JP2020087606A - Insulation member and production method thereof - Google Patents

Insulation member and production method thereof Download PDF

Info

Publication number
JP2020087606A
JP2020087606A JP2018217478A JP2018217478A JP2020087606A JP 2020087606 A JP2020087606 A JP 2020087606A JP 2018217478 A JP2018217478 A JP 2018217478A JP 2018217478 A JP2018217478 A JP 2018217478A JP 2020087606 A JP2020087606 A JP 2020087606A
Authority
JP
Japan
Prior art keywords
thermosetting resin
insulating member
insulating
thickness direction
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018217478A
Other languages
Japanese (ja)
Other versions
JP6987733B2 (en
Inventor
直輝 岡島
Naoki Okajima
直輝 岡島
伸夫 浦川
Nobuo Urakawa
伸夫 浦川
孝幸 櫻井
Takayuki Sakurai
孝幸 櫻井
哲夫 吉満
Tetsuo Yoshimitsu
哲夫 吉満
宏光 平井
Hiromitsu Hirai
宏光 平井
隆浩 今井
Takahiro Imai
隆浩 今井
美和 竹内
Miwa Takeuchi
美和 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2018217478A priority Critical patent/JP6987733B2/en
Publication of JP2020087606A publication Critical patent/JP2020087606A/en
Application granted granted Critical
Publication of JP6987733B2 publication Critical patent/JP6987733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Abstract

To suppress occurrence and progress of a tree on an insulation member.SOLUTION: Compression stress is applied to an insulation member 10 for covering an insulation object 1 for electrically insulating the same from outside, in a thickness direction, on a part opposite to a side contacting the insulation member 10 in the thickness direction. The stress on a part contacting the insulation member 10 may be smaller than that on the opposite part. In addition, the compression stress in the thickness direction may be monotonously reduced from outside to inside.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁部材および絶縁部材の製造方法に関する。 The present invention relates to an insulating member and a method for manufacturing the insulating member.

長期にわたり使用される電気機器において、その絶縁物の内部を電圧印加部から樹枝状の微細な管が接地部に向かい進展し、絶縁破壊する現象が知られている。この微細な管をトリーと呼び、トリーが進展していく現象はトリーイングと呼ばれている。このトリーイングにより、電気機器の絶縁寿命がほぼ決まる。そのため、トリーイングを抑制することで、電気機器の寿命を延ばすことができる。 It is known that, in an electric device used for a long period of time, a dendritic fine tube progresses from the voltage applying section toward the grounding section inside the insulator to cause dielectric breakdown. This fine tube is called a tree, and the phenomenon in which the tree develops is called treeing. This treeing almost determines the insulation life of electrical equipment. Therefore, suppressing the treeing can extend the life of the electric device.

トリーイングを抑制する方法として、絶縁材料に充填剤を添加しトリーの進展経路を妨害し、トリーの分岐を増やすことで進展を抑制する方法(特許文献1参照)や、高分子絶縁材料の配向制御によりトリーの進展方向を制御する方法(特許文献2参照)などが知られている。 As a method for suppressing the treeing, a method of suppressing the progress by adding a filler to the insulating material to hinder the tree's progress path and increasing the tree branches (see Patent Document 1) and the orientation of the polymer insulating material There is known a method of controlling the tree growth direction by control (see Patent Document 2).

トリーの起点(発生源)は、電極表面の突起、固体内の異物、ボイド放電による固体の侵食などが知られており、いずれも電界が高くなる部分である。特に応力が導体とその周囲に形成された絶縁層の界面付近に存在すると、導体と絶縁層との間の剥離や、界面付近の絶縁物における微小なクラックなどを発生させ、その剥離や微小クラックのような欠陥が起点となりトリーが発生しやすくなることが知られている(特許文献1参照)。 The origin (source) of the tree is known to be projections on the electrode surface, foreign matter in the solid, erosion of the solid due to void discharge, etc., and all are parts where the electric field becomes high. In particular, if stress is present near the interface between the conductor and the insulating layer formed around it, peeling between the conductor and the insulating layer or minute cracks in the insulator near the interface will occur. It is known that such a defect as a starting point causes a tree to easily occur (see Patent Document 1).

特開2008−75069号公報JP, 2008-75069, A 特開2002−93258号公報JP, 2002-93258, A

上記したように、トリーの発生、進展について、基礎的な知見が得られつつあるが、具体的な形態を確立するまでには至っていない。 As described above, basic knowledge is being obtained regarding the occurrence and progress of trees, but a concrete form has not yet been established.

そこで、本発明は、絶縁部材におけるトリーの発生、進展を抑制することを目的とする。 Then, this invention aims at suppressing generation|occurrence|production of a tree in an insulating member, and progress.

上述の目的を達成するため、本発明に係る絶縁部材は、絶縁対象を覆い外部と電気的に絶縁するための絶縁部材であって、厚み方向に前記絶縁部材に接する側の反対側の部分において、前記厚み方向に圧縮応力が付加されていることを特徴とする。 In order to achieve the above-mentioned object, the insulating member according to the present invention is an insulating member for covering an object to be insulated and electrically insulating it from the outside, and at a portion on the opposite side to the side in contact with the insulating member in the thickness direction. A compressive stress is applied in the thickness direction.

また、本発明に係る絶縁部材の製造方法は、絶縁対象を覆い外部と電気的に絶縁するための絶縁部材の製造方法であって、加熱容器内に熱硬化性樹脂を注入し、前記絶縁対象の周囲に充填する充填ステップと、前記充填ステップで充填した前記熱硬化性樹脂を加熱する加熱ステップと、前記加熱ステップの後に前記熱硬化性樹脂を冷却する冷却ステップと、を有し、前記冷却ステップ終了後には、前記熱硬化性樹脂は、厚み方向に前記絶縁対象に接する内側部分よりも外側部分の方が、厚み方向の圧縮応力が大きい絶縁部材が形成されることを特徴とする。 Further, the method for manufacturing an insulating member according to the present invention is a method for manufacturing an insulating member for covering an insulating target and electrically insulating it from the outside, in which a thermosetting resin is injected into a heating container, A filling step of filling the periphery of the thermosetting resin, a heating step of heating the thermosetting resin filled in the filling step, and a cooling step of cooling the thermosetting resin after the heating step. After the step is completed, the thermosetting resin is characterized in that an insulating member having a larger compressive stress in the thickness direction is formed in the outer portion in the thickness direction than in the inner portion in contact with the insulating object.

本発明によれば、絶縁部材におけるトリーの発生、進展を抑制することができる。 According to the present invention, it is possible to suppress the generation and development of trees in the insulating member.

第1の実施形態に係る絶縁部材の構成を示す横断面図である。It is a cross-sectional view showing a configuration of an insulating member according to the first embodiment. 第1の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the manufacturing method of the insulating member which concerns on 1st Embodiment. 第1の実施形態に係る絶縁部材の製造方法における体系を示す斜視図である。It is a perspective view showing a system in a manufacturing method of an insulating member concerning a 1st embodiment. 第1の実施形態に係る絶縁部材の製造方法における熱硬化性樹脂の注入後の状態を示す斜視図である。FIG. 5 is a perspective view showing a state after the thermosetting resin is injected in the method for manufacturing the insulating member according to the first embodiment. 第1の実施形態に係る絶縁部材の製造方法における絶縁部材の形成後の状態を示す斜視図である。It is a perspective view showing the state after formation of the insulating member in the manufacturing method of the insulating member concerning a 1st embodiment. 第1の実施形態に係る絶縁部材の効果を説明するための試験装置の斜視図である。It is a perspective view of a testing device for explaining an effect of an insulating member concerning a 1st embodiment. 第1の実施形態に係る絶縁部材の効果を説明するための第1の絶縁部材の場合を示す縦断面図である。It is a longitudinal cross-sectional view showing the case of the first insulating member for explaining the effect of the insulating member according to the first embodiment. 第1の実施形態に係る絶縁部材の効果を説明するための第2の絶縁部材の場合を示す縦断面図である。It is a longitudinal cross-sectional view showing the case of the 2nd insulating member for demonstrating the effect of the insulating member which concerns on 1st Embodiment. 第2の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。It is a flow figure showing a procedure of a manufacturing method of an insulating member concerning a 2nd embodiment. 第2の実施形態に係る絶縁部材の製造方法における加熱時の体系を示す斜視図である。It is a perspective view which shows the system at the time of heating in the manufacturing method of the insulating member which concerns on 2nd Embodiment. 第2の実施形態に係る絶縁部材の製造方法における熱硬化性樹脂を充填した後の状態を示す斜視図である。It is a perspective view showing the state after filling up with a thermosetting resin in the manufacturing method of the insulating member concerning a 2nd embodiment. 第2の実施形態に係る絶縁部材の製造方法における熱硬化性樹脂の外表面側の冷却時の体系を示す斜視図である。It is a perspective view which shows the system at the time of cooling of the outer surface side of the thermosetting resin in the manufacturing method of the insulating member which concerns on 2nd Embodiment. 第3の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the manufacturing method of the insulating member which concerns on 3rd Embodiment. 第3の実施形態に係る絶縁部材の製造方法における区画筒を設置した段階の体系の状態を示す横断面図である。It is a cross-sectional view which shows the state of the system at the stage which installed the partition cylinder in the manufacturing method of the insulating member which concerns on 3rd Embodiment. 第3の実施形態に係る絶縁部材の製造方法における熱硬化性樹脂を注入した段階の状態を示す横断面図である。It is a cross-sectional view showing a state at the stage of injecting a thermosetting resin in the method for manufacturing an insulating member according to the third embodiment. 第3の実施形態に係る絶縁部材の製造方法における加熱および冷却を完了した段階の状態を示す横断面図である。It is a cross-sectional view showing the state at the stage when heating and cooling are completed in the method for manufacturing an insulating member according to the third embodiment. 第4の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the manufacturing method of the insulating member which concerns on 4th Embodiment. 第4の実施形態に係る絶縁部材の製造方法における第1の加熱容器に熱硬化性樹脂を注入した段階の状態を示す横断面図である。It is a transverse cross-sectional view showing a state at the stage of injecting a thermosetting resin into the first heating container in the method for manufacturing an insulating member according to the fourth embodiment. 第4の実施形態に係る絶縁部材の製造方法における第1の加熱容器による加熱および冷却を完了した段階の状態を示す横断面図である。It is a cross-sectional view showing the state at the stage when heating and cooling by the first heating container are completed in the method for manufacturing an insulating member according to the fourth embodiment. 第4の実施形態に係る絶縁部材の製造方法における第2の加熱容器に熱硬化性樹脂を注入した段階の状態を示す横断面図である。It is a cross-sectional view showing a state at the stage of injecting a thermosetting resin into a second heating container in the method for manufacturing an insulating member according to the fourth embodiment. 第4の実施形態に係る絶縁部材の製造方法における第2の加熱容器による加熱および冷却を完了した段階の状態を示す横断面図である。It is a cross-sectional view showing the state at the stage when heating and cooling by the second heating container are completed in the method for manufacturing an insulating member according to the fourth embodiment.

以下、図面を参照して、本発明に係る絶縁部材および絶縁部材の製造方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Hereinafter, an insulating member and a method for manufacturing an insulating member according to the present invention will be described with reference to the drawings. Here, parts that are the same or similar to each other are designated by common reference numerals, and duplicate description will be omitted.

[第1の実施形態]
図1は、第1の実施形態に係る絶縁部材の構成を示す横断面図である。
[First Embodiment]
FIG. 1 is a cross-sectional view showing the structure of the insulating member according to the first embodiment.

絶縁部材10は、金属導体などの絶縁対象1の外側に配されている。ここで、絶縁対象1は、種々の形状が想定されるが、以下の説明では、金属導体を想定して、円柱形で軸方向に延びた形状の場合を示している。なお、絶縁対象1が他の形状の場合であっても、以下に示す絶縁部材の構成および絶縁部材の製造方法の基本的な考え方は同様である。 The insulating member 10 is arranged outside the insulation target 1 such as a metal conductor. Here, the insulation target 1 is assumed to have various shapes, but in the following description, assuming a metal conductor, a case of a cylindrical shape extending in the axial direction is shown. Even if the object to be insulated 1 has another shape, the basic concept of the structure of the insulating member and the method of manufacturing the insulating member described below is the same.

絶縁対象1を覆い外部と電気的に絶縁する絶縁部材10は、ここでは、絶縁対象1の径方向外側表面に密着しながら、絶縁対象1の径方向外側に配されているものとして説明する。 The insulating member 10 that covers the insulation target 1 and electrically insulates it from the outside will be described here as being disposed on the radial outside of the insulation target 1 while being in close contact with the radial outside surface of the insulation target 1.

絶縁部材10は、熱硬化性樹脂を熱硬化させたものである。熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂などを用いることができる。 The insulating member 10 is made by thermosetting a thermosetting resin. As the thermosetting resin, unsaturated polyester resin, epoxy resin, phenol resin, unsaturated polyester resin or the like can be used.

絶縁部材10は、径方向すなわちその厚み方向に、外側から内側に順次層状に配された第1絶縁層11、第2絶縁層12、第3絶縁層13、および第4絶縁層14を有する。ここで、第1絶縁層11、第2絶縁層12、第3絶縁層13、および第4絶縁層14は、それぞれの内部の応力状態が異なっており、少なくとも最外層である第1絶縁層11においては、圧縮応力が働いている。 The insulating member 10 has a first insulating layer 11, a second insulating layer 12, a third insulating layer 13, and a fourth insulating layer 14, which are arranged in layers in order from the outside to the inside in the radial direction, that is, the thickness direction thereof. Here, the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, and the fourth insulating layer 14 have different internal stress states, and at least the first insulating layer 11 which is the outermost layer. In, the compressive stress is working.

なお、本実施形態においては、応力状態の異なる4つの層を有するものとして示したが、応力状態は、厚み方向に段階的に変化してはいない。すなわち、厚み方向に連続的に変化しているものを、説明の便宜上、4つの層に分けたものである。本実施形態においては、第1絶縁層11の外側表面において、圧縮応力が最も大きい。一方、第4絶縁層14の内側部分、すなわち、第4絶縁層14と絶縁対象1との境界近傍では、応力が小さい状態である。また、第1絶縁層11から第4絶縁層14まで、順次、圧縮応力が小さくなっている。 Although the present embodiment is described as having four layers having different stress states, the stress state does not change stepwise in the thickness direction. That is, what is continuously changing in the thickness direction is divided into four layers for convenience of explanation. In this embodiment, the compressive stress is highest on the outer surface of the first insulating layer 11. On the other hand, the stress is small in the inner portion of the fourth insulating layer 14, that is, near the boundary between the fourth insulating layer 14 and the insulation target 1. In addition, the compressive stress gradually decreases from the first insulating layer 11 to the fourth insulating layer 14.

図2は、第1の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。 FIG. 2 is a flowchart showing the procedure of the method for manufacturing an insulating member according to the first embodiment.

図3は、第1の実施形態に係る絶縁部材の製造方法における体系を示す斜視図である。まず、絶縁対象1を加熱容器3の内部に設置する(ステップS11)。 FIG. 3 is a perspective view showing a system in the method of manufacturing the insulating member according to the first embodiment. First, the insulation target 1 is installed inside the heating container 3 (step S11).

加熱容器3は、耐圧容器5内に収納されている。加熱容器3および耐圧容器5は、それぞれ中心軸を鉛直方向にして設置されている。この段階(ステップS01)では、上板5uは取り外されている。 The heating container 3 is housed in the pressure resistant container 5. The heating container 3 and the pressure resistant container 5 are installed with their central axes in the vertical direction. At this stage (step S01), the upper plate 5u is removed.

ここで、加熱容器3は、円柱状の絶縁対象1の形状に対応して、側部は円筒形状で底部を有する。加熱容器3は、その内部に収納されている物を外側から加熱可能である。なお、後述する熱硬化性樹脂の加熱後の冷却の効率を高めるために、たとえば、熱硬化性樹脂の硬化後に熱硬化性樹脂との間に空間を生ずるように、加熱容器3が分割可能に構成されていてもよい。 Here, the heating container 3 has a cylindrical side portion and a bottom portion corresponding to the shape of the cylindrical insulation target 1. The heating container 3 can heat an object housed therein from the outside. In order to enhance the cooling efficiency of the thermosetting resin, which will be described later, after heating, for example, the heating container 3 can be divided so that a space is formed between the thermosetting resin and the thermosetting resin. It may be configured.

絶縁対象1は、その軸心が加熱容器3の径方向のほぼ中心になるように設置される。加熱容器3の内部の絶縁対象1の径方向外側には、環状の内部空間3aが形成される。 The insulation target 1 is installed so that its axis is substantially in the radial center of the heating container 3. An annular internal space 3 a is formed on the outer side in the radial direction of the insulation target 1 inside the heating container 3.

耐圧容器5は、たとえば図3に示すような側面が円筒状の密閉容器である。図3では説明上、耐圧容器5の内部が透視できるように示しているが、耐圧容器5は、透明である必要はない。また、耐圧容器5の上板5uは、取り外し可能に形成されており、上板5uが取り外されている状態では、耐圧容器5は上が開放されている。 The pressure-resistant container 5 is, for example, a closed container having a cylindrical side surface as shown in FIG. In FIG. 3, the inside of the pressure-resistant container 5 is shown so that it can be seen through, but the pressure-resistant container 5 need not be transparent. Further, the upper plate 5u of the pressure resistant container 5 is formed so as to be removable, and the upper side of the pressure resistant container 5 is opened when the upper plate 5u is removed.

耐圧容器5の上板5uには、加圧管5a、冷却用気体注入管5b、および排気管5cが接続されている。加圧管5aは、図示しない開閉可能な止め弁および減圧弁を介して、たとえばコンプレッサあるいはガスボンベなどの加圧源に接続されている。冷却用気体注入管5bは、図示しない開閉可能な止め弁を介して、たとえばクーラーなどの冷却源に接続されており、たとえば空気などの冷却用気体を耐圧容器5内に導く。排気管5cは、図示しない開閉可能な止め弁を介して外気と連通しており、耐圧容器5内の気体を耐圧容器5の外側に排出する。 A pressure pipe 5a, a cooling gas injection pipe 5b, and an exhaust pipe 5c are connected to the upper plate 5u of the pressure-resistant container 5. The pressurizing pipe 5a is connected to a pressurizing source such as a compressor or a gas cylinder via a stop valve and a pressure reducing valve (not shown) that can be opened and closed. The cooling gas injection pipe 5b is connected to a cooling source such as a cooler via a stop valve (not shown) that can be opened and closed, and guides a cooling gas such as air into the pressure resistant container 5. The exhaust pipe 5c communicates with the outside air through a stop valve (not shown) that can be opened and closed, and discharges the gas inside the pressure resistant container 5 to the outside of the pressure resistant container 5.

絶縁対象1には、冷却用部材4が取り付けられている。冷却用部材4は、図示しない冷却源と熱的に接続しており、必要に応じて絶縁対象1を冷却する。冷却用部材4は、たとえば、冷却源と機械的に接続されており、熱伝導により絶縁対象1から除熱した熱が除去される。あるいは、冷却用部材4は熱交換器あるいはヒートパイプであってもよい。冷却用部材4と外部との接続部分の耐圧容器5の貫通部は、気密に処理されている。 A cooling member 4 is attached to the insulation target 1. The cooling member 4 is thermally connected to a cooling source (not shown), and cools the insulation target 1 as necessary. The cooling member 4 is mechanically connected to a cooling source, for example, and the heat removed from the insulation target 1 is removed by heat conduction. Alternatively, the cooling member 4 may be a heat exchanger or a heat pipe. The penetrating portion of the pressure resistant container 5 at the connecting portion between the cooling member 4 and the outside is hermetically treated.

次に、加熱容器3の内部に熱硬化性樹脂110(図4)を注入し、絶縁対象1の周囲に充填する(ステップS12)。図4は、熱硬化性樹脂の注入後の状態を示す斜視図である。図4に示すように、図3に示した内部空間3aに、熱硬化性樹脂110を注入し、内部空間3a内に熱硬化性樹脂110を充填する。 Next, the thermosetting resin 110 (FIG. 4) is injected into the inside of the heating container 3 and filled around the insulation target 1 (step S12). FIG. 4 is a perspective view showing a state after the thermosetting resin is injected. As shown in FIG. 4, the thermosetting resin 110 is injected into the internal space 3a shown in FIG. 3 to fill the internal space 3a with the thermosetting resin 110.

次に、加熱容器3を高温にして、熱硬化性樹脂110の外周を加熱するとともに絶縁対象1を冷却する(ステップS13)。具体的には、加熱容器3によって熱硬化性樹脂110を径方向外側から加熱するとともに、冷却用部材4によって絶縁対象1を冷却する。 Next, the heating container 3 is heated to a high temperature to heat the outer periphery of the thermosetting resin 110 and cool the insulation target 1 (step S13). Specifically, the thermosetting resin 110 is heated from the outside in the radial direction by the heating container 3, and the insulation target 1 is cooled by the cooling member 4.

径方向外側から加熱することにより、熱硬化性樹脂110の表面温度は、熱硬化性樹脂110のガラス転移温度以上になるようにする。また、絶縁対象1を冷却することにより、熱硬化性樹脂110の絶縁対象1と接する部分の温度が室温程度となるようにする。この結果、熱硬化性樹脂110の内部温度が、厚み方向に、絶縁対象1と接する部分から熱硬化性樹脂110の表面に至るまでに、室温程度からガラス転移温度程度までの温度勾配がついた温度分布状態となる。ここで、室温程度とは、絶縁対象1の外側に絶縁部材10を形成する作業を実施するエリア内の温度程度を意味する。 By heating from the outside in the radial direction, the surface temperature of the thermosetting resin 110 is set to be equal to or higher than the glass transition temperature of the thermosetting resin 110. Further, by cooling the insulation target 1, the temperature of the portion of the thermosetting resin 110 that contacts the insulation target 1 is set to about room temperature. As a result, the internal temperature of the thermosetting resin 110 has a temperature gradient in the thickness direction from about room temperature to about the glass transition temperature from the portion in contact with the insulation target 1 to the surface of the thermosetting resin 110. A temperature distribution state is set. Here, the room temperature or so means the temperature or so in the area where the work of forming the insulating member 10 on the outside of the insulation target 1 is performed.

次に、厚み方向に温度勾配をつけた状態で、熱硬化性樹脂を加圧する(ステップS14)。具体的には、まず、耐圧容器5の上板5uを取り付け、耐圧容器5を密閉状態とする。その上で、加熱容器3による熱硬化性樹脂110の外側からの加熱と、冷却用部材4による絶縁対象1の冷却状態を維持しながら、加圧管5aを介して、耐圧容器5の内部と加圧源とを連通させ、耐圧容器5内に高圧のガスを導入する。 Next, the thermosetting resin is pressed with a temperature gradient in the thickness direction (step S14). Specifically, first, the upper plate 5u of the pressure resistant container 5 is attached, and the pressure resistant container 5 is sealed. Then, while maintaining the heating of the thermosetting resin 110 from the outside by the heating container 3 and the cooling state of the insulation target 1 by the cooling member 4, the inside of the pressure resistant container 5 is heated via the pressurizing pipe 5a. A high pressure gas is introduced into the pressure resistant container 5 by communicating with the pressure source.

熱硬化性樹脂110の多くは、熱硬化時に収縮する。したがって、加熱された熱硬化性樹脂110と加熱容器3との間には、クリアランスが生じる。耐圧容器5内に高圧のガスを導入することにより、熱硬化性樹脂110は、外側から均一に加圧される。 Most of the thermosetting resin 110 shrinks during thermosetting. Therefore, a clearance is generated between the heated thermosetting resin 110 and the heating container 3. By introducing a high-pressure gas into the pressure-resistant container 5, the thermosetting resin 110 is uniformly pressed from the outside.

また、熱硬化性樹脂110の熱硬化時の収縮がほとんど無い、あるいは逆に膨張する場合は、耐圧容器5の上板5uを閉止する前に、加熱容器3を分割して、加熱容器3とそれまでに加熱することにより硬化しつつある熱硬化性樹脂110との間にギャップが形成されるようにする。 In addition, when the thermosetting resin 110 has little shrinkage during thermosetting or expands conversely, the heating container 3 is divided into the heating container 3 before the upper plate 5u of the pressure resistant container 5 is closed. By heating up to that time, a gap is formed between the thermosetting resin 110 and the thermosetting resin 110 which is being cured.

次に、加熱を終了し、加圧状態を維持したまま、耐圧容器5の内部を室温にまで冷却する(ステップS15)。具体的には、図3において、加圧管5aのみを耐圧容器5の内部と導通させ、放置して自然冷却を行ってもよい。あるいは、冷却用気体注入管5bを介して冷却用気体を耐圧容器5内に注入してもよい。この際、耐圧容器5の内圧を所定の範囲に維持するために、排気管5cから、冷却用気体の注入に並行して、耐圧容器5内の気体を外部に排出する。 Next, heating is completed, and the inside of the pressure resistant container 5 is cooled to room temperature while maintaining the pressurized state (step S15). Specifically, in FIG. 3, only the pressurizing tube 5a may be electrically connected to the inside of the pressure resistant container 5 and left to stand for natural cooling. Alternatively, the cooling gas may be injected into the pressure resistant container 5 via the cooling gas injection pipe 5b. At this time, in order to maintain the internal pressure of the pressure resistant container 5 within a predetermined range, the gas in the pressure resistant container 5 is discharged to the outside from the exhaust pipe 5c in parallel with the injection of the cooling gas.

図5は、絶縁部材の形成後の状態を示す斜視図である。以上のような絶縁部材の製造方法の手順により、絶縁対象1の径方向外側に、絶縁部材10が形成される。絶縁部材10においては、図1を引用しながら説明したように、絶縁対象1と接する近傍での圧縮応力は小さく、一方、厚み方向にその反対側の、表面すなわち厚み方向の最外部においては大きな圧縮応力が付与された状態となる。 FIG. 5 is a perspective view showing a state after the insulating member is formed. The insulating member 10 is formed on the outside in the radial direction of the insulation target 1 by the procedure of the method for manufacturing the insulating member as described above. In the insulating member 10, as described with reference to FIG. 1, the compressive stress is small in the vicinity of contact with the object to be insulated 1, while it is large on the surface opposite to the thickness direction, that is, at the outermost portion in the thickness direction. The compressive stress is applied.

図6は、第1の実施形態に係る絶縁部材の効果を説明するための試験装置の斜視図である。図7は、第1の絶縁部材の場合、図8は、第2の絶縁部材の場合をそれぞれ示す縦断面図である。以下に、図6ないし図8を参照しながら、実施した試験の内容および本第1の実施形態に係る絶縁部材の作用、効果を説明する。 FIG. 6 is a perspective view of a test device for explaining the effect of the insulating member according to the first embodiment. FIG. 7 is a longitudinal sectional view showing the case of the first insulating member, and FIG. 8 is a longitudinal sectional view showing the case of the second insulating member. Hereinafter, the contents of the test performed and the operation and effect of the insulating member according to the first embodiment will be described with reference to FIGS. 6 to 8.

図6に示すように、トリー進展の様子を観察するため、針電極2と、その周囲に立方体の透明なエポキシ樹脂の絶縁体201を配した装置を構成した。絶縁体201の一辺の長さLは約15mmであり、針電極2の先端から対向する絶縁体201の表面(図6の下面)までの距離Dは、約3mmである。図7および図8は、それぞれ絶縁体201a、201bについて互いに異なる応力状態の場合を示している。 As shown in FIG. 6, in order to observe the state of tree growth, a device was constructed in which a needle electrode 2 and a cubic transparent epoxy resin insulator 201 were arranged around the needle electrode 2. The length L of one side of the insulator 201 is about 15 mm, and the distance D from the tip of the needle electrode 2 to the surface of the opposite insulator 201 (the lower surface in FIG. 6) is about 3 mm. 7 and 8 show cases where the insulators 201a and 201b are in different stress states.

圧縮応力の分布は、光弾性法により観察される。ここで、光弾性法とは、透明で異方性のない物体に荷重を加える、もしくは物体に応力が残留している場合に複屈折が生じることを利用し、応力分布を反映した干渉縞を発生させ、その分布を可視化する手法である。 The distribution of compressive stress is observed by the photoelastic method. Here, the photoelastic method utilizes the fact that birefringence occurs when a load is applied to a transparent, non-anisotropic object, or when stress remains in the object, and interference fringes that reflect the stress distribution are generated. It is a method to generate and visualize the distribution.

図7に示す第1の絶縁体201aにおいては、干渉縞に対応した被圧縮部202は1層であり、図8に示す場合は、干渉縞に対応した被圧縮部204は4層ある。いずれにおいても、針電極2の先端から約1.5mmより先の範囲に圧縮応力が残留している状態である。 In the first insulator 201a shown in FIG. 7, the compressed portion 202 corresponding to the interference fringe has one layer, and in the case shown in FIG. 8, the compressed portion 204 corresponding to the interference fringe has four layers. In any case, the compressive stress remains in a range beyond about 1.5 mm from the tip of the needle electrode 2.

ただし、図7に示す第1の絶縁体201aに付加されている応力は、図8に示す第2の絶縁体201bに付加されている応力に比べて小さい。この状態で、それぞれの体系において、エポキシ樹脂の第1の絶縁体201aおよび第2の絶縁体201bのそれぞれの下面を接地して、針電極2に、12kVrms、50Hzの交流波形の高電圧を印加した。 However, the stress applied to the first insulator 201a shown in FIG. 7 is smaller than the stress applied to the second insulator 201b shown in FIG. In this state, in each system, the lower surface of each of the first insulator 201a and the second insulator 201b made of epoxy resin is grounded, and a high voltage of 12 kVrms, 50 Hz AC waveform is applied to the needle electrode 2. did.

この結果、圧縮応力がない場合ではトリーは進展し続けた。また、圧縮応力が残留している領域の場合、その領域に侵入して約2.0〜2.5mm程度までは、同じように進展するが、それを超えるとトリーの進展が抑制される状況となった。 As a result, the tree continued to develop in the absence of compressive stress. Further, in the case where the compressive stress remains in the region, it penetrates into the region and progresses in the same manner up to about 2.0 to 2.5 mm, but beyond that, the progress of the tree is suppressed. Became.

図8に示すケースにおいては、図7に示すケースに比べて絶縁破壊に至る絶縁破壊時間が長く、絶縁破壊時間は410時間であった。なお、電圧印加の最中に一部のサンプルの内部を観察したところ、トリー203およびトリー205が、それぞれ図7および図8のように観察された。以上のように、圧縮応力が大きな領域では、トリーの進展が抑制されることが確認された。 In the case shown in FIG. 8, the dielectric breakdown time leading to dielectric breakdown was longer than that in the case shown in FIG. 7, and the dielectric breakdown time was 410 hours. When the inside of a part of the samples was observed during voltage application, trees 203 and 205 were observed as shown in FIGS. 7 and 8, respectively. As described above, it was confirmed that the tree growth was suppressed in the region where the compressive stress was large.

本実施形態に係る絶縁部材10を用いた電気機器、すなわち、金属導体などの絶縁対象1と、その絶縁対象1を覆う絶縁部材10を設けた電気機器においては、絶縁対象1と絶縁部材10との界面の圧縮応力は小さく、絶縁部材10の外側表面(絶縁部材10の低電圧側)に大きな圧縮応力が付与されている。 In the electric device using the insulating member 10 according to the present embodiment, that is, in the electric device provided with the insulating target 1 such as a metal conductor and the insulating member 10 covering the insulating target 1, the insulating target 1 and the insulating member 10 are provided. The compressive stress at the interface is small, and a large compressive stress is applied to the outer surface of the insulating member 10 (the low voltage side of the insulating member 10).

この状態で、絶縁対象1には高い電位が、また、絶縁部材10の外表面は接地電位が印加される。絶縁対象1との界面においては、絶縁部材10に付加される応力が小さいため、トリーの起点となる剥離やクラックが発生しにくい。また、仮に初期欠陥などを起点にこの界面からトリーが発生した場合は、絶縁部材10の厚み方向の外側に向かってトリーが進展する。トリーが進展し絶縁部材10の外側表面に近づくにつれて、圧縮応力が高くなり、トリーの進展が抑制される。 In this state, a high potential is applied to the insulation target 1, and a ground potential is applied to the outer surface of the insulating member 10. At the interface with the object to be insulated 1, the stress applied to the insulating member 10 is small, so that peeling or cracking that is the starting point of the tree is unlikely to occur. Further, if a tree starts from this interface starting from an initial defect or the like, the tree advances toward the outer side in the thickness direction of the insulating member 10. As the tree progresses and approaches the outer surface of the insulating member 10, the compressive stress increases and the progress of the tree is suppressed.

[第2の実施形態]
図9は、第2の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。本第2の実施形態は、第1の実施形態の変形である。
[Second Embodiment]
FIG. 9 is a flowchart showing the procedure of the method for manufacturing an insulating member according to the second embodiment. The second embodiment is a modification of the first embodiment.

まず。絶縁対象1を加熱容器3内に設置する(ステップS21)。図10は、第2の実施形態に係る絶縁部材の製造方法における加熱時の体系を示す斜視図である。図10に示すように、絶縁対象1には、加熱器8が接続されている。加熱器8は、たとえば、図示しない発熱部を有するヒータ、あるいは発熱部から熱伝導あるいは輻射等により熱移動がなされるものである。 First. The insulation target 1 is installed in the heating container 3 (step S21). FIG. 10: is a perspective view which shows the system at the time of heating in the manufacturing method of the insulating member which concerns on 2nd Embodiment. As shown in FIG. 10, a heater 8 is connected to the insulation target 1. The heater 8 is, for example, a heater having a heat generating portion (not shown), or heat is transferred from the heat generating portion by heat conduction or radiation.

次に、第1の実施形態と同様に、加熱容器3の内部空間3aに熱硬化性樹脂110を注入する(ステップS12)。図11は、熱硬化性樹脂を充填した後の状態を示す斜視図である。 Next, similarly to the first embodiment, the thermosetting resin 110 is injected into the internal space 3a of the heating container 3 (step S12). FIG. 11 is a perspective view showing a state after filling the thermosetting resin.

ステップS12において熱硬化性樹脂110を充填した後に、加熱容器3を高温にして熱硬化性樹脂110を加熱する(ステップS23)。なお、熱硬化性樹脂110を径方向の外側および内側から同時に加熱するために、加熱器8により絶縁対象1を加熱する。このようにして、熱硬化性樹脂110の全体をほぼ同時にガラス転移温度以上に上昇させる。 After filling the thermosetting resin 110 in step S12, the heating container 3 is heated to a high temperature to heat the thermosetting resin 110 (step S23). In addition, in order to simultaneously heat the thermosetting resin 110 from the outer side and the inner side in the radial direction, the insulation target 1 is heated by the heater 8. In this way, the entire thermosetting resin 110 is raised above the glass transition temperature almost at the same time.

次に、加熱を終了し、熱硬化性樹脂110の外表面側の冷却速度を内表面側の冷却速度より速くして冷却する(ステップS24)。 Next, the heating is finished, and the thermosetting resin 110 is cooled by making the cooling rate on the outer surface side faster than the cooling rate on the inner surface side (step S24).

図12は、熱硬化性樹脂の外表面側の冷却時の体系を示す斜視図である。絶縁対象1およびその周囲に配された熱硬化性樹脂110は、加熱容器3から取り出され、また、熱硬化性樹脂110の径方向外側には、冷却器7が配されている。冷却器7は、図示しない冷却用気体供給源に接続されており、熱硬化性樹脂110の径方向外側に、冷却された空気などの冷却用気体を吹き付ける。 FIG. 12 is a perspective view showing a system at the time of cooling the outer surface side of the thermosetting resin. The insulating object 1 and the thermosetting resin 110 arranged around it are taken out from the heating container 3, and a cooler 7 is arranged outside the thermosetting resin 110 in the radial direction. The cooler 7 is connected to a cooling gas supply source (not shown), and blows a cooling gas such as cooled air to the radially outer side of the thermosetting resin 110.

一方、絶縁対象1は、所定の冷却速度に応じて、冷却速度が速くなり過ぎないように加熱器8から熱を供給され、熱硬化性樹脂110の径方向内側の接触面に、熱を伝達する。 On the other hand, the insulation target 1 is supplied with heat from the heater 8 according to a predetermined cooling rate so that the cooling rate does not become too fast, and transfers the heat to the contact surface on the radially inner side of the thermosetting resin 110. To do.

このように、熱硬化性樹脂110の外表面側は冷却器7により、たとえば30℃/Hr程度の冷却側で冷却され、熱硬化性樹脂110の内表面側は加熱器8により冷却が抑制されたとえば10℃/Hr程度の冷却速度で冷却される。 In this way, the outer surface side of the thermosetting resin 110 is cooled by the cooler 7 on the cooling side of, for example, about 30° C./Hr, and the inner surface side of the thermosetting resin 110 is suppressed by the heater 8. For example, it is cooled at a cooling rate of about 10° C./Hr.

なお、図12では、冷却器7で冷却用気体を熱硬化性樹脂110の外表面側に吹き付けて、冷却速度を確保する場合を例にとって示したが、これに限定されない。たとえば、熱硬化性樹脂110の外側を液体で満たし、その液体温度を制御することでもよい。 Note that, in FIG. 12, the case where the cooling gas is blown to the outer surface side of the thermosetting resin 110 by the cooler 7 to secure the cooling rate is shown as an example, but the present invention is not limited to this. For example, the outside of the thermosetting resin 110 may be filled with a liquid and the temperature of the liquid may be controlled.

以上のように、熱硬化性樹脂110の絶縁対象1の周辺部分、すなわち熱硬化性樹脂110の内側部分の温度を、絶縁対象1の温度と差がないように徐冷することによって、熱硬化性樹脂110の絶縁対象1の周辺部分の応力を小さくすることができる。また、熱硬化性樹脂110の外側を速い速度で冷却することにより、熱硬化性樹脂110の外側部分に大きな圧縮応力を付与することができる。 As described above, the temperature of the peripheral portion of the thermosetting resin 110 around the insulation target 1, that is, the inside portion of the thermosetting resin 110 is gradually cooled so as not to be different from the temperature of the insulation target 1, so that the thermosetting resin 110 is thermoset. It is possible to reduce the stress of the peripheral portion of the insulating object 1 of the conductive resin 110. Further, by cooling the outside of the thermosetting resin 110 at a high speed, a large compressive stress can be applied to the outside portion of the thermosetting resin 110.

[第3の実施形態]
図13は、第3の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。本実施形態は、第1の実施形態の変形である。
[Third Embodiment]
FIG. 13 is a flowchart showing the procedure of the method for manufacturing an insulating member according to the third embodiment. This embodiment is a modification of the first embodiment.

まず、絶縁対象1を加熱容器3内に設置する(ステップS31)。 First, the insulation target 1 is installed in the heating container 3 (step S31).

次に、加熱容器3と絶縁対象1とに挟まれた環状空間に区画筒を設置する(ステップS32)。 Next, a partition cylinder is installed in the annular space sandwiched between the heating container 3 and the insulation target 1 (step S32).

図14は、第3の実施形態に係る絶縁部材の製造方法における区画筒を設置した段階の体系の状態を示す横断面図である。加熱容器3と絶縁対象1とに挟まれた環状空間は、区画筒6によって径方向に外側空間3bと内側空間3cとに分割される。ここで、区画筒6は、熱硬化性樹脂が熱硬化したものを用いる。また、熱硬化性樹脂としては、後述する高線膨張率絶縁材用樹脂31または低線膨張率絶縁材用樹脂32のいずれかを用いる。 FIG. 14 is a cross-sectional view showing a state of a system at a stage where a partition cylinder is installed in the method for manufacturing an insulating member according to the third embodiment. The annular space sandwiched between the heating container 3 and the insulation target 1 is radially divided by the partitioning cylinder 6 into an outer space 3b and an inner space 3c. Here, as the partition tube 6, a thermosetting resin thermoset is used. Further, as the thermosetting resin, either the resin 31 for high linear expansion coefficient insulating material or the resin 32 for low linear expansion coefficient insulating material described later is used.

次に、図14で示した外側空間3bおよび内側空間3cにそれぞれ熱硬化性樹脂を充填する(ステップS33)。 Next, the outer space 3b and the inner space 3c shown in FIG. 14 are filled with thermosetting resin (step S33).

図15は、第3の実施形態に係る絶縁部材の製造方法における熱硬化性樹脂を注入した段階の状態を示す横断面図である。外側空間3bに高線膨張率絶縁材用樹脂31を、また、内側空間3cには低線膨張率絶縁材用樹脂32を充填する。 FIG. 15 is a cross-sectional view showing a state at the stage of injecting a thermosetting resin in the method for manufacturing an insulating member according to the third embodiment. The outer space 3b is filled with a resin 31 for high linear expansion coefficient insulating material, and the inner space 3c is filled with a resin 32 for low linear expansion coefficient insulating material.

ここで、低線膨張率絶縁材用樹脂32は、熱硬化後の線膨張率が、絶縁対象1の線膨張率と実質的に同程度である樹脂を選定する。ここで、実質的に同程度とは、低線膨張率絶縁材用樹脂32の方が絶縁対象1より線膨張率が大きな場合には、低線膨張率絶縁材用樹脂32と絶縁対象1との間に剥離が生じない程度の線膨張率の差であり、低線膨張率絶縁材用樹脂32の方が絶縁対象1より線膨張率が小さな場合には、低線膨張率絶縁材用樹脂32に亀裂を生じるような応力を生じない程度の線膨張率の差であることを意味するものとする。また、高線膨張率絶縁材用樹脂31は、低線膨張率絶縁材用樹脂32に比べて熱硬化後の線膨張率が大きい樹脂を選定する。 Here, as the resin 32 for a low linear expansion coefficient insulating material, a resin whose linear expansion coefficient after thermosetting is substantially the same as the linear expansion coefficient of the insulation target 1 is selected. Here, when the resin 32 for low linear expansion coefficient insulating material has a larger linear expansion coefficient than the insulation target 1, the term “substantially the same degree” means that the resin 32 for low linear expansion coefficient insulating material and the insulation target 1 are When the linear expansion coefficient of the low linear expansion coefficient insulating material resin 32 is smaller than that of the insulation target 1, the low linear expansion coefficient insulating resin resin is used. It means that the difference in linear expansion coefficient is such that stress such as cracking in 32 is not generated. Further, as the resin 31 for high linear expansion coefficient insulating material, a resin having a larger linear expansion coefficient after thermosetting than the resin 32 for low linear expansion coefficient insulating material is selected.

たとえば、絶縁対象1の線膨張率がアルミニウムの場合、低線膨張率絶縁材用樹脂32が熱硬化して形成される低線膨張率絶縁部材32a(図16)がアルミニウムと同程度のたとえば24×10−6/℃程度の線膨張率となるような樹脂を選択する。また、高線膨張率絶縁材用樹脂31が熱硬化して形成される高線膨張率絶縁部材31a(図16)は、たとえば45×10−6〜65×10−6/℃程度となるエポキシ樹脂を選定する。 For example, when the linear expansion coefficient of the insulation target 1 is aluminum, the low linear expansion coefficient insulating member 32a (FIG. 16) formed by thermosetting the low linear expansion coefficient insulating material resin 32 is, for example, 24, which is similar to that of aluminum. A resin having a linear expansion coefficient of about 10 −6 /° C. is selected. Further, the high linear expansion coefficient insulating member 31a (FIG. 16) formed by thermosetting the resin 31 for high linear expansion coefficient insulating material is, for example, an epoxy having a linear expansion coefficient of about 45×10 −6 to 65×10 −6 /° C. Select resin.

次に、加熱容器3を高温にして絶縁対象1を加熱する(ステップS34)。すなわち、高線膨張率絶縁材用樹脂31および低線膨張率絶縁材用樹脂32の温度をガラス転移温度以上の温度まで上昇させる。 Next, the heating container 3 is heated to a high temperature to heat the insulation target 1 (step S34). That is, the temperatures of the resin 31 for high linear expansion coefficient insulating material and the resin 32 for low linear expansion coefficient insulating material are raised to temperatures equal to or higher than the glass transition temperature.

次に、加熱を完了し、加熱容器3を撤去する(ステップS35)。図16は、第3の実施形態に係る絶縁部材の製造方法における加熱および冷却を完了した段階の状態を示す横断面図である。外側空間3bに充填した高線膨張率絶縁材用樹脂31は高線膨張率絶縁部材31aに、内側空間3cに充填した低線膨張率絶縁材用樹脂32は低線膨張率絶縁部材32aとなっている。なお、加熱容器3を撤去する代わりに、絶縁対象1と絶縁対象1の周囲に形成された低線膨張率絶縁部材32aおよび高線膨張率絶縁部材31aを加熱容器3から取り出すことでもよい。 Next, heating is completed and the heating container 3 is removed (step S35). FIG. 16 is a cross-sectional view showing a state at the stage when heating and cooling are completed in the method for manufacturing an insulating member according to the third embodiment. The resin 31 for high linear expansion coefficient insulating material filled in the outer space 3b serves as the high linear expansion coefficient insulating member 31a, and the resin 32 for low linear expansion coefficient insulating material filled in the inner space 3c serves as the low linear expansion coefficient insulating member 32a. ing. Instead of removing the heating container 3, the insulation target 1 and the low linear expansion coefficient insulating member 32 a and the high linear expansion coefficient insulating member 31 a formed around the insulation target 1 may be taken out from the heating container 3.

図14ないし図16では、径方向に2種類の層が形成される場合を例にとって示したが、径方向に3種類以上の層を形成することでもよい。この場合、層数に応じて必要な数の区画筒を設置する。また、最内層が、熱硬化後には絶縁対象1の線膨張率と同程度の線膨張率となるような熱硬化性樹脂を選択し、最外層が、熱硬化後にたとえば、高線膨張率絶縁材用樹脂31と同様の熱硬化性樹脂を選択する。さらに、これらに挟まれた領域には、熱硬化後に、厚み方向の外側から内側に向かって線膨張率が単調減少するような熱硬化性樹脂を選定する。 Although FIGS. 14 to 16 show the case where two types of layers are formed in the radial direction as an example, three or more types of layers may be formed in the radial direction. In this case, a required number of partition cylinders are installed according to the number of layers. Further, a thermosetting resin is selected such that the innermost layer has a linear expansion coefficient similar to that of the insulation target 1 after the thermal curing, and the outermost layer has a high linear expansion coefficient after the thermal curing, for example. A thermosetting resin similar to the material resin 31 is selected. Further, for the region sandwiched between these, a thermosetting resin is selected so that the linear expansion coefficient monotonically decreases from the outer side to the inner side in the thickness direction after heat curing.

線膨張率に勾配をつける方法としては、最外層には、エポキシ樹脂と硬化剤の混合液のみを用いる。エポキシ樹脂の線膨張率は、前述のように45×10−6〜65×10−6/℃程度である。その内側の層には、エポキシ樹脂と硬化剤の混合液にさらに、線膨張率の小さなシリカあるいはアルミナ等の無機粒子の混合液を作成して用いる。この場合、線膨張率はたとえば20×10−6/℃程度である。この無機粒子の濃度を内側になるほど増加させる。最内層は、熱硬化後の線膨張率が絶縁対象1の線膨張率と同程度なるように調節したものを用いる。なお、配合する無機粒子は、ナノメートルからマイクロメートル範囲の粒径をもつものを単独、もしくは複数種類を同時に配合する。 As a method of providing a gradient to the linear expansion coefficient, only a mixed liquid of an epoxy resin and a curing agent is used for the outermost layer. The linear expansion coefficient of the epoxy resin is about 45×10 −6 to 65×10 −6 /° C. as described above. For the inner layer, a mixed liquid of an epoxy resin and a curing agent is further prepared by using a mixed liquid of inorganic particles such as silica or alumina having a small linear expansion coefficient. In this case, the coefficient of linear expansion is, for example, about 20×10 −6 /°C. The concentration of the inorganic particles is increased toward the inner side. As the innermost layer, one that is adjusted so that the linear expansion coefficient after thermosetting is approximately the same as the linear expansion coefficient of the insulation target 1 is used. As the inorganic particles to be mixed, one having a particle size in the range of nanometer to micrometer is used alone, or a plurality of kinds thereof are mixed at the same time.

以上のように、本実施形態による絶縁部材の製造方法では、各層の線膨張率を所期の値に設定することができる。 As described above, in the method for manufacturing the insulating member according to the present embodiment, the linear expansion coefficient of each layer can be set to a desired value.

なお、本実施形態においては、区画筒を用いる場合を例にとって示したが、これに代えて、内側の層を加熱硬化した後に、その外側に熱硬化性樹脂を配した上で熱硬化させるという手順を順次実施することにより多層の絶縁部材を形成することでもよい。 In the present embodiment, the case where the partition cylinder is used has been shown as an example, but instead of this, after the inner layer is heat-cured, a thermosetting resin is placed on the outer side and then heat-cured. Alternatively, a multilayer insulating member may be formed by sequentially performing the procedure.

以上のように形成することにより、熱硬化性樹脂が硬化して生成された絶縁部材は線膨張率の大きな外側部分の線膨張率が大きいため、室温から温度上昇すると、厚み方向の外側ほど熱膨張が大きくなる。このため、厚み方向の外側ほど、圧縮応力が大きい状態の絶縁部材が得られる。 By forming as described above, the insulating member produced by curing the thermosetting resin has a large linear expansion coefficient in the outer portion having a large linear expansion coefficient. Swelling increases. Therefore, an insulating member having a larger compressive stress on the outer side in the thickness direction can be obtained.

[第4の実施形態]
図17は、第4の実施形態に係る絶縁部材の製造方法の手順を示すフロー図である。本実施形態は、第3の実施形態の変形である。本実施形態においても、特性の異なる2種類の熱硬化性樹脂を用いるが、注入する際の熱硬化性樹脂が第3の実施形態と異なる。また、製造方法も第3の実施形態と異なる。具体的には、2種類の加熱容器を用いる。これら以外は基本的に第3の実施形態と同様である。
[Fourth Embodiment]
FIG. 17 is a flowchart showing the procedure of the method for manufacturing an insulating member according to the fourth embodiment. This embodiment is a modification of the third embodiment. Also in this embodiment, two types of thermosetting resins having different characteristics are used, but the thermosetting resin used for injection is different from that of the third embodiment. The manufacturing method is also different from that of the third embodiment. Specifically, two types of heating containers are used. Other than these, it is basically similar to the third embodiment.

図18は、第1の加熱容器に熱硬化性樹脂を注入した段階の状態を示す横断面図である。 FIG. 18 is a cross-sectional view showing a state in which a thermosetting resin has been injected into the first heating container.

まず、第1の加熱容器43a内に絶縁対象1を設置する(ステップS41)。 First, the insulation target 1 is installed in the first heating container 43a (step S41).

次に、第1の加熱容器43aと絶縁対象1とに挟まれた環状空間内に、熱硬化性樹脂を注入する(ステップS42)。この際に注入する熱硬化性樹脂は、熱硬化時に収縮率の小さな、すなわち硬化収縮率の小さな低硬化収縮率樹脂42である。 Next, the thermosetting resin is injected into the annular space sandwiched between the first heating container 43a and the insulation target 1 (step S42). The thermosetting resin to be injected at this time is a low curing shrinkage resin 42 having a small shrinkage during heat curing, that is, a small curing shrinkage.

次に、第1の加熱容器43aにより低硬化収縮率樹脂42を加熱した後に、低硬化収縮率樹脂42を冷却する(ステップS43)。図19は、第1の加熱容器による加熱および冷却を完了した段階の状態を示す横断面図である。低硬化収縮率樹脂42は第2絶縁部材42aとなっている。 Next, after heating the low cure shrinkage resin 42 in the first heating container 43a, the low cure shrinkage resin 42 is cooled (step S43). FIG. 19 is a cross-sectional view showing a state at the stage where heating and cooling by the first heating container are completed. The low curing shrinkage resin 42 serves as the second insulating member 42a.

次に、第2絶縁部材42aが周囲に配された絶縁対象1を、第2の加熱容器43b内に設置する(ステップS44)。すなわち、第2絶縁部材42aが周囲に配された絶縁対象1を、第1の加熱容器43a内から、第1の加熱容器43aより径の大きな第2の加熱容器43b内に移し変える。 Next, the insulation target 1 around which the second insulating member 42a is arranged is installed in the second heating container 43b (step S44). That is, the insulation target 1 around which the second insulating member 42a is arranged is moved from the inside of the first heating container 43a to the inside of the second heating container 43b having a diameter larger than that of the first heating container 43a.

次に、第2の加熱容器43bと第2絶縁部材42aとに挟まれた環状空間内に、熱硬化性樹脂を注入する(ステップS45)。図20は、第2の加熱容器に熱硬化性樹脂を注入した段階の状態を示す横断面図である。この際に注入する熱硬化性樹脂は、低硬化収縮率樹脂42よりも硬化収縮率が大きな高硬化収縮率樹脂41である。 Next, the thermosetting resin is injected into the annular space sandwiched between the second heating container 43b and the second insulating member 42a (step S45). FIG. 20 is a transverse cross-sectional view showing a state in which the thermosetting resin has been injected into the second heating container. The thermosetting resin injected at this time is the high cure shrinkage resin 41 having a higher cure shrinkage than the low cure shrinkage resin 42.

次に、第2の加熱容器43bにより高硬化収縮率樹脂41を加熱した後に、高硬化収縮率樹脂41を冷却する(ステップS46)。図21は、第2の加熱容器による加熱および冷却を完了した段階の状態を示す横断面図である。高硬化収縮率樹脂41は第1絶縁部材41aとなっている。 Next, after heating the high cure shrinkage resin 41 by the second heating container 43b, the high cure shrinkage resin 41 is cooled (step S46). FIG. 21 is a cross-sectional view showing a state at the stage where heating and cooling by the second heating container are completed. The high cure shrinkage resin 41 serves as the first insulating member 41a.

なお、本実施形態において、複数層を形成してもよい点については第3の実施形態で説明した内容と同様である。 In addition, in this embodiment, the point that a plurality of layers may be formed is the same as that described in the third embodiment.

以上のように形成することにより、熱硬化性樹脂は外側部分の硬化収縮率が大きいため、熱硬化性樹脂が加熱されて熱硬化する段階で、厚み方向の外側ほど収縮する。この結果、硬化した熱硬化性樹脂には、周方向には引張応力が働くが、径方向には圧縮応力が働く。 By forming as described above, since the thermosetting resin has a large curing shrinkage rate at the outer portion, when the thermosetting resin is heated and thermally cured, the thermosetting resin shrinks toward the outer side in the thickness direction. As a result, tensile stress acts on the cured thermosetting resin in the circumferential direction, but compressive stress acts in the radial direction.

絶縁対象1と第1絶縁部材41a外表面との間に電圧が印加された場合の、電位勾配は径方向、すなわち第1絶縁部材41aの厚み方向に形成される。したがって、トリーの進展方向は径方向(厚み方向)である。本実施形態においては、径方向に圧縮応力が形成されることから、トリーの進展を抑制する効果を有する。 When a voltage is applied between the insulation target 1 and the outer surface of the first insulating member 41a, the potential gradient is formed in the radial direction, that is, the thickness direction of the first insulating member 41a. Therefore, the tree is propagated in the radial direction (thickness direction). In this embodiment, since the compressive stress is formed in the radial direction, it has an effect of suppressing the development of the tree.

さらに、低硬化収縮率樹脂42が熱硬化した第2絶縁部材42aの周囲に、硬化収縮率の大きな高硬化収縮率樹脂41を配して熱硬化させた第1絶縁部材41aを配することにより、第1絶縁部材41aには径方向に大きな圧縮応力が生じる。また、内側の第2絶縁部材42aは、第1絶縁部材41aによるたが締め力により、圧縮応力が生ずるが、この範囲は、第2絶縁部材42aの表面近傍に留まる。第2絶縁部材42a内の径方向内側領域は、ステップS43での図19に示す状態とほぼ変わらずに、応力は低い状態となっている。 Further, by disposing the high curing shrinkage rate resin 41 having a large curing shrinkage rate around the second insulating member 42a where the low curing shrinkage rate resin 42 is thermally cured, and disposing the first insulating member 41a thermally cured. A large compressive stress is generated in the first insulating member 41a in the radial direction. Further, the inner second insulating member 42a generates compressive stress due to the rattling force of the first insulating member 41a, but this range remains near the surface of the second insulating member 42a. The radially inner region in the second insulating member 42a is in a state of low stress, which is almost the same as the state shown in FIG. 19 in step S43.

以上のように、本第4の実施形態においても、電位の勾配方向に圧縮応力が形成され、絶縁部材におけるトリーの発生、進展を抑制することができる。 As described above, also in the fourth embodiment, the compressive stress is formed in the gradient direction of the potential, and the generation and development of trees in the insulating member can be suppressed.

[その他の実施形態]
以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、実施形態では絶縁対象1が円柱状の場合を例にとって示したが、絶縁対象1は、円柱形に限らない。絶縁対象1は、たとえば、断面が多角形あるいは曲面で柱状のもの、球体や楕円体、直方体などの形状のもの、板状あるいは厚みの薄い曲面上のもの、あるいは、これらを組み合わせたものでもよい。これらの場合、加熱容器3および第3および第4の実施形態における区画筒6の形状は、絶縁対象1の形状に応じて適切な形状を設定すればよい。
[Other Embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. For example, in the embodiment, the case where the insulation target 1 has a cylindrical shape has been described as an example, but the insulation target 1 is not limited to the cylindrical shape. The insulation target 1 may be, for example, one having a polygonal or curved cross section, a columnar shape, a spherical shape, an ellipsoidal shape, a rectangular parallelepiped shape, a plate shape or a thin curved surface, or a combination thereof. .. In these cases, the shape of the heating container 3 and the partition tube 6 in the third and fourth embodiments may be set to an appropriate shape according to the shape of the insulation target 1.

また、各実施形態の特徴を組み合わせてもよい。さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Further, the features of the respective embodiments may be combined. Furthermore, the embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and the modifications thereof are included in the invention described in the claims and equivalents thereof, as well as included in the scope and the gist of the invention.

1…絶縁対象、2…針電極、3…加熱容器、3a…内部空間、3b…外側空間、3c…内側空間、4…冷却用部材、5…耐圧容器、5a…加圧管、5b…冷却用気体注入管、5c…排気管板、5u…上板、6…区画筒、7…冷却器、8…加熱器、10…絶縁部材、11…第1絶縁層、12…第2絶縁層、13…第3絶縁層、14…第4絶縁層、31…高線膨張率絶縁材用樹脂、31a…高線膨張率絶縁部材、32…低線膨張率絶縁材用樹脂、32a…低線膨張率絶縁部材、41…高硬化収縮率樹脂、41a…第1絶縁部材、42…低硬化収縮率樹脂、42a…第2絶縁部材、43a…第1の加熱容器、43b…第2の加熱容器、110…熱硬化性樹脂、201…絶縁体、201a…第1の絶縁体、201b…第2の絶縁体、202…被圧縮部、203…トリー、204…被圧縮部、205…トリー DESCRIPTION OF SYMBOLS 1... Insulation object, 2... Needle electrode, 3... Heating container, 3a... Inner space, 3b... Outer space, 3c... Inner space, 4... Cooling member, 5... Pressure resistant container, 5a... Pressurizing tube, 5b... For cooling Gas injection pipe, 5c... Exhaust pipe plate, 5u... Upper plate, 6... Partition cylinder, 7... Cooler, 8... Heater, 10... Insulating member, 11... First insulating layer, 12... Second insulating layer, 13 ... third insulating layer, 14... fourth insulating layer, 31... resin for high linear expansion coefficient insulating material, 31a... high linear expansion coefficient insulating member, 32... resin for low linear expansion coefficient insulating material, 32a... low linear expansion coefficient Insulating member, 41... High curing shrinkage resin, 41a... First insulating member, 42... Low curing shrinkage resin, 42a... Second insulating member, 43a... First heating container, 43b... Second heating container, 110 ... thermosetting resin, 201... insulator, 201a... first insulator, 201b... second insulator, 202... compressed part, 203... tree, 204... compressed part, 205... tree

Claims (10)

絶縁対象を覆い外部と電気的に絶縁するための絶縁部材であって、
厚み方向に前記絶縁部材に接する側の反対側の部分において、前記厚み方向に圧縮応力が付加されていることを特徴とする絶縁部材。
An insulating member for covering an insulating object and electrically insulating it from the outside,
An insulating member, wherein a compressive stress is applied in the thickness direction at a portion opposite to a side in contact with the insulating member in the thickness direction.
前記絶縁部材に接する部分での応力は、その反対側の部分における応力より小さいことを特徴とする請求項1に記載の絶縁部材。 The insulating member according to claim 1, wherein the stress at the portion in contact with the insulating member is smaller than the stress at the portion on the opposite side. 前記厚み方向に外側から内側に向けて厚み方向の圧縮応力が単調に減少することを特徴とする請求項1または請求項2に記載の絶縁部材。 3. The insulating member according to claim 1, wherein the compressive stress in the thickness direction monotonously decreases from the outer side to the inner side in the thickness direction. 前記絶縁対象に接する部分の線膨張率は、前記絶縁対象の線膨張率と実質的に同程度であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の絶縁部材。 The insulating member according to claim 1, wherein a linear expansion coefficient of a portion in contact with the insulation target is substantially the same as a linear expansion coefficient of the insulation target. 絶縁対象を覆い外部と電気的に絶縁するための絶縁部材の製造方法であって、
加熱容器内に熱硬化性樹脂を注入し、前記絶縁対象の周囲に充填する充填ステップと、
前記充填ステップで充填した前記熱硬化性樹脂を加熱する加熱ステップと、
前記加熱ステップの後に前記熱硬化性樹脂を冷却する冷却ステップと、
を有し、
前記冷却ステップ終了後には、前記熱硬化性樹脂は、厚み方向に前記絶縁対象に接する内側部分よりも外側部分の方が、厚み方向の圧縮応力が大きい絶縁部材が形成されることを特徴とする絶縁部材の製造方法。
A method of manufacturing an insulating member for covering an insulating object to electrically insulate the outside,
A filling step of injecting a thermosetting resin into the heating container and filling the periphery of the insulating object,
A heating step of heating the thermosetting resin filled in the filling step,
A cooling step of cooling the thermosetting resin after the heating step,
Have
After the cooling step, the thermosetting resin is characterized in that an insulating member having a larger compressive stress in the thickness direction is formed in the outer portion of the thermosetting resin than in the inner portion in contact with the insulating object in the thickness direction. A method for manufacturing an insulating member.
前記加熱ステップにおいては、前記内側部分が室温程度に維持される一方、前記熱硬化性樹脂の厚み方向の前記外側部分の表面はガラス転移温度以上となるような温度分布状態となるように加熱され、
前記冷却ステップにおいては、前記温度分布状態で、前記熱硬化性樹脂に厚み方向に圧縮応力を加え、圧縮応力が加えられた状態で前記熱硬化性樹脂が冷却される、
ことを特徴とする請求項5に記載の絶縁部材の製造方法。
In the heating step, the inner portion is maintained at about room temperature, while the surface of the outer portion in the thickness direction of the thermosetting resin is heated so as to have a temperature distribution state that is equal to or higher than the glass transition temperature. ,
In the cooling step, in the temperature distribution state, a compressive stress is applied to the thermosetting resin in the thickness direction, and the thermosetting resin is cooled in a state where the compressive stress is applied.
The method for manufacturing an insulating member according to claim 5, wherein.
前記加熱ステップにおいては、前記熱硬化性樹脂はガラス転移温度以上となるように加熱され、
前記冷却ステップにおいては、前記熱硬化性樹脂の前記外側部分の冷却速度は、前記内側部分の冷却速度よりも大きいことを特徴とする請求項5に記載の絶縁部材の製造方法。
In the heating step, the thermosetting resin is heated to a glass transition temperature or higher,
The method for manufacturing an insulating member according to claim 5, wherein, in the cooling step, a cooling rate of the outer portion of the thermosetting resin is higher than a cooling rate of the inner portion.
前記熱硬化性樹脂の厚み方向に、前記外側部分には第1の熱硬化性樹脂を用い、前記内側部分には第2の熱硬化性樹脂を用い、前記第1の熱硬化性樹脂の熱硬化後の線膨張率は、前記第2の熱硬化性樹脂の熱硬化後の線膨張率より大きいことを特徴とする請求項5に記載の絶縁部材の製造方法。 In the thickness direction of the thermosetting resin, a first thermosetting resin is used for the outer portion, a second thermosetting resin is used for the inner portion, and heat of the first thermosetting resin is used. The method for manufacturing an insulating member according to claim 5, wherein the linear expansion coefficient after curing is higher than the linear expansion coefficient after thermal curing of the second thermosetting resin. 前記第2の熱硬化性樹脂の熱硬化後の線膨張率は、前記絶縁対象の線膨張率と同程度であることを特徴とする請求項8に記載の絶縁部材の製造方法。 The method for manufacturing an insulating member according to claim 8, wherein a linear expansion coefficient of the second thermosetting resin after the thermosetting is approximately the same as the linear expansion coefficient of the insulation target. 前記熱硬化性樹脂の厚み方向に、前記外側部分には第3の熱硬化性樹脂を用い、前記内側部分には第4の熱硬化性樹脂を用い、前記第3の熱硬化性樹脂の硬化収縮率は、前記第4の熱硬化性樹脂の硬化収縮率より大きいことを特徴とする請求項5に記載の絶縁部材の製造方法。 In the thickness direction of the thermosetting resin, a third thermosetting resin is used for the outer portion, a fourth thermosetting resin is used for the inner portion, and the third thermosetting resin is cured. The method of manufacturing an insulating member according to claim 5, wherein the shrinkage rate is higher than the cure shrinkage rate of the fourth thermosetting resin.
JP2018217478A 2018-11-20 2018-11-20 Insulation member and manufacturing method of insulation member Active JP6987733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217478A JP6987733B2 (en) 2018-11-20 2018-11-20 Insulation member and manufacturing method of insulation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217478A JP6987733B2 (en) 2018-11-20 2018-11-20 Insulation member and manufacturing method of insulation member

Publications (2)

Publication Number Publication Date
JP2020087606A true JP2020087606A (en) 2020-06-04
JP6987733B2 JP6987733B2 (en) 2022-01-05

Family

ID=70910086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217478A Active JP6987733B2 (en) 2018-11-20 2018-11-20 Insulation member and manufacturing method of insulation member

Country Status (1)

Country Link
JP (1) JP6987733B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509357B1 (en) * 1970-07-15 1975-04-11
JP2008075069A (en) * 2006-08-23 2008-04-03 Toshiba Corp Casting resin composition and insulating material and insulating structure using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509357B1 (en) * 1970-07-15 1975-04-11
JP2008075069A (en) * 2006-08-23 2008-04-03 Toshiba Corp Casting resin composition and insulating material and insulating structure using the same

Also Published As

Publication number Publication date
JP6987733B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
KR100927685B1 (en) Manufacturing method of ground-buried typesolid insulation transformer
KR20030011819A (en) Terminal structure of extreme-low temperature equipment
CN102754296B (en) Extremely low temperature cable terminal connector
US2554499A (en) High-pressure apparatus
JP2012103158A (en) Method for water treeing test, test piece for water treeing test, and method for manufacturing the same
JP6987733B2 (en) Insulation member and manufacturing method of insulation member
KR101874039B1 (en) Superconducting magnet coil arrangement
CN103247995A (en) Terminal device of ultralow temperature apparatus
Varivodov et al. Technological aspects of the use of cast polymer insulation for high-voltage switchgear and busbars
El-Zein et al. Water trees in polyethylene insulated power cables: Approach to water trees initiation mechanism
US10438723B2 (en) Pluggable high-voltage bushing and high-voltage installation having the pluggable high-voltage bushing
Wu et al. Performance of the insulation mock-ups for the ITER PF6 coil
CN112118648B (en) Small-size annular heating rod with high heating power
US20110148433A1 (en) High-voltage transformer
US2945912A (en) High voltage insulator
KR102640057B1 (en) Apparatus for supporting liquefied gas storage tank
US20170054341A1 (en) Corona shielding system for a high-voltage machine, repair lacquer, and method for production
Nakamoto et al. Development of gap-filling impregnation method of ITER TF coils
JP2020138486A (en) Method for manufacturing insulating spacer
KR20160138691A (en) Bushing for condenser and making method of the same
EP3544032B1 (en) Transformer with gel composite insulation
Anerella et al. Improved cable insulation for superconducting magnets
JPH05196174A (en) Insulated vacuum valve
KR101651024B1 (en) Insulation structure for superconducting power device
US7982133B2 (en) Crack controlled resin insulated electrical coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6987733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150