JP2020088952A - Rotary electric machine, stator, and stator assembly method - Google Patents

Rotary electric machine, stator, and stator assembly method Download PDF

Info

Publication number
JP2020088952A
JP2020088952A JP2018216465A JP2018216465A JP2020088952A JP 2020088952 A JP2020088952 A JP 2020088952A JP 2018216465 A JP2018216465 A JP 2018216465A JP 2018216465 A JP2018216465 A JP 2018216465A JP 2020088952 A JP2020088952 A JP 2020088952A
Authority
JP
Japan
Prior art keywords
electromagnetic steel
stator
steel plates
axial direction
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018216465A
Other languages
Japanese (ja)
Other versions
JP6997697B2 (en
Inventor
遼 晦日
Haruka Misoka
遼 晦日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2018216465A priority Critical patent/JP6997697B2/en
Priority to CN201911132104.7A priority patent/CN111200321A/en
Publication of JP2020088952A publication Critical patent/JP2020088952A/en
Application granted granted Critical
Publication of JP6997697B2 publication Critical patent/JP6997697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

To bind a stator core made by stacking electromagnetic steel sheets without heating during operation.SOLUTION: A rotary electric machine includes: a rotor having a rotor shaft and a rotor core; a stator having a stator core having a laminated structure 120 composed of a plurality of electromagnetic steel plates 110 bound together by a plurality of binding members 130, laminated in an axial direction, arranged at intervals radially outside in a circumferential direction and a stator winding penetrating the stator core; and two bearings. Each electromagnetic steel plate 110 is a circular plate having a circular opening at a center. At an outer side in a radial direction, a plurality of notches is formed at intervals in the circumferential direction. Mutually adjacent ones in the axial direction are laminated to be displaced by a predetermined angle. The notches of the electromagnetic steel plates 110 form an outer groove 121 penetrating in the axial direction. The binding members 130 are disposed in each of the outer grooves 121 and mechanically coupled to the electromagnetic steel plates 110 by mutual frictional force.SELECTED DRAWING: Figure 7

Description

本発明は、回転電機、固定子および固定子の組み立て方法に関する。 The present invention relates to a rotating electric machine, a stator, and a method for assembling the stator.

回転電機は、通常、ロータシャフトおよびそれに取り付けられた回転子鉄心を有する回転子と、回転子鉄心の径方向外側に配された固定子鉄心およびそれを貫通する固定子巻線を有する固定子を備える。 A rotating electric machine usually includes a rotor having a rotor shaft and a rotor core attached to the rotor shaft, and a stator having a stator core arranged radially outside the rotor core and a stator winding passing through the stator core. Prepare

回転子鉄心および固定子鉄心においては、運転中に生ずる渦電流等による鉄損が発熱の一因となり、効率の低下の要因となる。したがって、回転子鉄心および固定子鉄心それぞれの内部における渦電流の流れを低減することが、回転電機の効率確保の上でも、絶縁物の保護の上でも、有効である。 In the rotor core and the stator core, iron loss due to eddy currents and the like generated during operation contributes to heat generation and causes a decrease in efficiency. Therefore, reducing the flow of eddy currents inside the rotor core and the stator core is effective for ensuring the efficiency of the rotating electric machine and protecting the insulator.

このため、回転電機における回転子鉄心および固定子鉄心には、それぞれ、強磁性体製で中央に開口を有する円板状の電磁鋼板を軸方向に積層した積層構造を用いることが一般に行われている。電磁鋼板には、たとえば、透磁率が比較的高く低価格であるケイ素鋼板などが用いられている(特許文献1参照)。 Therefore, the rotor core and the stator core in the rotating electric machine are generally used in a laminated structure in which disc-shaped electromagnetic steel plates made of a ferromagnetic material and having an opening in the center are laminated in the axial direction. There is. As the electromagnetic steel sheet, for example, a silicon steel sheet having a relatively high magnetic permeability and a low price is used (see Patent Document 1).

特開2000−116060号公報JP 2000-116060 A

固定子鉄心においては、通常、その径方向内側表面に周方向に互いに間隔をおいて形成され、軸方向に貫通する複数のスロットが形成されており、固定子巻線が貫通している。スロットは、電磁鋼板に切り欠き部を形成し電磁鋼板が軸方向に積層されることにより形成される。また、電磁鋼板を結束する締め付けボルトの貫通用の孔あるいは切り欠き部も、同様に形成される。 In the stator core, a plurality of slots are formed on the radially inner surface of the stator core so as to be spaced apart from each other in the circumferential direction and penetrate in the axial direction, and the stator winding passes through the slots. The slot is formed by forming a notch in an electromagnetic steel sheet and stacking the electromagnetic steel sheets in the axial direction. Further, a hole or a notch for penetrating the tightening bolt that binds the electromagnetic steel plates is also formed in the same manner.

一方、このスロットは、通常は、回転軸に平行に形成されているが、らせん状に形成されている場合がある。すなわち、同期機において、回転子巻線用のスロットを、通常は回転軸方向と平行な方向に形成するところを、斜め、すなわち、らせん状に形成して効率を向上させる場合がある。ここで、回転子側を永久磁石式とした場合は、回転子側をらせん状に形成できないため、固定子巻線側のスロットをらせん状に形成する場合がある。 On the other hand, this slot is usually formed parallel to the rotation axis, but it may be formed in a spiral shape. That is, in the synchronous machine, the slot for the rotor winding may be formed obliquely, that is, in a spiral shape where the slot is normally formed in parallel with the rotation axis direction to improve the efficiency. Here, when the rotor side is a permanent magnet type, the rotor side cannot be formed in a spiral shape, and therefore the slots on the stator winding side may be formed in a spiral shape.

このようなスロットは、電磁鋼板を積層する際に、積層方向に順次周方向の角度をずらしていくことにより形成することができる。この場合、電磁鋼板を結束する外側溝も、電磁鋼板の積層後にはらせん状に形成されることになる。 Such slots can be formed by sequentially shifting the angles in the circumferential direction in the laminating direction when laminating the electromagnetic steel sheets. In this case, the outer groove that binds the electromagnetic steel sheets is also formed in a spiral shape after the electromagnetic steel sheets are stacked.

電磁鋼板の積層後の固定子鉄心は、新たに回転軸に垂直な方向に貫通用の孔あるいは溝を形成しない限り、電磁鋼板を結束するための締め付けボルト等による結束は困難である。このため、電磁鋼板の結束は、固定子鉄心の外表面に形成されたらせん状の溝に結束部材を配して、結束部材をこの外表面溝に溶接する方法が多く用いられている。 The stator core after the lamination of the electromagnetic steel plates is difficult to bind with fastening bolts or the like for binding the electromagnetic steel plates unless a hole or groove for penetration is newly formed in the direction perpendicular to the rotation axis. For this reason, for binding the electromagnetic steel sheets, a method is often used in which the binding member is arranged in a spiral groove formed on the outer surface of the stator core and the binding member is welded to the outer surface groove.

しかしながら、この場合、溶接機械や溶接材料が必要であり、また、溶接作業の際の火傷の危険性があった。また、かご型誘導電動機の場合、高周波電源による駆動方式が多く採用されているが、溶接部に周波数に比例した大きな渦電流が発生するという問題があった。 However, in this case, a welding machine and welding material are required, and there is a risk of burns during welding work. In addition, in the case of the squirrel-cage induction motor, a driving method using a high frequency power source is often used, but there is a problem that a large eddy current proportional to the frequency is generated in the welded portion.

そこで、本発明は、電磁鋼板を積層してなる固定子鉄心において、運転中の発熱要因である溶接を用いることなく結束することを目的とする。 Therefore, an object of the present invention is to bind a stator core formed by laminating electromagnetic steel sheets without using welding, which is a factor of heat generation during operation.

上述の目的を達成するため、本発明に係る回転電機は、軸方向に延びて回転可能に支持されたロータシャフトと、前記ロータシャフトの径方向外側に取付けられた回転子鉄心とを有する回転子と、前記回転子鉄心の径方向外側に前記回転子鉄心を囲むように設けられ軸方向に積層され径方向外側を周方向に互いに間隔をおいて配された複数の結束部材により結束された複数の電磁鋼板からなる積層構造を有する円筒状の固定子鉄心と、前記固定子鉄心内を軸方向に貫通する固定子巻線とを有する固定子と、前記回転子鉄心を挟んで前記ロータシャフトの軸方向の両側で前記ロータシャフトを回転可能に支持する2つの軸受と、を備える回転電機であって、前記複数の電磁鋼板のそれぞれは、中央に円形の開口を有する円板で、径方向外側には周方向に互いに間隔をあけて複数の切り欠きが形成されており、前記複数の電磁鋼板の切り欠きは軸方向に貫通する複数の外側溝を形成し、前記複数の外側溝のそれぞれに、前記結束部材が配されて前記結束部材と前記複数の電磁鋼板とが互いの摩擦力により結合している、ことを特徴とする。 In order to achieve the above-mentioned object, a rotating electric machine according to the present invention includes a rotor shaft that extends in an axial direction and is rotatably supported, and a rotor core that is attached to a radially outer side of the rotor shaft. And a plurality of binding members which are provided on the outer side in the radial direction of the rotor core so as to surround the rotor core, are stacked in the axial direction, and are bound by a plurality of binding members arranged at intervals in the circumferential direction on the outer side in the radial direction. Of a cylindrical stator iron core having a laminated structure made of electromagnetic steel sheets, a stator having a stator winding axially penetrating the inside of the stator iron core, and the rotor shaft of the rotor shaft sandwiching the rotor iron core. A rotary electric machine comprising: two bearings that rotatably support the rotor shaft on both sides in the axial direction, wherein each of the plurality of electromagnetic steel plates is a disk having a circular opening in the center and is radially outward. A plurality of notches are formed at intervals in the circumferential direction, the notches of the plurality of electromagnetic steel plates form a plurality of outer grooves penetrating in the axial direction, and in each of the plurality of outer grooves. The binding member is arranged, and the binding member and the plurality of electromagnetic steel plates are coupled to each other by a frictional force of each other.

また、本発明に係る固定子は、ロータシャフトと回転子鉄心とを有する回転子と、2つの軸受とを備える回転電機の固定子であって、軸方向に円筒状に積層され周方向に互いに間隔をおいて配された複数の結束部材により結束された複数の電磁鋼板からなる積層構造を有する固定子鉄心と、前記固定子鉄心内を軸方向に貫通する固定子巻線と、を具備し、前記複数の電磁鋼板のそれぞれは、中央に円形の開口を有する円板で、径方向外側には周方向に互いに間隔をあけて複数の切り欠きが形成されており、前記複数の電磁鋼板の切り欠きは軸方向に貫通する複数の外側溝を形成し、前記複数の外側溝のそれぞれに、前記結束部材が配されて前記結束部材と前記複数の電磁鋼板とが互いの摩擦力により結合している、ことを特徴とする。 A stator according to the present invention is a stator of a rotary electric machine that includes a rotor having a rotor shaft and a rotor core, and two bearings, and is laminated in a cylindrical shape in the axial direction and mutually in the circumferential direction. A stator core having a laminated structure composed of a plurality of electromagnetic steel sheets bound by a plurality of binding members arranged at intervals; and a stator winding axially penetrating the inside of the stator core. , Each of the plurality of magnetic steel sheets is a disk having a circular opening in the center, a plurality of notches are formed on the outer side in the radial direction at intervals in the circumferential direction. The notch forms a plurality of outer grooves penetrating in the axial direction, and the binding member is arranged in each of the plurality of outer grooves so that the binding member and the plurality of electromagnetic steel plates are coupled by mutual frictional force. It is characterized by

また、本発明に係る固定子の組み立て方法は、径方向外側に切り欠きが形成された複数の電磁鋼板を製作する電磁鋼板製作ステップと、前記電磁鋼板製作ステップで製作された複数の電磁鋼板を積層し積層構造を形成する積層ステップと、前記積層ステップの後に、前記切り欠きにより前記積層構造に形成された複数の外側溝のそれぞれに結束部材を設置する設置ステップと、前記結束部材と前記外側溝とを前記結束部材のかしめによる摩擦力により結合を行う結合ステップと、を有することを特徴とする。 Further, the stator assembling method according to the present invention, the electromagnetic steel plate manufacturing step of manufacturing a plurality of electromagnetic steel plate in which a notch is formed radially outward, and a plurality of electromagnetic steel plates manufactured in the electromagnetic steel plate manufacturing step. A stacking step of stacking to form a stacked structure; an installation step of installing a binding member in each of the plurality of outer grooves formed in the stacked structure by the cutout after the stacking step; A joining step of joining the side groove and the side groove by a frictional force generated by caulking the binding member.

本発明によれば、電磁鋼板を積層してなる固定子鉄心において、運転中の発熱要因である溶接を用いることなく結束することができる。 According to the present invention, a stator core formed by laminating electromagnetic steel sheets can be bound without using welding, which is a factor of heat generation during operation.

実施形態に係る回転電機の構成を示す縦断面図である。It is a longitudinal section showing the composition of the rotary electric machine concerning an embodiment. 実施形態に係る固定子の組み立て方法の手順を示すフロ−図である。It is a flowchart which shows the procedure of the assembly method of the stator which concerns on embodiment. 実施形態に係る固定子を構成する電磁鋼板を示す正面図である。It is a front view which shows the electromagnetic steel plate which comprises the stator which concerns on embodiment. 実施形態に係る固定子を構成する電磁鋼板の積層構造を示す斜視図である。It is a perspective view which shows the laminated structure of the electromagnetic steel plates which comprise the stator which concerns on embodiment. 実施形態に係る固定子を構成する電磁鋼板の積層用の治具の例を示す斜視図である。It is a perspective view which shows the example of the jig|tool for lamination|stacking of the electromagnetic steel plate which comprises the stator which concerns on embodiment. 実施形態に係る固定子を構成する電磁鋼板の積層用の治具の変形例を示す斜視図である。It is a perspective view which shows the modification of the jig|tool for lamination|stacking of the electromagnetic steel plates which comprises the stator which concerns on embodiment. 実施形態に係る固定子の固定子鉄心の外表面を周方向に展開した展開図である。FIG. 3 is a development view in which the outer surface of the stator core of the stator according to the embodiment is developed in the circumferential direction. 実施形態に係る固定子の固定子鉄心に形成された外側溝とこれに取り付ける結束部材のかしめ前の状態を示す図7のVIII−VIII線矢視部分横断面図である。FIG. 8 is a partial cross-sectional view taken along the line VIII-VIII in FIG. 7 showing the state before caulking of the outer groove formed in the stator core of the stator according to the embodiment and the binding member attached thereto. 実施形態に係る固定子の固定子鉄心に形成された外側溝とこれに取り付けられたかしめ後結束部材を示す図7のIX−IX線矢視部分横断面図である。FIG. 8 is a partial cross-sectional view taken along the line IX-IX of FIG. 7 showing the outer groove formed in the stator core of the stator according to the embodiment and the binding member after caulking attached thereto. 電磁鋼板の積層時の角度差と変化角との関係を説明する斜視図である。It is a perspective view explaining the relationship between the angle difference at the time of laminating electromagnetic steel sheets, and a change angle. 実施形態に係る固定子の固定子鉄心に形成された外側溝とこれに取り付けられたかしめ後結束部材を示す図7のXI−XI線矢視部分縦断面図である。FIG. 9 is a partial vertical cross-sectional view taken along the line XI-XI of FIG. 7 showing the outer groove formed in the stator core of the stator according to the embodiment and the binding member after caulking attached thereto.

以下、図面を参照して、本発明に係る回転電機、固定子および固定子の組み立て方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Hereinafter, a rotating electric machine, a stator, and a method for assembling the stator according to the present invention will be described with reference to the drawings. Here, parts that are the same or similar to each other are designated by common reference numerals, and duplicate description will be omitted.

[第1の実施形態]
図1は、第1の実施形態に係る回転電機の構成を示す立断面図である。回転電機200は、回転子10、固定子20、2つの軸受30、フレーム40、および2つの軸受ブラケット45を有する。
[First Embodiment]
FIG. 1 is a vertical cross-sectional view showing the configuration of the rotary electric machine according to the first embodiment. The rotary electric machine 200 includes a rotor 10, a stator 20, two bearings 30, a frame 40, and two bearing brackets 45.

回転子10は、ロータシャフト11および回転子鉄心12を有する。ロータシャフト11は、水平方向に延びており、回転子鉄心12の軸方向の両外側において軸受30によって回転可能に支持されている。回転子鉄心12は、円筒状であり、ロータシャフト11の径方向外側に取り付けられている。 The rotor 10 has a rotor shaft 11 and a rotor core 12. The rotor shaft 11 extends in the horizontal direction and is rotatably supported by bearings 30 on both outer sides of the rotor core 12 in the axial direction. The rotor core 12 has a cylindrical shape and is attached to the outer side of the rotor shaft 11 in the radial direction.

固定子20は、円筒状の固定子鉄心100、および複数の固定子巻線22を有する。 The stator 20 has a cylindrical stator core 100 and a plurality of stator windings 22.

固定子鉄心100は、空隙18を介して、回転子鉄心12の径方向外側に回転子鉄心12を囲むように設けられている。固定子鉄心100は、軸方向に積層された強磁性体製の複数の電磁鋼板110を有する積層構造120(図4)および結束部材130(図7)を具備する。 The stator core 100 is provided outside the rotor core 12 in the radial direction so as to surround the rotor core 12 via a gap 18. The stator core 100 includes a laminated structure 120 (FIG. 4) having a plurality of magnetic steel sheets 110 made of a ferromagnetic material laminated in the axial direction and a binding member 130 (FIG. 7).

固定子鉄心100の径方向内側には、周方向に互いに間隔をおいて、固定子鉄心100の内周面を切り欠くように軸方向に貫通する複数の固定子スロット102(図4)が形成されている。固定子巻線22は、複数の固定子スロット102内を軸方向に貫通し、固定子鉄心100の軸方向外側で互いに接続され、あるいは外部の配線と結線されている。 A plurality of stator slots 102 (FIG. 4) are formed inside the stator core 100 in the radial direction so as to be spaced apart from each other in the circumferential direction and penetrate axially so as to cut out the inner peripheral surface of the stator core 100. Has been done. The stator windings 22 axially penetrate through the plurality of stator slots 102 and are connected to each other outside the stator core 100 in the axial direction, or are connected to external wiring.

フレーム40は、ほぼ筒状であって、回転子鉄心12および固定子20の径方向外側に配されて、これらを収納する。2つの軸受ブラケット45は、フレーム40の軸方向の端部を塞ぐようにフレーム40の両端に接続し、それぞれ、軸受30を静止支持する。 The frame 40 has a substantially cylindrical shape and is arranged radially outside the rotor core 12 and the stator 20 to accommodate them. The two bearing brackets 45 are connected to both ends of the frame 40 so as to close the axial end of the frame 40, and each support the bearing 30 stationary.

図2は、実施形態に係る固定子の組み立て方法の手順を示すフロ−図である。 FIG. 2 is a flowchart showing the procedure of the stator assembling method according to the embodiment.

図3は、実施形態に係る固定子を構成する電磁鋼板を示す正面図である。まず、複数の電磁鋼板110を製作する(ステップS01)。 FIG. 3 is a front view showing an electromagnetic steel sheet forming the stator according to the embodiment. First, a plurality of electromagnetic steel plates 110 are manufactured (step S01).

それぞれの電磁鋼板110は、中央に円形の開口110aを有し、外縁110bが円形の板である。径方向の内側には、周方向に互いに間隔をあけて複数のスロット用切り欠き115が形成されている。スロット用切り欠き115は、径方向に延びたほぼ長方形であり径方向内側が開口に通じている。互いに隣接するスロット用切り欠き115により歯部116が形成されている。 Each electromagnetic steel plate 110 has a circular opening 110a at the center and an outer edge 110b is a circular plate. On the inner side in the radial direction, a plurality of slot notches 115 are formed at intervals in the circumferential direction. The slot notch 115 has a substantially rectangular shape extending in the radial direction, and the inside in the radial direction communicates with the opening. The tooth portions 116 are formed by the slot notches 115 that are adjacent to each other.

また、それぞれの電磁鋼板110の径方向外側、すなわち外縁110bには、周方向に互いに間隔をおいて、複数の外側切り欠き111が形成されている。それぞれの外側切り欠き111は、ほぼ直線的に周方向に沿って形成された周方向辺部111aと、周方向辺部111aを挟んでほぼ直線的に径方向に沿って形成された2つの径方向辺部111bを有する。 Further, a plurality of outer cutouts 111 are formed on the outer side in the radial direction of each electromagnetic steel plate 110, that is, on the outer edge 110b, at intervals in the circumferential direction. Each of the outer cutouts 111 has a circumferential side portion 111a formed substantially linearly in the circumferential direction and two diameters formed substantially linearly in the radial direction with the circumferential side portion 111a interposed therebetween. It has a direction side portion 111b.

次に、電磁鋼板110を、周方向に所定の角度ずつずらしながら、軸方向に積層し積層構造120を形成する(ステップS02)。図4は、実施形態に係る固定子を構成する電磁鋼板の積層構造を示す斜視図である。 Next, the electromagnetic steel plates 110 are laminated in the axial direction while being shifted by a predetermined angle in the circumferential direction to form the laminated structure 120 (step S02). FIG. 4 is a perspective view showing a laminated structure of electromagnetic steel plates constituting the stator according to the embodiment.

それぞれの電磁鋼板110に形成された複数のスロット用切り欠き115および複数の歯部116により、積層構造120には、軸方向に延びた複数の固定子スロット102および複数の固定子ティース101が形成されている。 A plurality of axially extending stator slots 102 and a plurality of stator teeth 101 are formed in the laminated structure 120 by the plurality of slot notches 115 and the plurality of teeth 116 formed in each electromagnetic steel plate 110. Has been done.

また、それぞれの電磁鋼板110に形成された複数の外側切り欠き111により、積層構造120の径方向外側には、周方向に互いに間隔をおいて軸方向に延びた複数の外側溝121が形成されている。 Further, the plurality of outer notches 111 formed in each of the electromagnetic steel plates 110 form a plurality of outer grooves 121, which are axially spaced apart from each other in the circumferential direction, on the radially outer side of the laminated structure 120. ing.

電磁鋼板110は、軸方向に積層されるが、この際、互いに隣接する電磁鋼板110同士の周方向の角度を順次同じ方向に所定の値(変化角ΔΘ)だけずらしながら積層されている。この結果、図4に示すように、固定子スロット102、固定子ティース101、および外側溝121は、らせん状に形成されている。 The electromagnetic steel sheets 110 are laminated in the axial direction, but at this time, the electromagnetic steel sheets 110 adjacent to each other are laminated while sequentially shifting the angles in the same direction by a predetermined value (change angle ΔΘ). As a result, as shown in FIG. 4, the stator slot 102, the stator teeth 101, and the outer groove 121 are formed in a spiral shape.

図5は、電磁鋼板の積層用の治具の例を示す斜視図である。積層用治具150は、円柱部150aと、円柱部150aの径方向外側表面に設けられて軸方向に延びた突起である1本のらせん状ガイド150bを有する。 FIG. 5 is a perspective view showing an example of a jig for laminating electromagnetic steel sheets. The stacking jig 150 has a columnar portion 150a and one spiral guide 150b which is a protrusion provided on the radially outer surface of the columnar portion 150a and extending in the axial direction.

円柱部150aの外径は、電磁鋼板110の開口110aの内径に対して、わずかに小さく形成されている。複数のらせん状ガイド150bは、円柱部150aの長手方向に沿って傾斜角Φ(図7)だけ傾斜しながららせん状に設けられている。らせん状ガイド150bの断面形状は、積層構造120に形成される複数の固定子スロット102の一部に対応する。 The outer diameter of the columnar portion 150a is slightly smaller than the inner diameter of the opening 110a of the electromagnetic steel plate 110. The plurality of spiral guides 150b are provided in a spiral shape along the longitudinal direction of the cylindrical portion 150a while inclining by an inclination angle Φ (FIG. 7). The cross-sectional shape of the spiral guide 150b corresponds to a part of the plurality of stator slots 102 formed in the laminated structure 120.

図5で示す積層用治具150は、一体に形成されている場合を示した。この場合、積層用治具150の外側に電磁鋼板110が積層され積層が形成された後に、積層用治具150を傾斜角Φ分だけに回転させながら引き出すことになる。なお、積層用治具150は、分割可能に形成されていてもよい。すなわち積層構造120が形成された後に、積層用治具150を、積層構造120の内側に置いたまま、取り出しやすい単位に分割した後に、個別に取り出すことでもよい。 The stacking jig 150 shown in FIG. 5 is shown as being integrally formed. In this case, after the electromagnetic steel plates 110 are stacked on the outside of the stacking jig 150 to form a stack, the stacking jig 150 is pulled out while being rotated by an inclination angle Φ. The stacking jig 150 may be formed so as to be divisible. That is, after the stacked structure 120 is formed, the stacking jig 150 may be placed inside the stacked structure 120, divided into units that can be easily taken out, and then individually taken out.

図6は、電磁鋼板の積層用の治具の変形例を示す斜視図である。積層用治具160は、内側ガイド161および複数の外側ガイド162を有する。この変形例においては、たとえば、電磁鋼板110を積層した場合に、重量が大きくなるなどにより、各電磁鋼板110の中心を合わせることが人力では難しい場合に、さらに、治具の要素を追加する場合を示している。また、同様の理由で、極力、それぞれの電磁鋼板110の積層段階で、中心を合わせるために、らせん状の外側ガイド162も複数としている。 FIG. 6 is a perspective view showing a modified example of a jig for laminating electromagnetic steel plates. The stacking jig 160 has an inner guide 161 and a plurality of outer guides 162. In this modification, for example, when the electromagnetic steel plates 110 are stacked, the weight of the electromagnetic steel plates 110 becomes large, and therefore it is difficult to manually align the centers of the electromagnetic steel plates 110, and when a jig element is added. Is shown. Further, for the same reason, a plurality of spiral outer guides 162 are provided in order to align the centers at the stacking stage of the respective electromagnetic steel plates 110 as much as possible.

内側ガイド161は、円柱部161aと、円柱部161aの径方向外側表面に設けられ軸方向に伸びた突起である複数のらせん状ガイド161bを有する。らせん状ガイド161bは、周方向に互いに間隔をおいて配されている。 The inner guide 161 has a cylindrical portion 161a and a plurality of spiral guides 161b which are projections provided on the radially outer surface of the cylindrical portion 161a and extending in the axial direction. The spiral guides 161b are arranged at intervals in the circumferential direction.

円柱部161aの外径は、電磁鋼板110の開口110aの内径に対して、わずかに小さく形成されている。複数のらせん状ガイド161bは、円柱部161aの長手方向に沿って傾斜角Φ(図7)だけ傾斜しながららせん状に設けられている。また、複数のらせん状ガイド161bは、周方向に互いに間隔をあけて設けられており、その形状は、積層構造120に形成される複数の固定子スロット102の一部に対応する。 The outer diameter of the column portion 161a is formed slightly smaller than the inner diameter of the opening 110a of the electromagnetic steel plate 110. The plurality of spiral guides 161b are provided in a spiral shape while being inclined by an inclination angle Φ (FIG. 7) along the longitudinal direction of the cylindrical portion 161a. Further, the plurality of spiral guides 161b are provided at intervals in the circumferential direction, and the shape thereof corresponds to a part of the plurality of stator slots 102 formed in the laminated structure 120.

図6では、2つのらせん状ガイド161bが設けられている場合を例にとって示しているが、これに限定されない。3つ以上であってもよい。ただし、積層作業をスムーズに運ぶには、数が多すぎるのは好ましくない。 Although FIG. 6 shows an example in which two spiral guides 161b are provided, the present invention is not limited to this. There may be three or more. However, it is not preferable that the number is too large to smoothly carry out the stacking work.

複数の外側ガイド162は、それぞれ円筒を周方向に分割した形状であり、内側面162aは、電磁鋼板110の外縁110bに密着するように形成されている。図5では、外側ガイド162が2つの場合を例にとって示しているが、3つ以上でもよい。電磁鋼板110を積層し、内側ガイド161を取り出した後に、外側ガイド162が用いられる。すなわち、全ての外側ガイド162を、積層された電磁鋼板110に押しつけて、電磁鋼板110同士の芯ずれを矯正する。なお、複数の外側ガイド162を電磁鋼板110に押し付けたときに、外側ガイド162が全周をカバーせず、ある方位には外側ガイド162が存在していなくとも、芯ずれを矯正可能な配置であればよい。 Each of the plurality of outer guides 162 has a shape obtained by dividing a cylinder in the circumferential direction, and the inner side surface 162a is formed so as to be in close contact with the outer edge 110b of the electromagnetic steel plate 110. Although FIG. 5 shows an example in which the number of the outer guides 162 is two, the number of the outer guides 162 may be three or more. After stacking the electromagnetic steel plates 110 and taking out the inner guide 161, the outer guide 162 is used. That is, all the outer guides 162 are pressed against the laminated electromagnetic steel plates 110 to correct the misalignment between the electromagnetic steel plates 110. In addition, when the plurality of outer guides 162 are pressed against the electromagnetic steel plate 110, the outer guides 162 do not cover the entire circumference, and even if the outer guides 162 do not exist in a certain direction, the misalignment can be corrected. I wish I had it.

内側ガイド161は、一体に形成されている場合を示した。この場合、内側ガイド161の外側に電磁鋼板110が積層され積層が形成された後に、内側ガイド161を傾斜角Φ分だけに回転させながら引き出すことになる。なお、内側ガイド161は、同様に、分割可能に形成されていてもよい。 The inner guide 161 is shown as being integrally formed. In this case, after the electromagnetic steel plates 110 are laminated on the outside of the inner guide 161, and the lamination is formed, the inner guide 161 is pulled out while being rotated by the inclination angle Φ. In addition, the inner guide 161 may also be formed to be dividable.

次に、結束部材130を、外側溝121内に設置する(ステップS03)。 Next, the binding member 130 is installed in the outer groove 121 (step S03).

図7は、実施形態に係る固定子の固定子鉄心の外表面を周方向に展開した展開図である。外側溝121は、軸方向に対して傾斜角Φだけ傾いている。ここで、傾斜角Φは、大きいほど外側溝121の長さが長くなり、後述する摩擦力による結束力が増大する。 FIG. 7 is a development view in which the outer surface of the stator core of the stator according to the embodiment is developed in the circumferential direction. The outer groove 121 is inclined by an inclination angle Φ with respect to the axial direction. Here, as the inclination angle Φ is larger, the length of the outer groove 121 is longer, and the binding force by the frictional force described later is increased.

外側溝121に沿って、結束部材130が設置され、結束部材130の両端は電磁鋼板110より軸方向外側に突出している。 A binding member 130 is installed along the outer groove 121, and both ends of the binding member 130 project axially outward from the electromagnetic steel plate 110.

図8は、実施形態に係る固定子の固定子鉄心に形成された外側溝とこれに取り付ける結束部材のかしめ前の状態を示す図7のVIII−VIII線矢視部分横断面図である。 FIG. 8 is a partial cross-sectional view taken along the line VIII-VIII of FIG. 7 showing the state before caulking of the outer groove formed in the stator core of the stator according to the embodiment and the binding member attached thereto.

外側溝121は、周方向に拡がる周方向表面121aと、これを挟んで互いに対向するように径方向に沿って形成された2つの径方向側面121bにより形成され軸方向に延びた溝である。 The outer groove 121 is a groove that is formed by a circumferential surface 121a that extends in the circumferential direction and two radial side surfaces 121b that are formed along the radial direction so as to face each other with the circumferential surface 121a interposed therebetween and that extends in the axial direction.

結束部材130は、長く延びた板状であり、幅方向の中央で折り曲げられるように形成されている。すなわち、幅方向中央の稜部131を挟んで2つの平板部132が互いに同一平面状にはなく幅方向に隣接している。この状態で、結束部材130は、外側溝121内に設置される。 The bundling member 130 has a long plate shape and is formed so as to be bent at the center in the width direction. That is, the two flat plate portions 132 are adjacent to each other in the width direction, not in the same plane, with the ridge portion 131 at the center in the width direction interposed therebetween. In this state, the binding member 130 is installed in the outer groove 121.

次に、結束部材130を、外側溝121内でかしめる(ステップS04)。 Next, the binding member 130 is caulked in the outer groove 121 (step S04).

図9は、外側溝とこれに取り付けられたかしめ後結束部材を示す図7のIX−IX線矢視部分横断面図である。かしめ後結束部材140は、結束部材130(図8)にたとえば打撃を加える等により、結束部材130の幅方向中央の稜部131(図8)を径方向外側から径方向内側に向けて押し込み、2つの平板部132(図8)が互いになす角度を小さくし、全体が平板に近づくようにつぶされたものである。 FIG. 9 is a partial lateral cross-sectional view taken along the line IX-IX of FIG. 7 showing the outer groove and the binding member after caulking attached thereto. After caulking, the bundling member 140 pushes the ridge 131 (FIG. 8) at the center in the width direction of the bundling member 130 from the radially outer side to the radially inner side by hitting the bundling member 130 (FIG. 8), for example. The angle formed by the two flat plate portions 132 (FIG. 8) is made small, and the whole is crushed so as to approach the flat plate.

このような状態においては、かしめ後結束部材140の溝内部141(図11)すなわち固定子鉄心120の軸方向長さの範囲内において、かしめ後結束部材140の幅方向の両側と、外側溝121の両方の径方向側面121bの間には、互いに圧縮力が働いている。この結果、径方向側面121bとかしめ後結束部材140との間には静的な摩擦力が生じている。 In such a state, within the groove inside 141 of the bundling member 140 after crimping (FIG. 11), that is, within the axial length of the stator core 120, both sides in the width direction of the bundling member 140 after crimping and the outer groove 121. A compressive force is exerted between the two radial side surfaces 121b. As a result, a static frictional force is generated between the radial side surface 121b and the binding member 140 after caulking.

この摩擦力の結果、電磁鋼板110どうしの結合力、すなわち、積層された電磁鋼板110を結束させる力が確保される。傾斜角Φが大きなほど、かしめ後結束部材140と外側溝121の両側の径方向側面121bとの接触面積は大きくなり、摩擦力も大きくなる。 As a result of this frictional force, a binding force between the electromagnetic steel plates 110, that is, a force for binding the laminated electromagnetic steel plates 110 is secured. The larger the inclination angle Φ, the larger the contact area between the binding member 140 after caulking and the radial side surfaces 121b on both sides of the outer groove 121, and the larger the frictional force.

図10は、電磁鋼板の積層時の変化角と傾斜角との関係を説明する斜視図である。図10中の円板は1枚の電磁鋼板110を示す。C1は、この第1の電磁鋼板110の表側の表面の中心を示す。今、互いに隣接する電磁鋼板110は、互いに密着しているものとする。すると、隣接する第2の電磁鋼板110の同様の中心は、C2となり、これは、第1の電磁鋼板110の裏側の表面の中心と同じ位置にある。 FIG. 10 is a perspective view illustrating the relationship between the change angle and the inclination angle when the electromagnetic steel sheets are stacked. The disk in FIG. 10 represents one electromagnetic steel plate 110. C1 indicates the center of the front surface of the first electromagnetic steel plate 110. Now, it is assumed that the electromagnetic steel plates 110 adjacent to each other are in close contact with each other. Then, the similar center of the adjacent second electromagnetic steel plates 110 becomes C2, which is at the same position as the center of the back surface of the first electromagnetic steel plate 110.

今、第1の電磁鋼板110の表側の外周のある点をP1とする。これに対応する第2の電磁鋼板110の表側の外縁上の点はP20である。今、第2の電磁鋼板110を第1の電磁鋼板110に対して時計回りに変化角ΔΘだけ回転させる。この場合、点P20の位置は、点P2に移動する。電磁鋼板110の厚みdに対して線分P20−P2分移動し、この角度が傾斜角Φとなる。 Now, a point on the outer circumference on the front side of the first electromagnetic steel plate 110 is defined as P1. The corresponding point on the outer edge on the front side of the second magnetic steel sheet 110 is P20. Now, the second electromagnetic steel plate 110 is rotated clockwise relative to the first electromagnetic steel plate 110 by the change angle ΔΘ. In this case, the position of the point P20 moves to the point P2. The line segment P20-P2 is moved with respect to the thickness d of the electromagnetic steel plate 110, and this angle becomes the inclination angle Φ.

したがって、電磁鋼板110を積層する際の変化角ΔΘ、すなわち、互いに隣接する電磁鋼板110同士の角度差と、傾斜角Φとの関係は以下の式(1)のように示される。
R・ΔΘ=d・tanΦ ・・・(1)
Therefore, the change angle Δθ when laminating the electromagnetic steel plates 110, that is, the relationship between the angle difference between the adjacent electromagnetic steel plates 110 and the inclination angle Φ is expressed by the following formula (1).
R·ΔΘ=d·tanΦ (1)

たとえば、電磁鋼板110の径が300mmとするとき、10mmの厚さに積層された電磁鋼板110について生じた変化角ΔΘが2度であれば、Φは約28度程度である。この場合、外側溝121の長さは、傾斜角Φが0の場合に比べて、約13%増加する。したがって、外側溝121において、かしめ後結束部材140と各電磁鋼板110との摩擦力は有意に増加し、積層構造120の電磁鋼板110の結束力の確保上有効である。 For example, when the diameter of the electromagnetic steel plate 110 is 300 mm, and the change angle ΔΘ generated for the electromagnetic steel plates 110 laminated to have a thickness of 10 mm is 2 degrees, Φ is about 28 degrees. In this case, the length of the outer groove 121 is increased by about 13% as compared with the case where the inclination angle Φ is 0. Therefore, in the outer groove 121, the frictional force between the binding member 140 after caulking and each electromagnetic steel plate 110 is significantly increased, which is effective in ensuring the binding force of the electromagnetic steel plate 110 of the laminated structure 120.

このように、傾斜角Φは、電磁鋼板110の積層時の変化角ΔΘの値により設定される。変化角ΔΘは、積層用治具150により設定される。 In this way, the inclination angle Φ is set by the value of the change angle ΔΘ when the electromagnetic steel plates 110 are stacked. The change angle ΔΘ is set by the laminating jig 150.

次に、かしめ後結束部材140の長手方向の両側の端部を折り曲げる(ステップS05)。図11は、外側溝とこれに取り付けられたかしめ後結束部材を示す図7のXI−XI線矢視部分縦断面図である。かしめ後結束部材140は、固定子鉄心120の軸方向長さの範囲内の部分である溝内部141より軸方向に外側の部分である端部142が固定子鉄心120の軸方向の両側に存在するので、この部分を折り曲げる。 Next, both ends of the bundling member 140 after crimping in the longitudinal direction are bent (step S05). 11 is a partial vertical cross-sectional view of the outer groove and the bundling member attached thereto, which is taken along line XI-XI of FIG. In the bundling member 140 after caulking, the end portions 142 that are portions axially outside of the groove interior 141 that is a portion within the axial length of the stator core 120 are present on both sides of the stator core 120 in the axial direction. I will fold this part.

かしめ後結束部材140の端部が折り曲げられた結果、軸方向の端部近傍の電磁鋼板110は、軸方向に締め付けられ、結束力確保に寄与する。 As a result of the end portion of the binding member 140 being bent after being crimped, the electromagnetic steel sheet 110 near the end portion in the axial direction is tightened in the axial direction and contributes to securing the binding force.

次に、固定子スロット102に固定子巻線22を設置し、固定子鉄心100の軸方向外側の端末を接続する(ステップS06)。すなわち、固定子鉄心100の軸方向外側において、固定子巻線22の導体同士の接続等を行う。 Next, the stator winding 22 is installed in the stator slot 102, and the axially outer end of the stator core 100 is connected (step S06). That is, the conductors of the stator winding 22 are connected to each other outside the stator core 100 in the axial direction.

以上のように、本実施形態による固定子20および固定子20の組み立て方法は、電磁鋼板110を積層してなる固定子鉄心を、運転中に加熱する要因を生ずることなく結束することができる。 As described above, the stator 20 and the method of assembling the stator 20 according to the present embodiment can bind the stator core formed by stacking the electromagnetic steel plates 110 without causing a factor of heating during operation.

[その他の実施形態]
以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、実施形態では、ロータシャフト11が水平方向に延びた横型の回転電機の場合を例にとって示しているが、これに限定されない。ロータシャフトが鉛直方向に延びた立形の回転電機であってもよい。
[Other Embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. For example, in the embodiment, the case where the rotor shaft 11 is a horizontal rotary electric machine that extends in the horizontal direction is shown as an example, but the present invention is not limited to this. It may be a vertical rotating electric machine in which the rotor shaft extends in the vertical direction.

また、実施形態では、固定子スロット102および外側溝121がらせん状に形成されている場合を例にとって示したが、軸方向に沿って直線状に形成されている場合でもよい。また、軸方向に角度を持って直線状に延びている場合でもよい。すなわち、軸方向に対して傾きを有する仮想的な平面と、固定子鉄心のない週面および外周面それぞれとの交線に沿って形成されている場合でもよい。 Further, in the embodiment, the case where the stator slot 102 and the outer groove 121 are formed in a spiral shape is shown as an example, but the stator slot 102 and the outer groove 121 may be formed in a linear shape along the axial direction. Further, it may be linearly extended with an angle in the axial direction. That is, it may be formed along the intersecting lines of a virtual plane having an inclination with respect to the axial direction and the week surface and the outer peripheral surface without the stator core.

また、各実施形態の特徴を組み合わせてもよい。さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Further, the features of the respective embodiments may be combined. Furthermore, the embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and the modifications thereof are included in the invention described in the claims and equivalents thereof, as well as included in the scope and the gist of the invention.

10…回転子、11…ロータシャフト、12…回転子鉄心、18…空隙、20…固定子、22…固定子巻線、30…軸受、40…フレーム、45…軸受ブラケット、100…固定子鉄心、101…固定子ティース、102…固定子スロット、110…電磁鋼板、110a…開口、110b…外縁、111…外側切り欠き、111a…周方向辺部、111b…径方向辺部、115…スロット用切り欠き、116…歯部、120…積層構造、121…外側溝、121a…周方向表面、121b…径方向側面、130…結束部材、131…稜部、132…平板部、140…かしめ後結束部材、141…溝内部、142…端部、150…積層用治具、150a…円柱部、150b…らせん状ガイド、160…積層用治具、161…内側ガイド、161a…円柱部、161b…らせん状ガイド、162…外側ガイド、162a…内側面、200…回転電機 10... Rotor, 11... Rotor shaft, 12... Rotor core, 18... Air gap, 20... Stator, 22... Stator winding, 30... Bearing, 40... Frame, 45... Bearing bracket, 100... Stator core , 101... Stator teeth, 102... Stator slot, 110... Electromagnetic steel plate, 110a... Opening, 110b... Outer edge, 111... Outer notch, 111a... Circumferential side part, 111b... Radial side part, 115... For slot Notch, 116... Tooth portion, 120... Laminated structure, 121... Outer groove, 121a... Circumferential surface, 121b... Radial side surface, 130... Binding member, 131... Ridge portion, 132... Flat plate portion, 140... After caulking binding Member, 141... Inside groove, 142... End, 150... Laminating jig, 150a... Cylindrical part, 150b... Helical guide, 160... Laminating jig, 161... Inner guide, 161a... Cylindrical part, 161b... Helix -Shaped guide, 162... Outer guide, 162a... Inner side surface, 200... Rotating electric machine

Claims (8)

軸方向に延びて回転可能に支持されたロータシャフトと、前記ロータシャフトの径方向外側に取付けられた回転子鉄心とを有する回転子と、
前記回転子鉄心の径方向外側に前記回転子鉄心を囲むように設けられ軸方向に積層され径方向外側を周方向に互いに間隔をおいて配された複数の結束部材により結束された複数の電磁鋼板からなる積層構造を有する円筒状の固定子鉄心と、前記固定子鉄心内を軸方向に貫通する固定子巻線とを有する固定子と、
前記回転子鉄心を挟んで前記ロータシャフトの軸方向の両側で前記ロータシャフトを回転可能に支持する2つの軸受と、
を備える回転電機であって、
前記複数の電磁鋼板のそれぞれは、中央に円形の開口を有する円板で、径方向外側には周方向に互いに間隔をあけて複数の切り欠きが形成されており、
前記複数の電磁鋼板の切り欠きは軸方向に貫通する複数の外側溝を形成し、
前記複数の外側溝のそれぞれに、前記結束部材が配されて前記結束部材と前記複数の電磁鋼板とが互いの摩擦力により結合している、
ことを特徴とする回転電機。
A rotor having a rotor shaft that extends in the axial direction and is rotatably supported, and a rotor core that is attached to an outer side in the radial direction of the rotor shaft,
A plurality of electromagnetic waves bounded by a plurality of binding members which are provided on the outer side of the rotor core in the radial direction so as to surround the rotor core, are stacked in the axial direction, and are arranged on the outer side in the radial direction at intervals in the circumferential direction. A stator having a cylindrical stator core having a laminated structure made of steel sheets, and a stator winding axially penetrating the inside of the stator core,
Two bearings that rotatably support the rotor shaft on both sides in the axial direction of the rotor shaft with the rotor core interposed therebetween;
A rotating electric machine comprising:
Each of the plurality of electromagnetic steel plates is a disk having a circular opening in the center, a plurality of notches are formed on the outer side in the radial direction at intervals in the circumferential direction,
The notches of the plurality of electromagnetic steel plates form a plurality of outer grooves penetrating in the axial direction,
In each of the plurality of outer grooves, the binding member is arranged and the binding member and the plurality of electromagnetic steel plates are coupled by mutual frictional force,
A rotating electric machine characterized by the above.
前記複数の電磁鋼板は、軸方向に互いに隣接する同士が所定の角度ずつずれるように積層されていることを特徴とする請求項1に記載の回転電機。 The rotary electric machine according to claim 1, wherein the plurality of magnetic steel sheets are laminated so that the mutually adjacent ones in the axial direction are displaced from each other by a predetermined angle. 前記結束部材は、前記外側溝内で、押しつぶされた状態となっていることを特徴とする請求項1または請求項2に記載の回転電機。 The rotating electrical machine according to claim 1, wherein the binding member is in a crushed state within the outer groove. 前記結束部材は、前記積層構造の軸方向の最端部の前記電磁鋼板の軸方向の両外側で、折り曲げられていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の回転電機。 The said bundling member is bent at both axial outer sides of the said electromagnetic steel plate of the axial direction outermost end part of the said laminated structure, It is bent, The any one of Claim 1 thru|or 3 characterized by the above-mentioned. Rotating electric machine. ロータシャフトと回転子鉄心とを有する回転子と、2つの軸受とを備える回転電機の固定子であって、
軸方向に円筒状に積層され周方向に互いに間隔をおいて配された複数の結束部材により結束された複数の電磁鋼板からなる積層構造を有する固定子鉄心と、
前記固定子鉄心内を軸方向に貫通する固定子巻線と、
を具備し、
前記複数の電磁鋼板のそれぞれは、中央に円形の開口を有する円板で、径方向外側には周方向に互いに間隔をあけて複数の切り欠きが形成されており、
前記複数の電磁鋼板の切り欠きは軸方向に貫通する複数の外側溝を形成し、
前記複数の外側溝のそれぞれに、前記結束部材が配されて前記結束部材と前記複数の電磁鋼板とが互いの摩擦力により結合している、
ことを特徴とする固定子。
A stator of a rotating electric machine comprising a rotor having a rotor shaft and a rotor core, and two bearings,
A stator core having a laminated structure composed of a plurality of electromagnetic steel plates that are bundled by a plurality of binding members that are laminated in a cylindrical shape in the axial direction and are arranged at intervals in the circumferential direction,
A stator winding axially passing through the stator core;
Equipped with,
Each of the plurality of electromagnetic steel plates is a disk having a circular opening in the center, a plurality of notches are formed on the outer side in the radial direction at intervals in the circumferential direction,
The notches of the plurality of electromagnetic steel plates form a plurality of outer grooves penetrating in the axial direction,
In each of the plurality of outer grooves, the binding member is arranged and the binding member and the plurality of electromagnetic steel plates are coupled by mutual frictional force,
Stator characterized by that.
径方向外側に切り欠きが形成された複数の電磁鋼板を製作する電磁鋼板製作ステップと、
前記電磁鋼板製作ステップで製作された複数の電磁鋼板を積層し積層構造を形成する積層ステップと、
前記積層ステップの後に、前記切り欠きにより前記積層構造に形成された複数の外側溝のそれぞれに結束部材を設置する設置ステップと、
前記結束部材と前記外側溝とを前記結束部材のかしめによる摩擦力により結合を行う結合ステップと、
を有することを特徴とする固定子の組み立て方法。
A magnetic steel plate manufacturing step for manufacturing a plurality of magnetic steel plates having notches formed on the radial outside,
A laminating step of laminating a plurality of electromagnetic steel sheets produced in the electromagnetic steel sheet producing step to form a laminated structure,
After the laminating step, an installation step of installing a binding member in each of the plurality of outer grooves formed in the laminated structure by the cutout,
A joining step of joining the binding member and the outer groove by a frictional force caused by caulking the binding member;
A method for assembling a stator, comprising:
前記積層ステップは、前記複数の電磁鋼板を、周方向に所定の角度ずつずらしながら積層するステップを有することを特徴とする請求項6に記載の固定子の組み立て方法。 7. The method of assembling the stator according to claim 6, wherein the stacking step includes stacking the plurality of electromagnetic steel plates while shifting them in the circumferential direction by a predetermined angle. 前記積層ステップは、円筒の径方向の外表面に周方向に互いに間隔をおいて配された少なくとも一つのらせん状の突起を有する積層用治具の径方向外側に、前記複数の電磁鋼板のスロット用切り欠きを合わせて順次積層するステップを有することを特徴とする請求項7に記載の固定子の組み立て方法。 In the laminating step, the slots of the plurality of magnetic steel sheets are provided on the outer side in the radial direction of the laminating jig having at least one spiral projection arranged at intervals in the circumferential direction on the outer surface in the radial direction of the cylinder. 8. The method for assembling the stator according to claim 7, further comprising the step of stacking the notches for use together and sequentially laminating the notches.
JP2018216465A 2018-11-19 2018-11-19 How to assemble a rotary machine, stator and stator Active JP6997697B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018216465A JP6997697B2 (en) 2018-11-19 2018-11-19 How to assemble a rotary machine, stator and stator
CN201911132104.7A CN111200321A (en) 2018-11-19 2019-11-19 Rotating electric machine, stator, and method for assembling stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216465A JP6997697B2 (en) 2018-11-19 2018-11-19 How to assemble a rotary machine, stator and stator

Publications (2)

Publication Number Publication Date
JP2020088952A true JP2020088952A (en) 2020-06-04
JP6997697B2 JP6997697B2 (en) 2022-01-18

Family

ID=70747637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216465A Active JP6997697B2 (en) 2018-11-19 2018-11-19 How to assemble a rotary machine, stator and stator

Country Status (2)

Country Link
JP (1) JP6997697B2 (en)
CN (1) CN111200321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629309A (en) * 2022-03-15 2022-06-14 苏州御龙模具有限公司 Silicon steel sheet laminating device and stator twisted slot iron core silicon steel sheet laminating method
CN115045914A (en) * 2022-06-30 2022-09-13 中国铁建重工集团股份有限公司 Contactless slewing bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629262A (en) * 2022-03-15 2022-06-14 苏州御龙模具有限公司 Stator silicon steel sheet structure and stator slot-twisting iron core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050548A (en) * 1998-08-03 2000-02-18 Okuma Corp Rotor assembly for synchronous motor
JP2002136002A (en) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd Motor
US20020079875A1 (en) * 2000-12-27 2002-06-27 Shah Manoj Ramprasad Power generator
JP2003032939A (en) * 2001-07-11 2003-01-31 Matsushita Electric Ind Co Ltd Electric motor
JP2008125276A (en) * 2006-11-14 2008-05-29 Mitsuba Corp Brushless motor
JP2018011417A (en) * 2016-07-13 2018-01-18 東芝産業機器システム株式会社 Stator core manufacturing apparatus and method of manufacturing stator core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595578B2 (en) * 2005-05-06 2009-09-29 Mistuba Corporation Motor, rotary electric machine and its stator, and method for manufacturing the stator
US20160261169A1 (en) * 2015-03-07 2016-09-08 Atieva, Inc. Motor Rotor Cooling System
JP6610494B2 (en) * 2016-10-05 2019-11-27 フジテック株式会社 Stator core manufacturing method, stator core manufacturing apparatus, and stator core piece
JP2018207632A (en) * 2017-06-01 2018-12-27 株式会社東芝 Dynamo-electric motor
CN107634630A (en) * 2017-11-15 2018-01-26 广西梧州市宏达允捷电机制造有限公司 A kind of stator core for reducing torque ripple of permanent-magnet motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050548A (en) * 1998-08-03 2000-02-18 Okuma Corp Rotor assembly for synchronous motor
JP2002136002A (en) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd Motor
US20020079875A1 (en) * 2000-12-27 2002-06-27 Shah Manoj Ramprasad Power generator
JP2003032939A (en) * 2001-07-11 2003-01-31 Matsushita Electric Ind Co Ltd Electric motor
JP2008125276A (en) * 2006-11-14 2008-05-29 Mitsuba Corp Brushless motor
JP2018011417A (en) * 2016-07-13 2018-01-18 東芝産業機器システム株式会社 Stator core manufacturing apparatus and method of manufacturing stator core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629309A (en) * 2022-03-15 2022-06-14 苏州御龙模具有限公司 Silicon steel sheet laminating device and stator twisted slot iron core silicon steel sheet laminating method
CN114629309B (en) * 2022-03-15 2024-01-12 苏州御龙精密科技有限公司 Silicon steel sheet laminating device and stator torsion slot iron core silicon steel sheet laminating method
CN115045914A (en) * 2022-06-30 2022-09-13 中国铁建重工集团股份有限公司 Contactless slewing bearing
CN115045914B (en) * 2022-06-30 2023-10-31 中国铁建重工集团股份有限公司 Non-contact slewing bearing

Also Published As

Publication number Publication date
CN111200321A (en) 2020-05-26
JP6997697B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
US9136746B2 (en) Stator for electric rotating machine and method of manufacturing the same
JP5083329B2 (en) Stator and rotating electric machine using the same
US8896189B2 (en) Stator for electric rotating machine and method of manufacturing the same
WO2017094271A1 (en) Axial-gap dynamo-electric machine and method for manufacturing same
WO2010116928A1 (en) Stator for electric machine
JP6380310B2 (en) Rotating electric machine stator
JP2020088952A (en) Rotary electric machine, stator, and stator assembly method
WO2021131163A1 (en) Stator and rotating electric machine
US9899885B2 (en) Rotor and rotating electric machine
US11411447B2 (en) Axial gap motor
JP2013099038A (en) Rotor for electric motor and brushless motor
WO2018037529A1 (en) Rotary electric machine
JP2008193809A (en) Embedded magnet type motor
JP6110062B2 (en) Rotating electric machine
WO2021131575A1 (en) Coil, stator comprising same, and motor
JP2007336624A (en) Multi-phase claw tooth type permanent magnet motor
JP2008161015A (en) Stator of rotary electric machine
JP2019221113A (en) Stator and rotary electric machine
JP2013247710A (en) Stator of motor
JP5376262B2 (en) Stator for rotating electric machine and method for manufacturing the same
CN111630752B (en) Stator of rotating electric machine and method for manufacturing stator of rotating electric machine
JP6464905B2 (en) motor
JP5256835B2 (en) Rotating electric machine stator and rotating electric machine
JP7412203B2 (en) Stator of rotating electrical machine, rotating electrical machine, and manufacturing method of stator of rotating electrical machine
JP7229402B2 (en) Armature manufacturing method and armature

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211217

R150 Certificate of patent or registration of utility model

Ref document number: 6997697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150