JP2020085599A - Battery degradation estimating device and battery degradation estimating method - Google Patents

Battery degradation estimating device and battery degradation estimating method Download PDF

Info

Publication number
JP2020085599A
JP2020085599A JP2018218531A JP2018218531A JP2020085599A JP 2020085599 A JP2020085599 A JP 2020085599A JP 2018218531 A JP2018218531 A JP 2018218531A JP 2018218531 A JP2018218531 A JP 2018218531A JP 2020085599 A JP2020085599 A JP 2020085599A
Authority
JP
Japan
Prior art keywords
deterioration
internal resistance
battery
deterioration estimation
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018218531A
Other languages
Japanese (ja)
Inventor
田中 義久
Yoshihisa Tanaka
義久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2018218531A priority Critical patent/JP2020085599A/en
Publication of JP2020085599A publication Critical patent/JP2020085599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a battery degradation estimating device with which it is possible to estimate the degradation of a lithium-ion battery with higher accuracy.SOLUTION: The present invention includes: calculating an internal resistance on the basis of measurement of an easily measurable current at charge or discharge time and an easily measurable voltage before and after charge or discharge of a unit cell the degradation of which is to be estimated (step S1), and calculating an increase rate of internal resistance (step S3). Subsequently, the present invention estimates a discharge capacitance retention rate, while estimating the output and input retention rates of the unit cell, on the basis of a correlation of the internal resistance increase rate and a square root (step S4). On the basis of these, the present invention estimates the degradation degree of the unit cell (steps S9, S10).SELECTED DRAWING: Figure 2

Description

本発明は、定置用蓄電システム等に使用されるリチウムイオン電池の劣化推定装置及び劣化推定方法に関する。 The present invention relates to a deterioration estimation device and a deterioration estimation method for a lithium ion battery used in a stationary power storage system or the like.

太陽光や風力等の再生可能エネルギーから生成される電力は、定置用蓄電システムに蓄電されて、出力電力の平滑化が図られている。近年、定置用蓄電システムに使用する蓄電池として、リチウムイオン電池の普及が進んでいる。 Electric power generated from renewable energy such as sunlight and wind power is stored in a stationary power storage system to smooth output power. 2. Description of the Related Art In recent years, lithium-ion batteries have become popular as storage batteries used in stationary power storage systems.

リチウムイオン電池は、保存時間、温度、充放電回数等の影響を受けて電池材料の劣化が進み、結果として電池容量が次第に減少する。このため、蓄電システムとして安定した充放電機能を発揮させるためには、リチウムイオン電池の劣化状態を把握し、劣化が進んだ電池を交換することが必要である。 In a lithium ion battery, the deterioration of the battery material progresses under the influence of storage time, temperature, the number of times of charge and discharge, and as a result, the battery capacity gradually decreases. Therefore, in order to exert a stable charging/discharging function as the power storage system, it is necessary to grasp the deterioration state of the lithium-ion battery and replace the deteriorated battery.

リチウムイオン電池の劣化を判定するための一手段として、リチウムイオン電池の電池容量を測定し、その電池容量の低下を検出することにより電池の劣化を判定する方法がある。しかし、電池容量を測定するには、測定対象の電池を満充電状態まで充電した後に、完全放電させる容量測定試験を行う必要がある。 As one means for determining the deterioration of the lithium ion battery, there is a method of measuring the battery capacity of the lithium ion battery and detecting the decrease of the battery capacity to judge the deterioration of the battery. However, in order to measure the battery capacity, it is necessary to perform a capacity measurement test in which the battery to be measured is fully discharged after being fully charged.

しかし、容量測定試験は、特定の条件でリチウムイオン電池を満充電状態まで充電した後に完全放電状態まで放電させた場合の放電容量を計測する試験であり、高価な充放電試験装置が必要となる。 However, the capacity measurement test is a test that measures the discharge capacity when the lithium ion battery is charged to a fully charged state and then discharged to a completely discharged state under specific conditions, and an expensive charge/discharge test device is required. ..

また、このような試験では20時間程度の測定時間が必要となるため、試験時には蓄電システムの運用を長時間に亘って停止する必要がある。従って、蓄電システムの効率的な運用に支障を来す。 Further, since such a test requires about 20 hours of measurement time, it is necessary to stop the operation of the power storage system for a long time during the test. Therefore, it hinders the efficient operation of the power storage system.

そこで、リチウムイオン電池の容量を実測により測定することなく、簡易に計測可能なパラメータから電池の容量を算出により推定し、蓄電システムの効率的な運用が図れる劣化推定技術が提案されている(例えば特許文献1及び2参照)。 Therefore, there has been proposed a deterioration estimation technique capable of efficiently operating the power storage system by estimating the capacity of the battery from parameters that can be easily measured without actually measuring the capacity of the lithium ion battery (for example, See Patent Documents 1 and 2.

特開2014−81238号公報JP, 2014-81238, A 特開2003−178812号公報JP, 2003-178812, A

上記劣化推定技術のように、蓄電システムの運用を長時間に亘って停止することなく、電池の容量特性に限定した手法とは異なる手法で、精度の高い電池の劣化推定を行うことが求められている。 It is required to accurately estimate the deterioration of the battery by a method different from the method of limiting the capacity characteristic of the battery without stopping the operation of the power storage system for a long time like the deterioration estimation technique. ing.

本発明の目的は、リチウムイオン電池の劣化推定をより精度高く行い得る電池の劣化推定装置及び電池の劣化推定方法を提供することにある。 An object of the present invention is to provide a battery deterioration estimating device and a battery deterioration estimating method that can perform deterioration estimation of a lithium ion battery with higher accuracy.

上記課題を解決する電池の劣化推定装置は、リチウムイオン電池の単電池を多数接続して構成される蓄電システムの電池モジュールにおいて劣化推定対象単電池の劣化度合いを推定する電池の劣化推定装置であって、前記劣化推定対象単電池を充電又は放電し、充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて前記劣化推定対象単電池の内部抵抗を算出する内部抵抗算出部と、前記劣化推定対象単電池の内部抵抗に基づいて前記劣化推定対象単電池の内部抵抗増加率を算出する抵抗増加率算出部と、前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の出力維持率及び入力維持率の少なくとも一方の推定とともに、前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の放電容量維持率の推定を行う維持率推定部と、前記出力維持率及び入力維持率の少なくとも一方と前記放電容量維持率とに基づく前記劣化推定対象単電池の劣化度合いの推定を行う劣化推定部とを備えた。 A battery deterioration estimation device that solves the above problem is a battery deterioration estimation device that estimates the deterioration degree of a deterioration estimation target single battery in a battery module of a power storage system configured by connecting a large number of lithium ion battery cells. An internal resistance calculation unit that charges or discharges the deterioration estimation target unit cell, and calculates the internal resistance of the deterioration estimation target unit cell based on the measurement of the current during charging or discharging and the voltage before or after charging or discharging. , A correlation between a resistance increase rate calculation unit that calculates an internal resistance increase rate of the deterioration estimation target unit cell based on the internal resistance of the deterioration estimation target unit cell, and the internal resistance increase rate or the square root of the internal resistance increase rate Based on the estimation of at least one of the output maintenance rate and the input maintenance rate of the deterioration estimation target cell, the discharge capacity of the deterioration estimation target cell based on the correlation with the internal resistance increase rate or the square root of the internal resistance increase rate. A maintenance rate estimation unit that estimates the maintenance rate, and a degradation estimation unit that estimates the degradation degree of the degradation estimation target single cell based on at least one of the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate. Prepared

上記態様によれば、蓄電システムの運用を長時間に亘って停止することなく簡易に計測可能な、劣化推定対象単電池の充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて内部抵抗が算出され、内部抵抗増加率が算出される。ついで、内部抵抗増加率又はこの内部抵抗増加率の平方根との相関に基づき、劣化推定対象単電池の出力維持率及び入力維持率の少なくとも一方の推定とともに、放電容量維持率の推定が行われる。そして、出力維持率及び入力維持率の少なくとも一方と放電容量維持率とに基づき、劣化推定対象単電池の劣化度合いの推定が行われる。つまり、劣化推定対象単電池の放電容量維持率といった容量特性とともに、出力維持率や入力維持率といった単電池の入出力特性も考慮した単電池の劣化度合いの推定が行われるため、単電池の劣化推定をより精度高く行うことが可能である。なお、出力維持率、入力維持率、放電容量維持率は、それぞれ自身の低下率の対義語に相当する。 According to the above aspect, it is possible to easily measure the operation of the power storage system without stopping for a long time, based on the measurement of the current at the time of charging or discharging the deterioration estimation target cell and the voltage before and after the charging or discharging. Then, the internal resistance is calculated, and the internal resistance increase rate is calculated. Next, based on the internal resistance increase rate or the correlation with the square root of the internal resistance increase rate, the discharge capacity maintenance rate is estimated together with the estimation of at least one of the output maintenance rate and the input maintenance rate of the deterioration estimation target cell. Then, based on at least one of the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate, the deterioration degree of the deterioration estimation target unit cell is estimated. That is, the deterioration degree of the unit cell is estimated because the deterioration degree of the unit cell is estimated in consideration of the input/output characteristics of the unit cell, such as the output maintenance rate and the input maintenance rate, as well as the capacity characteristic such as the discharge capacity maintenance rate of the target cell for deterioration estimation. The estimation can be performed with higher accuracy. The output maintenance rate, the input maintenance rate, and the discharge capacity maintenance rate correspond to the synonyms of the reduction rate of each.

また、上記電池の劣化推定装置において、前記劣化推定部は、前記出力維持率及び入力維持率の両方と前記放電容量維持率とに基づく前記劣化推定対象単電池の劣化度合いの推定を行う。 Further, in the above-described battery deterioration estimation device, the deterioration estimation unit estimates the deterioration degree of the deterioration estimation target single battery based on both the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate.

上記態様によれば、劣化推定対象単電池の出力維持率及び入力維持率の両方と放電容量維持率とに基づき単電池の劣化度合いの推定が行われるため、単電池の劣化推定をより精度高く行うことが可能である。 According to the above aspect, since the degree of deterioration of the unit cell is estimated based on both the output maintenance rate and the input maintenance rate of the deterioration estimation target unit cell and the discharge capacity maintenance rate, the deterioration estimation of the unit cell can be performed with higher accuracy. It is possible to do.

また、上記電池の劣化推定装置において、前記電池モジュールの使用開始からの経過時間を測定する時間測定部を備え、前記劣化推定部は、測定した前記劣化推定対象単電池の経過時間に基づいて前記劣化推定対象単電池の劣化度合いとして寿命時間又は残存寿命の推定を行う。 Further, in the above-described battery deterioration estimation device, a time measuring unit that measures an elapsed time from the start of use of the battery module is provided, and the deterioration estimating unit is based on the measured elapsed time of the deterioration estimation target unit cell. The life time or the remaining life is estimated as the degree of deterioration of the deterioration estimation target cell.

上記態様によれば、劣化推定対象単電池の劣化度合いとして、測定した劣化推定対象単電池の経過時間に基づき単電池の寿命時間又は残存寿命の推定が行われる。これにより、単電池の劣化度合いや交換時期を容易に把握することが可能である。 According to the above aspect, as the deterioration degree of the deterioration estimation target cell, the life time or the remaining life of the unit cell is estimated based on the elapsed time of the measured deterioration estimation target cell. This makes it possible to easily grasp the degree of deterioration of the unit cell and the replacement time.

また、上記電池の劣化推定装置において、前記劣化推定対象単電池の劣化度合いを表示する表示部を備えた。
上記態様によれば、劣化推定対象単電池の劣化度合いが表示される表示部が劣化推定装置に備えられるため、電池モジュールの管理者等が別の表示装置を劣化推定装置に接続することなく単電池の劣化状況の確認を容易に行うことが可能である。
Further, the above-described battery deterioration estimation device includes a display unit that displays the deterioration degree of the deterioration estimation target single battery.
According to the above aspect, since the deterioration estimation apparatus is provided with the display unit that displays the degree of deterioration of the deterioration estimation target single battery, the battery module administrator or the like does not connect another display apparatus to the deterioration estimation apparatus. It is possible to easily confirm the deterioration status of the battery.

また、上記課題を解決する電池の劣化推定方法は、リチウムイオン電池の単電池を多数接続して構成される蓄電システムの電池モジュールにおいて劣化推定対象単電池の劣化度合いを推定する電池の劣化推定方法であって、前記劣化推定対象単電池を充電又は放電し、充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて前記劣化推定対象単電池の内部抵抗を算出し、前記劣化推定対象単電池の内部抵抗に基づいて前記劣化推定対象単電池の内部抵抗増加率を算出し、前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の出力維持率及び入力維持率の少なくとも一方の推定とともに、前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の放電容量維持率の推定を行い、前記出力維持率及び入力維持率の少なくとも一方と前記放電容量維持率とに基づく前記劣化推定対象単電池の劣化度合いの推定を行う。 Further, a battery deterioration estimating method for solving the above problem is a battery deterioration estimating method for estimating a deterioration degree of a deterioration estimation target single battery in a battery module of a power storage system configured by connecting a large number of lithium ion battery single batteries. That is, the deterioration estimation target cell is charged or discharged, and the internal resistance of the deterioration estimation target cell is calculated based on the measurement of the current at the time of charging or discharging and the voltage before or after charging or discharging, and the deterioration is The internal resistance increase rate of the deterioration estimation target cell is calculated based on the internal resistance of the estimation target cell, and the deterioration estimation target cell based on the correlation with the internal resistance increase rate or the square root of the internal resistance increase rate. With the estimation of at least one of the output maintenance rate and the input maintenance rate, the discharge capacity maintenance rate of the deterioration estimation target single cell based on the correlation with the internal resistance increase rate or the square root of the internal resistance increase rate is estimated, and the output The deterioration degree of the deterioration estimation target cell is estimated based on at least one of the maintenance rate and the input maintenance rate and the discharge capacity maintenance rate.

上記態様によれば、上記電池の劣化推定装置と同様に、劣化推定対象単電池の放電容量維持率といった容量特性とともに、出力維持率や入力維持率といった単電池の入出力特性も考慮した単電池の劣化度合いの推定が行われるため、単電池の劣化推定をより精度高く行うことが可能である。 According to the above aspect, similar to the battery deterioration estimation device, the unit cell considering the input/output characteristics of the unit cell such as the output maintenance rate and the input maintenance rate together with the capacity characteristics such as the discharge capacity maintenance rate of the deterioration estimation target unit cell. Since the degree of deterioration of the unit cell is estimated, the deterioration of the unit cell can be estimated with higher accuracy.

本発明の電池の劣化推定装置及び電池の劣化推定方法によれば、リチウムイオン電池の劣化推定をより精度高く行うことができる。 According to the battery deterioration estimating apparatus and the battery deterioration estimating method of the present invention, it is possible to perform deterioration estimation of a lithium ion battery with higher accuracy.

劣化推定装置の電気的構成の一実施形態を示すブロック図。The block diagram which shows one Embodiment of the electric constitution of a deterioration estimation apparatus. 電池の劣化度合いの推定動作を示すフロー図。The flowchart which shows the estimation operation of the deterioration degree of a battery. A仕様の電池の出力、入力維持率と放電容量維持率との相関を示す説明図。Explanatory drawing which shows the output of a battery of A specification, and the correlation of an input maintenance rate and a discharge capacity maintenance rate. B仕様の電池の出力、入力維持率と放電容量維持率との相関を示す説明図。Explanatory drawing which shows the output of a battery of B specification, and the correlation of an input maintenance rate and a discharge capacity maintenance rate. A仕様の電池の放電容量維持率及び入出力維持率と経過時間(運用年数)との相関を示す説明図。Explanatory drawing which shows the correlation of discharge capacity maintenance rate of a battery of A specification, input/output maintenance rate, and elapsed time (operating years). B仕様の電池の放電容量維持率及び入出力維持率と経過時間(運用年数)との相関を示す説明図。Explanatory drawing which shows the correlation of discharge capacity maintenance rate of a battery of B specification, input/output maintenance rate, and elapsed time (operating years).

以下、電池の劣化推定装置及び電池の劣化推定方法の一実施形態について説明する。
図1に示す本実施形態の劣化推定装置1は、電池モジュール10を構成する単電池11の劣化を推定し、設置者等に対し推定劣化状況を表示し、必要に応じて電池モジュール10の交換を促すように動作する。
Hereinafter, an embodiment of a battery deterioration estimation device and a battery deterioration estimation method will be described.
The deterioration estimation device 1 of the present embodiment shown in FIG. 1 estimates the deterioration of the unit cells 11 constituting the battery module 10, displays the estimated deterioration status to the installer, and replaces the battery module 10 as necessary. Act to prompt.

電池モジュール10は、例えばリチウムイオン電池で構成される多数の単電池11が直列及び並列に接続される組電池にて構成される。そして、定置用蓄電システムにおいて、太陽光や風力等の再生可能エネルギーに基づいて発電された電力がパワーコンディショナーを介して電池モジュール10に供給されて蓄電される。必要時には電池モジュール10に蓄電された電力がパワーコンディショナーから送電網を介して需要者に供給され、電力供給の安定化が図られる。 The battery module 10 is composed of an assembled battery in which a large number of unit cells 11 composed of, for example, lithium ion batteries are connected in series and in parallel. Then, in the stationary power storage system, electric power generated based on renewable energy such as sunlight and wind power is supplied to the battery module 10 via the power conditioner and stored therein. When necessary, the electric power stored in the battery module 10 is supplied from the power conditioner to the consumer via the power transmission network, and the electric power supply is stabilized.

劣化推定装置1は、複数の温度測定部2a,2bと、複数の内部抵抗測定部3a,3bと、経過時間測定部4と、データ処理部5(データ演算部6及びデータ記憶部7を含む)と、モニタ8とを備える。 The deterioration estimation device 1 includes a plurality of temperature measurement units 2a and 2b, a plurality of internal resistance measurement units 3a and 3b, an elapsed time measurement unit 4, and a data processing unit 5 (including a data calculation unit 6 and a data storage unit 7). ) And a monitor 8.

劣化推定装置1は、電池モジュール10を構成する多数の単電池11のうち、あらかじめ選択された単電池11a,11bに対する劣化推定を行う。単電池11a,11bは、電池モジュール10のうちで劣化が進みやすい位置に配置される単電池、又は任意に選択された劣化推定対象単電池である。このような単電池11a,11bに対しては、温度測定部2a,2bによる温度測定と、内部抵抗測定部3a,3bによる内部抵抗測定とがそれぞれ行われる。 The deterioration estimation device 1 performs deterioration estimation on the preselected single cells 11a and 11b among the large number of single cells 11 constituting the battery module 10. The unit cells 11a and 11b are unit cells arranged at positions where deterioration easily progresses in the battery module 10 or unit cells for deterioration estimation that are arbitrarily selected. For such cells 11a and 11b, the temperature measurement by the temperature measurement units 2a and 2b and the internal resistance measurement by the internal resistance measurement units 3a and 3b are performed, respectively.

温度測定部2a,2bは、図示略とした熱電対等の温度センサを備え、その温度センサが単電池11a,11bにそれぞれ設置される。温度測定部2a,2bは、温度センサが設置された単電池11a,11bの温度を検出し、その検出信号をデータ処理部5内のデータ演算部6に出力する。 The temperature measuring units 2a and 2b include temperature sensors such as thermocouples (not shown), and the temperature sensors are installed in the cells 11a and 11b, respectively. The temperature measurement units 2a and 2b detect the temperatures of the unit cells 11a and 11b in which the temperature sensors are installed, and output the detection signals to the data calculation unit 6 in the data processing unit 5.

内部抵抗測定部3a,3bは、単電池11a,11bに対して所定時間の充電又は放電を行わせ、その間の充電電流又は放電電流と、その充放電前後の出力電圧とを測定し、それぞれをデータ演算部6に出力する。すなわち、内部抵抗測定部3a,3bは、データ演算部6において単電池11a,11bの内部抵抗の測定(算出)を行うための単電池11a,11bの電流及び電圧を測定する。 The internal resistance measuring units 3a and 3b charge or discharge the unit cells 11a and 11b for a predetermined time, measure the charging current or the discharging current during that time, and the output voltage before and after the charging and discharging, and measure each of them. Output to the data calculation unit 6. That is, the internal resistance measuring units 3a and 3b measure the current and voltage of the unit cells 11a and 11b for measuring (calculating) the internal resistance of the unit cells 11a and 11b in the data calculation unit 6.

以下、データ演算部6は、図2に示す処理フローに沿った各種処理を経て、単電池11a,11bの劣化推定を行う。
ステップS1において、データ演算部6は、単電池11a,11bの所定時間の充電又は放電に基づく充電電流又は放電電流と、その充放電前後の出力電圧の電圧変化量とを用い、単電池11a,11bの内部抵抗を測定する。このとき、単電池11a,11bの温度が例えば25±2℃等の適正範囲内であり、単電池11a,11bの所定時間の充電又は放電の開始直前の出力電圧又は充電量(SOC;state of charge)が適正範囲内であるとデータ演算部6が自身で判断した上で、データ演算部6はその内部抵抗の測定を行う。
Hereinafter, the data calculation unit 6 estimates the deterioration of the unit cells 11a and 11b through various processes according to the process flow shown in FIG.
In step S1, the data calculation unit 6 uses the charging current or the discharging current based on the charging or discharging of the unit cells 11a and 11b for a predetermined time and the voltage change amount of the output voltage before and after the charging/discharging to determine the unit cells 11a, 11b. Measure the internal resistance of 11b. At this time, the temperature of the unit cells 11a and 11b is within an appropriate range such as 25±2° C., and the output voltage or the charge amount (SOC; state of state) of the unit cells 11a and 11b immediately before the start of charging or discharging for a predetermined time. charge) is within the proper range, the data calculation unit 6 determines by itself, and then the data calculation unit 6 measures its internal resistance.

ステップS2において、ステップS1側の処理とは別に、データ演算部6は、経過時間測定部4を通じて電池モジュール10(単電池11a,11b)の使用開始からの経過時間を測定している。測定した経過時間は、後記するステップS5,S9,S10の処理において用いられる。 In step S2, separately from the process on the side of step S1, the data calculation unit 6 measures the elapsed time from the start of use of the battery module 10 (cells 11a and 11b) through the elapsed time measurement unit 4. The measured elapsed time is used in the processes of steps S5, S9, and S10 described below.

ステップS3において、データ演算部6は、内部抵抗測定部3a,3bを通じて算出した内部抵抗から内部抵抗増加率を算出する。内部抵抗増加率の算出にあたり、データ処理部5内のデータ記憶部7には、単電池11と同一機種の単電池の新品時の内部抵抗があらかじめ格納されている。データ演算部6は、算出した内部抵抗と新品時の内部抵抗との比較に基づいて単電池11a,11bの内部抵抗増加率を算出する。 In step S3, the data calculation unit 6 calculates the internal resistance increase rate from the internal resistance calculated through the internal resistance measuring units 3a and 3b. In calculating the internal resistance increase rate, the data storage unit 7 in the data processing unit 5 stores in advance the new internal resistance of a unit cell of the same model as the unit cell 11. The data calculation unit 6 calculates the internal resistance increase rate of the unit cells 11a and 11b based on the comparison between the calculated internal resistance and the internal resistance when new.

ステップS4において、データ演算部6は、放電容量維持率の推定にあたり、まず、算出した内部抵抗増加率からその平方根を算出し、その平方根値とあらかじめデータ記憶部7に格納されている相関式から、単電池11a,11bの出力低下率及び入力低下率を算出する。出力低下率及び入力低下率は、本実施形態では内部抵抗増加率の平方根から算出しているが、単に内部抵抗増加率からも算出可能である。内部抵抗増加率の平方根は、内部抵抗増加率よりも出力低下率及び入力低下率との相関性が高く、出力低下率及び入力低下率の算出精度は高い。内部抵抗増加率からの出力低下率及び入力低下率の算出は、相関性が若干低くなるものの十分であり、平方根の演算が不要である。 In step S4, when estimating the discharge capacity retention rate, the data calculation unit 6 first calculates the square root of the calculated internal resistance increase rate, and based on the square root value and the correlation equation previously stored in the data storage unit 7. The output reduction rate and the input reduction rate of the unit cells 11a and 11b are calculated. The output decrease rate and the input decrease rate are calculated from the square root of the internal resistance increase rate in the present embodiment, but can be calculated simply from the internal resistance increase rate. The square root of the internal resistance increase rate has a higher correlation with the output decrease rate and the input decrease rate than the internal resistance increase rate, and the calculation accuracy of the output decrease rate and the input decrease rate is higher. Calculation of the output decrease rate and the input decrease rate from the internal resistance increase rate is sufficient although the correlation is slightly low, and the calculation of the square root is unnecessary.

つぎに、データ演算部6は、出力低下率及び入力低下率をそれぞれ出力維持率及び入力維持率に変換する。出力維持率は「100−出力低下率」の演算にて変換され、入力維持率は「100−入力低下率」の演算にて変換される。そして、データ演算部6は、算出した出力維持率及び入力維持率とあらかじめデータ記憶部7に格納されている相関式から、単電池11a,11bの放電容量維持率を推定する。出力維持率、入力維持率、放電容量維持率は、それぞれ自身の低下率の対義語に相当する。 Next, the data calculation unit 6 converts the output reduction rate and the input reduction rate into the output maintenance rate and the input maintenance rate, respectively. The output maintenance rate is converted by the calculation of "100-output reduction rate", and the input maintenance rate is converted by the calculation of "100-input reduction rate". Then, the data calculation unit 6 estimates the discharge capacity maintenance ratio of the unit cells 11a and 11b from the calculated output maintenance ratio and input maintenance ratio and the correlation formula stored in the data storage unit 7 in advance. The output maintenance rate, the input maintenance rate, and the discharge capacity maintenance rate correspond to the synonyms of the reduction rate of each.

ここで、図3を用い、出力維持率及び入力維持率と放電容量維持率との相関式の作成について説明すると、まず、劣化度合いの異なる多数の単電池において、上記と同様な手法で出力維持率及び入力維持率が求められ、さらに各単電池について放電容量維持率が放電容量測定装置を用いて取得される。そして、多数の単電池について、出力維持率及び入力維持率と放電容量維持率との相関がグラフ上に多数の測定点として表され、その測定点の分布に最も相関性の高い近似直線L1が相関式として求められる。こうして相関式として「y=2.42x−141」が得られ、決定係数「R=0.809」が得られる。相関式は、データ記憶部7に格納される。なお、この図3にて得た相関式は、単電池(リチウムイオン電池)の構成として正極に活物質A、負極に黒鉛を用いるA仕様の電池のものである。 Here, with reference to FIG. 3, a description will be given of the creation of the correlation formulas of the output retention rate and the input retention rate and the discharge capacity retention rate. First, in a number of unit cells having different degrees of deterioration, the output maintenance rate is the same as the above. The rate and the input retention rate are obtained, and the discharge capacity retention rate for each unit cell is acquired using a discharge capacity measuring device. The correlation between the output retention rate, the input retention rate, and the discharge capacity retention rate is expressed as a large number of measurement points on the graph for many unit cells, and the approximate straight line L1 having the highest correlation with the distribution of the measurement points is shown. It is calculated as a correlation formula. Thus "y = 2.42x-141" is obtained as the correlation equation, the coefficient of determination "R 2 = 0.809" is obtained. The correlation equation is stored in the data storage unit 7. The correlation equation obtained in FIG. 3 is for a specification A battery in which the positive electrode uses active material A and the negative electrode uses graphite as the configuration of a single battery (lithium ion battery).

図4にて得られる相関式は、単電池(リチウムイオン電池)の構成として正極に活物質B、負極に黒鉛を用いるB仕様の電池のものである。上記と同様に、グラフ上の多数の測定点の分布に最も相関性の高い近似直線L2が相関式として求められる。つまり、相関式として「y=1.11x−14」が得られ、決定係数「R=0.917」が得られる。相関式は、データ記憶部7に格納される。劣化推定装置1が例えばA仕様及びB仕様を含めた各種仕様の劣化推定が選択的に可能な構成の場合、データ記憶部7には各種仕様の相関式が格納され、格納された各相関式が選択的に用いられる。 The correlation expression obtained in FIG. 4 is for a B-type battery in which the positive electrode uses the active material B and the negative electrode uses graphite as the configuration of a single battery (lithium ion battery). Similar to the above, the approximate straight line L2 having the highest correlation with the distribution of many measurement points on the graph is obtained as a correlation equation. That is, "y = 1.11x-14" is obtained as the correlation equation, the coefficient of determination "R 2 = 0.917" is obtained. The correlation equation is stored in the data storage unit 7. In the case where the deterioration estimating apparatus 1 has a configuration capable of selectively estimating deterioration of various specifications including the A specification and the B specification, the data storage unit 7 stores the correlation equations of the various specifications, and the stored correlation equations Is used selectively.

そして、データ演算部6は、例えばA仕様の単電池11a,11bの劣化推定の場合、図3から得た相関式を用い、内部抵抗増加率に基づく出力維持率及び入力維持率(この場合、例えば両維持率の平均値)から単電池11a,11bの放電容量維持率を推定する。また、例えばB仕様の単電池11a,11bの劣化推定の場合も同様にして、データ演算部6は、図4から得た相関式を用いて単電池11a,11bの放電容量維持率を推定する。 Then, for example, in the case of estimating the deterioration of the single cells 11a and 11b of A specification, the data calculation unit 6 uses the correlation expression obtained from FIG. 3 and outputs the output maintenance rate and the input maintenance rate based on the internal resistance increase rate (in this case, For example, the discharge capacity maintenance rate of the unit cells 11a and 11b is estimated from the average value of both maintenance rates. Further, for example, also in the case of estimating the deterioration of the B cells of the specifications 11a and 11b, the data calculation unit 6 similarly estimates the discharge capacity maintenance rate of the cells 11a and 11b using the correlation equation obtained from FIG. ..

ステップS5において、データ演算部6は、上記放電容量維持率と、単電池11a,11bの使用開始からの経過時間(運用年数)との間における相関式の推定を行う。相関式に関する係数は、データ記憶部7に格納される。 In step S5, the data calculation unit 6 estimates the correlation equation between the discharge capacity maintenance rate and the elapsed time (the number of years of operation) from the start of use of the unit cells 11a and 11b. The coefficient relating to the correlation equation is stored in the data storage unit 7.

ステップS6においても同様にして、データ演算部6は、入出力維持率(上記出力維持率及び入力維持率)と、単電池11a,11bの使用開始からの経過時間(運用年数)との間における相関式の推定を行う。相関式に関する係数は、データ記憶部7に格納される。 Similarly in step S6, the data calculation unit 6 sets the input/output maintenance rate (the output maintenance rate and the input maintenance rate) between the elapsed time (the number of years of operation) from the start of use of the unit cells 11a and 11b. Estimate the correlation equation. The coefficient relating to the correlation equation is stored in the data storage unit 7.

ここで、図5は、A仕様の電池における放電容量維持率と運用年数との相関を示すとともに、入出力維持率と運用年数との相関を示している。A仕様の電池の一例であり、放電容量維持率は変化曲線L3のように変化し、入出力維持率は変化曲線L4のように変化する。また、図6は、B仕様の電池における放電容量維持率と運用年数との相関を示すとともに、入出力維持率と運用年数との相関を示している。B仕様の電池の一例であり、放電容量維持率は変化曲線L5のように変化し、入出力維持率は変化曲線L6のように変化する。つまり、変化曲線L3〜L6がそれぞれの相関式に対応する。 Here, FIG. 5 shows the correlation between the discharge capacity maintenance rate and the number of years of operation in the A specification battery, and also shows the correlation between the input/output maintenance rate and the number of years of operation. This is an example of a battery of A specification, and the discharge capacity maintenance rate changes as a change curve L3, and the input/output maintenance rate changes as a change curve L4. Further, FIG. 6 shows the correlation between the discharge capacity maintenance rate and the operating years in the B specification battery, and also shows the correlation between the input/output maintenance rate and the operating years. This is an example of a B specification battery, and the discharge capacity retention rate changes as a change curve L5, and the input/output retention rate changes as a change curve L6. That is, the change curves L3 to L6 correspond to the respective correlation equations.

ステップS7において、データ演算部6は、A仕様の単電池11a,11bの劣化推定の場合、図5の変化曲線L3に対応する相関式から、放電容量特性(放電容量維持率)に基づく単電池11a,11bの寿命時間を推定する。また、B仕様の単電池11a,11bの劣化推定の場合も同様にして、データ演算部6は、図6の変化曲線L5に対応する相関式から、放電容量特性に基づく単電池11a,11bの寿命時間を推定する。 In step S7, in the case of the deterioration estimation of the A specification unit cells 11a and 11b, the data calculation unit 6 uses the correlation formula corresponding to the change curve L3 in FIG. 5 to determine the unit cell based on the discharge capacity characteristic (discharge capacity maintenance rate). The life time of 11a and 11b is estimated. Similarly, in the case of estimating the deterioration of the B-specification unit cells 11a and 11b, the data calculation unit 6 similarly calculates the unit cells 11a and 11b based on the discharge capacity characteristics from the correlation equation corresponding to the change curve L5 in FIG. Estimate life time.

ステップS8において、データ演算部6は、A仕様の単電池11a,11bの劣化推定の場合、図5の変化曲線L4に対応する相関式から、入出力特性(入出力維持率)に基づく単電池11a,11bの寿命時間を推定する。また、B仕様の単電池11a,11bの劣化推定の場合も同様にして、データ演算部6は、図6の変化曲線L6に対応する相関式から、入出力特性に基づく単電池11a,11bの寿命時間を推定する。 In step S8, in the case of deterioration estimation of the A specification single cells 11a and 11b, the data calculation unit 6 uses the correlation equation corresponding to the change curve L4 in FIG. 5 to determine the single cell based on the input/output characteristics (input/output maintenance rate). The life time of 11a and 11b is estimated. Similarly, in the case of estimating deterioration of the B-specification unit cells 11a and 11b, the data calculation unit 6 similarly determines the unit cells 11a and 11b based on the input/output characteristics from the correlation equation corresponding to the change curve L6 in FIG. Estimate life time.

ステップS9において、データ演算部6は、ステップS7にて得た放電容量特性に基づく単電池11a,11bの寿命時間から上記運用年数を減じて、放電容量特性に基づく単電池11a,11bの残存寿命を推定する。 In step S9, the data calculation unit 6 subtracts the above operating years from the life time of the unit cells 11a and 11b based on the discharge capacity characteristics obtained in step S7 to obtain the remaining life of the unit cells 11a and 11b based on the discharge capacity characteristics. To estimate.

ステップS10においても同様に、ステップS8にて得た入出力特性に基づく単電池11a,11bの寿命時間から上記運用年数を減じて、入出力特性に基づく単電池11a,11bの残存寿命を推定する。 Similarly in step S10, the remaining operating life of the cells 11a and 11b based on the input/output characteristics is estimated by subtracting the operating years from the life times of the cells 11a and 11b based on the input/output characteristics obtained in step S8. ..

ステップS11において、データ演算部6は、ステップS9にて得た放電容量特性に基づく単電池11a,11bの残存寿命、及びステップS10にて得た入出力特性に基づく単電池11a,11bの残存寿命を並記した表示、又は両残存寿命を総合的に考慮した残存寿命をモニタ8(図1参照)に表示する。残存寿命や上記寿命時間は、単電池11a,11bの劣化度合いでもある。 In step S11, the data calculation unit 6 determines the remaining life of the cells 11a and 11b based on the discharge capacity characteristics obtained in step S9, and the remaining life of the cells 11a and 11b based on the input/output characteristics obtained in step S10. Is displayed in parallel, or the remaining life considering both remaining lives is displayed on the monitor 8 (see FIG. 1). The remaining life and the above life time are also the degree of deterioration of the unit cells 11a and 11b.

つまり、電池モジュール10の管理者等がモニタ8に表示された単電池11a,11bの残存寿命を確認することで、単電池11a,11bを含む電池モジュール10全体の交換や、単電池11a,11b等々の個々の電池を交換するか等の劣化判断ができるものとなっている。しかもこの場合、単電池11a,11bの放電容量特性に加えて入出力特性も含めた単電池11a,11b(電池モジュール10)の劣化判断となるため、図5及び図6に示したように仕様毎に大きく異なる入出力特性を用いることでより精度高く行うことが可能となっている。 That is, the administrator or the like of the battery module 10 checks the remaining life of the cells 11a and 11b displayed on the monitor 8 to replace the entire battery module 10 including the cells 11a and 11b, or to check the cells 11a and 11b. It is possible to judge deterioration such as whether or not to replace individual batteries. Moreover, in this case, since the deterioration determination of the unit cells 11a and 11b (battery module 10) including the input/output characteristics in addition to the discharge capacity characteristics of the unit cells 11a and 11b is made, the specifications as shown in FIGS. It is possible to perform the operation with higher accuracy by using input/output characteristics that differ greatly from one to another.

本実施形態の効果について説明する。
(1)蓄電システムの運用を長時間に亘って停止することなく簡易に計測可能な、劣化推定対象単電池11a,11bの充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて内部抵抗が算出され、内部抵抗増加率が算出される。ついで、内部抵抗増加率の平方根との相関に基づき、単電池11a,11bの出力維持率及び入力維持率の推定とともに、放電容量維持率の推定が行われる。そして、これらに基づき、単電池11a,11bの劣化度合いの推定が行われる。つまり、単電池11a,11bの放電容量維持率といった容量特性とともに、出力維持率及び入力維持率といった単電池11a,11bの入出力特性も考慮した単電池11a,11bの劣化度合いの推定が行われるため、単電池11a,11bの劣化推定をより精度高く行うことができる。
The effects of this embodiment will be described.
(1) Based on the measurement of the current at the time of charging or discharging of the deterioration estimation target cells 11a and 11b and the voltage before and after the charging or discharging, which can be easily measured without stopping the operation of the power storage system for a long time. Then, the internal resistance is calculated, and the internal resistance increase rate is calculated. Then, based on the correlation with the square root of the internal resistance increase rate, the discharge capacity maintenance rate is estimated together with the output maintenance rate and the input maintenance rate of the unit cells 11a and 11b. Then, based on these, the degree of deterioration of the unit cells 11a and 11b is estimated. That is, the degree of deterioration of the cells 11a and 11b is estimated in consideration of the capacity characteristics such as the discharge capacity maintenance rate of the cells 11a and 11b and the input/output characteristics of the cells 11a and 11b such as the input maintenance rate. Therefore, the deterioration estimation of the unit cells 11a and 11b can be performed with higher accuracy.

(2)単電池11a,11bの出力維持率及び入力維持率の両方と放電容量維持率とに基づき単電池11a,11bの劣化度合いの推定が行われるため、単電池11a,11bの劣化推定をより精度高く行うことができる。 (2) Since the deterioration degree of the unit cells 11a and 11b is estimated based on both the output maintenance rate and the input maintenance rate of the unit cells 11a and 11b and the discharge capacity maintenance rate, the deterioration estimation of the unit cells 11a and 11b is performed. It can be performed with higher accuracy.

(3)単電池11a,11bの劣化度合いとして、経過時間測定部4にて測定した単電池11a,11bの経過時間に基づき単電池11a,11bの寿命時間及び残存寿命の推定が行われる。これにより、単電池11a,11bの劣化度合いや交換時期を容易に把握することができる。 (3) As the deterioration degree of the unit cells 11a and 11b, the life time and the remaining life of the unit cells 11a and 11b are estimated based on the elapsed time of the unit cells 11a and 11b measured by the elapsed time measuring unit 4. As a result, the degree of deterioration of the cells 11a and 11b and the replacement time can be easily grasped.

(4)単電池11a,11bの劣化度合いが表示されるモニタ8が劣化推定装置1に備えられているため、電池モジュール10の管理者等が別の表示装置を劣化推定装置1に接続することなく単電池11a,11bの劣化状況の確認を容易に行うことができる。 (4) Since the deterioration estimating device 1 is provided with the monitor 8 that displays the deterioration degree of the unit cells 11a and 11b, the administrator of the battery module 10 or the like should connect another display device to the deterioration estimating device 1. Therefore, it is possible to easily confirm the deterioration state of the unit cells 11a and 11b.

(5)単電池11a,11bの劣化度合いの推定の過程で用いる出力低下率及び入力低下率を内部抵抗増加率の平方根から算出している。内部抵抗増加率の平方根は、単なる内部抵抗増加率よりも出力低下率及び入力低下率との相関性が高く、出力低下率及び入力低下率の算出精度は高い。これにより、単電池11a,11bの劣化推定をより精度高く行うことに貢献する。 (5) The output reduction rate and the input reduction rate used in the process of estimating the deterioration degree of the unit cells 11a and 11b are calculated from the square root of the internal resistance increase rate. The square root of the internal resistance increase rate has a higher correlation with the output decrease rate and the input decrease rate than the mere internal resistance increase rate, and the calculation accuracy of the output decrease rate and the input decrease rate is high. This contributes to more accurate estimation of deterioration of the unit cells 11a and 11b.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・単電池11a,11bを所定時間充電又は放電し、充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて内部抵抗を算出したが、充電と放電とのいずれか一方ではなく、両方の測定から内部抵抗の算出を行ってもよい。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The unit cells 11a and 11b were charged or discharged for a predetermined time, and the internal resistance was calculated based on the measurement of the current at the time of charging or discharging and the voltage before and after charging or discharging, but not either charging or discharging. The internal resistance may be calculated from both measurements.

・単電池11a,11bの劣化度合いの推定の過程で用いる出力低下率(出力維持率)及び入力低下率(入力維持率)を内部抵抗増加率の平方根から算出したが、単に内部抵抗増加率から算出してもよい。この場合、平方根の演算が不要である。 The output reduction rate (output maintenance rate) and the input reduction rate (input maintenance rate) used in the process of estimating the degree of deterioration of the unit cells 11a and 11b were calculated from the square root of the internal resistance increase rate. It may be calculated. In this case, the calculation of the square root is unnecessary.

・一元化した出力維持率及び入力維持率と放電容量維持率との相関を用いたが(図3及び図4参照)、出力維持率及び入力維持率のいずれか一方と放電容量維持率との相関を用いてもよい。 The correlation between the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate which was unified was used (see FIGS. 3 and 4), but the correlation between either the output maintenance rate or the input maintenance rate and the discharge capacity maintenance rate was used. May be used.

・単電池11a,11bの劣化度合いとして寿命時間及び残存寿命を用いたが、これ以外の指標を用いてもよい。例えば劣化度合いを単にパーセント表示したり、劣化度合いに応じた色別としたりする等、劣化度合いを想起できる表示態様としてもよい。 Although the life time and the remaining life are used as the deterioration degrees of the unit cells 11a and 11b, other indexes may be used. For example, the deterioration degree may be displayed as a percentage, or the display may be performed in different colors according to the deterioration degree so that the deterioration degree can be recalled.

・定置用蓄電システム以外の電池モジュールを構成する単電池の劣化推定に適用してもよい。
つぎに、技術的思想について記載する。
-It may be applied to estimation of deterioration of the unit cells that compose a battery module other than the stationary power storage system.
Next, the technical idea will be described.

リチウムイオン電池の単電池を多数接続して構成される蓄電システムの電池モジュールにおいて劣化推定対象単電池の劣化度合いを推定する電池の劣化推定装置であって、
前記劣化推定対象単電池を充電又は放電し、充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて前記劣化推定対象単電池の内部抵抗を算出する内部抵抗算出部と、
前記劣化推定対象単電池の内部抵抗に基づいて前記劣化推定対象単電池の内部抵抗増加率を算出する抵抗増加率算出部と、
前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の放電容量維持率の推定を行う維持率推定部と、
前記放電容量維持率に基づく前記劣化推定対象単電池の劣化度合いの推定を行う劣化推定部と
を備えた、電池の劣化推定装置。
A battery deterioration estimation device for estimating the deterioration degree of a deterioration estimation target single battery in a battery module of a power storage system configured by connecting a large number of lithium ion battery cells,
Charging or discharging the deterioration estimation target unit cell, an internal resistance calculation unit for calculating the internal resistance of the deterioration estimation target unit cell based on the measurement of the current during charging or discharging and the voltage before or after charging or discharging,
A resistance increase rate calculation unit that calculates an internal resistance increase rate of the deterioration estimation target cell based on the internal resistance of the deterioration estimation target cell,
A maintenance rate estimation unit that estimates the discharge capacity maintenance rate of the deterioration estimation target single cell based on the correlation with the square root of the internal resistance increase rate or the internal resistance increase rate,
A deterioration estimation device for a battery, comprising: a deterioration estimation unit that estimates a deterioration degree of the deterioration estimation target single battery based on the discharge capacity maintenance rate.

電池の劣化推定では、蓄電システムの運用を長時間に亘って停止することのない手法で、精度の高い電池の劣化推定を行うことが求められている。上記態様によれば、蓄電システムの運用を長時間に亘って停止することなく簡易に計測可能な、劣化推定対象単電池の充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて内部抵抗が算出され、内部抵抗増加率が算出される。ついで、内部抵抗増加率又はこの内部抵抗増加率の平方根との相関に基づき、放電容量維持率の推定が行われる。そして、放電容量維持率に基づき、劣化推定対象単電池の劣化度合いの推定が行われる。つまり、劣化推定対象単電池の放電容量維持率といった容量特性から単電池の劣化度合いの推定が行われるため、単電池の劣化推定をより精度高く行うことが可能である。 In battery deterioration estimation, highly accurate battery deterioration estimation is required by a method that does not stop the operation of the power storage system for a long time. According to the above aspect, it is possible to easily measure the operation of the power storage system without stopping for a long time, based on the measurement of the current at the time of charging or discharging the deterioration estimation target cell and the voltage before and after the charging or discharging. Then, the internal resistance is calculated, and the internal resistance increase rate is calculated. Then, the discharge capacity retention rate is estimated based on the internal resistance increase rate or the correlation with the square root of the internal resistance increase rate. Then, the deterioration degree of the deterioration estimation target unit cell is estimated based on the discharge capacity maintenance rate. That is, since the deterioration degree of the single battery is estimated from the capacity characteristics such as the discharge capacity maintenance rate of the deterioration estimation target single battery, the deterioration estimation of the single battery can be performed with higher accuracy.

1…劣化推定装置、3a,3b…内部抵抗測定部(内部抵抗算出部)4…経過時間測定部(時間測定部)、6…データ演算部(内部抵抗算出部、抵抗増加率算出部、維持率推定部、劣化推定部)、8…モニタ(表示部)、10…電池モジュール、11…単電池、11a,11b…劣化推定対象単電池。 DESCRIPTION OF SYMBOLS 1... Deterioration estimation device, 3a, 3b... Internal resistance measuring part (internal resistance calculating part) 4... Elapsed time measuring part (time measuring part), 6... Data calculating part (internal resistance calculating part, resistance increase rate calculating part, maintenance) Rate estimation unit, deterioration estimation unit, 8... Monitor (display unit), 10... Battery module, 11... Single battery, 11a, 11b... Degradation estimation target single battery.

Claims (5)

リチウムイオン電池の単電池を多数接続して構成される蓄電システムの電池モジュールにおいて劣化推定対象単電池の劣化度合いを推定する電池の劣化推定装置であって、
前記劣化推定対象単電池を充電又は放電し、充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて前記劣化推定対象単電池の内部抵抗を算出する内部抵抗算出部と、
前記劣化推定対象単電池の内部抵抗に基づいて前記劣化推定対象単電池の内部抵抗増加率を算出する抵抗増加率算出部と、
前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の出力維持率及び入力維持率の少なくとも一方の推定とともに、前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の放電容量維持率の推定を行う維持率推定部と、
前記出力維持率及び入力維持率の少なくとも一方と前記放電容量維持率とに基づく前記劣化推定対象単電池の劣化度合いの推定を行う劣化推定部と
を備えた、電池の劣化推定装置。
A battery deterioration estimation device for estimating the deterioration degree of a deterioration estimation target single battery in a battery module of a power storage system configured by connecting a large number of lithium ion battery cells,
Charging or discharging the deterioration estimation target unit cell, an internal resistance calculation unit for calculating the internal resistance of the deterioration estimation target unit cell based on the measurement of the current during charging or discharging and the voltage before or after charging or discharging,
A resistance increase rate calculation unit that calculates an internal resistance increase rate of the deterioration estimation target cell based on the internal resistance of the deterioration estimation target cell,
With the estimation of at least one of the output maintenance rate and the input maintenance rate of the deterioration estimation target single cell based on the correlation with the internal resistance increase rate or the square root of the internal resistance increase rate, the internal resistance increase rate or the internal resistance increase rate A maintenance rate estimation unit that estimates the discharge capacity maintenance rate of the deterioration estimation target single cell based on the correlation with the square root of
A deterioration estimation device for a battery, comprising: a deterioration estimation unit that estimates the degree of deterioration of the deterioration estimation target cell based on at least one of the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate.
前記劣化推定部は、前記出力維持率及び入力維持率の両方と前記放電容量維持率とに基づく前記劣化推定対象単電池の劣化度合いの推定を行う、請求項1に記載の電池の劣化推定装置。 The deterioration estimation device for a battery according to claim 1, wherein the deterioration estimation unit estimates the deterioration degree of the deterioration estimation target cell based on both the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate. .. 前記電池モジュールの使用開始からの経過時間を測定する時間測定部を備え、
前記劣化推定部は、測定した前記劣化推定対象単電池の経過時間に基づいて前記劣化推定対象単電池の劣化度合いとして寿命時間又は残存寿命の推定を行う、請求項1又は2に記載の電池の劣化推定装置。
A time measuring unit for measuring an elapsed time from the start of use of the battery module,
The battery according to claim 1 or 2, wherein the deterioration estimation unit estimates a life time or a remaining life as a deterioration degree of the deterioration estimation target battery based on the measured elapsed time of the deterioration estimation target battery. Degradation estimation device.
前記劣化推定対象単電池の劣化度合いを表示する表示部を備えた、請求項1〜3のいずれか1項に記載の電池の劣化推定装置。 The deterioration estimation device for a battery according to claim 1, further comprising a display unit that displays a deterioration degree of the deterioration estimation target single battery. リチウムイオン電池の単電池を多数接続して構成される蓄電システムの電池モジュールにおいて劣化推定対象単電池の劣化度合いを推定する電池の劣化推定方法であって、
前記劣化推定対象単電池を充電又は放電し、充電又は放電時の電流と充電又は放電前後の電圧との測定に基づいて前記劣化推定対象単電池の内部抵抗を算出し、
前記劣化推定対象単電池の内部抵抗に基づいて前記劣化推定対象単電池の内部抵抗増加率を算出し、
前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の出力維持率及び入力維持率の少なくとも一方の推定とともに、前記内部抵抗増加率又は前記内部抵抗増加率の平方根との相関に基づく前記劣化推定対象単電池の放電容量維持率の推定を行い、
前記出力維持率及び入力維持率の少なくとも一方と前記放電容量維持率とに基づく前記劣化推定対象単電池の劣化度合いの推定を行う、電池の劣化推定方法。
A battery deterioration estimation method for estimating the deterioration degree of a deterioration estimation target single battery in a battery module of an electricity storage system configured by connecting a plurality of lithium ion battery single cells,
Charge or discharge the deterioration estimation target unit cell, calculate the internal resistance of the deterioration estimation target unit cell based on the measurement of the current during charging or discharging and the voltage before or after charging or discharging,
Calculate the internal resistance increase rate of the deterioration estimation target cell based on the internal resistance of the deterioration estimation target cell,
With the estimation of at least one of the output maintenance rate and the input maintenance rate of the deterioration estimation target single cell based on the correlation with the internal resistance increase rate or the square root of the internal resistance increase rate, the internal resistance increase rate or the internal resistance increase rate Estimate the discharge capacity maintenance rate of the deterioration estimation target cell based on the correlation with the square root of,
A deterioration estimation method for a battery, which estimates the deterioration degree of the deterioration estimation target single cell based on at least one of the output maintenance rate and the input maintenance rate and the discharge capacity maintenance rate.
JP2018218531A 2018-11-21 2018-11-21 Battery degradation estimating device and battery degradation estimating method Pending JP2020085599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018218531A JP2020085599A (en) 2018-11-21 2018-11-21 Battery degradation estimating device and battery degradation estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218531A JP2020085599A (en) 2018-11-21 2018-11-21 Battery degradation estimating device and battery degradation estimating method

Publications (1)

Publication Number Publication Date
JP2020085599A true JP2020085599A (en) 2020-06-04

Family

ID=70907605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218531A Pending JP2020085599A (en) 2018-11-21 2018-11-21 Battery degradation estimating device and battery degradation estimating method

Country Status (1)

Country Link
JP (1) JP2020085599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057861A (en) * 2020-10-30 2022-05-09 주식회사 퀀텀솔루션 Battery management system and method for battery performance diagnosis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057861A (en) * 2020-10-30 2022-05-09 주식회사 퀀텀솔루션 Battery management system and method for battery performance diagnosis
KR102513992B1 (en) * 2020-10-30 2023-03-24 주식회사 퀀텀솔루션 Battery management system and method for battery performance diagnosis

Similar Documents

Publication Publication Date Title
CN106324508B (en) Battery health state detection device and method
TWI780280B (en) Economic estimating device and economic estimating method of battery
JP5466564B2 (en) Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
US9018907B2 (en) Method for precise power prediction for battery packs
CN106463794B (en) Secondary battery monitoring device and method for predicting battery capacity of secondary battery
CN109856548B (en) Power battery capacity estimation method
CN111216593B (en) New energy vehicle, power supply control method and storage medium
CN103149535A (en) Method and apparatus for online determination of battery state of charge and state of health
KR101946784B1 (en) method for measuring battery entropy by dual kalman filter
WO2012016442A1 (en) Charge equalizing control method for power battery pack
US20140239914A1 (en) Battery controller
US10444296B2 (en) Control device, control method, and recording medium
KR101463394B1 (en) Battery management system, and method of estimating battery's state of charge using the same
KR20140053590A (en) Apparatus and method for estimating state of charging of battery
WO2014115294A1 (en) Battery control device, battery system
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2016090399A (en) Method for detecting short circuit, short-circuit detecting system, and method for calculating short-circuit current value
JP2013181875A (en) Secondary battery deterioration rate calculation method, secondary battery life prediction method, secondary battery deterioration rate calculation system and secondary battery life prediction system
WO2020149288A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
CN110015170B (en) Battery equalization method, system, vehicle, storage medium and electronic device
CN106707180A (en) Parallel battery pack fault detection method
CN108732499B (en) Method and system for detecting cycle life of lithium ion battery
CN110018422B (en) Battery management method and device
CN110015171B (en) Battery equalization method, system, vehicle, storage medium and electronic device