JP2020085704A - Multiaxis laser interference length measurer - Google Patents

Multiaxis laser interference length measurer Download PDF

Info

Publication number
JP2020085704A
JP2020085704A JP2018221928A JP2018221928A JP2020085704A JP 2020085704 A JP2020085704 A JP 2020085704A JP 2018221928 A JP2018221928 A JP 2018221928A JP 2018221928 A JP2018221928 A JP 2018221928A JP 2020085704 A JP2020085704 A JP 2020085704A
Authority
JP
Japan
Prior art keywords
measurement light
reference measurement
light
beam splitter
polarization beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018221928A
Other languages
Japanese (ja)
Other versions
JP7112947B2 (en
Inventor
渉 飯塚
Wataru Iizuka
渉 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2018221928A priority Critical patent/JP7112947B2/en
Publication of JP2020085704A publication Critical patent/JP2020085704A/en
Priority to JP2022117360A priority patent/JP7361166B2/en
Application granted granted Critical
Publication of JP7112947B2 publication Critical patent/JP7112947B2/en
Priority to JP2023168589A priority patent/JP2023171867A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To obtain a high-accuracy multiaxis laser interference length measurer with which alignment work is simple.SOLUTION: Provided is a multiaxis laser interference length measurer, comprising: a polarization beam splitter 21 for splitting the laser beam emitted from a light source 1 into a standard measurement beam 61 and a reference measurement beam 60; a half-mirror 41 for branching the split reference measurement beam 60 into a first reference measurement beam 62, a second reference measurement beam 63, ..., an n-th reference measurement beam; n+1 retroreflectors 51, 52, 53, ..., each reflecting the reference measurement beam 61 and the n reference measurement beams 62, 63, ..., and attached to a measurement unit and an interferometer, etc.; and n optical receivers 11, 12, ..., for photoelectrically converting respective interference signals obtained by branching the reference measurement beam 61 after reflection into n pieces and merging these with the n reference measurement beams 62, 63, ..., respectively.SELECTED DRAWING: Figure 1

Description

本発明は、多軸レーザ干渉測長器に関し、特に、NC工作機等の複数の軸に対する精度検査を行うレーザ測長器に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-axis laser interferometric length measuring device, and more particularly to a laser length measuring device for performing accuracy inspection on a plurality of axes of an NC machine tool or the like.

従来、レーザ干渉測長器は、超高精度・非接触測定・設置の簡便さといった特徴を生かし、超精密ステージの移動量測定や位置制御に数多く用いられている。そして、その応用範囲は、超精密加工機をはじめ、非球面形状測定器、超高精度三次元測定器などの超精密測定機器、電子ビーム・レーザビーム描画装置、ステッパー、ボンダー、ICハンドラ等の半導体製造装置に及んでいる。 Conventionally, laser interferometers have been widely used for measuring the amount of movement and position control of an ultra-precision stage by taking advantage of the features of ultra-high accuracy, non-contact measurement, and ease of installation. The range of application is ultra-precision machine tools, aspherical surface shape measuring instruments, ultra-precision measuring instruments such as ultra-high-precision three-dimensional measuring instruments, electron beam/laser beam drawing devices, steppers, bonders, IC handlers, etc. It covers semiconductor manufacturing equipment.

レーザ干渉測長器は、レーザ光の送光部と干渉光の受光部を備え、送光部から出射したレーザ光を反射するプレーンミラー、リトロリフレクタなどによる反射ターゲットと、これらの間に設置される干渉計である偏光ビームスプリッタとを基本構成として備えている。例えば、NC工作機械の移動距離を測定する際には、反射ターゲットが移動するテーブルや主軸などに固設される。 The laser interferometer is equipped with a laser light transmitter and a receiver for interference light, and is installed between a plane mirror that reflects the laser light emitted from the light transmitter, a reflection target such as a retroreflector, and the like. And a polarization beam splitter which is an interferometer as a basic configuration. For example, when measuring the moving distance of the NC machine tool, the reflection target is fixedly mounted on a moving table, a spindle or the like.

NC工作機械の動作方向は、例えば、x、y、zの3軸方向であり、各軸方向に向けて送光部となるレーザヘッドを固定し、レーザヘッドの光軸に一致させて主軸位置に干渉計を固定配置すると共に、これの延長上において移動テーブル上に反射ターゲットを固定配置する。つまり、アライメントと称する準備作業を必要とする。このアライメント作業は、時間が掛かり、測定軸が多くなるほど困難となる。また、ある軸の角度、長さを測定する場合、準備時間だけでなく、測定項目毎に取り替え時間が掛かったり、機材交換による取り付け位置のずれによる測定誤差を生じたり、する。 The operation direction of the NC machine tool is, for example, three-axis directions of x, y, and z. The laser head that serves as a light-transmitting part is fixed in each of the axial directions, and the main axis position is aligned with the optical axis of the laser head. The interferometer is fixedly disposed on the moving table, and the reflection target is fixedly disposed on the moving table as an extension of the interferometer. That is, a preparatory work called alignment is required. This alignment work takes time and becomes more difficult as the number of measurement axes increases. In addition, when measuring the angle and length of a certain axis, not only the preparation time but also replacement time for each measurement item and measurement error due to displacement of the mounting position due to equipment replacement may occur.

また、光ファイバ結合式レーザ干渉測長器は、レーザ光源と干渉計を光ファイバで結合したものであり、レーザの光路を気にすることなく測定したい場所へ自由に干渉計を取り付けることができる。そして、測定軸が斜めであっても、機械内の空間が狭くても容易に測定可能である。さらに、セッティングの容易さに加え、工作機械精度検査の作業工数を削減するのに適している。 In addition, the optical fiber coupling type laser interferometer is a laser light source and an interferometer coupled by an optical fiber, and the interferometer can be freely attached to a place to be measured without worrying about the optical path of the laser. .. Even if the measuring axis is oblique or the space inside the machine is narrow, the measurement can be easily performed. Furthermore, in addition to the ease of setting, it is suitable for reducing the number of man-hours required for machine tool precision inspection.

多軸干渉計のコンパクトな構成として、少数のビーム光路を有し、それにより多軸干渉計用のコンパクトなものとするため、測定リフレクタ及び基準リフレクタからの共用測定ビーム及び共用基準ビームの第1の反射に対して共用測定光路及び共用基準光路を使用し、それぞれの測定軸に対応する複数の個別ビームに分割することが、特許文献1に記載されている。 The compact configuration of the multi-axis interferometer has a small number of beam optical paths, thereby making it a compact one for the multi-axis interferometer. Patent Document 1 describes that a common measurement optical path and a common reference optical path are used for the reflection of 1 and the light is divided into a plurality of individual beams corresponding to the respective measurement axes.

光源と干渉計との間のアライメント作業を軽減するため、多軸干渉計の分光機構部及び光源部からのレーザ光を分光機構部に導く光ファイバを設け、多軸干渉計の出射方向を切替えて測長することが、特許文献2に記載されている。 In order to reduce the alignment work between the light source and the interferometer, the spectroscopic mechanism part of the multi-axis interferometer and the optical fiber for guiding the laser light from the light source part to the spectroscopic mechanism part are provided, and the emission direction of the multi-axis interferometer is switched. Japanese Patent Application Laid-Open Publication No. 2004-242242 discloses that the length is measured.

特開2004−239905号公報JP, 2004-239905, A 特開平9−196623号公報Japanese Patent Laid-Open No. 9-196623

特許文献1に記載のものは、プレーンミラーを用いているので、プレーンミラーの鏡面が、干渉計の光軸に対して正確に正対して配置されていないと、反射光がずれやすく、測長光学系での受光量が不足する原因となるので、取り付け調整が難しい。また、干渉計と被測定部の間を測定光が2回往復するダブルパス方式の測長器であるので、大気擾乱の影響を受け易く、アライメント作業に高精度が要求される。 Since the one described in Patent Document 1 uses a plane mirror, if the mirror surface of the plane mirror is not arranged exactly facing the optical axis of the interferometer, the reflected light is likely to shift and the length measurement is performed. It is difficult to adjust the mounting because it causes the amount of light received by the optical system to become insufficient. Further, since the measuring light is a double-pass type length measuring device in which the measuring light reciprocates twice between the interferometer and the measured portion, it is easily affected by atmospheric turbulence, and high precision is required for alignment work.

さらに、アライメント作業を非常に厳密に行ったとしても、被測定物である移動体がピッチング、ヨーイングなどの角度運動を行うと、アライメントがずれ、受光量不足により受光感度が低下する。 Further, even if the alignment work is performed very strictly, if the moving body that is the object to be measured makes an angular motion such as pitching or yawing, the alignment is deviated and the light receiving sensitivity is lowered due to insufficient light receiving amount.

特許文献2に記載のものは、多軸干渉計の分光機構部として、入射したレーザ光を分光させて、各軸方向に向けて出射させると共に、測定光と参照光の干渉光を送出する干渉計本体と、その切替え機構とを内蔵した多軸干渉計を必要とする。多軸干渉計は、偏光ビームスプリッタやペンタプリズム、切替え機構を内蔵するので、大型になる。そして、半導体製造設備において見受けられるような狭いスペースに適応させるのは困難である。係る大型の光学品質の構成要素を製作することは、コストが高くつき、困難である可能性がある。 The one described in Patent Document 2 is, as a spectroscopic mechanism portion of a multi-axis interferometer, splits an incident laser beam and emits it in each axial direction, and at the same time, an interfering beam of measuring light and reference light is transmitted. It requires a multi-axis interferometer with a built-in meter body and its switching mechanism. The multi-axis interferometer is large in size because it has a polarization beam splitter, a pentaprism, and a switching mechanism. And, it is difficult to adapt to a narrow space such as found in a semiconductor manufacturing facility. Fabricating such large optical quality components can be costly and difficult.

本発明の目的は、上記従来技術の課題を解決し、取り付け空間の省スペース化を図ることで、機種毎に様々なサイズ、移動方向の工作機械等に対応、汎用的に使用が可能であり、アライメント作業が簡単で、高精度な多軸レーザ干渉測長器を得ることにある。 The object of the present invention is to solve the above-mentioned problems of the conventional technology and to save the installation space, thereby making it possible to use various sizes for each model, machine tools in the moving direction, etc. The objective is to obtain a highly accurate multi-axis laser interferometer with easy alignment work.

上記目的を達成する本発明は、光源より射出されるレーザ光を光学系により分岐し、反射ターゲットでそれぞれ反射させて合流させることで干渉信号を得て、該干渉信号を光電変換して光路差を算出する多軸レーザ干渉測長器において、前記光学系は、前記光源より射出された前記レーザ光を基準測定光と参照測定光に分岐する偏光ビームスプリッタと、分岐した前記参照測定光を第1、第2、…、第n参照測定光に分岐するハーフミラーと、前記反射ターゲットとして可動テーブルの測定部に取り付けられ、前記基準測定光及びn個の前記参照測定光を各々反射させるn+1個のリトロリフレクタと、反射後の前記基準測定光をn個に分岐し、n個の前記参照測定光とそれぞれ合流させることで得られたそれぞれの前記干渉信号を光電変換するn個の受光器と、を備えたものである。 The present invention that achieves the above object obtains an interference signal by branching laser light emitted from a light source by an optical system and reflecting each of them with a reflection target to join them, and photoelectrically converting the interference signal to obtain an optical path difference. In the multi-axis laser interferometer for calculating, the optical system is a polarization beam splitter that splits the laser light emitted from the light source into standard measurement light and reference measurement light, and the branched reference measurement light A half mirror that splits the first, second,..., Nth reference measurement light beams, and n+1 reflection mirrors that are attached to the measurement unit of the movable table and that reflect the standard measurement light beam and the n reference measurement light beams, respectively. Retroreflector, and n photodetectors for photoelectrically converting each of the interference signals obtained by branching the reflected reference measurement light into n pieces and merging with the n reference measurement lights, respectively. , Are provided.

また、上記のものにおいて、n個に分岐された反射後の前記基準測定光と、n個の前記参照測定光とをそれぞれ合流させるn個の偏光ビームスプリッタを設けたことが望ましい。 In addition, in the above-mentioned thing, it is desirable to provide n polarization beam splitters for respectively joining the reference measurement light after reflection and the reference measurement light after reflection into n pieces.

さらに、前記偏光ビームスプリッタは、前記光源より射出された前記レーザ光を前記基準測定光と前記参照測定光に分岐する第1偏光ビームスプリッタを有し、前記ハーフミラーは、前記参照測定光を第1参照測定光と第2参照測定光に分岐する第1ハーフミラー(41)を有し、前記リトロリフレクタは、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記基準測定光を反射する第1リトロリフレクタ(51)と、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第1参照測定光を反射する第2リトロリフレクタ(52)と、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第2参照測定光を反射する第3リトロリフレクタ(53)と、を有し、前記ハーフミラーは、前記第1リトロリフレクタ(51)で反射された前記基準測定光を分岐する第2ハーフミラー(42)を有し、前記第1偏光ビームスプリッタには、前記第2ハーフミラー(42)で分岐された前記基準測定光の一方、及び前記第2リトロリフレクタ(52)で反射した前記第1参照測定光が入射され、前記偏光ビームスプリッタは、前記第2ハーフミラー(42)で分岐された前記基準測定光の他方、及び前記第3リトロリフレクタ(53)で反射した前記第2参照測定光が入射される第2偏光ビームスプリッタを有し、前記第1偏光ビームスプリッタで得られた前記第1参照測定光と前記基準測定光との干渉信号を光電変換する第1受光部と、前記第2偏光ビームスプリッタで得られた前記第2参照測定光と前記基準測定光との干渉信号を光電変換する第2受光部と、を備えることが好ましい。 Further, the polarization beam splitter has a first polarization beam splitter that splits the laser light emitted from the light source into the standard measurement light and the reference measurement light, and the half mirror divides the reference measurement light into the first measurement light and the reference measurement light. It has a first half mirror (41) that splits into one reference measurement light and a second reference measurement light, and the retroreflector is attached to the measurement section of the movable table as the reflection target and reflects the reference measurement light. A first retro-reflector (51), a second retro-reflector (52) attached to the measuring section of the movable table as the reflection target and reflecting the first reference measurement light, and a measurement of the movable table as the reflection target. A third retro-reflector (53) attached to the part and reflecting the second reference measurement light, wherein the half mirror splits the reference measurement light reflected by the first retro-reflector (51). And a second half mirror (42), and one of the reference measurement light beams branched by the second half mirror (42) and the second retroreflector (52) in the first polarization beam splitter. The reflected first reference measurement light enters, and the polarization beam splitter reflects the other of the reference measurement light branched by the second half mirror (42) and the third retroreflector (53). A first light receiving device that has a second polarization beam splitter on which a second reference measurement light beam is incident, and photoelectrically converts an interference signal between the first reference measurement light beam and the reference measurement light beam obtained by the first polarization beam splitter. And a second light receiving unit that photoelectrically converts an interference signal between the second reference measurement light and the reference measurement light obtained by the second polarization beam splitter.

さらに、前記リトロリフレクタ(52)で反射した前記第1参照測定光は、ミラー(31)で曲げられて前記第1偏光ビームスプリッタに入射することが望ましい。 Further, it is desirable that the first reference measurement light reflected by the retro-reflector (52) be bent by a mirror (31) and enter the first polarization beam splitter.

さらに、前記第2参照測定光は、ミラー(32、33)で曲げられて前記リトロリフレクタ(53)で反射されることが望ましい。 Further, it is preferable that the second reference measurement light be bent by the mirrors (32, 33) and reflected by the retroreflector (53).

また、上記のものにおいて、前記光学系は、前記光源より射出された前記レーザ光を前記基準測定光と前記参照測定光に分岐する第1偏光ビームスプリッタ(21)と、前記参照測定光を第1参照測定光、第2参照測定光及び第3参照測定光に分岐するハーフミラー(41、44)と、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記基準測定光を反射するリトロリフレクタ(51)と、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第1参照測定光を反射するリトロリフレクタ(52)と、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第2参照測定光を反射するリトロリフレクタ(53)と、前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第3参照測定光を反射するリトロリフレクタ(54)と、前記リトロリフレクタ(51)で反射された前記基準測定光を分岐するハーフミラー(42、43)と、分岐された前記基準測定光及び前記リトロリフレクタ(52)で反射した前記第1参照測定光が入射される第1偏光ビームスプリッタ(21)と、分岐された前記基準測定光及び前記リトロリフレクタ(53)で反射した前記第2参照測定光が入射される第2偏光ビームスプリッタと、分岐された前記基準測定光及び前記リトロリフレクタ(54)で反射した前記第3参照測定光が入射される第3偏光ビームスプリッタと、前記第1偏光ビームスプリッタ(21)で得られた前記第1参照測定光と前記基準測定光との干渉信号を光電変換する第1受光部と、前記第2偏光ビームスプリッタで得られた前記第2参照測定光と前記基準測定光との干渉信号を光電変換する第2受光部と、前記第3偏光ビームスプリッタで得られた前記第3参照測定光と前記基準測定光との干渉信号を光電変換する第3受光部と、を備えたものである。 Further, in the above, the optical system includes a first polarization beam splitter (21) that splits the laser light emitted from the light source into the standard measurement light and the reference measurement light, and the reference measurement light into a first polarization beam splitter (21). A half mirror (41, 44) that splits into one reference measurement light, a second reference measurement light, and a third reference measurement light, and a retroreflector attached to the measurement unit of the movable table as the reflection target and reflecting the reference measurement light. A reflector (51), a retroreflector (52) attached to the measuring section of the movable table as the reflection target, and reflecting the first reference measurement light, and a retroreflector attached to the measuring section of the movable table as the reflection target; A retro-reflector (53) that reflects the second reference measurement light, a retro-reflector (54) that is attached to the measurement unit of the movable table as the reflection target and that reflects the third reference measurement light, and the retro-reflector ( 51) half mirrors (42, 43) for branching the reference measurement light, and the first reference measurement light reflected by the branched reference measurement light and the retroreflector (52). One polarization beam splitter (21), a second polarization beam splitter into which the split reference measurement light and the second reference measurement light reflected by the retroreflector (53) are incident, and the split reference measurement light And a third polarization beam splitter on which the third reference measurement light reflected by the retroreflector (54) is incident, and the first reference measurement light and the reference measurement obtained by the first polarization beam splitter (21). A first light receiving section for photoelectrically converting an interference signal with light; and a second light receiving section for photoelectrically converting an interference signal between the second reference measurement light and the standard measurement light obtained by the second polarization beam splitter. A third light receiving unit for photoelectrically converting an interference signal between the third reference measurement light and the standard measurement light obtained by the third polarization beam splitter.

さらに、前記リトロリフレクタ(51)で反射された前記基準測定光は、ハーフミラー(42、43)で分岐して、前記第1偏光ビームスプリッタ(21)、前記第2偏光ビームスプリッタ(22)、前記第3偏光ビームスプリッタ(23)に入射することが望ましい。 Further, the reference measurement light reflected by the retro-reflector (51) is branched by the half mirrors (42, 43), and the first polarization beam splitter (21), the second polarization beam splitter (22), It is desirable that the light is incident on the third polarization beam splitter (23).

さらに、前記参照測定光は、前記ハーフミラー(41)で前記第1参照測定光が分岐され、ハーフミラー(44)で前記第3参照測定光と前記第2参照測定光とに分岐され、前記第2参照測定光は、ミラー(32、33)で曲げられて前記リトロリフレクタ(53)で反射されることが望ましい。
さらに、前記参照測定光は、前記ハーフミラー(44)で前記第3参照測定光と前記第2参照測定光とに分岐され、前記第3参照測定光は、前記リトロリフレクタ(54)で反射されることが望ましい。
Further, the reference measurement light is split into the first reference measurement light by the half mirror (41) and is split into the third reference measurement light and the second reference measurement light by a half mirror (44), The second reference measurement light is preferably bent by the mirrors (32, 33) and reflected by the retroreflector (53).
Further, the reference measurement light is branched by the half mirror (44) into the third reference measurement light and the second reference measurement light, and the third reference measurement light is reflected by the retroreflector (54). Is desirable.

本発明によれば、多軸レーザ干渉測長器において、光源より射出されたレーザ光を基準測定光と参照測定光に偏光ビームスプリッタで分岐する。そして、分岐した参照測定光は第1、第2、…、第n参照測定光に分岐し、基準測定光及びn個の参照測定光をn+1個のリトロリフレクタで各々反射させ、反射後の基準測定光をn個に分岐し、n個の参照測定光とそれぞれ合流させて干渉信号をn個の受光器で光電変換する。したがって、本構成により1光源、1ユニットでかつ1つの基準測定光を軸としてn個軸の測定を同時に行うことができる。そのため、n個の測定を各々行った場合に必要とされる段取り替えに伴うアライメント調整における測定軸の位置、角度のバラツキは発生しない。また、機材の段取り替えは基本的に不要であり、作業工数の低減になる。 According to the present invention, in the multi-axis laser interferometer, the laser light emitted from the light source is split into the standard measurement light and the reference measurement light by the polarization beam splitter. Then, the branched reference measurement light is branched into the first, second,..., Nth reference measurement lights, the standard measurement light and the n reference measurement lights are respectively reflected by the n+1 retroreflectors, and the reference light after the reflection is reflected. The measurement light is branched into n pieces, which are respectively merged with the n reference measurement lights, and the interference signal is photoelectrically converted by the n light receivers. Therefore, according to this configuration, it is possible to simultaneously measure n axes with one light source and one unit, and one reference measurement light as an axis. Therefore, there is no variation in the position and angle of the measurement axis in the alignment adjustment that accompanies the setup change required when each of the n measurements is performed. Moreover, it is basically unnecessary to change the equipment, which reduces the man-hours required for the work.

さらに、取り付け空間の省スペース化を図り、機種毎に様々なサイズ、移動方向の工作機械等に対応、汎用的に使用が可能であり、取り付け調整が容易で大気擾乱の彫響を受けにくい安定した測定が可能となる。 In addition, the installation space is saved, and it can be used universally for machine tools of various sizes and movement directions depending on the model, and can be easily installed and adjusted, making it stable and less susceptible to atmospheric turbulence. It is possible to perform the measurement.

本発明の一実施形態に係る2軸を測定する光学系の模式図。FIG. 3 is a schematic diagram of an optical system that measures two axes according to an embodiment of the present invention. 本発明の一実施形態に係るヨーイング、ピッチングを測定する場合の反射ターゲットとレーザ干渉測長器の配置を示す斜視図。FIG. 3 is a perspective view showing the arrangement of a reflection target and a laser interferometer when measuring yawing and pitching according to an embodiment of the present invention. 従来の単機能レーザ干渉測長器によるヨーイング、ピッチングを測定する場合の反射ターゲットとレーザ干渉測長器の配置を示す斜視図。The perspective view which shows the arrangement|positioning of the reflection target and laser interferometer in the case of measuring the yawing and pitching by the conventional single function laser interferometer. 測定軸(可動テーブル40の移動軸)と測定位置(レーザ光軸)による誤差の影響を説明する上面図。The top view explaining the influence of the error by a measurement axis (movement axis of movable table 40) and a measurement position (laser optical axis). 測定軸(可動テーブル40の移動軸)と測定位置(レーザ光軸)による誤差の影響を説明する側面図。The side view explaining the influence of the error by a measurement axis (movement axis of movable table 40) and a measurement position (laser optical axis). 他の実施形態に係る3軸を測定する光学系の模式図。The schematic diagram of the optical system which measures 3 axes which concerns on other embodiment.

以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の第一実施例に係る2軸を測定する光学系20の模式図である。図2は、工作機械等の移動するテーブルの精度を測定する例として、第一実施例の多軸レーザ干渉測長器によるヨーイング、ピッチングを測定する場合の反射ターゲットとレーザ干渉測長器の配置を示す斜視図である。図3は、同様に従来の単機能レーザ干渉測長器による配置を同様に示す斜視図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of an optical system 20 for measuring two axes according to the first embodiment of the present invention. As an example of measuring the accuracy of a moving table of a machine tool or the like, FIG. 2 shows an arrangement of a reflection target and a laser interferometer for measuring yawing and pitching by the multi-axis laser interferometer of the first embodiment. It is a perspective view showing. FIG. 3 is a perspective view similarly showing the arrangement by the conventional single-function laser interferometer.

単機能レーザ干渉測長器においては、図3に示すように可動テーブル40に反射ターゲットであるリトロリフレクタ71、72、81、82を測定中の基準となるので動かないようにマグネットスタンド等により固定する。干渉計である偏光ビームスプリッタ70及び80は、位置調整が可能なステージ(図示せず)にそれぞれ固定し、レーザ光源の光軸の延長上にリトロリフレクタ71、72、81、82が位置するように調整、つまりアライメント作業を行い、配置して固定する。 In the single-function laser interferometer, as shown in FIG. 3, the retroreflectors 71, 72, 81, and 82, which are reflection targets, are fixed to the movable table 40 by a magnetic stand or the like so that they will serve as a reference during measurement. To do. The polarization beam splitters 70 and 80, which are interferometers, are fixed to stages (not shown) whose positions can be adjusted so that the retroreflectors 71, 72, 81, and 82 are positioned on the extension of the optical axis of the laser light source. Adjust, ie align, place and fix.

リトロリフレクタ71、72は、可動テーブル40のヨーイング(上下を軸として、水平面内での回転:図で矢印Y方向)を測定するものであり、偏光ビームスプリッタ70からリトロリフレクタ71、72までの距離を測定することにより、ヨーイングの角度が検出される。同様に、リトロリフレクタ81、82は、可動テーブル40のピッチング(左右を軸とした回転:図で矢印P方向)を測定するものであり、偏光ビームスプリッタ80からリトロリフレクタ81、82までの距離を測定することにより、ピッチングの角度が検出される。 The retro-reflectors 71 and 72 measure yawing of the movable table 40 (rotation in the horizontal plane about the vertical axis: arrow Y direction in the figure), and the distance from the polarization beam splitter 70 to the retro-reflectors 71 and 72. The angle of yawing is detected by measuring Similarly, the retro-reflectors 81 and 82 measure the pitching of the movable table 40 (rotation about the left and right axes: arrow P direction in the figure), and measure the distance from the polarization beam splitter 80 to the retro-reflectors 81 and 82. By measuring, the pitching angle is detected.

73は、偏光ビームスプリッタ70の光学系にレーザ光を入射する光ファイバが接続される光源、74は受光する光ファイバが接続される受光部である。同様に83は偏光ビームスプリッタ80の光学系にレーザ光を入射する光ファイバが接続される光源、84は受光する光ファイバが接続される受光部である。図3の従来の単機能レーザ干渉測長器による測長器では光源73、83がそれぞれ独立に必要とされる。 Reference numeral 73 is a light source to which an optical fiber for entering laser light is connected to the optical system of the polarization beam splitter 70, and 74 is a light receiving portion to which an optical fiber for receiving light is connected. Similarly, reference numeral 83 is a light source to which an optical fiber for injecting laser light is connected to the optical system of the polarization beam splitter 80, and 84 is a light receiving portion to which an optical fiber for receiving light is connected. In the length measuring device using the conventional single-function laser interference length measuring device shown in FIG. 3, the light sources 73 and 83 are independently required.

また、リトロリフレクタ71、72とリトロリフレクタ81、82は距離を置いて設置しなければならないので、単にそれぞれの光軸の調整だけでなく、相互に光軸がずれないようにする必要がある。また、角度(ヨーイング・ピッチング)測定における測定位置による誤差は、測定物が剛体の場合ほぼ一様に変化するため、小さな値と言えるが、同時に長さを測定する場合は光軸位置により、誤差を生じる。 Further, since the retro-reflectors 71, 72 and the retro-reflectors 81, 82 must be installed at a distance, it is necessary not only to adjust the respective optical axes but also to prevent the optical axes from being displaced from each other. Also, the error due to the measurement position in the angle (yawing/pitching) measurement can be said to be a small value because it changes almost uniformly when the measurement object is a rigid body, but when measuring the length at the same time, the error due to the optical axis position Cause

第一実施例である図2は、図3の従来例に対して、多軸レーザ干渉測長器によるヨーイング、ピッチングを測定する場合の反射ターゲットと光学系20の配置を示している。光学系20は、3軸がまとめて結合されている。可動テーブル40に反射ターゲットであるリトロリフレクタ51、52、53が、近接して配置されるように一体化され、測定中の基準となるので動かないようにマグネットスタンド等により固定される。干渉計である光学系20は、位置調整が可能なステージ(図示せず)にそれぞれ固定し、各レーザ光源(基準測定光61、第1参照測定光62、第2参照測定光63)の光軸の延長上にリトロリフレクタ52、51、53が位置するように調整、つまりアライメント作業を行い、配置して固定する。 FIG. 2, which is the first embodiment, shows the arrangement of the reflection target and the optical system 20 when yawing and pitching are measured by a multi-axis laser interferometer as compared with the conventional example of FIG. The optical system 20 has the three axes coupled together. Retroreflectors 51, 52, and 53, which are reflection targets, are integrated with the movable table 40 so as to be arranged close to each other, and serve as a reference during measurement, so that they are fixed by a magnetic stand or the like so as not to move. The optical system 20, which is an interferometer, is fixed to a stage (not shown) whose position is adjustable, and the light of each laser light source (standard measurement light 61, first reference measurement light 62, second reference measurement light 63) is emitted. Adjustment, that is, alignment work is performed so that the retroreflectors 52, 51, 53 are positioned on the extension of the shaft, and the retroreflectors are arranged and fixed.

リトロリフレクタ51、52は、可動テーブル40のヨーイング(上下を軸として、水平面内での回転:図で矢印Y方向)を測定するものであり、光学系20からリトロリフレクタ51、52までの距離差を測定することにより、ヨーイングの角度が検出される。可動テーブル40のピッチング(左右を軸とした回転:図で矢印P方向)の測定は、リトロリフレクタ52、53で行われ、光学系20からリトロリフレクタ52、53までの距離差を測定することにより、ピッチングの角度が検出される。 The retro-reflectors 51, 52 measure yawing of the movable table 40 (rotation in a horizontal plane about the vertical axis: arrow Y direction in the figure). The distance difference from the optical system 20 to the retro-reflectors 51, 52 is measured. The angle of yawing is detected by measuring The pitching of the movable table 40 (rotation about the left and right axes: the direction of arrow P in the figure) is measured by the retroreflectors 52 and 53, and the distance difference from the optical system 20 to the retroreflectors 52 and 53 is measured. , The pitching angle is detected.

1は、光学系20にレーザ光を入射する光ファイバが接続される光源、11、12は受光のための光ファイバが接続される受光部であり、11が第1受光部、12が第2受光部である。図3の従来の単機能レーザ干渉測長器による測長器と異なり、光源1は一つで良い。また、リトロリフレクタ51、52、53は一体化されている。 Reference numeral 1 is a light source to which an optical fiber for entering laser light into the optical system 20 is connected, 11 and 12 are light receiving portions to which an optical fiber for receiving light is connected, 11 is a first light receiving portion, and 12 is a second light receiving portion. It is a light receiving part. Unlike the length measuring device using the conventional single-function laser interference length measuring device of FIG. 3, only one light source 1 is required. Further, the retro-reflectors 51, 52 and 53 are integrated.

したがって、リトロリフレクタ51、52、53は近接して設置され、ヨーイングとピッチングとの測定において、一つにまとめられた光軸を調整すれば良い。つまり、光学系20の位置調整、アライメント作業を行えば良い。また、同時に長さを測定する場合であっても光軸位置による誤差要因を少なくできる。 Therefore, the retro-reflectors 51, 52, and 53 are installed close to each other, and it is sufficient to adjust the combined optical axis in the yawing and pitching measurements. That is, the position adjustment of the optical system 20 and the alignment work may be performed. Further, even when the length is measured at the same time, the error factor due to the optical axis position can be reduced.

レーザ干渉測長器において、環境は大きな影響を及ぼし、環境誤差を最小限に抑えることが重要となる。環境要因としては、測定対象のメカニカルな振動及び空気の乱れが挙げられる。測定対象のメカニカルな振動は、光学系20、リトロリフレクタ51、52、53を十分固定する必要がある。 In the laser interferometer, the environment has a great influence, and it is important to minimize the environmental error. Environmental factors include mechanical vibration of the measurement target and air turbulence. For the mechanical vibration to be measured, it is necessary to sufficiently fix the optical system 20 and the retroreflectors 51, 52, 53.

不十分な固定の場合、この振動を増幅してしまう可能性があり、測定精度が悪化する。リトロリフレクタ51、52、53を固定する場合、固定位置からの距離が長いと、振動が増幅されるため、極力短く固定する必要がある。リトロリフレクタ51、52、53は近接して設置し、光軸調整を一度の取り付けで済むので、図2の多軸レーザ干渉測長器によれば、従来のように各光軸で個別に行うものに比べて誤差要因を少なくできる。 In the case of insufficient fixation, this vibration may be amplified and the measurement accuracy deteriorates. When fixing the retro-reflectors 51, 52, 53, if the distance from the fixed position is long, vibration is amplified, so it is necessary to fix the retro-reflectors as short as possible. Since the retro-reflectors 51, 52, and 53 are installed close to each other, and the optical axis can be adjusted only once, the multi-axis laser interferometer length measuring device shown in FIG. The error factor can be reduced compared to the one.

測定環境の空気中に局所的な温度差が発生すると、空気の乱れが起こり、空気の乱れは、空気中を伝播するレーザ光の波長を局所的に変えるため、測定データの乱れが発生し、繰り返し精度を悪化させる。 When a local temperature difference occurs in the air of the measurement environment, air turbulence occurs, and the air turbulence locally changes the wavelength of the laser light propagating in the air, which causes turbulence in the measurement data, It deteriorates repeatability.

局所的な温度差を低減する方法として、空気の揺らぎが、測定光路にかからない工夫、例えば、大きな扇風機などにより、測定経路に渡って空気を攪拌することが良い。また、光学部品は、結露するとレンズカビや、コーティング異常等、光学系に異常をきたす場合があり、温度、湿度の管理が重要となる。 As a method of reducing the local temperature difference, it is preferable to stir the air over the measurement path by a device such that the fluctuation of the air does not affect the measurement optical path, for example, with a large fan. In addition, optical components may cause abnormality in the optical system such as lens mold and coating abnormality due to dew condensation, and it is important to control temperature and humidity.

図1は、2軸を測定する多軸レーザ干渉測長器の光学系20の詳細を示す模式図である。基本的な原理はマイケルソン干渉計に順ずる。マイケルソン干渉計は、一つの波長の分かっているレーザ光を用いてビームを二つの経路に分岐し、反射ターゲットでそれぞれ反射させて再び合流させる。そして、干渉縞を生み出す干渉信号を作成し、干渉信号を光電変換して干渉縞の数により光路差を算出し反射ターゲットの移動距離を算出する。 FIG. 1 is a schematic diagram showing details of an optical system 20 of a multi-axis laser interferometer for measuring two axes. The basic principle follows the Michelson interferometer. The Michelson interferometer splits a beam into two paths by using a laser beam having a known wavelength, and reflects the beams at respective reflecting targets to join them again. Then, an interference signal that produces interference fringes is created, the interference signal is photoelectrically converted, the optical path difference is calculated from the number of interference fringes, and the moving distance of the reflection target is calculated.

基本構成は、以下である。(1)光源より出力されたレーザ光を偏光ビームスプリッタ等で基準測定光と参照測定光に分岐する。(2)分岐した参照測定光をハーフミラー等により第1、第2、…、第n参照測定光に分岐する。(3)可動テーブル等の測定部に取り付けたn+1個の反射ターゲットであるリトロリフレクタで基準測定光及びn個の参照測定光を各々反射させる。(4)反射後の基準測定光をn個に分岐し、各参照測定光と干渉させ、それぞれの干渉信号をn個の受光器で光電変換する。 The basic configuration is as follows. (1) The laser beam output from the light source is split into standard measurement light and reference measurement light by a polarization beam splitter or the like. (2) The branched reference measurement light is branched into first, second,..., Nth reference measurement light by a half mirror or the like. (3) The standard measurement light and the n reference measurement lights are reflected by the retroreflectors which are n+1 reflection targets attached to the measurement unit such as the movable table. (4) The standard measurement light after reflection is branched into n pieces, interferes with each reference measurement light, and each interference signal is photoelectrically converted by n light receivers.

なお、測定数は参照測定光のn次数に等しく、各参照測定光1つに付き1個のリトロリフレクタが必要となる。また、n個に分岐された反射後の基準測定光と、n個の参照測定光とをそれぞれ干渉させるためにn個の偏光ビームスプリッタを設けて合流させる。本構成により1光源、1ユニットでかつ1つの基準測定光を軸としてn個軸の測定を同時に行うことができる。 The number of measurements is equal to the n-th order of the reference measurement light, and one retro-reflector is required for each reference measurement light. Further, n polarization beam splitters are provided and merged in order to cause the reference measurement light after reflection branched into n pieces and the reference measurement light of n pieces to interfere with each other. With this configuration, one light source, one unit, and n reference axes can be simultaneously measured for n axes.

そのため、n個の測定を各々行った場合に必要とされる段取り替えに伴うアライメント調整における測定軸の位置、角度のバラツキは発生しない。また、機材の段取り替えは基本的に不要であり、作業工数の低減になる。 Therefore, there is no variation in the position and angle of the measurement axis in the alignment adjustment that accompanies the setup change required when each of the n measurements is performed. Moreover, it is basically unnecessary to change the equipment, which reduces the man-hours required for the work.

1は、光源であり、所定波長のレーザ光を発射するレーザ光を用いる。光源1より射出されたレーザ光を第1偏光ビームスプリッタ21で基準測定光61と参照測定光60に分岐する。その後、基準測定光61は、反射ターゲットであるリトロリフレクタ51で反射され、ハーフミラー42で分岐する。そして、基準測定光61の一方はハーフミラー42を透過して第1偏光ビームスプリッタ21に入射し、他方はハーフミラー42で反射されてハーフミラー42の後段に配置された第2偏光ビームスプリッタ22に入射する。 Reference numeral 1 denotes a light source, which uses laser light that emits laser light having a predetermined wavelength. The laser light emitted from the light source 1 is split into the standard measurement light 61 and the reference measurement light 60 by the first polarization beam splitter 21. After that, the reference measurement light 61 is reflected by the retro-reflector 51, which is a reflection target, and is branched by the half mirror 42. Then, one of the reference measurement lights 61 passes through the half mirror 42 and enters the first polarization beam splitter 21, and the other one is reflected by the half mirror 42 and is reflected by the half mirror 42, and the second polarization beam splitter 22 disposed at the subsequent stage of the half mirror 42. Incident on.

第1偏光ビームスプリッタ21で分岐した参照測定光60は、ハーフミラー41で第1参照測定光62と第2参照測定光63に分岐する。第1参照測定光62は、さらにミラー31で曲げられ、被測定物に固定される反射ターゲットであるリトロリフレクタ52で反射する。さらに、ミラー31で曲げられ、第1偏光ビームスプリッタ21に入射する。 The reference measurement light 60 split by the first polarization beam splitter 21 is split by the half mirror 41 into a first reference measurement light 62 and a second reference measurement light 63. The first reference measurement light 62 is further bent by the mirror 31 and reflected by the retro-reflector 52 which is a reflection target fixed to the object to be measured. Further, it is bent by the mirror 31 and is incident on the first polarization beam splitter 21.

第1参照測定光62は、基準測定光61と第1偏光ビームスプリッタ21で干渉し、第1受光部11に入射する。第2参照測定光63はミラー32、33で曲げられ、リトロリフレクタ53で反射し、第2偏光ビームスプリッタ22に入射する。そして、基準測定光61と第2偏光ビームスプリッタ22で干渉し、第2受光部12に入射する。 The first reference measurement light 62 interferes with the standard measurement light 61 at the first polarization beam splitter 21, and enters the first light receiving unit 11. The second reference measurement light 63 is bent by the mirrors 32 and 33, reflected by the retro-reflector 53, and enters the second polarization beam splitter 22. Then, the reference measurement light 61 interferes with the second polarization beam splitter 22, and enters the second light receiving unit 12.

第1偏光ビームスプリッタ21、第2偏光ビームスプリッタ22で干渉した光の明暗である各干渉縞は、基準測定光61と第1参照測定光62、基準測定光61と第2参照測定光63の光路長の位相差を表す。干渉縞1本は光源の波長の位相差に相当する。光源の波長はHe−Neレーザの場合632.8nmなので、往復光路の干渉計で縞1位相は0.3μmの非常に小さな長さとなり、リトロリフレクタ51、52、53の微小な変位や変化を測定することが可能になる。 The interference fringes, which are the light and shade of the light that interferes in the first polarization beam splitter 21 and the second polarization beam splitter 22, are the reference measurement light 61 and the first reference measurement light 62, and the reference measurement light 61 and the second reference measurement light 63. It represents the phase difference of the optical path length. One interference fringe corresponds to the phase difference of the wavelength of the light source. Since the wavelength of the light source is 632.8 nm in the case of He-Ne laser, the interferometer of the reciprocal optical path has a very small fringe 1 phase of 0.3 μm, which causes a slight displacement or change of the retroreflectors 51, 52, 53. It becomes possible to measure.

以上、光源1より出力されたレーザ光を第1偏光ビームスプリッタ21で基準測定光61と参照測定光60に分岐する。分岐した参照測定光60は、ハーフミラー41で第1参照測定光62と第2参照測定光63に分岐する。測定部に取り付けた3個のリトロリフレクタ51、52、53で基準測定光61及び2個の参照測定光である第1参照測定光62と第2参照測定光63とを各々反射させる。反射後の基準測定光61を2個に分岐し、各参照測定光と干渉させ、干渉信号を2個の受光器、第1受光部11、第2受光部12で観測する。 As described above, the laser light output from the light source 1 is split into the standard measurement light 61 and the reference measurement light 60 by the first polarization beam splitter 21. The branched reference measurement light 60 is split into a first reference measurement light 62 and a second reference measurement light 63 by the half mirror 41. The three retro-reflectors 51, 52, 53 attached to the measurement unit reflect the standard measurement light 61 and the two reference measurement lights, that is, the first reference measurement light 62 and the second reference measurement light 63, respectively. The standard measurement light 61 after reflection is split into two beams, interferes with each reference measurement beam, and the interference signal is observed by the two light receivers, the first light receiving unit 11, and the second light receiving unit 12.

図4、5は、測定軸(可動テーブル40の移動軸)と測定位置(レーザ光軸)による誤差の影響を図2のようにレーザ干渉測長器で測定する場合として示したもので、図4が上面図、図5が側面図である。角度(ヨーイング・ピッチング)測定における測定位置による誤差は、測定物が剛体の場合ほぼ一様に変化するため、無視できる値と言える。ただし、長さ測定の場合は位置による誤差はアッベ誤差を生じる。 4 and 5 show the influence of an error due to the measurement axis (moving axis of the movable table 40) and the measurement position (laser optical axis) as a case of measuring with a laser interferometer as shown in FIG. 4 is a top view and FIG. 5 is a side view. It can be said that the error due to the measurement position in the angle (yawing/pitching) measurement is a value that can be ignored because the measurement object changes almost uniformly when it is a rigid body. However, in the case of measuring the length, an error due to the position causes an Abbe error.

レーザ干渉測長器は、反射ターゲットであるリトロリフレクタまでの距離を測定することにより、ヨーイング及びピッチングの角度を検出するので、アッベの原理に従い、測定軸とレーザ光軸とを同一直線上に配置させることが設計原理として好ましい。 The laser interferometer measures the yawing and pitching angles by measuring the distance to the retroreflector, which is the reflection target, so the measurement axis and laser optical axis are arranged on the same straight line according to the Abbe principle. This is preferable as a design principle.

図4はヨーイングの測定の場合であって、基準測定光61であるレーザ光軸と測定軸との距離及び傾きがアッベ誤差の要因となる。図5は、ピッチングの測定の場合であって、第2参照測定光63であるレーザ光軸と測定軸との距離及び傾きが誤差の要因となる。しかし、本実施例によれば、多軸の光軸調整を一度で行うことで良いので、従来のように各光軸で個別に行うものに比べて誤差要因を少なくできる。 FIG. 4 shows the case of yawing measurement, and the distance and inclination between the laser optical axis which is the reference measurement light 61 and the measurement axis cause Abbe error. FIG. 5 shows the case of the pitching measurement, and the distance and the inclination between the laser optical axis which is the second reference measurement light 63 and the measurement axis cause an error. However, according to the present embodiment, since it is sufficient to adjust the optical axes of multiple axes at once, it is possible to reduce the error factor as compared with the conventional method in which the optical axes are individually adjusted.

図6は、第二実施例による3軸を測定する光学系20の詳細を示す模式図である。1は、光源であり、所定波長のレーザ光を発射するレーザ光を用いる。光源1より射出された光を第1偏光ビームスプリッタ21で基準測定光61と参照測定光60に分岐する。その後、基準測定光61は、反射ターゲットであるリトロリフレクタ51で反射され、ハーフミラー42、43で分岐して、第1偏光ビームスプリッタ21、第2偏光ビームスプリッタ22、さらに第3偏光ビームスプリッタ23に入射する。 FIG. 6 is a schematic diagram showing details of the optical system 20 for measuring three axes according to the second embodiment. Reference numeral 1 denotes a light source, which uses laser light that emits laser light having a predetermined wavelength. The light emitted from the light source 1 is split into the standard measurement light 61 and the reference measurement light 60 by the first polarization beam splitter 21. After that, the reference measurement light 61 is reflected by the retro-reflector 51, which is a reflection target, and is branched by the half mirrors 42 and 43 to form the first polarization beam splitter 21, the second polarization beam splitter 22, and the third polarization beam splitter 23. Incident on.

第1偏光ビームスプリッタ21で分岐した参照測定光60は、ハーフミラー41、44で第1参照測定光62と第2参照測定光63、第3参照測定光64に分岐する。なお、参照測定光60は、ハーフミラー41で第1参照測定光62が分岐され、ハーフミラー44で第2参照測定光63と第3参照測定光64に分岐される。第1参照測定光62は、さらにミラー31で曲げられ、被測定物に固定される反射ターゲットであるリトロリフレクタ52で反射する。さらに、ミラー31で曲げられ、第1偏光ビームスプリッタ21に入射する。 The reference measurement light 60 branched by the first polarization beam splitter 21 is branched by the half mirrors 41 and 44 into a first reference measurement light 62, a second reference measurement light 63, and a third reference measurement light 64. The reference measurement light 60 is branched by the half mirror 41 into the first reference measurement light 62, and is branched by the half mirror 44 into the second reference measurement light 63 and the third reference measurement light 64. The first reference measurement light 62 is further bent by the mirror 31 and reflected by the retro-reflector 52 which is a reflection target fixed to the object to be measured. Further, it is bent by the mirror 31 and is incident on the first polarization beam splitter 21.

第1参照測定光62は、基準測定光61と第1偏光ビームスプリッタ21で干渉し、第1受光部11に入射する。第2参照測定光63はミラー32、33で曲げられ、リトロリフレクタ53で反射し、第2偏光ビームスプリッタ22に入射する。そして、基準測定光61と第2偏光ビームスプリッタ22で干渉し、第2受光部12に入射する。 The first reference measurement light 62 interferes with the standard measurement light 61 at the first polarization beam splitter 21, and enters the first light receiving unit 11. The second reference measurement light 63 is bent by the mirrors 32 and 33, reflected by the retro-reflector 53, and enters the second polarization beam splitter 22. Then, the reference measurement light 61 interferes with the second polarization beam splitter 22, and enters the second light receiving unit 12.

第3参照測定光64はリトロリフレクタ54で反射し、第3偏光ビームスプリッタ23に入射する。基準測定光61と第3参照測定光64は第3偏光ビームスプリッタ23で干渉し、第3受光部13に入射する。第1偏光ビームスプリッタ21、第2偏光ビームスプリッタ22、第3偏光ビームスプリッタ23で干渉した光の明暗である各干渉縞は、基準測定光61と第1参照測定光62、基準測定光61と第2参照測定光63、基準測定光61と第3参照測定光64のそれぞれの光路長の位相差を表す。したがって、リトロリフレクタ51、52、53、54の微小な変位や変化を測定することが可能になる。 The third reference measurement light 64 is reflected by the retroreflector 54 and enters the third polarization beam splitter 23. The standard measurement light 61 and the third reference measurement light 64 interfere with each other at the third polarization beam splitter 23 and enter the third light receiving unit 13. The interference fringes, which are the light and shade of the light interfered by the first polarization beam splitter 21, the second polarization beam splitter 22, and the third polarization beam splitter 23, are the standard measurement light 61, the first reference measurement light 62, and the standard measurement light 61. The phase difference between the optical path lengths of the second reference measurement light 63, the standard measurement light 61, and the third reference measurement light 64 is shown. Therefore, it becomes possible to measure minute displacements and changes of the retroreflectors 51, 52, 53, 54.

以上、光源1より出力されたレーザ光を第1偏光ビームスプリッタ21で基準測定光61と参照測定光60に分岐する。分岐した参照測定光60は、ハーフミラー41、44で第1参照測定光62と第2参照測定光63と第3参照測定光64とに分岐する。測定部に取り付けた3個のリトロリフレクタ51、52、53及び干渉計部に固定されたリトロリフレクタ54で基準測定光61及び3個の参照測定光である第1参照測定光62と第2参照測定光63と第3参照測定光64とを各々反射させる。反射後の基準測定光61を3個に分岐し、各参照測定光と干渉させ、干渉信号を3個の受光器である第1受光部11、第2受光部12、第3受光部13で観測する。 As described above, the laser light output from the light source 1 is split into the standard measurement light 61 and the reference measurement light 60 by the first polarization beam splitter 21. The split reference measurement light 60 is split by the half mirrors 41 and 44 into a first reference measurement light 62, a second reference measurement light 63, and a third reference measurement light 64. The three reference retroreflectors 51, 52, 53 attached to the measurement section and the retroreflector 54 fixed to the interferometer section are used as the reference measurement light 61 and the first reference measurement light 62 and the second reference measurement light 62 as the three reference measurement lights. The measurement light 63 and the third reference measurement light 64 are reflected respectively. The standard measurement light 61 after reflection is branched into three and interferes with each reference measurement light, and the interference signal is received by the three light receivers, that is, the first light receiving unit 11, the second light receiving unit 12, and the third light receiving unit 13. Observe.

第二実施例によれば、容易に角度と長さが同時に測定できる。角度単体の測定では被測定物の移動における機械誤差がそのまま測定位置誤差となるのに対し、角度と長さを同時に取得できる本干渉計であれば、測定点をサブミクロンの単位で管理できる。 According to the second embodiment, the angle and the length can be easily measured at the same time. In the measurement of the angle alone, the mechanical error in the movement of the measured object becomes the measurement position error as it is, whereas the interferometer capable of acquiring the angle and the length at the same time can manage the measurement point in the submicron unit.

また、本構成により1光源、1ユニットでかつ1つの基準測定光を軸として3個の測定を同時に行うことができる。そのため、3個の測定を各々行った場合に必要とされるアライメント調整における測定軸の位置、角度のバラツキは発生しない。 Further, according to this configuration, one light source, one unit, and three measurements can be performed simultaneously with one reference measurement light as an axis. Therefore, the variation in the position and angle of the measurement axis in the alignment adjustment, which is required when the three measurements are performed, does not occur.

以上、多軸レーザ干渉測長器において、光源より射出されたレーザ光を基準測定光と参照測定光に偏光ビームスプリッタで分岐する。さらに、分岐した参照測定光は第1、第2、…、第n参照測定光に分岐する。基準測定光及びn個の参照測定光は、n+1個のリトロリフレクタで各々反射し、反射後の基準測定光はn個に分岐され、n個の参照測定光とそれぞれ合流されて干渉信号をn個の受光器で光電変換する。 As described above, in the multi-axis laser interferometer, the laser beam emitted from the light source is split into the standard measurement light and the reference measurement light by the polarization beam splitter. Further, the branched reference measurement light is branched into the first, second,..., Nth reference measurement light. The standard measurement light and the n reference measurement lights are reflected by the n+1 retroreflectors, respectively, and the reflected reference measurement light is branched into n pieces, which are combined with the n reference measurement lights to generate an interference signal n. Photoelectric conversion is performed with each light receiver.

したがって、1光源、1ユニットの光学系でかつ1つの基準測定光を軸としてn個軸の測定を同時に行うことができる。そのため、複数項目測定可能な機材を使用することとなり、段取り替えに伴う取り付け(測定)位置ずれがなくなり、測定時間を低減することができる。また、取り付け空間の省スペース化、取り付け調整が容易、大気擾乱の彫響を受けにくい安定した測定が可能となり汎用性も高めることができる。 Therefore, it is possible to simultaneously measure n axes with one light source and one unit of an optical system and one reference measurement light as an axis. Therefore, equipment that can measure a plurality of items is used, and the mounting (measurement) position shift due to the setup change is eliminated, and the measurement time can be reduced. In addition, the installation space can be saved, the installation can be adjusted easily, and stable measurements that are less likely to be affected by atmospheric turbulence can be performed, thus increasing versatility.

なお、ステージの移動に伴う姿勢変化(ヨーイング、ピッチング)を各リトロリフレクタまでの光路長の変化から角度として、分解能で0.05秒、精度±0.2%位で測定することができる。また、工作機械のインデックステーブルの角度位置を短時間で測定するためのシステムに応用が可能であり、システムを取り付けるときの誤差も補正できる。 The posture change (yawing, pitching) accompanying the movement of the stage can be measured as the angle from the change in the optical path length to each retroreflector with a resolution of 0.05 seconds and an accuracy of about ±0.2%. Further, it can be applied to a system for measuring the angular position of the index table of the machine tool in a short time, and the error when mounting the system can be corrected.

したがって、精密な調整なしにセッティングが完了できるため、従来比約1/3の時間で測定が完了する。さらに、位置決め精度だけではなく、工作機械に要求されるステージや主軸の挙動解析、動的な挙動解析にも対応することが可能となる。 Therefore, since the setting can be completed without precise adjustment, the measurement is completed in about 1/3 the time of the conventional method. Further, not only the positioning accuracy but also the behavior analysis of the stage and the spindle required for the machine tool and the dynamic behavior analysis can be supported.

1、73、83…光源、20…光学系、40…可動テーブル、70、80…偏光ビームスプリッタ、74、84…受光部
11…第1受光部、12…第2受光部、13…第3受光部
21…第1偏光ビームスプリッタ
22…第2偏光ビームスプリッタ
23…第3偏光ビームスプリッタ
31、32、33…ミラー
41、42、43、44…ハーフミラー
51、52、53、54、71、72、81、82…リトロリフレクタ
60…参照測定光、61…基準測定光
62…第1参照測定光、63…第2参照測定光、64…第3参照測定光
1, 73, 83... Light source, 20... Optical system, 40... Movable table, 70, 80... Polarization beam splitter, 74, 84... Light receiving section 11... First light receiving section, 12... Second light receiving section, 13... Third Light receiving section 21... First polarization beam splitter 22... Second polarization beam splitter 23... Third polarization beam splitter 31, 32, 33... Mirrors 41, 42, 43, 44... Half mirrors 51, 52, 53, 54, 71, 72, 81, 82... Retroreflector 60... Reference measurement light, 61... Standard measurement light 62... First reference measurement light, 63... Second reference measurement light, 64... Third reference measurement light

Claims (9)

光源より射出されるレーザ光を光学系により分岐し、反射ターゲットでそれぞれ反射させて合流させることで干渉信号を得て、該干渉信号を光電変換して光路差を算出する多軸レーザ干渉測長器において、
前記光学系は、
前記光源より射出された前記レーザ光を基準測定光と参照測定光に分岐する偏光ビームスプリッタと、
分岐した前記参照測定光を第1、第2、…、第n参照測定光に分岐するハーフミラーと、
前記反射ターゲットとして可動テーブルの測定部に取り付けられ、前記基準測定光及びn個の前記参照測定光を各々反射させるn+1個のリトロリフレクタと、
反射後の前記基準測定光をn個に分岐し、n個の前記参照測定光とそれぞれ合流させることで得られたそれぞれの前記干渉信号を光電変換するn個の受光器と、
を備えたことを特徴とする多軸レーザ干渉測長器。
Multi-axis laser interferometry for calculating the optical path difference by opto-electrically converting the interference signals by splitting the laser light emitted from the light source by an optical system, reflecting each with a reflection target and merging In the vessel
The optical system is
A polarization beam splitter that splits the laser light emitted from the light source into standard measurement light and reference measurement light,
A half mirror for branching the branched reference measurement light into first, second,..., Nth reference measurement light,
N+1 retro-reflectors attached to the measurement unit of the movable table as the reflection target and reflecting the standard measurement light and the n reference measurement lights, respectively.
The reference measurement light after reflection is branched into n pieces, and n photoreceivers for photoelectrically converting the respective interference signals obtained by merging with the n reference measurement lights, respectively.
A multi-axis laser interferometer, which is characterized by comprising:
n個に分岐された反射後の前記基準測定光と、n個の前記参照測定光とをそれぞれ合流させるn個の偏光ビームスプリッタを設けたことを特徴とする請求項1に記載の多軸レーザ干渉測長器。 2. The multi-axis laser according to claim 1, further comprising n polarization beam splitters for respectively joining the reference measurement light after reflection and the reference measurement light after reflection split into n pieces. Interferometer. 前記偏光ビームスプリッタは、前記光源より射出された前記レーザ光を前記基準測定光と前記参照測定光に分岐する第1偏光ビームスプリッタを有し、
前記ハーフミラーは、前記参照測定光を第1参照測定光と第2参照測定光に分岐する第1ハーフミラー(41)を有し、
前記リトロリフレクタは、
前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記基準測定光を反射する第1リトロリフレクタ(51)と、
前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第1参照測定光を反射する第2リトロリフレクタ(52)と、
前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第2参照測定光を反射する第3リトロリフレクタ(53)と、を有し、
前記ハーフミラーは、前記第1リトロリフレクタ(51)で反射された前記基準測定光を分岐する第2ハーフミラー(42)を有し、
前記第1偏光ビームスプリッタには、前記第2ハーフミラー(42)で分岐された前記基準測定光の一方、及び前記第2リトロリフレクタ(52)で反射した前記第1参照測定光が入射され、
前記偏光ビームスプリッタは、前記第2ハーフミラー(42)で分岐された前記基準測定光の他方、及び前記第3リトロリフレクタ(53)で反射した前記第2参照測定光が入射される第2偏光ビームスプリッタを有し、
前記第1偏光ビームスプリッタで得られた前記第1参照測定光と前記基準測定光との干渉信号を光電変換する第1受光部と、
前記第2偏光ビームスプリッタで得られた前記第2参照測定光と前記基準測定光との干渉信号を光電変換する第2受光部と、
を備えたことを特徴とする請求項1又は2に記載の多軸レーザ干渉測長器。
The polarization beam splitter has a first polarization beam splitter that splits the laser light emitted from the light source into the standard measurement light and the reference measurement light,
The half mirror has a first half mirror (41) that splits the reference measurement light into a first reference measurement light and a second reference measurement light,
The retro-reflector is
A first retro-reflector (51) attached to the measuring section of the movable table as the reflection target and reflecting the reference measurement light;
A second retro-reflector (52) attached to the measuring section of the movable table as the reflection target and reflecting the first reference measurement light;
A third retro-reflector (53) that is attached to the measurement unit of the movable table as the reflection target and reflects the second reference measurement light;
The half mirror includes a second half mirror (42) that branches the reference measurement light reflected by the first retroreflector (51),
One of the standard measurement light beams split by the second half mirror (42) and the first reference measurement light beam reflected by the second retroreflector (52) are incident on the first polarization beam splitter.
The polarization beam splitter is a second polarized light on which the other of the standard measurement light split by the second half mirror (42) and the second reference measurement light reflected by the third retroreflector (53) are incident. Has a beam splitter,
A first light receiving unit that photoelectrically converts an interference signal between the first reference measurement light and the standard measurement light obtained by the first polarization beam splitter;
A second light receiving unit that photoelectrically converts an interference signal between the second reference measurement light and the standard measurement light obtained by the second polarization beam splitter;
The multi-axis laser interferometer according to claim 1 or 2, further comprising:
前記第2リトロリフレクタ(52)で反射した前記第1参照測定光は、第1ミラー(31)で曲げられて前記第1偏光ビームスプリッタに入射することを特徴とする請求項3に記載の多軸レーザ干渉測長器。 The multiple reference light according to claim 3, wherein the first reference measurement light reflected by the second retroreflector (52) is bent by a first mirror (31) and enters the first polarization beam splitter. Axis laser interferometer. 前記第2参照測定光は、第2ミラー(32)及び第3ミラー(33)で曲げられて前記第3リトロリフレクタ(53)で反射されることを特徴とする請求項3又は4に記載の多軸レーザ干渉測長器。 The second reference measurement light is bent by a second mirror (32) and a third mirror (33) and is reflected by the third retroreflector (53). Multi-axis laser interferometer. 前記光学系は、
前記光源より射出された前記レーザ光を前記基準測定光と前記参照測定光に分岐する第1偏光ビームスプリッタと、
前記参照測定光を第1参照測定光、第2参照測定光及び第3参照測定光に分岐するハーフミラー(41、44)と、
前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記基準測定光を反射するリトロリフレクタ(51)と、
前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第1参照測定光を反射するリトロリフレクタ(52)と、
前記反射ターゲットとして前記可動テーブルの測定部に取り付けられ、前記第2参照測定光を反射するリトロリフレクタ(53)と、
前記第3参照測定光を反射するリトロリフレクタ(54)と、
前記リトロリフレクタ(51)で反射された前記基準測定光を分岐するハーフミラー(42、43)と、
分岐された前記基準測定光及び前記リトロリフレクタ(52)で反射した前記第1参照測定光が入射される第1偏光ビームスプリッタと、
分岐された前記基準測定光及び前記リトロリフレクタ(53)で反射した前記第2参照測定光が入射される第2偏光ビームスプリッタと、
分岐された前記基準測定光及び前記リトロリフレクタ(54)で反射した前記第3参照測定光が入射される第3偏光ビームスプリッタと、
前記第1偏光ビームスプリッタで得られた前記第1参照測定光と前記基準測定光との干渉信号を光電変換する第1受光部と、
前記第2偏光ビームスプリッタで得られた前記第2参照測定光と前記基準測定光との干渉信号を光電変換する第2受光部と、
前記第3偏光ビームスプリッタで得られた前記第3参照測定光と前記基準測定光との干渉信号を光電変換する第3受光部と、
を備えたことを特徴とする請求項1又は2に記載の多軸レーザ干渉測長器。
The optical system is
A first polarization beam splitter that splits the laser light emitted from the light source into the standard measurement light and the reference measurement light;
A half mirror (41, 44) for branching the reference measurement light into a first reference measurement light, a second reference measurement light and a third reference measurement light;
A retro-reflector (51) attached to the measuring section of the movable table as the reflection target and reflecting the reference measurement light;
A retro-reflector (52) attached to the measurement unit of the movable table as the reflection target and reflecting the first reference measurement light;
A retro-reflector (53), which is attached to the measurement unit of the movable table as the reflection target and reflects the second reference measurement light;
A retroreflector (54) for reflecting the third reference measurement light;
Half mirrors (42, 43) for branching the reference measurement light reflected by the retroreflector (51);
A first polarization beam splitter into which the split reference measurement light and the first reference measurement light reflected by the retroreflector (52) are incident;
A second polarization beam splitter into which the split reference measurement light and the second reference measurement light reflected by the retroreflector (53) are incident;
A third polarization beam splitter into which the split reference measurement light and the third reference measurement light reflected by the retroreflector (54) are incident,
A first light receiving unit that photoelectrically converts an interference signal between the first reference measurement light and the standard measurement light obtained by the first polarization beam splitter;
A second light receiving unit that photoelectrically converts an interference signal between the second reference measurement light and the standard measurement light obtained by the second polarization beam splitter;
A third light receiving section for photoelectrically converting an interference signal between the third reference measurement light and the standard measurement light obtained by the third polarization beam splitter;
The multi-axis laser interferometer according to claim 1 or 2, further comprising:
前記リトロリフレクタ(51)で反射された前記基準測定光は、ハーフミラー(42、43)で分岐して、前記第1偏光ビームスプリッタ、前記第2偏光ビームスプリッタ、前記第3偏光ビームスプリッタ(23)に入射することを特徴とする請求項6に記載の多軸レーザ干渉測長器。 The reference measurement light reflected by the retro-reflector (51) is branched by the half mirrors (42, 43), and the first polarization beam splitter, the second polarization beam splitter, and the third polarization beam splitter (23). ) Is incident on the multi-axis laser interferometer. 前記参照測定光は、前記ハーフミラー(41)で前記第1参照測定光が分岐され、ハーフミラー(44)で前記第3参照測定光と前記第2参照測定光とに分岐され、前記第2参照測定光は、ミラー(32、33)で曲げられて前記リトロリフレクタ(53)で反射されることを特徴とする請求項6又は7に記載の多軸レーザ干渉測長器。 The first reference measurement light is branched by the half mirror (41), and the reference measurement light is branched by the half mirror (44) into the third reference measurement light and the second reference measurement light. The multi-axis laser interferometer according to claim 6 or 7, wherein the reference measurement light is bent by mirrors (32, 33) and reflected by the retroreflector (53). 前記参照測定光は、前記ハーフミラー(44)で前記第3参照測定光と前記第2参照測定光とに分岐され、前記第3参照測定光は、前記リトロリフレクタ(54)で反射されることを特徴とする請求項6から請求項8のいずれか一項に記載の多軸レーザ干渉測長器。 The reference measurement light is split into the third reference measurement light and the second reference measurement light by the half mirror (44), and the third reference measurement light is reflected by the retroreflector (54). The multi-axis laser interferometer according to any one of claims 6 to 8.
JP2018221928A 2018-11-28 2018-11-28 Multi-axis laser interferometer Active JP7112947B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018221928A JP7112947B2 (en) 2018-11-28 2018-11-28 Multi-axis laser interferometer
JP2022117360A JP7361166B2 (en) 2018-11-28 2022-07-22 Multi-axis laser interferometer and displacement detection method
JP2023168589A JP2023171867A (en) 2018-11-28 2023-09-28 Multiaxis laser interference length measurer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221928A JP7112947B2 (en) 2018-11-28 2018-11-28 Multi-axis laser interferometer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022117360A Division JP7361166B2 (en) 2018-11-28 2022-07-22 Multi-axis laser interferometer and displacement detection method

Publications (2)

Publication Number Publication Date
JP2020085704A true JP2020085704A (en) 2020-06-04
JP7112947B2 JP7112947B2 (en) 2022-08-04

Family

ID=70907581

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018221928A Active JP7112947B2 (en) 2018-11-28 2018-11-28 Multi-axis laser interferometer
JP2022117360A Active JP7361166B2 (en) 2018-11-28 2022-07-22 Multi-axis laser interferometer and displacement detection method
JP2023168589A Pending JP2023171867A (en) 2018-11-28 2023-09-28 Multiaxis laser interference length measurer

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022117360A Active JP7361166B2 (en) 2018-11-28 2022-07-22 Multi-axis laser interferometer and displacement detection method
JP2023168589A Pending JP2023171867A (en) 2018-11-28 2023-09-28 Multiaxis laser interference length measurer

Country Status (1)

Country Link
JP (3) JP7112947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022203935A1 (en) 2021-04-27 2022-10-27 Okuma Corporation Accuracy diagnostic apparatus and accuracy diagnostic method for a machine tool, and accuracy setting reservation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290502A (en) * 1989-02-23 1990-11-30 Hewlett Packard Co <Hp> Interferometer
JPH04316312A (en) * 1991-02-07 1992-11-06 Asm Lithography Bv Method and apparatus for focusing image and apparatus for accurately displacing and positioning substance
JPH09196623A (en) * 1995-11-15 1997-07-31 Sokkia Co Ltd Multiaxis laser interference length measuring instrument
JP2004239905A (en) * 2003-02-05 2004-08-26 Agilent Technol Inc Compact multi-axis interferometer
JP2005516203A (en) * 2002-01-28 2005-06-02 ザイゴ コーポレーション Multi-axis interferometer
JP2007309884A (en) * 2006-05-22 2007-11-29 V Technology Co Ltd Table-positioning method in operation system, and system thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316312B2 (en) 2003-07-04 2009-08-19 株式会社東芝 Surveillance test apparatus and surveillance test method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290502A (en) * 1989-02-23 1990-11-30 Hewlett Packard Co <Hp> Interferometer
JPH04316312A (en) * 1991-02-07 1992-11-06 Asm Lithography Bv Method and apparatus for focusing image and apparatus for accurately displacing and positioning substance
JPH09196623A (en) * 1995-11-15 1997-07-31 Sokkia Co Ltd Multiaxis laser interference length measuring instrument
JP2005516203A (en) * 2002-01-28 2005-06-02 ザイゴ コーポレーション Multi-axis interferometer
JP2004239905A (en) * 2003-02-05 2004-08-26 Agilent Technol Inc Compact multi-axis interferometer
JP2007309884A (en) * 2006-05-22 2007-11-29 V Technology Co Ltd Table-positioning method in operation system, and system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022203935A1 (en) 2021-04-27 2022-10-27 Okuma Corporation Accuracy diagnostic apparatus and accuracy diagnostic method for a machine tool, and accuracy setting reservation system
US11953406B2 (en) 2021-04-27 2024-04-09 Okuma Corporation Accuracy diagnostic device and accuracy diagnostic method for machine tool, and accuracy adjustment reservation system

Also Published As

Publication number Publication date
JP7112947B2 (en) 2022-08-04
JP2023171867A (en) 2023-12-05
JP2022145717A (en) 2022-10-04
JP7361166B2 (en) 2023-10-13

Similar Documents

Publication Publication Date Title
US8928891B2 (en) Optical distance sensor with tilt error correction
WO2018103268A1 (en) Laser measurement system for measuring geometric error in six degrees of freedom of rotating shaft, and method therefor
WO2016033766A1 (en) System for simultaneously measuring six-degree-of-freedom errors in way that double-frequency lasers are coupled by single optical fiber
US20180202796A1 (en) Measuring device and method for measuring at least one length measurand
US8736850B2 (en) Method and device for measuring surfaces in a highly precise manner
KR101959341B1 (en) Position-measuring device and system having a plurality of position-measuring devices
US11150077B2 (en) Heterodyne laser interferometer based on integrated secondary beam splitting component
US9115973B2 (en) Profile measuring instrument
JP2023171867A (en) Multiaxis laser interference length measurer
US4538911A (en) Three-dimensional interferometric length-measuring apparatus
US7889354B2 (en) Interferometric measuring device
Fluegge et al. Status of the nanometer comparator at PTB
Ren et al. A novel enhanced roll-angle measurement system based on a transmission grating autocollimator
de Groot et al. Concepts and geometries for the next generation of precision heterodyne optical encoders
GB2170005A (en) Interferometric multicoordinate measuring device
Zhang et al. Interferometeric straightness measurement system using triangular prisms
Wilhelm et al. A novel low coherence fibre optic interferometer for position and thickness measurements with unattained accuracy
NL2032613B1 (en) Position detection system using laser light interferometry.
JP3532347B2 (en) Shape measuring device
Weichert et al. A straightness measuring interferometer characterised with different wedge prisms
CN109916296B (en) Laser interference device
Liu et al. Theory and application of laser interferometer systems
JP2023100358A (en) Laser interference device
TW202405368A (en) Position detection system using laser light interferometry
JP5135183B2 (en) 3D shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7112947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150