JP2020085778A - 絶縁抵抗試験支援装置及び絶縁抵抗測定方法 - Google Patents

絶縁抵抗試験支援装置及び絶縁抵抗測定方法 Download PDF

Info

Publication number
JP2020085778A
JP2020085778A JP2018223797A JP2018223797A JP2020085778A JP 2020085778 A JP2020085778 A JP 2020085778A JP 2018223797 A JP2018223797 A JP 2018223797A JP 2018223797 A JP2018223797 A JP 2018223797A JP 2020085778 A JP2020085778 A JP 2020085778A
Authority
JP
Japan
Prior art keywords
insulation resistance
test
power
solar cell
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223797A
Other languages
English (en)
Other versions
JP7204450B2 (ja
Inventor
佐藤 正宏
Masahiro Sato
正宏 佐藤
和博 秋山
Kazuhiro Akiyama
和博 秋山
一帆 前田
Kazuho Maeda
一帆 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2018223797A priority Critical patent/JP7204450B2/ja
Publication of JP2020085778A publication Critical patent/JP2020085778A/ja
Priority to JP2022210060A priority patent/JP7482983B2/ja
Application granted granted Critical
Publication of JP7204450B2 publication Critical patent/JP7204450B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Photovoltaic Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】太陽光発電システムの絶縁抵抗試験を実施する際の保守性を高める。【解決手段】絶縁抵抗試験支援装置は、端子と、試験端子と、第1接続ケーブルとを備える。第1接続ケーブルの第1端部に、前記第1入力端子に嵌合可能な接続プラグが設けられている。端子には、前記第1接続ケーブルの第2端部が電気的に接続される。測定端子には、前記絶縁抵抗計と前記端子とに接続される。試験端子には、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を、前記端子を介して前記第1入力端子に印加可能である。絶縁抵抗試験支援装置は、絶縁抵抗計と試験対象範囲との間に配置され、太陽光発電システムの絶縁抵抗の試験の実施を支援する。【選択図】図1

Description

本発明は、絶縁抵抗試験支援装置及び絶縁抵抗測定方法に関する。
太陽光発電システムは、太陽電池装置によって発電された直流電力を、電力ケーブルを介して電力変換装置(パワーコンディショナ)に送り、電力変換装置によって交流電力に変換させる。太陽電池装置と電力変換装置の直流側に発生した地絡状態などを検出するために、絶縁抵抗計を用いた絶縁抵抗試験が実施される。
ところで、比較的小容量の電力変換装置でありながら、小型の筐体内に主要な機能を搭載した電力変換装置がある。例えば、このような電力変換装置には、電力ケーブルの接続部をコネクタ接続にして、電力ケーブルの着脱を容易にしたものがある。
特開2012−146931号公報
しかしながら、太陽電池装置に接続される電力ケーブルを電力変換装置のコネクタから外しても、当該電力変換装置のコネクタ内に設けられた電極を視認することが困難であることがあり、絶縁抵抗試験を実施する際の作業性が低下することがあった。
本発明は、上記事情に鑑みてなされたものであり、太陽光発電システムの絶縁抵抗試験を実施する際の保守性を高めることが可能な絶縁抵抗試験支援装置及び絶縁抵抗測定方法を提供することを目的とする。
(1)上記課題を解決するため、本発明の一態様は、非接地型の太陽電池装置と、前記太陽電池装置に接続される電力変換装置とを備える太陽光発電システムの試験対象範囲の絶縁抵抗試験について、試験電圧を出力する絶縁抵抗計を用いて前記試験対象範囲の絶縁抵抗を試験する際に、前記絶縁抵抗の試験に関する試験作業を支援する絶縁抵抗試験支援装置であって、前記電力変換装置は、筐体内に設けられている電力変換器本体と、第1太陽電池装置に接続される第1電力ケーブルには第1プラグが設けられ、前記第1プラグが接続される第1入力端子と、第2太陽電池装置に接続される第2電力ケーブルには第2プラグが設けられ、前記第2プラグが接続される第2入力端子と、前記第1入力端子と前記第2入力端子とを前記電力変換装置の筐体の内部で接続する第1接続導体と、前記第1接続導体を、前記電力変換器本体の入力側に接続する第2接続導体と、前記第2接続導体に設けられ、少なくとも絶縁抵抗試験が実施される際に前記第1接続導体と前記電力変換器本体の入力側との間を電気的に遮断するスイッチと、を備え、第1端部に、前記第1入力端子に嵌合可能な接続プラグが設けられている第1接続ケーブルと、前記第1接続ケーブルの第2端部が電気的に接続される端子と、前記絶縁抵抗計と前記端子とに接続され、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を、前記端子を介して前記第1入力端子に印加可能な試験端子と、を備え、前記絶縁抵抗計と前記試験対象範囲との間に配置される。
(2)また、絶縁抵抗試験支援装置において、前記第1入力端子は、前記電力変換装置が稼働可能な状態に配置された場合に、前記電力変換装置の筐体の下部に設けられ、前記接続プラグが接続され、
前記電力変換装置の筐体の下部に設けられ、前記接続プラグが接続され、前記第1接続ケーブルの長さが、前記電力変換装置の筐体の形を直方体に近似して、前記直方体の辺のうち、最も短い辺の長さよりも長い。
(3)また、絶縁抵抗試験支援装置は、箱状の支持体をさらに備え、前記試験端子は、前記第1入力端子に前記接続プラグを接続した状態にある前記支持体の上面又は側面に配置される。
(4)また、本発明の一態様の絶縁抵抗測定方法は、非接地型の太陽電池装置と、前記太陽電池装置に接続される電力変換装置とを備える太陽光発電システムの試験対象範囲について、試験電圧を出力する絶縁抵抗計を用いて前記試験対象範囲の絶縁抵抗を試験絶縁抵抗測定方法であって、前記電力変換装置は、筐体内に設けられている電力変換器本体と、第1太陽電池装置に接続される第1電力ケーブルには第1プラグが設けられ、前記第1プラグが接続される第1入力端子と、第2太陽電池装置に接続される第2電力ケーブルには第2プラグが設けられ、前記第2プラグが接続される第2入力端子と、前記第1入力端子と前記第2入力端子とを前記電力変換装置の筐体の内部で接続する第1接続導体と、前記第1接続導体を、前記電力変換器本体の入力側に接続する第2接続導体と、前記第2接続導体に設けられ、少なくとも絶縁抵抗試験が実施される際に前記第1接続導体と前記電力変換器本体の入力側との間を電気的に遮断するスイッチと、を備え、第1接続ケーブルの第1端部には前記第1入力端子に嵌合可能な接続プラグが設けられ、前記接続プラグを前記第1入力端子に接続し、前記第1接続ケーブルの第2端部に電気的に接続される試験端子と接地極との間に、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を印加する過程、を含む絶縁抵抗測定方法である。
(5)また、本発明の一態様の絶縁抵抗測定方法は、非接地型の太陽電池装置と、前記太陽電池装置に接続される電力変換装置とを備える太陽光発電システムの絶縁抵抗測定方法であって、前記電力変換装置は、筐体内に設けられている電力変換器本体と、第1太陽電池装置に接続される第1電力ケーブルには第1プラグが設けられ、前記第1プラグが接続される第1入力端子と、第2太陽電池装置に接続される第2電力ケーブルには第2プラグが設けられ、前記第2プラグが接続される第2入力端子と、前記第1入力端子と前記第2入力端子とを前記電力変換装置の筐体の内部で接続する第1接続導体と、前記第1接続導体を、前記電力変換器本体の入力側に接続する第2接続導体と、前記第2接続導体に設けられ、少なくとも絶縁抵抗試験が実施される際に前記第1接続導体と前記電力変換器本体の入力側との間を電気的に遮断するスイッチと、を備え、第1接続ケーブルの第1端部に設けられた第1接続コネクタを前記第1入力端子に接続し、前記第1接続ケーブルの第2端部に電気的に接続される試験端子を俯瞰可能な位置に配置して、前記配置した後に、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を印加する過程、を含む絶縁抵抗測定方法である。
本発明の各態様によれば、太陽光発電システムの絶縁抵抗試験を実施する際の保守性を高めることを可能にする絶縁抵抗試験支援装置及び絶縁抵抗測定方法を提供することができる。
実施形態の絶縁抵抗試験支援装置を適用する太陽光発電システムの概略構成図である。 実施形態の電力変換装置を説明するための図である。 実施形態の絶縁抵抗試験の際の太陽光発電システム1の構成図である。 実施形態の第1変形例における絶縁抵抗試験の際の太陽光発電システム1の構成図である。 実施形態の絶縁抵抗試験の概略手順を示すフローチャートである。 実施形態の絶縁抵抗試験の手順を示すフローチャートである。 実施形態の第2変形例の絶縁抵抗試験支援装置10の配置について説明するための図である。
以下、図面を参照して本発明の一実施形態について説明する。
実施形態における太陽電池装置は、非接地型の太陽電池パネル、太陽電池ストリング、太陽電池アレイなどを代表する。実施形態において「接続される」とは、電気的に接続されることを含む。実施形態の絶縁抵抗試験は、低電圧配電システム(直流の配電系統で電源が切断されている電路及び機器等)に適用される絶縁抵抗計を用いた絶縁測定を、太陽電池装置とその電路に対して適用した試験のことである。実施形態におけるスイッチとは、電気的な導通状態と非導通状態とを切り替えるものであればよく、例えば、機械的接点を有するのであってもよく半導体スイッチであってもよい、さらには非導通状態に代えて、所定値以上にインピーダンスが高い状態であってもよい。
図1は、実施形態の絶縁抵抗試験支援装置を適用する太陽光発電システムの概略構成図である。図1に示す太陽光発電システム1は、太陽電池装置2と、電力変換装置3とを備える。図に示す太陽電池装置2は、太陽電池装置21と、太陽電池装置22と、太陽電池装置23とを含む。以下の説明において、太陽電池装置21と、太陽電池装置22と、太陽電池装置23とを纏めて説明する場合には、単に太陽電池装置2という。太陽電池装置21は、第1太陽電池装置の一例であり、太陽電池装置22は、第2太陽電池装置の一例である。
太陽電池装置2は、電力ケーブルによって電力変換装置3に接続される。電力変換装置3は、太陽電池装置2から供給される直流電力を交流電力に変換する。上記のように太陽光発電システム1は、太陽電池装置2が発電した直流電力を電力変換装置3に収集して、電力変換装置3によって変換された交流電力を電力系統側に出力する。
例えば、後述の図3Aに示すように、太陽電池装置21は、正極側の電力ケーブルL21Pと負極側の電力ケーブルL21Nとによって電力変換装置3に接続される。太陽電池装置22についても同様に、電力ケーブルL22PとL22Nとによって電力変換装置3に接続される。太陽電池装置23についても同様に、電力ケーブルL23PとL23Nとによって電力変換装置3に接続される。上記の各電源ケーブルは、絶縁抵抗試験の試験電圧を超える耐絶縁性を有する。
実施形態の太陽光発電システム1は、例えば、地表又は建物の屋上などに配置される。この場合、太陽電池装置2は、地表等に設けられた架台TREの上に配置され、架台TREに固定されている。電力変換装置3は、架台TREの支柱、筋交い等に取り付けられている。例えば、太陽電池装置2は、受光面が上側になるように配置されている。太陽電池装置2の受光面の高さは、ユーザUからY軸方向に遠くなるほど低く、ユーザUに近くなるほど高くなり、ユーザUに対して近端側ではユーザUが見上げるほどの高さになっている。
太陽電池装置2と電力変換装置3の配置関係により、ユーザUは電力変換装置3に係る作業を太陽電池装置2の下で行うことが必要になることがある。図に示す太陽光発電システム1は、上記の一例である。図中のX,Y,Zは、3次元座標の軸を示す。なお、図中のケーブルの表記を一部省略している。
図2は、実施形態の電力変換装置を説明するための図である。図2に示す図は、標準的な方法で据え付けられた電力変換装置3を斜め下から見上げた状態を示すものである。
電力変換装置3の筐体3Cは、絶縁性を有する樹脂などで形成されており、また、単独で防水性(防雨)を有する。筐体3Cは、その内部に電力変換装置本体を収納する。
例えば、筐体3Cは、略直方体に形成され。太陽電池装置2及び電力系統との電気的な接続はコネクタで接続するように構成される。各コネクタは、筐体3Cの1つの面3Fに設けられている。電力変換装置3を標準的な方法で稼働可能な状態に配置すると、面3F(図1)が、筐体3Cの下側(Z軸の負の方向)に配置される。
面3Fに、正極給電線用のコネクタCN1PとCN2PとCN3Pと、負極給電線用のコネクタCN1NとCN2NとCN3Nとがそれぞれ設けられている。コネクタCN1PとコネクタCN1N、CN2PとCN2N、CN3PとCN3Nは、それぞれが正極と負極の対になっている。
例えば、電力ケーブルL21P(第1電力ケーブル)の一端は、太陽電池装置21の正極に接続される。電力ケーブルL21Pの他端にはプラグP21P(第1プラグ)が設けられている。プラグP21Pは、コネクタCN1Pに接続される。これにより、太陽電池装置21の正極が、電力ケーブルL21Pを介してコネクタCN1Pに接続される。
電力ケーブルL21Nの一端は、太陽電池装置21の負極に接続される。電力ケーブルL21Nの他端にはプラグP21Nが設けられている。プラグP21Nは、コネクタCN1Nに接続される。これにより、太陽電池装置21の負極が、電力ケーブルL21Nを介してコネクタCN1Nに接続される。上記により、太陽電池装置21からの直流電力は、コネクタCN1PとコネクタCN1Nを介して、電力変換装置3に供給される。
電力ケーブルL22P(第2電力ケーブル)の一端は、太陽電池装置22の正極に接続される。電力ケーブルL22Pの他端にはプラグP22P(第2プラグ)が設けられている。プラグP22Pは、コネクタCN2Pに接続される。これにより、太陽電池装置22の正極が、電力ケーブルL22Pを介してコネクタCN2Pに接続される。
電力ケーブルL22Nの一端は、太陽電池装置22の負極に接続される。電力ケーブルL22Nの他端にはプラグP22Nが設けられている。プラグP22Nは、コネクタCN2Nに接続される。これにより、太陽電池装置22の負極が、電力ケーブルL22Nを介してコネクタCN2Nに接続される。上記により、太陽電池装置22からの直流電力は、コネクタCN2PとコネクタCN2Nを介して、電力変換装置3に供給される。
電力ケーブルL23P(第2電力ケーブル)の一端は、太陽電池装置22の正極に接続される。電力ケーブルL23Pの他端にはプラグP23P(第2プラグ)が設けられている。プラグP23Pは、コネクタCN3Pに接続される。これにより、太陽電池装置23の正極が、電力ケーブルL23Pを介してコネクタCN3Pに接続される。
電力ケーブルL23Nの一端は、太陽電池装置23の負極に接続される。電力ケーブルL23Nの他端にはプラグP23Nが設けられている。プラグP23Nは、コネクタCN3Nに接続される。これにより、太陽電池装置23の負極が、電力ケーブルL23Nを介してコネクタCN3Nに接続される。上記により、太陽電池装置23からの直流電力は、コネクタCN3PとコネクタCN3Nを介して、電力変換装置3に供給される。
なお、図に示す状態は、コネクタCN1Pから、電力ケーブルL22P(第2電力ケーブル)の端部に設けられえたプラグP21Pを外した状態を示している。上記の正極用のプラグP21PとプラグP22PとプラグP23Pは、少なくとも同形状に形成されている。上記の負極用のプラグP21NとプラグP22NとプラグP23Nは、少なくとも同形状に形成されている。プラグP21PとプラグP22PとプラグP23P、及びプラグP21NとプラグP22NとプラグP23Nは、同形状であってもよい。なお、正極用の電力ケーブルと負極用の電力ケーブルにおいて、コネクタの形状を変えることを制限しない。
なお、上記のコネクタCN1Pが、第1入力端子の一例であり、コネクタCN2Pが、第2入力端子の一例である。上記の通り、コネクタCN1Pなどの各コネクタは、電力変換装置3が稼働可能な状態で配置されると、電力変換装置3の筐体の下部に設けられることになる。
さらに、面3Fには、電力系統に電力変換装置3を接続するための電力ケーブルL4を接続するためのコネクタCN4と、接地用端子ETが設けられている。
図3Aは、実施形態の絶縁抵抗試験の際の太陽光発電システム1の構成図である。
図3Aに示す太陽光発電システム1には、太陽電池装置2と、電力変換装置3とのほかに、絶縁抵抗計4と、絶縁抵抗試験支援装置10とが含まれる。
電力変換装置3は、電気的な構成として、少なくとも、第1接続導体31と、第2接続導体32と、電力変換器本体33と、スイッチ34とを備える。
第1接続導体31は、正極側の第1接続導体31Pと、負極側の第1接続導体31Nとを備える。第2接続導体32は、正極側の第2接続導体32Pと、負極側の第2接続導体32Nとを備える。
第1接続導体31Pは、コネクタCN1PとコネクタCN2PとコネクタCN3Pとを電力変換装置3の筐体3Cの内部で接続する。第2接続導体32Pは、第1接続導体31Pを、電力変換器本体33の入力側の正極に接続する。
第1接続導体31Nは、コネクタCN1NとコネクタCN2NとコネクタCN3Nとを電力変換装置3の筐体3Cの内部で接続する。第2接続導体32Nは、第1接続導体31Nを、電力変換器本体33の入力側の負極に接続する。
電力変換器本体33は、入力側に供給される直流電力を交流電力に変換して、コネクタCN4を介して電力系統に出力する。電力変換器本体33は、電力系統に連系可能である。電力変換器本体33の交流側は、中性点接地付き3相交流であって良い。
スイッチ34は、第2接続導体32に設けられた過電流遮断器(ブレーカ)である。スイッチ34は、通常時には導通状態に保持される。少なくとも絶縁抵抗試験が実施される際に、スイッチ34は、第1接続導体31Pと電力変換器本体33の入力側の正極との間と、第1接続導体31Nと電力変換器本体33の入力側の負極との間と、をそれぞれ電気的に遮断する。ユーザの操作によってスイッチ34を開放することにより、筐体3Cの内部で、コネクタCN1PとコネクタCN2PとコネクタCN3Pと、コネクタCN1NとコネクタCN2NとコネクタCN3Nと、電力変換器本体33のそれぞれが、絶縁された状態になり、絶縁抵抗試験の実施が可能になる。
なお、絶縁抵抗試験を終えて、ユーザUは、スイッチ34を導通状態に復帰させて、電力変換装置3による電力変換が可能な状態にする。
絶縁抵抗計4は、対象試験箇所の試験電圧を出力して絶縁抵抗試験を実施する。例えば、試験電圧は、対象試験箇所の大地に対する電圧に基づいて規定される。絶縁抵抗計4には、周知の絶縁抵抗計を適用可能である。
絶縁抵抗試験支援装置10は、少なくとも端子11と、試験端子12と、遮断器13と、接地側試験端子14と、接地端子19と、ケーブルL11(第1接続ケーブル)とを備える。
端子11は、絶縁抵抗試験の際に電力変換装置3に接続される。例えば、端子11には、ケーブルL11の一端が接続される。ケーブルL11の他端には、ケーブルL11を電力変換装置3のコネクタCN1Pなどに接続するための接続プラグP11が設けられている。この接続プラグP11のコネクタCN1P側の勘合部は、前述のプラグP21PのコネクタCN1P側勘合部と同形状であるとよい。絶縁抵抗試験支援装置10は、ケーブルL11を介して電力変換装置3に接続される。
試験端子12は、絶縁抵抗計4の電極が接続される端子である。例えば、試験端子12は、絶縁抵抗計4の電極を係止可能なるターミナルであってもよい。例えば、試験端子12は、筐体10C(支持体)の面に配置される。絶縁抵抗試験の際に、試験端子12が配置された面が筐体10Cの上面又は側面になるように、絶縁抵抗試験支援装置10は形成されていることにより、ユーザUは、試験中の試験端子12の状態などを俯瞰することが可能になり、立位の姿勢であっても試験端子12の視認が容易になる。
遮断器13は、端子11と試験端子12との間に設けられ、ユーザの操作により、端子11と試験端子12との間の電気的な接続を遮断し、また接続することができる。ユーザUは、太陽電池装置2の絶縁抵抗試験の準備ができた段階で、遮断器13を導通状態にする。ユーザUは、絶縁抵抗試験を終えた後に、遮断器13を遮断状態にする。
接地側試験端子14は、絶縁抵抗計4を用いた絶縁抵抗試験の際に試験端子12と対にして利用される接地極側の端子である。接地端子19は、接地側試験端子14に接続され、接地側試験端子14を大地に接続する。接地端子19は、例えば、電力変換装置3の接地用端子ETに接続される。なお、電力変換装置3の接地用端子ETは、電力変換装置3に適した条件で接地されている。
絶縁抵抗試験支援装置10は、さらに端子15と、測定端子16と、遮断器17と、ケーブルL15とを備えてもよい。
端子15は、太陽電池装置2の絶縁抵抗試験の際に太陽電池装置2に接続される。端子11には、ケーブルL15の一端が接続される。ケーブルL15の他端には、例えば、電力ケーブルL22PのプラグP21Pに接続するための接続コネクタCN15が設けられている。この接続コネクタCN15は、前述のコネクタCN1Pと同形状であってよい。絶縁抵抗試験支援装置10は、ケーブルL15を介して、何れかの太陽電池装置2に接続される。
測定端子16は、試験端子12と同様に絶縁抵抗計4の電極が接続される端子である。測定端子16の形状は、試験端子12の場合と同様であって良い。
遮断器17は、端子15と測定端子16との間に設けられ、ユーザの操作により、端子15と測定端子16との間の電気的な接続を遮断し、また接続することができる。ユーザUは、太陽電池装置2の絶縁抵抗試験の準備ができた段階で、遮断器17を導通状態にする。ユーザUは、絶縁抵抗試験の試験を終えた後に、遮断器17を遮断状態にする。
上記の絶縁抵抗試験支援装置10を用いた絶縁抵抗試験について説明する。
図4は、実施形態の絶縁抵抗試験の概略手順を示すフローチャートである。
ユーザUは、電力変換装置3の動作を停止させる(ステップSa1)。ユーザUは、電力変換装置3のスイッチ34と、電力変換装置3が接続されている配線用遮断器(不図示)とを開放する(ステップSa2)。
次に、ユーザUは、図3Aに示すように絶縁抵抗試験支援装置10を太陽電池装置21と電力変換装置3の間に結線にして、電力変換装置3に試験電圧を直接印加する第1の絶縁抵抗試験と、太陽電池装置21に試験電圧を直接印加する第2の絶縁抵抗試験とを実施する(ステップSa3)。なお、ステップSa3の手順のより詳しい説明を後述する。
次に、絶縁抵抗計4は、第1の絶縁抵抗試験の結果と、第2の絶縁抵抗試験の結果とをそれぞれ表示する(ステップSa4)。
ユーザUは、第1の絶縁抵抗試験の結果と、第2の絶縁抵抗試験の結果とに基づいて、絶縁抵抗太陽光発電システム1の直流側の試験範囲TGの絶縁抵抗が基準値以上であることについて判定する(ステップSa5)。上記の基準値は、試験対象箇所の使用電圧により規定される。
ここで、ユーザUは、第1の絶縁抵抗試験の結果と第2の絶縁抵抗試験の結果の何れかに、異常が検出された場合に、太陽光発電システム1の直流側の試験範囲TGに絶縁抵抗に異常があると判定して(ステップSa6)、試験を終える。
或いは、ユーザUは、第1の絶縁抵抗試験の結果と第2の絶縁抵抗試験の結果の双方に、異常が検出されなかった場合に、太陽光発電システム1の直流側の試験範囲TGに絶縁抵抗に異常がないと判定して(ステップSa7)、試験を終える。
次に、図3Aと図4と図5を参照して、より具体的な絶縁抵抗試験の手順について説明する。図5は、実施形態の絶縁抵抗試験の手順を示すフローチャートである。
太陽光発電システム1において、ユーザUは、直流側の絶縁抵抗試験として、電力変換装置3の直流入力側の第1の絶縁抵抗試験と、太陽電池装置2を直接的に試験する第2の絶縁抵抗試験の2通りの試験を実施する。絶縁抵抗試験支援装置10は、これらの試験の実施を支援する。
前述の図4のステップSa1とステップSa2を終えた後に、ユーザUは、必要により、正極側のケーブルを電力変換装置3から外して絶縁抵抗試験を実施するための構成(図3A)に接続を変更する(ステップSa31)。例えば、太陽電池装置21の正極にあたるプラグP21Pを電力変換装置3のコネクタCN1Pから外し、太陽電池装置22と太陽電池装置23を電力変換装置3に接続したままにする。これにより、ケーブルL11が、電力変換装置3から抜去された状態になる。さらに、ユーザUは、ケーブルL11の接続プラグP11を、絶縁抵抗試験支援装置10のコネクタCN1Pに接続する。ケーブルL11の接続プラグP11に、絶縁抵抗試験支援装置10のコネクタCN15を接続する。このステップSa31は、必要がなければ省略してもよい。
次に、第1の絶縁抵抗試験を実施する(ステップSa32)。なお、第1の絶縁抵抗試験の対象は、試験端子12を介して接続される範囲である。
具体的には、第1の絶縁抵抗試験の対象には、電力変換装置3の直流入力側と、電力変換装置3に電力ケーブルが接続されている太陽電池装置2の双方が含まれる。この状態で、電力変換装置3の直流入力側の絶縁抵抗試験を実施すると、電力変換装置3の筐体3Cの内部で電気的に接続されているため、電力変換装置3と太陽電池装置22と太陽電池装置23の正極側に、絶縁抵抗試験の試験電圧を掛けることができる。
そのため、上記の範囲に絶縁抵抗が低下している障害箇所の有無を、1回の試験で識別できる。上記の試験方法であれば、電力ケーブルの接続を1箇所変えるだけで、電力変換装置3に収容される太陽電池装置2のうちから1つを除き、互いが並列に接続されている太陽電池装置2を、纏めて試験することができる。
ステップSa32における第1の絶縁抵抗試験の結果について判定する(ステップSa33)。
第1の絶縁抵抗試験の結果に異常が検出された場合に、測定対象範囲内の絶縁抵抗に異常があると判定して、さらに測定対象範囲内の障害発生個所を個別に特定するための解析を実施する(ステップSa34)。この個別の解析のための手法は、個々の太陽電池装置20に対する一般的な絶縁抵抗試験の手法を適用してよい。
ステップSa32における第1の絶縁抵抗試験の結果に異常が検出されなかった場合に、次のステップSa36に進める(ステップSa35)。
次に、第2の絶縁抵抗試験を実施する(ステップSa36)。第2の絶縁抵抗試験の対象は、測定端子16を介して接続される範囲になる。
具体的には、第2の絶縁抵抗試験の対象には、電力変換装置3から電力ケーブルの一方が外されている太陽電池装置21が含まれる。この状態で、太陽電池装置21の絶縁抵抗試験を実施すると、太陽電池装置21の正極側に、絶縁抵抗試験の試験電圧を掛けることができる。
第2の絶縁抵抗試験の結果に異常が検出された場合に、測定対象範囲内の絶縁抵抗に異常があると判定して、さらに測定対象範囲内の障害発生個所を個別に特定するための解析を実施して(ステップSa38)、処理を終える。この個別の解析のための手法は、個々の太陽電池装置20に対する一般的な絶縁抵抗試験の手法を適用してよい。
ステップSa36における第2の絶縁抵抗試験の結果に異常が検出されなかった場合に、処理を終える(ステップSa39)。
上記のように、太陽電池装置21の正極側の範囲に絶縁抵抗が低下している障害箇所の有無を識別できる。上記の試験方法であれば、上記の第1の絶縁抵抗試験において試験できなかった太陽電池装置21の正極側を試験することができる。
(実施形態の第1変形例)
実施形態の第1変形例について説明する。
実施形態において、正極側に規定の電圧を掛けて絶縁抵抗を測定する手順について例示したものであるが、これに代えて本変形例では、負極側についても同様の手法で負極側に規定の電圧を掛けて絶縁抵抗を測定する手順について説明する。
図3Bは、実施形態の変形例における絶縁抵抗試験の際の太陽光発電システム1の構成図である。図3Bに示す負極側を試験する場合と、図3Aの正極側を試験する場合との違いは、絶縁抵抗試験支援装置10の接続先が異なる。前述の正極側を試験する場合(図3A)には、正極側の電力ケーブルL21Pを電力変換装置3のコネクタCN1Pから外して、そこに絶縁抵抗試験支援装置10を接続した。これに代えて、負極側を試験する場合(図3B)には、例えば、負極側の電力ケーブルL23Nを電力変換装置3のコネクタCN3Nから外して、そこに絶縁抵抗試験支援装置10のケーブルL11をコネクタCN3Nに接続する。
同様に、太陽電池装置21に代えて、太陽電池装置23の負極側のプラグP23Nに、絶縁抵抗試験支援装置10の接続ケーブルL15を接続する。
上記は、接続先の変更について示したものであるが、試験の手順は、前述の図4と同様の手順で実施するとよい。その際、試験対象と極が前述の図1に示す事例と異なる。そのため、試験時の電流が太陽電池装置の順方向電流の向きに流れるように、試験電圧の極性を図1に示す事例の試験電圧の極性と逆にするとよい。
(実施形態の第2変形例)
実施形態の第2変形例として、図6を参照して、絶縁抵抗試験支援装置10の配置について説明する。図6は、実施形態の第2変形例の絶縁抵抗試験支援装置10の配置について説明するための図である。
絶縁抵抗試験支援装置10の配置は、ケーブルL11の長さによって制限される。電力変換装置3の筐体3Cの形を直方体に近似して、その直方体の辺のうち、最も短い辺の長さよりもケーブルL11の長さを長くするとよい。
図6(a)に、ケーブルL11の長さが比較的短い場合を例示する。
例えば、据え付けた状態で筐体3Cを直方体に近似して、直方体の奥行方向(Y軸の正方向)が、各辺の中で最も短い辺であったと仮定する。より具体的な長さの一例は、10センチメートル程度であると仮定する。この数値はあくまで一例であり、筐体3Cの大きさに基づいて規定してよい。
ケーブルL11の長さが上記の奥行と同じ長さであれば、筐体3Cの下部にあたる面3Fから、上記の奥行と同じ長さほど真下に下がった位置に絶縁抵抗試験支援装置10が位置することになる。この状態であっても、ユーザUが筐体3Cの正面から適度な距離隔てて立てば、屈んだ姿勢をとることなく、絶縁抵抗試験支援装置10を視認できる。上記において筐体3Cの正面とは、例えば、ユーザUに向かう面のことである。
実際には、図6(b)に示すように、複数の電力ケーブルが筐体3Cに接続されており、これらの電力ケーブルよりも、ユーザ側(Y軸が負の方向)に絶縁抵抗試験支援装置10を配置することができるので、さらに絶縁抵抗試験支援装置10の視認性が高まる。
上記の例は、単に筐体3Cの下部に吊り下げた場合を例示したものであるが、ケーブルL11の長さをさらに長くすることにより、筐体3Cの横方向(X軸方向)や、面3Fの高さよりも高い位置に絶縁抵抗試験支援装置10を配置することが可能になるため、作業性、安全性を配慮して適した長さにケーブルL11の長さを定めるとよい。例えば、ケーブルL11の長さを、ユーザUが絶縁抵抗計4と絶縁抵抗試験支援装置10とを手元に配置可能な長さにすることにより、ユーザUが無理な作業姿勢をとることなく作業することでき、作業性が改善できる。
なお、図1に示した太陽光発電システム1における太陽電池装置2と電力変換装置3の配置は、一例を示すものであり、これに制限されず、太陽電池装置2が、建物の壁面、屋根などに設けられていてもよく、また、電力変換装置3が建物の壁面などに配置されていてもよい。
上記の実施形態によれば、絶縁抵抗試験支援装置10は、非接地型の太陽電池装置2と、前記太陽電池装置に接続される電力変換装置3とを備える太陽光発電システム1の試験対象範囲の絶縁抵抗試験に適用される。太陽光発電システム1の試験対象範囲について、試験電圧を出力する絶縁抵抗計4を用いて試験対象範囲の絶縁抵抗を試験する際に、絶縁抵抗試験支援装置10は、絶縁抵抗の試験に関する試験作業を支援する。
絶縁抵抗試験支援装置10は、ケーブルL11と、端子11と、試験端子12と、を少なくとも備える。電力変換装置3に接続するケーブルL11の第1端部には、電力変換装置3のコネクタCN1Pに嵌合可能な接続プラグP1Pが設けられている。端子11には、ケーブルL11の第2端部が電気的に接続される。試験端子12には、絶縁抵抗計4と端子11とが接続される。試験端子12は、太陽電池装置22と電力ケーブルL22Pの絶縁抵抗試験の試験電圧を、端子11を介してコネクタCN1Pに印加可能である。絶縁抵抗試験支援装置10は、絶縁抵抗計4と試験対象範囲との間に配置されることにより、絶縁抵抗計4から出力される試験電圧を試験対象範囲の回路に掛けることができ、太陽光発電システムの絶縁抵抗試験を実施する際の保守性を高めることが可能になる。
また、コネクタCN1Pは、電力変換装置3が稼働可能な状態に配置された場合に、電力変換装置3の筐体3Cの下部にあたる面3Fに設けられており、接続プラグP1Pが接続される。電力変換装置3の筐体3Cの形を直方体に近似すると、第1接続ケーブルL11の長さを、上記の直方体の辺のうち最も短い辺の長さよりも長くするとよい。これにより、絶縁抵抗試験支援装置1を、試験の実施が容易な位置に配置することができる。
また、絶縁抵抗試験支援装置1が箱状の筐体10C(支持体)をさらに備えてもよい。この場合、試験端子12と試験端子15は、コネクタCN1Pに接続プラグP1Pを接続した状態にある筐体10Cの上面又は側面に配置されるとよい。
また、上記のように絶縁抵抗試験支援装置10は、電力変換装置3のコネクタCN1Pに嵌合可能な接続プラグP1PをケーブルL11に設けていることにより、試験中に電力変換装置3のコネクタCN1Pにあてるテスタ棒とテスタ棒が接続されるケーブルを保持することが不要になり、屈んだ姿勢で試験することがない。
また、電力変換装置3のコネクタCN1Pから抜去したケーブルL21Pを、絶縁抵抗試験支援装置10に接続されるケーブルL15に接続することにより、ケーブルL21Pの端部(プラグP21P)が、地面に落ちることを防ぐことができ、試験中に汚損しないように養生する手間を削減することができる。
絶縁抵抗試験支援装置10は、遮断器13と遮断器17を備えており、屋外に設置された太陽電池装置2が発電状態にあり、ケーブルL21PとケーブルL21Nの間に電位差が生じていても、試験端子12と測定端子16を無電圧にして絶縁抵抗計4を接続する作業を実施することができるため、作業中の安全性を向上させることができ、感電事故の危険性を低減できる。
電力変換装置3の種類、コネクタCN1Pなどの形状の違いが生じる場合に対しても、絶縁抵抗試験支援装置10に設けたケーブルL11とケーブルL15を交換容易にすることにより適用が可能になる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
絶縁抵抗試験の際に、電力変換装置3から外す電力ケーブルを1本にした事例について説明したが、これに制限されることなく、これに代えて、太陽電池装置2の正極と負極の1対の電力ケーブルを外して絶縁抵抗試験を実施してもよい。
1…太陽光発電システム、2…太陽電池装置、3…電力変換装置、31…第1接続導体、32…第2接続導体、33…電力変換器本体、34…スイッチ、4…絶縁抵抗計、10…絶縁抵抗試験支援装置、11…端子、12…試験端子、13…遮断器、14…接地側試験端子、15…端子、16…測定端子、17…遮断器、19…接地端子、L11…ケーブル(第1接続ケーブル)、L15…ケーブル(第2接続ケーブル)

Claims (5)

  1. 非接地型の太陽電池装置と、前記太陽電池装置に接続される電力変換装置とを備える太陽光発電システムの試験対象範囲の絶縁抵抗試験について、試験電圧を出力する絶縁抵抗計を用いて前記試験対象範囲の絶縁抵抗を試験する際に、前記絶縁抵抗の試験に関する試験作業を支援する絶縁抵抗試験支援装置であって、
    前記電力変換装置は、
    筐体内に設けられている電力変換器本体と、
    第1太陽電池装置に接続される第1電力ケーブルには第1プラグが設けられ、前記第1プラグが接続される第1入力端子と、
    第2太陽電池装置に接続される第2電力ケーブルには第2プラグが設けられ、前記第2プラグが接続される第2入力端子と、
    前記第1入力端子と前記第2入力端子とを前記電力変換装置の筐体の内部で接続する第1接続導体と、
    前記第1接続導体を、前記電力変換器本体の入力側に接続する第2接続導体と、
    前記第2接続導体に設けられ、少なくとも絶縁抵抗試験が実施される際に前記第1接続導体と前記電力変換器本体の入力側との間を電気的に遮断するスイッチと、
    を備え、
    第1端部に、前記第1入力端子に嵌合可能な接続プラグが設けられている第1接続ケーブルと、
    前記第1接続ケーブルの第2端部が電気的に接続される端子と、
    前記絶縁抵抗計と前記端子とに接続され、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を、前記端子を介して前記第1入力端子に印加可能な試験端子と、
    を備え、
    前記絶縁抵抗計と前記試験対象範囲との間に配置される
    絶縁抵抗試験支援装置。
  2. 前記第1入力端子は、前記電力変換装置が稼働可能な状態に配置された場合に、前記電力変換装置の筐体の下部に設けられ、前記接続プラグが接続され、
    前記電力変換装置の筐体の形を直方体に近似すると、前記第1接続ケーブルの長さが、前記直方体の辺のうち最も短い辺の長さよりも長い、
    請求項1に記載の絶縁抵抗試験支援装置。
  3. 箱状の支持体をさらに備え、
    前記試験端子は、
    前記第1入力端子に前記接続プラグを接続した状態にある前記支持体の上面又は側面に配置される、
    請求項1に記載の絶縁抵抗試験支援装置。
  4. 非接地型の太陽電池装置と、前記太陽電池装置に接続される電力変換装置とを備える太陽光発電システムの試験対象範囲について、試験電圧を出力する絶縁抵抗計を用いて前記試験対象範囲の絶縁抵抗を試験絶縁抵抗測定方法であって、
    前記電力変換装置は、
    筐体内に設けられている電力変換器本体と、
    第1太陽電池装置に接続される第1電力ケーブルには第1プラグが設けられ、前記第1プラグが接続される第1入力端子と、
    第2太陽電池装置に接続される第2電力ケーブルには第2プラグが設けられ、前記第2プラグが接続される第2入力端子と、
    前記第1入力端子と前記第2入力端子とを前記電力変換装置の筐体の内部で接続する第1接続導体と、
    前記第1接続導体を、前記電力変換器本体の入力側に接続する第2接続導体と、
    前記第2接続導体に設けられ、少なくとも絶縁抵抗試験が実施される際に前記第1接続導体と前記電力変換器本体の入力側との間を電気的に遮断するスイッチと、
    を備え、
    第1接続ケーブルの第1端部には前記第1入力端子に嵌合可能な接続プラグが設けられ、前記接続プラグを前記第1入力端子に接続し、
    前記第1接続ケーブルの第2端部に電気的に接続される試験端子と接地極との間に、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を印加する過程、
    を含む絶縁抵抗測定方法。
  5. 非接地型の太陽電池装置と、前記太陽電池装置に接続される電力変換装置とを備える太陽光発電システムの絶縁抵抗測定方法であって、
    前記電力変換装置は、
    筐体内に設けられている電力変換器本体と、
    第1太陽電池装置に接続される第1電力ケーブルには第1プラグが設けられ、前記第1プラグが接続される第1入力端子と、
    第2太陽電池装置に接続される第2電力ケーブルには第2プラグが設けられ、前記第2プラグが接続される第2入力端子と、
    前記第1入力端子と前記第2入力端子とを前記電力変換装置の筐体の内部で接続する第1接続導体と、
    前記第1接続導体を、前記電力変換器本体の入力側に接続する第2接続導体と、
    前記第2接続導体に設けられ、少なくとも絶縁抵抗試験が実施される際に前記第1接続導体と前記電力変換器本体の入力側との間を電気的に遮断するスイッチと、
    を備え、
    第1接続ケーブルの第1端部に設けられた第1接続コネクタを前記第1入力端子に接続し、
    前記第1接続ケーブルの第2端部に電気的に接続される試験端子を俯瞰可能な位置に配置して、
    前記配置した後に、前記第2太陽電池装置と前記第2電力ケーブルの絶縁抵抗試験の試験電圧を印加する過程、
    を含む絶縁抵抗測定方法。
JP2018223797A 2018-11-29 2018-11-29 絶縁抵抗試験システム及び絶縁抵抗試験方法 Active JP7204450B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018223797A JP7204450B2 (ja) 2018-11-29 2018-11-29 絶縁抵抗試験システム及び絶縁抵抗試験方法
JP2022210060A JP7482983B2 (ja) 2018-11-29 2022-12-27 絶縁抵抗試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223797A JP7204450B2 (ja) 2018-11-29 2018-11-29 絶縁抵抗試験システム及び絶縁抵抗試験方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022210060A Division JP7482983B2 (ja) 2018-11-29 2022-12-27 絶縁抵抗試験方法

Publications (2)

Publication Number Publication Date
JP2020085778A true JP2020085778A (ja) 2020-06-04
JP7204450B2 JP7204450B2 (ja) 2023-01-16

Family

ID=70907639

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018223797A Active JP7204450B2 (ja) 2018-11-29 2018-11-29 絶縁抵抗試験システム及び絶縁抵抗試験方法
JP2022210060A Active JP7482983B2 (ja) 2018-11-29 2022-12-27 絶縁抵抗試験方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022210060A Active JP7482983B2 (ja) 2018-11-29 2022-12-27 絶縁抵抗試験方法

Country Status (1)

Country Link
JP (2) JP7204450B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146931A (ja) * 2011-01-14 2012-08-02 Kandenko Co Ltd 太陽電池モジュールの絶縁抵抗の測定方法及びその装置
JP2012168699A (ja) * 2011-02-14 2012-09-06 Panasonic Eco Solutions Switchgear Devices Co Ltd パワーコンディショナ
JP2013033827A (ja) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP2015005624A (ja) * 2013-06-20 2015-01-08 株式会社東芝 太陽光発電装置
JP2015025795A (ja) * 2013-06-20 2015-02-05 マルチ計測器株式会社 絶縁検査方法及び絶縁検査装置
JP2015531859A (ja) * 2012-08-03 2015-11-05 エスエムエー ソーラー テクノロジー エージー 漏洩電流および故障電流の分散型検知、ならびにストリング故障の検知
JP2016054612A (ja) * 2014-09-03 2016-04-14 オムロン株式会社 太陽光発電システムの検査装置および太陽光発電システムの検査方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819602B2 (ja) 2010-11-29 2015-11-24 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP5642031B2 (ja) 2011-08-01 2014-12-17 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
WO2015075821A1 (ja) 2013-11-22 2015-05-28 三菱電機株式会社 絶縁検出器及び電気機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146931A (ja) * 2011-01-14 2012-08-02 Kandenko Co Ltd 太陽電池モジュールの絶縁抵抗の測定方法及びその装置
JP2012168699A (ja) * 2011-02-14 2012-09-06 Panasonic Eco Solutions Switchgear Devices Co Ltd パワーコンディショナ
JP2013033827A (ja) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP2015531859A (ja) * 2012-08-03 2015-11-05 エスエムエー ソーラー テクノロジー エージー 漏洩電流および故障電流の分散型検知、ならびにストリング故障の検知
JP2015005624A (ja) * 2013-06-20 2015-01-08 株式会社東芝 太陽光発電装置
JP2015025795A (ja) * 2013-06-20 2015-02-05 マルチ計測器株式会社 絶縁検査方法及び絶縁検査装置
JP2016054612A (ja) * 2014-09-03 2016-04-14 オムロン株式会社 太陽光発電システムの検査装置および太陽光発電システムの検査方法

Also Published As

Publication number Publication date
JP7204450B2 (ja) 2023-01-16
JP2023029476A (ja) 2023-03-03
JP7482983B2 (ja) 2024-05-14

Similar Documents

Publication Publication Date Title
EP2325661A1 (en) Method of measuring earth ground resistance of a pylon using a single clamp
CN109564266A (zh) 通过使用负极继电器来测量电池组的绝缘电阻的装置和方法
CN102486496A (zh) 可克服继电保护误动的直流绝缘监测系统及方法
KR100918515B1 (ko) 단독접지의 접지저항을 측정하는 방법
JP5823741B2 (ja) 試験用コンセントアダプタ
EP2778693B1 (en) Apparatus to verify an electrically safe work condition
CN113608013A (zh) 一种非接触式用电检测装置及其检测方法
JP7204450B2 (ja) 絶縁抵抗試験システム及び絶縁抵抗試験方法
CN107422188B (zh) 一种直流接地极护臂混凝土的电阻率测量系统及方法
JP5883363B2 (ja) 点灯及び極性試験用電源装置
CN111537797B (zh) 一种变电站变压器不拆引线测量绝缘电阻的系统及其方法
CN105934859A (zh) 中性点接地式变压器及其方法和利用它的沉水防触电装置
JPH11163381A (ja) 太陽光発電装置の設置方法、及び保守点検方法
KR101358025B1 (ko) 전기적 연속성 평가 장치
KR200314282Y1 (ko) 지상설치용 케이블 접속함
CN205301435U (zh) 高压设备在线式绝缘检测系统
CN109633347A (zh) 一种绝缘工器具缺陷检测平台及检测方法
KR102545396B1 (ko) 유전정접 측정장치
CN104714098A (zh) 配电系统的绝缘阻抗测试装置
CN216053516U (zh) 一种tn-s用电规范光电演示装置
JP7456868B2 (ja) 接続体劣化診断装置及び接続体劣化診断方法
CN109270401A (zh) 一种用于电流电压回路二次线检查的试验装置及试验方法
CN216209706U (zh) 一种用于转子一点接地保护试验的辅助装置
CN103308799A (zh) 一种与gis连接的电缆线路参数测量的设备及方法
JP6517610B2 (ja) 電圧チェッカー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150