路10がその交流電力に基づく電力をトランス12を介してDC/DCコンバータ14に出力する。DC/DCコンバータ14のスイッチングによって、バッテリ22に電力が供給されバッテリ22が充電される。
電力調整回路10の動作について説明する。制御部36によって、双方向スイッチαS1〜αS4は、正相端子A1および逆相端子A2に印加された交流電圧Vgの時間波形と同様の時間波形を有する電流がリアクトル26に流れるようにスイッチングされる。
図4には、交流接続点aと交流接続点bとの間に現れるスイッチング電圧Vabの時間波形が示されている。また、リアクトル26に流れる電流iqの時間波形がスイッチング電圧Vabの時間波形と共に示されている。
スイッチング電圧Vabは、交流電圧Vgに応じて極性およびパルス幅が変化する。すなわち、交流電圧Vgの極性と同一の極性を有し、交流電圧Vgが大きいとき程パルス幅が長くなり、出力電圧が小さいとき程パルス幅が短くなる。
スイッチング電圧Vabに応じてリアクトル26に流れる電流iqは、スイッチング電圧Vabの時間波形を平滑化した時間波形となり、正弦波に近似された時間波形となる。これによって、正相端子A1および逆相端子A2から電力調整回路10に供給される電力の力率、さらに、トランス12を介してDC/DCコンバータ14に供給される電力の力率が適切に調整され、正相端子A1および逆相端子A2からバッテリ22に十分な電力が供給される。
DC/DCコンバータ14の動作について説明する。第1スイッチング回路141のスイッチング素子XS1およびXS2は交互にオンオフし、スイッチング素子XS3およびXS4もまた交互にオンオフする。スイッチング素子XS1およびXS2が交互にオンオフする周期と、スイッチング素子XS3およびXS4が交互にオンオフする周期は同一の時間長である。また、ハーフブリッジX1のデューティ比と、ハーフブリッジX2のデューティ比は同一であってよい。ここで、ハーフブリッジX1のデューティ比とは、スイッチング素子XS1およびXS2がオンオフする1周期に対する、スイッチング素子XS2がオンになる時間の比率をいう。また、ハーフブリッジX2のデューティ比とは、スイッチング素子XS3およびXS4がオンオフする1周期に対する、スイッチング素子XS4がオンになる時間の比率をいう。スイッチング素子XS1およびXS2がオンオフする位相と、スイッチング素子XS3およびXS4がオンオフする位相は異なっている。すなわち、ハーフブリッジX1のオンオフタイミングとハーフブリッジX2のオンオフタイミングとは異なっている。
図2には、バッテリ22の正極端子から第1上・直流側巻線20U−1に流れる電流i1と、バッテリ22の正極端子から第2上・直流側巻線20U−2に流れる電流i2が示されている。第1上・直流側巻線20U−1は、上・直流側巻線20Uのうち、中途点よりもハーフブリッジX1側の部分である。第2上・直流側巻線20U−2は、上・直流側巻線20Uのうち、中途点よりもハーフブリッジX2側の部分である。
充電モードでは、ハーフブリッジX1のオンオフタイミングと、ハーフブリッジX2のオンオフタイミングとの間に相違があり、この相違に応じて電流i1および電流i2に相違が生じる。これによって、電流i1および電流i2の相違に応じた電流がバッテリ22の正極端子に流入する。
次に、第2スイッチング回路142の動作について説明する。上述のように第1スイッチング回路141のタイミング動作と第2スイッチング回路142のスイッチング動作とは同期している。したがって、バッテリ22の正極端子から第1下・直流側巻線20L−1に流れる電流i3と、バッテリ22の正極端子から第2下・直流側巻線20L−2に流れる電流i4に相違が生じる。第1下・直流側巻線20L−1は、下・直流側巻線20Lのうち、中途点よりもハーフブリッジY1側の部分である。第2下・直流側巻線20L−2は、下・直流側巻線20Lのうち、中途点よりもハーフブリッジY2側の部分である。電流i3および電流i4に相違が生じることで、これらの差異に応じた電流がバッテリ22の正極端子に流入する。
このようなDC/DCコンバータ14の動作によって、電流i1および電流i2の差異に応じた電流と、電流i3およびi4の差異に応じた電流がバッテリ22の正極端子に流入し、バッテリ22が充電される。
(5)電力変換モード
車載用電力変換モジュール100の電力変換モードでの動作について説明する。制御部36は電力調整回路10の動作を停止する。すなわち、電力調整回路10が備える双方向スイッチαS1〜αS4はオフに維持される。
第1スイッチング回路141および第1インバータ回路163の動作について説明する。電力変換モードでは、スイッチング素子XS1およびXS3の組と、スイッチング素子XS2およびXS4の組が交互にオンオフする。すなわち、スイッチング素子XS1がオンのときはスイッチング素子XS3もまたオンになり、スイッチング素子XS1がオフのときはスイッチング素子XS3もまたオフになる。同様に、スイッチング素子XS2がオンのときはスイッチング素子XS4もまたオンになり、スイッチング素子XS2がオフのときはスイッチング素子XS4もまたオフになる。
スイッチング素子XS2およびXS4がオンになっているときは、バッテリ22の正極端子から第1上・直流側巻線20U−1に電流i1が流れ、バッテリ22の正極端子から第2上・直流側巻線20U−2に電流i2が流れる。電流i1は第1上・直流側巻線20U−1からスイッチング素子XS2を流れてバッテリ22の負極端子に至る。電流i2は第2上・直流側巻線20U−2からスイッチング素子XS4を流れてバッテリ22の負極端子に至る。
スイッチング素子SX2がオンからオフになることで、第1上・直流側巻線20U−1に誘導起電力が発生する。それと共にスイッチング素子XS1がオンになり、バッテリ22の出力電圧に誘導起電力が加えられた昇圧電圧が中間コンデンサ32に印加される。
同様に、スイッチング素子XS4がオンからオフになることで、第2上・直流側巻線20U−2に誘導起電力が発生する。それと共にスイッチング素子XS3がオンになり、バッテリ22の出力電圧に誘導起電力が加えられた昇圧電圧が中間コンデンサ32に印加される。
バッテリ22の出力電圧をVb、ハーフブリッジX1およびX2のデューティ比をDuとした場合、中間コンデンサ32に印加される電圧Vcは、Vc=Vb/(1−Du)である。
このような動作によって、バッテリ22の出力電圧が昇圧された電圧が中間コンデンサ32に印加される。昇圧電圧が、中間コンデンサ32の端子間電圧よりも大きい場合には中間コンデンサ32または第1インバータ回路163に電力が供給される。一方、昇圧電圧が中間コンデンサ32の端子間電圧より小さい場合には、第1インバータ回路163または中間コンデンサ32からバッテリ22に電力が回収される。
第1インバータ回路163は、ハーフブリッジU、VおよびWのスイッチングによって、第1スイッチング回路141から出力された直流電力を3相交流電力に変換し、U相端子u、V相端子vおよびW相端子wに接続されたモータジェネレータ38に出力する。また、第1インバータ回路163は、各スイッチング素子に接続されたダイオードの整流作用によって、モータジェネレータ38からU相端子u、V相端子vおよびW相端子wに出力された3相交流電力を直流電力に変換し、第1スイッチング回路141に出力する。
電力変換モードにおける第2スイッチング回路142および第2インバータ回路164の動作は、それぞれ、第1スイッチング回路141および第1インバータ回路163の動作と同様である。第2スイッチング回路142は、バッテリ22の出力電圧を昇圧し、中間コンデンサ34および第2インバータ回路164に出力する。昇圧電圧が、中間コンデンサ34の端子間電圧よりも大きい場合には中間コンデンサ34または第2インバータ回路164に電力が供給される。一方、昇圧電圧が中間コンデンサ34の端子間電圧より小さい場合には、第2インバータ回路164または中間コンデンサ34からバッテリ22に電力が回収される。
(6)車載用電力変換モジュールについての総括
上記のように、電力変換装置としての車載用電力変換モジュール100は、電力調整回路10、交流側巻線18、直流側巻線20、およびスイッチング回路(第1スイッチング回路141および第2スイッチング回路142)を備える。電力調整回路10は、交流電源24から入力される交流電力をスイッチングによって調整する。交流側巻線18は電力調整回路10に接続されている。交流側巻線18は、複数の交流側巻線として、直列に接続された上・交流側巻線18Uおよび下・交流側巻線18Lを備える。直流側巻線20は、複数の直流側巻線として、直列に接続された上・直流側巻線20Uおよび下・直流側巻線20Lを備える。交流側巻線18は直流側巻線20と磁気的に結合し、直流側巻線20と共にトランス12を構成する。すなわち、上・交流側巻線18Uは上・直流側巻線20Uに磁気的に結合し、下・交流側巻線18Lは下・直流側巻線20Lに磁気的に結合する。第1スイッチング回路141は、上・直流側巻線20Uに対応して設けられ、第2スイッチング回路142は、下・直流側巻線20Lに対応して設けられている。
上・直流側巻線20Uは、直列に接続された第1上・直流側巻線20U−1および第2上・直流側巻線20U−2を備える。下・直流側巻線20Lは、直列に接続された第1下・直流側巻線20L−1および第2下・直流側巻線20L−2を備える。
第1上・直流側巻線20U−1および第2上・直流側巻線20U−2の接続点と、第1下・直流側巻線20L−1および第2下・直流側巻線20L−2の接続点とが接続されている。これらの接続点と、第1負極線28または第2負極線30との間にバッテリ22が接続されている。
車載用電力変換モジュール100は、さらに、第1スイッチング回路141および第2スイッチング回路142に対応して設けられた第1インバータ回路163および第2インバータ回路164を備える。第1インバータ回路163および第2インバータ回路164は共通の負荷装置としてのモータジェネレータ38に接続されており、同期してスイッチングを行う。
第1スイッチング回路141および第2スイッチング回路142のそれぞれは、電力変換モードまたは充電モードで動作する。電力変換モードでは、第1スイッチング回路141および第2スイッチング回路142のそれぞれは、バッテリ22から出力される電力に対するスイッチングによって、バッテリ22から自らに隣接する回路(第1インバータ回路163および第2インバータ回路164)に電力を供給する。
充電モードでは、第1スイッチング回路141および第2スイッチング回路142のそれぞれは、電力調整回路10から交流側巻線18、および、自らに対応する直流側巻線(20Uまたは20L)を介して供給される電力に対するスイッチングによってバッテリ22を充電する。
(7)効果
本実施形態に係る車載用電力変換モジュール100では、第1スイッチング回路141および第1インバータ回路163による上側回路と、第2スイッチング回路142および第2インバータ回路164による下側回路とがU相端子u、V相端子vおよびW相端子wにおいて並列接続されている。
充電モードにおいて一定の電力がバッテリ22に供給されるという条件の下では、直流側巻線20を1つの巻線とし、DC/DCコンバータ14およびインバータ16のそれぞれを1つのスイッチング回路で構成した場合(一段構成の場合)に比べて、各スイッチング素子に流れる電流が小さくなる。
電力変換モードにおいて一定の電力がバッテリ22とモータジェネレータ38との間で授受されるとした場合も、各スイッチング素子に流れる電流が一段構成に比べて小さくなる。したがって、DC/DCコンバータ14およびインバータ16に用いられる各スイッチング素子は、一段構成に比べて許容電流が小さいものとしてよい。
また、本実施形態に係る車載用電力変換モジュール100では、交流電源24が出力する交流電圧の振幅が一定であり、一定の電力がバッテリ22に充電されるとした場合、一段構成に比べて、交流側巻線18の巻き数が少なくなる。これによって、交流側巻線18が有する抵抗成分が小さくなり、交流側巻線18における電力損失が低減される。
さらに、直流側巻線20は、交流側巻線18と共に電力調整回路10とDC/DCコンバータ14との間で電力伝送をするトランス12を構成する他、バッテリ22の出力電圧を昇圧するための昇圧リアクトルとして用いられる。したがって、車載用電力変換モジュール100では、バッテリ22の出力電圧を昇圧するための回路構成が簡単になる。
なお、車載用電力変換モジュール100と同一の回路構成を有する電気回路モジュールは、電動車両の他、モータを用いる機械、ロボット等、一般的な電気機器に用いられてもよい。
(8)電力変換モジュールの応用例
図5には、第1の応用実施形態に係る電力変換システム102が示されている。電力変換システム102は、第1電力変換モジュール40および第2電力変換モジュール42を備える。第1電力変換モジュール40は、図2に示された車載用電力変換モジュール100と同様の構成を有する。第2電力変換モジュール42は、図2に示された車載用電力変換モジュール100のリアクトル26を取り除き単なる導線に置き換えたものである。
第2電力変換モジュール42の正相端子B1は、第1電力変換モジュール40の逆相端子A2に接続されている。第1電力変換モジュール40および第2電力変換モジュール42は、共通のU相端子u、V相端子vおよびW相端子wに接続されている。
第1電力変換モジュール40および第2電力変換モジュール42には、共通のバッテリ22が接続されている。すなわち、第1電力変換モジュール40における直流側巻線20と、第2電力変換モジュール42における直流側巻線20が、共通のバッテリ22の正極端子に接続されている。
第2電力変換モジュール42の各双方向スイッチおよび各スイッチング素子のオンオフタイミングは、第1電力変換モジュール40の各双方向スイッチおよび各スイッチング素子のオンオフタイミングと同期する。
図6には、第1電力変換モジュール40における電力調整回路10およびトランス12の周辺部分と、第2電力変換モジュール42における電力調整回路10およびトランス12の周辺部分が示されている。
このような構成によれば、図1に示された車載用電力変換モジュール100(単一の電力変換モジュール)に比べて、各電力調整回路10における双方向スイッチに印加される電圧が低減される。したがって、単一の電力変換モジュール100を用いる場合に比べて、各双方向スイッチの耐電圧を小さくしてもよい。同様に、単一の電力変換モジュール100を用いた場合に比べて、各DC/DCコンバータ14および各インバータ16におけるスイッチング素子に印加される電圧が低減される。したがって、単一の電力変換モジュール100に比べて、各スイッチング素子の耐電圧を小さくしてもよい。
また、各双方向スイッチおよび各スイッチング素子に、単一の電力変換モジュール100を用いた場合と同一の耐電圧のものを用いた場合には、単一の電力変換モジュール100に対して、正相端子および逆相端子に入力される交流電圧の振幅を大きくしてもよい。
例えば、単一の電力変換モジュール100の正相端子A1と逆相端子A2との間に、振幅Vaの正弦波電圧を印加する場合には、本応用実施形態に係る電力変換システム102では正相端子A1と逆相端子A2との間に、振幅2・Vaの正弦波電圧を印加してもよい。
図7には、第2の応用実施形態に係る電力変換システム104が示されている。電力変換システム104は、第1電力変換モジュール40、第2電力変換モジュール42および第3電力変換モジュール44を備える。各電力変換モジュールは、図2に示された車載用電力変換モジュール100と同様の構成を有する。
第1電力変換モジュール40の逆相端子A2、第2電力変換モジュール42の逆相端子B2、および第3電力変換モジュール44の逆相端子D2は、中性点Nで共通に接続されている。
このように、電力変換システム104では、複数の電力変換モジュール(40,42,44)が、共通の負荷装置としてのモータジェネレータ38に接続されている。各電力変換モジュール(40,42,44)における電力調整回路10の一端(正相端子A1,B1およびD1)には、複数相の交流電圧のうちの対応する1相の相電圧が印加されている。各電力変換モジュール(40,42,44)における電力調整回路10の他端(逆相端子A2,B2およびD2)は共通に接続されている。
第1電力変換モジュール40の正相端子A1、第2電力変換モジュール42の正相端子B1、および第3電力変換モジュール44の正相端子D1は、3相交流電源に接続される。3相交流電源は、商用電源システム等の電力供給システムであってよい。各電力変換モジュールにおける直流側巻線20は、共通のバッテリ22の正極端子に接続されている。
第2電力変換モジュール42の電力調整回路10における各双方向スイッチのスイッチングの位相は、第1電力変換モジュール40の電力調整回路10における各双方向スイッチのオンオフの位相に対し120°遅れている。第3電力変換モジュール44の電力調整回路10における各双方向スイッチのオンオフの位相は、第2電力変換モジュール42の電力調整回路10における各双方向スイッチのオンオフの位相に対し120°遅れている。
図8には、各電力変換モジュールにおける電力調整回路10およびトランス12の周辺部分が示されている。
このような構成によれば、3相交流電源によってバッテリ22が充電される。単一の電力変換モジュール100の正相端子A1と逆相端子A2との間に、振幅Vaの正弦波電圧を印加することが許容される場合には、本応用実施形態に係る電力変換システム104では正相端子A1、正相端子B1および正相端子D1の相互間に、相間電圧として振幅2・Vaの正弦波電圧を印加してもよい。
(9)シミュレーション結果
図9(a)〜(d)には、図1に示されている車載用電力変換モジュール100が充電モードで動作した場合のシミュレーション結果が示されている。このシミュレーション結果では、車載用電力変換モジュール100の正相端子A1と逆相端子A2との間に、実効値Veの正弦波電圧が印加されている。図9(a)〜(d)における横軸は時間を示す。
図9(a)には、バッテリ22に供給される電力Pb0が示されている。図9(b)には、中間コンデンサ32に印加される電圧Vc0およびバッテリ22の出力電圧Vb0が示されている。中間コンデンサ34に印加される電圧は、中間コンデンサ32に印加される電圧Vc0と同様となる。図9(c)には、交流電源24が出力する電圧Vgが示されている。図9(d)には正相端子A1に流れる交流端子電流I0が示されている。
図10(a)〜(d)には、図5に示されている電力変換システム102が充電モードで動作した場合のシミュレーション結果が示されている。このシミュレーション結果では、電力変換システム102の正相端子A1と逆相端子B2との間に、実効値2・Veの正弦波電圧が印加されている。図10(a)〜(d)における横軸は時間を示す。
図10(a)には、バッテリ22に供給される電力Pb1が示されている。図10(b)には、第1電力変換モジュール40の中間コンデンサ32に印加される電圧Vc1およびバッテリ22の出力電圧Vb1が示されている。第2電力変換モジュール42の中間コンデンサ32に印加される電圧、および、各電力変換モジュール(40,42)の中間コンデンサ34に印加される電圧は、第1電力変換モジュール40の中間コンデンサ32に印加される電圧Vc1と同様である。図10(c)には、交流電源24が出力する電圧Vgが示されている。図10(d)には正相端子A1に流れる交流端子電流I1が示されている。
図11(a)〜(d)には、図7に示されている電力変換システム104が充電モードで動作した場合のシミュレーション結果が示されている。このシミュレーション結果では、電力変換システム104の正相端子A1、正相端子B1および正相端子D1の相互間に、相間電圧として実効値2・Veの正弦波電圧が印加されている。図11(a)〜(d)における横軸は時間を示す。
図11(a)には、バッテリ22に供給される電力Pb2が示されている。図11(b)には、第1電力変換モジュール40の中間コンデンサ32に印加される電圧Vc2およびバッテリ22の出力電圧Vb2が示されている。第2電力変換モジュール42の中間コンデンサ32に印加される電圧、第3電力変換モジュール44の中間コンデンサ32に印加される電圧、および、各電力変換モジュール(40,42,44)の中間コンデンサ34に印加される電圧は、第1電力変換モジュール40の中間コンデンサ32に印加される電圧Vc2と同様である。図11(c)には、3相交流電源が出力する相間電圧Vrs,Vst,Vtrが示されている。図(d)には正相端子A1,B1およびD1に流れる電流IA,IBおよびIDが示されている。
10 電力調整回路、12 トランス、14 DC/DCコンバータ、141 第1スイッチング回路、142 第2スイッチング回路、16 インバータ、163 第1インバータ回路、164 第2インバータ回路、18 交流側巻線、18U 上・交流側巻線、18L 下・交流側巻線、20 直流側巻線、20U 上・直流側巻線、20U−1 第1上・直流側巻線、20U−2 第2上・直流側巻線、20L 下・直流側巻線、20L−1 第1下・直流側巻線、20L−2 第2下・直流側巻線、22 バッテリ、24 交流電源、26 リアクトル、28 第1負極線、30 第2負極線、32,34 中間コンデンサ、36 制御部、38 モータジェネレータ、40 第1電力変換モジュール、42 第2電力変換モジュール、44 第3電力変換モジュール、100 車載用電力変換モジュール(電力変換装置)、102,104 電力変換システム。

Claims (4)

  1. 入力される交流電力をスイッチングによって調整する電力調整回路と、
    前記電力調整回路に接続された交流側巻線と、
    前記交流側巻線に磁気的に結合する複数の直流側巻線と、
    各前記直流側巻線に対応して設けられ、各前記直流側巻線に接続されたスイッチング回路と、を備え、
    各前記直流側巻線は、
    直列に接続された第1直流側巻線および第2直流側巻線を備え、
    前記第1直流側巻線および前記第2直流側巻線の接続点と、各前記スイッチング回路との間にバッテリが接続されていることを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    各前記スイッチング回路に対応して設けられ、各前記スイッチング回路に接続されたインバータ回路を備え、
    各前記インバータ回路は共通の負荷装置に接続されていることを特徴とする電力変換装置。
  3. 請求項1または請求項2に記載の電力変換装置において、
    各前記スイッチング回路は、
    電力変換モードであって、前記バッテリから出力される電力に対するスイッチングによって、前記バッテリから自らに隣接する回路に電力を供給する電力変換モード、または、
    充電モードであって、前記電力調整回路から前記交流側巻線、および、自らに対応する前記直流側巻線を介して供給される電力に対するスイッチングによって前記バッテリを充電する充電モード、のいずれかのモードで動作する、ことを特徴とする電力変換装置。
  4. 請求項1から請求項3のいずれか1項に記載の電力変換装置を複数備える電力変換システムにおいて、
    複数の前記電力変換装置は、共通の負荷装置に接続されており、
    複数の前記電力変換装置のそれぞれにおける前記電力調整回路の一端に、複数相の交流電圧のうちの対応する1相の相電圧が印加されており、
    複数の前記電力変換装置のそれぞれにおける前記電力調整回路の他端が共通に接続されていることを特徴とする電力変換システム。
JP2018219868A 2018-11-26 2018-11-26 電力変換装置および電力変換システム Pending JP2020089053A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219868A JP2020089053A (ja) 2018-11-26 2018-11-26 電力変換装置および電力変換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219868A JP2020089053A (ja) 2018-11-26 2018-11-26 電力変換装置および電力変換システム

Publications (1)

Publication Number Publication Date
JP2020089053A true JP2020089053A (ja) 2020-06-04

Family

ID=70909278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219868A Pending JP2020089053A (ja) 2018-11-26 2018-11-26 電力変換装置および電力変換システム

Country Status (1)

Country Link
JP (1) JP2020089053A (ja)

Similar Documents

Publication Publication Date Title
US10434882B2 (en) Track-bound vehicle converter
JP5556677B2 (ja) バッテリ充電回路
US8384236B2 (en) Vehicle mounted converter
CN103931093B (zh) 用于对电动或混合动力车辆的牵引电池充电的设备和方法
US9252625B2 (en) Method and device for charging a battery of an electrical drive using components of the electrical drive
EP3628109B1 (en) Systems and methods for an on-board fast charger
KR102380810B1 (ko) 전기 차량을 위한 온 보드 양방향성 ac 고속 충전기
WO2018227307A1 (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
JPWO2013168491A1 (ja) モータ駆動装置
WO2012168983A1 (ja) 充電装置
CN111602329A (zh) 变流器部件和这种变流器部件的半导体模块
CN103647465A (zh) 一种功率变换装置
JP2021048759A (ja) 電源装置
WO2011004588A1 (ja) 電気車制御装置
CA3066649A1 (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
JP6953634B2 (ja) Dc/dcコンバータを備える車両充電器
JP2020089053A (ja) 電力変換装置および電力変換システム
US10819268B2 (en) Driving device comprising a transformer function, driving system and method for operating a driving device
JP2014054152A (ja) 電力変換装置及び電力制御装置
US20240120799A1 (en) Multi-part inverter for electrical machine with multiple winding systems
JP7029269B2 (ja) 電力変換装置
US11970067B2 (en) Constant current fast charging of electric vehicles via DC grid using dual inverter drive
JP2011188600A (ja) 充電システム
CN115520046A (zh) 利用马达驱动系统的车辆电池充电系统
CN115528766A (zh) 利用马达驱动系统的车辆电池充电系统