JP2020085232A - Brake employing functional fluid - Google Patents

Brake employing functional fluid Download PDF

Info

Publication number
JP2020085232A
JP2020085232A JP2018230391A JP2018230391A JP2020085232A JP 2020085232 A JP2020085232 A JP 2020085232A JP 2018230391 A JP2018230391 A JP 2018230391A JP 2018230391 A JP2018230391 A JP 2018230391A JP 2020085232 A JP2020085232 A JP 2020085232A
Authority
JP
Japan
Prior art keywords
type
fluid
container
attached
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018230391A
Other languages
Japanese (ja)
Inventor
昭夫 井上
Akio Inoue
昭夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ER TEC KK
Original Assignee
ER TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ER TEC KK filed Critical ER TEC KK
Priority to JP2018230391A priority Critical patent/JP2020085232A/en
Publication of JP2020085232A publication Critical patent/JP2020085232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

To simplify a structure of a rotary shaft type brake using a non-shear flow of a functional fluid such as an ER (electrorheological) fluid or an MR (magnetorheological) fluid, and to attain downsizing and increase of brake power.SOLUTION: A partition plate (18) is attached to a rotary disc (15) of a brake, and a fixing plate (16) is attached to an inner wall of a container. A clearance (17) is provided between the rotary disc (15) and the fixing plate (16), and a functional fluid which is pushed by the partition plate (18) when the rotary disc (15) is rotated flows in the clearance (17). An electric field or a magnetic field is applied to the clearance (17), such that flowing resistance is changed by changing viscosity of the fluid in the clearance (17) and rotation resistance of the rotary disc (15), namely, brake power is controlled. Otherwise, the fixing plate (16) may be attached to the rotary disc (15) and the partition plate (18) may be attached to the inner wall of the container. An electric field or a magnetic field is applied to a fluid in the clearance (17) between the inner wall of the container and the rotary disc (15) and fluid leakage from the clearance (17) is eliminated, thereby suppressing reduction in brake power.SELECTED DRAWING: Figure 7

Description

ER(電気粘性)流体やMR(磁気粘性)流体などの機能性流体を用いた、部品点数が少なく簡素な構造で多量生産にも向くブレーキの提供を目指すもので、メカトロニクス分野での回転力の伝達や制止に利用が期待される。 We aim to provide brakes that use functional fluids such as ER (electrorheological) fluid and MR (magnetorheological) fluid and have a simple structure with a small number of parts and are suitable for mass production. Expected to be used for transmission and control.

ER流体やMR流体は電場や磁場の強さで応答性良く粘性が制御できる流体であり、古くから、ブレーキやクラッチなどのトルク伝達・制御、ダンパーやショックアブゾーバーなどの振動・衝撃吸収、シリンダやバルブなどの力・位置・速度の制御、などメカトロニクス分野で利用されており、自動車や産業機械の用途だけでなく、これら流体の優れた応答性や作動に騒音が出ない特性を活かし、最近ではロボットや医療・健康機器などの用途でも利用され始めている。 ER fluids and MR fluids are fluids whose viscosity can be controlled with good response by the strength of electric and magnetic fields. For a long time, torque transmission/control of brakes and clutches, vibration/shock absorption of dampers and shock absorbers, cylinders, etc. It is used in the field of mechatronics such as control of force, position and speed of valves, etc., and not only for applications in automobiles and industrial machines, but due to the excellent responsiveness of these fluids and the characteristics that no noise is generated in operation, recently It is also beginning to be used in applications such as robots and medical/health equipment.

ところで、メカトロニクスでの流体の利用は、基本的には図1に示すような3つの流れモード、すなわち(A)せん断流れモード、(B)圧力流れモード、および(C)スクイーズ流れモードに分類される。また、それらを複合した複合モードもある。 By the way, the use of fluid in mechatronics is basically classified into three flow modes as shown in FIG. 1, namely (A) shear flow mode, (B) pressure flow mode, and (C) squeeze flow mode. It There is also a composite mode that combines them.

流体を用いた回転式のブレーキは、図2に示すような(A)ディスク型と(B)シリンダ型の2つに分類されるが、いずれも流体のせん断流れモード、すなわち、せん断力を利用するものである。流体のせん断力は個体摩擦に比べて小さいため、このせん断流れモードを利用するブレーキは、コンパクトで大きな制止力や伝達力を得るためには、ディスクやシリンダを多重にして摩擦面積を増やすのが一般である(C)に多重ディスク型の例を示す。 Rotational brakes using fluid are classified into two types, (A) disk type and (B) cylinder type, as shown in FIG. 2, both of which utilize the shear flow mode of the fluid, that is, the shear force. To do. Since the shear force of fluid is smaller than that of solid friction, a brake that uses this shear flow mode is compact and requires multiple discs and cylinders to increase the friction area in order to obtain large stopping and transmitting forces. A general example of the multiple disk type is shown in (C).

最近の人間共存型ロボットの普及とともに、関節部の動きの制御や触覚提示などの用途において、回転数が多回転でなく1回転以下の制限された回転角度で使用する回転軸型のブレーキの要求も増えてきた。 With the recent widespread use of human coexistence type robots, in applications such as joint movement control and tactile presentation, there is a demand for a rotating shaft type brake that is used at a limited rotation angle of one rotation or less instead of multiple rotations. Has also increased.

機能性流体を用いた1回転以下の制限された角度で利用されるブレーキは、公表された文献がまだ非常に少ないが、特開2006−087559にはMR流体を用いた図3(A)および(B)に示すようなブレーキが補装具用として公表されている。 Although there are very few published documents regarding brakes that are used at a limited angle of one rotation or less using a functional fluid, JP 2006-087559A discloses a brake using MR fluid as shown in FIG. Brake as shown in (B) has been published for prosthetic devices.

特開2006−087559Japanese Unexamined Patent Publication No. 2006-087559

特開2006−087559のMR流体を用いたブレーキは、これまでのせん断モードを利用したものではなく、圧力流れモードとスクイーズ流れモードを利用したもので、小型の割には大きな抑制力(ブレーキ力)が得られる。図3(A)のブレーキは、回動軸(以下、回転軸7と呼び換える)に取り付けた堰止板8で2つの室に仕切られた左右の流体室(シリンダ室)11にはMR流体12が充填されている。回転軸7の回転により、堰止板8に押された側の流体室の流体12は堰止板8に設けた連通孔9を通して、もう一方の流体室11に流れ込む。連通孔9にはコイル10が取り付けられ、磁場がかけられるようになっており、磁場の強さを変化させることで、連通孔9でのMR流体12の流動抵抗を変化させ、回転軸7の回転抵抗、すなわちブレーキ力を制御するものである。 The brake using the MR fluid of JP-A-2006-087559 does not use the shear mode so far, but uses the pressure flow mode and the squeeze flow mode. ) Is obtained. The brake shown in FIG. 3A has MR fluid in the left and right fluid chambers (cylinder chambers) 11 partitioned into two chambers by a dam plate 8 attached to a rotary shaft (hereinafter referred to as the rotary shaft 7). 12 are filled. The rotation of the rotary shaft 7 causes the fluid 12 in the fluid chamber on the side pushed by the dam plate 8 to flow into the other fluid chamber 11 through the communication hole 9 provided in the dam plate 8. A coil 10 is attached to the communication hole 9 so that a magnetic field can be applied. By changing the strength of the magnetic field, the flow resistance of the MR fluid 12 in the communication hole 9 is changed, and the magnetic field of the rotating shaft 7 is changed. It controls the rotation resistance, that is, the braking force.

一方、図3(B)は図3(A)のように堰止板8に連通孔9を設けるのではなく、シリンダ室11の外にバイパス通路13を設けて、その部分に永久磁石14を近づけ連通孔部の磁場の強さで流体の流動抵抗を変化させるものである。 On the other hand, in FIG. 3B, instead of providing the communication hole 9 in the dam plate 8 as in FIG. 3A, a bypass passage 13 is provided outside the cylinder chamber 11 and the permanent magnet 14 is provided in that portion. The flow resistance of the fluid is changed depending on the strength of the magnetic field in the approaching communication hole.

図13(A)、(B)の何れの方法も磁場の強さを変化させて軸の回転抵抗、すなわちブレーキ力を制御することは可能であるが、図3(A)の方法では、堰止板8にコイル10(電磁石)を設けなければならず、そのため連通孔9の開口面積を広くすることが難しく、磁場をかけない状態でも流体の流動抵抗が大きくなり、基底状態での回転軸7の回転抵抗が大きくなる問題がある。また、磁場をかけた状態で回転軸7を回すと、連通孔9での流体は流れに難くなるが、堰止板8とシリンダ室11(以下、容器と言う)内壁の隙間からMR流体12が漏れて、回転の抑制力が低下する。これを避けるために堰止板8に柔らかいゴム等のシール材料で塞ぐ方法もあるが、MR流体のような鉄粉を含んだ流体ではシール材が容易に摩耗してシール性が低下する。 13A and 13B, it is possible to control the rotational resistance of the shaft, that is, the braking force by changing the strength of the magnetic field, but the method of FIG. Since the stop plate 8 must be provided with the coil 10 (electromagnet), it is difficult to widen the opening area of the communication hole 9, and the flow resistance of the fluid increases even when no magnetic field is applied, and the rotation axis in the base state is increased. There is a problem that the rotation resistance of No. 7 becomes large. Further, when the rotating shaft 7 is rotated in a state where a magnetic field is applied, it becomes difficult for the fluid in the communication hole 9 to flow, but the MR fluid 12 passes through the gap between the dam plate 8 and the inner wall of the cylinder chamber 11 (hereinafter referred to as a container). Leaks and the rotation restraint is reduced. In order to avoid this, there is a method of closing the dam plate 8 with a sealing material such as soft rubber, but with a fluid containing iron powder such as MR fluid, the sealing material is easily worn and the sealing performance deteriorates.

一方、図3(B)の方法では、容器4の外部にバイパス通路14を設ける必要があり、コンパクト性が無くなると共に、図3(A)と同様、堰止板8と容器4の内壁との隙間からMR流体12が漏れて、回転の抑制力が低下する。 On the other hand, in the method of FIG. 3(B), it is necessary to provide the bypass passage 14 outside the container 4, so that the compactness is lost, and, as in FIG. 3(A), the dam plate 8 and the inner wall of the container 4 are formed. The MR fluid 12 leaks from the gap, and the force for suppressing rotation is reduced.

このような磁場(電場も同様)をかけない基底状態での回転軸の回転抵抗の低下や、磁場をかけた際の堰止板とシリンダ室内壁との隙間からの流体漏れによる制止力の低下を防ぐ方法として、堰止板の流通孔の開口面積を広くする代わりに、次のような方法を思い着いた。すなわち、仕切板を設けた円筒容器に、回転軸と共に回転する回転円盤を設け、その回転円盤に取り付けた扇型固定板と容器内壁面との対向面に所定の隙間を設け、扇型固定板に押された流体が、この隙間を通るようにすると同時に、この隙間に電場や磁場をかけられるようにすることで、回転軸を回した際の流動抵抗、すなわちブレーキ力を調整する。 Reduction of rotation resistance of the rotating shaft in the ground state without applying such a magnetic field (similar to the electric field), and reduction of stopping force due to fluid leakage from the gap between the dam plate and the inner wall of the cylinder when a magnetic field is applied. As a method of preventing the above, instead of increasing the opening area of the flow holes of the dam plate, the following method was conceived. That is, a cylindrical disk provided with a partition plate is provided with a rotary disk that rotates together with a rotary shaft, and a predetermined gap is provided on the opposing surface between the fan-shaped fixing plate attached to the rotary disk and the inner wall surface of the container. By allowing the fluid pushed by to pass through this gap and at the same time applying an electric field or magnetic field to this gap, the flow resistance when rotating the rotating shaft, that is, the braking force is adjusted.

この方法は、同様に仕切板を設けた回転円盤と容器内壁に取り付けた固定板との間に隙間を設ける方法であっても良い。また、固定板は扇型のみならず、部分円筒型でも良い。 This method may be a method in which a gap is similarly provided between the rotary disk provided with the partition plate and the fixed plate attached to the inner wall of the container. Further, the fixing plate is not limited to the fan type and may be a partial cylindrical type.

これを分かり易くするため、図4にその概念図を示す。図4(A)は回転円盤に固定板を、容器壁面に仕切板を設けた方法(以下、Aタイプと呼ぶ)、図4(B)は容器内壁面に固定板を、回転円盤に仕切板を設けた方法(以下、タイプBと呼ぶ)の概念を示す。 In order to make this easy to understand, a conceptual diagram thereof is shown in FIG. 4A shows a method in which a fixed plate is provided on the rotating disk and a partition plate is provided on the wall surface of the container (hereinafter referred to as A type), and FIG. 4B shows a fixed plate on the inner wall surface of the container and a partition plate on the rotating disk. The concept of the method (hereinafter referred to as type B) provided with is shown.

このような方法では、隙間の幅や長さ、流路の長さなどを最適化することで所望のブレーキ力を得ること可能になると共に、容器内壁と回転円盤との隙間にある流体にも電場や磁場をかけることができ、この間隙部分からの流体漏れも抑えることも可能となる。 In such a method, it is possible to obtain a desired braking force by optimizing the width and length of the gap, the length of the flow path, etc., and also to the fluid in the gap between the inner wall of the container and the rotating disk. An electric field or magnetic field can be applied, and it is possible to suppress fluid leakage from this gap.

すなわち、本発明は、電場あるいは磁場の強さに応答して粘性を変化する機能性流体を充填したシリンダ形の回転軸型ブレーキにおいて、シリンダ容器の円周内壁面から中心軸に向かって軸と同じ方向に仕切板が、シリンダ容器の内壁面に取り付けられ(タイプAと呼ぶ)、あるいは回転円盤に取り付けられ(以下タイプBと呼ぶ)、また扇型または部分円筒型の固定板が、回転円盤(タイプAの場合)に、あるいはシリンダ容器内壁面(タイプBの場合)に取り付けられている。シリンダ容器の内壁面と固定板が対向する面(タイプAの場合)、あるいは固定板と回転円盤が対向する面(タイプBの場合)には、隙間が設けられている。仕切板と固定板で区切られた2つの流体室には機能性流体が充填されており、回転円盤の回転軸を回すと、この流体が固定板(タイプAの場合)あるいは仕切板(タイプBの場合)に押されて、この隙間を通して他方の流体室に流れ込む。この間隙には電場や磁場がかけられるようになっており、電場や磁場の強さを変化させることで、この隙間を流れる流体の流動抵抗を変化させ、回転軸の回転抵抗を制御する。上記のような構造からなる機能性流体ブレーキにある。 That is, the present invention relates to a cylindrical rotary shaft type brake filled with a functional fluid whose viscosity changes in response to the strength of an electric field or a magnetic field. In the same direction, a partition plate is attached to the inner wall surface of the cylinder container (called type A) or a rotating disk (hereinafter referred to as type B), and a fan-shaped or partially cylindrical fixed plate is a rotating disk. (Type A) or the inner wall surface of the cylinder container (Type B). A gap is provided on the surface where the inner wall surface of the cylinder container faces the fixed plate (type A) or the surface where the fixed plate faces the rotating disk (type B). The two fluid chambers separated by the partition plate and the fixed plate are filled with a functional fluid, and when the rotating shaft of the rotating disk is rotated, this fluid is fixed plate (in the case of type A) or partition plate (type B). In the case of) and flows into the other fluid chamber through this gap. An electric field or a magnetic field is applied to this gap. By changing the strength of the electric field or magnetic field, the flow resistance of the fluid flowing through this gap is changed, and the rotation resistance of the rotating shaft is controlled. The functional fluid brake has the above structure.

また、本発明は、シリンダ容器の内壁面(タイプAの場合)あるいは回転円盤(タイプBの場合)に取り付けられた扇型または部分円筒型の固定板が複数個であり、回転円盤(タイプAの場合)あるいは容器内壁面(タイプBの場合)に、それら複数個の固定板をそれぞれ挟む複数個の円盤あるいは円筒が取り付けられたことを特徴とする上記機能性流体ブレーキにある。 Further, according to the present invention, a plurality of fan-shaped or partially-cylindrical fixed plates attached to the inner wall surface (in the case of type A) or the rotary disk (in the case of type B) of the cylinder container are provided. Or in the case of type B), a plurality of discs or cylinders sandwiching the plurality of fixing plates are attached to the functional fluid brake.

本発明に言う扇型の固定板とは、図5(A)に、部分円筒型の固定板とは図5(B)に示すような形状の板であり、板の厚み、扇型や円筒の角度や幅は任意に選んでよい。これらの固定板には、ER流体を用いる場合には、アルミやステンレスなどの金属や表面を金属メッキした樹脂が、MR流体を用いる場合には、鉄、パーマロイ、ケイ素鋼などの磁性金属を一般に用いることができる。これらの扇型あるいは部分円筒型の固定板は、回転円盤(タイプAの場合)や容器内壁(タイプBの場合)に固定される。 The fan-shaped fixing plate referred to in the present invention is a plate having a shape as shown in FIG. 5(A) and the partially cylindrical fixing plate is as shown in FIG. 5(B). The angle and width of may be selected arbitrarily. For these fixing plates, a metal such as aluminum or stainless steel or a resin whose surface is metal-plated is used when an ER fluid is used, and a magnetic metal such as iron, permalloy or silicon steel is generally used when an MR fluid is used. Can be used. These fan-shaped or partially-cylindrical fixed plates are fixed to the rotating disk (in the case of type A) or the inner wall of the container (in the case of type B).

本発明に言う仕切板とは、シリンダ容器内の機能性流体を2つの流体室に分けるための区切りの板であり、容器内壁(タイプAの場合)や回転円筒(タイプBの場合)に固定される。扇型や部分円筒型の固定板と同一の材料を用いることができるが、樹脂を用いることもできる。仕切板と回転円盤(タイプAの場合)、あるいは仕切板と容器内壁の間隙は、出来るだけ狭い方が、流体漏れ防止の面で好ましい。仕切板を導電性の金属や磁性金属で作れば、電場や磁場がかけられた際にこの隙間の流体の粘度が上がり、流体漏れを防ぐ効果がある。 The partition plate referred to in the present invention is a partition plate for dividing the functional fluid in the cylinder container into two fluid chambers and is fixed to the inner wall of the container (in the case of type A) or the rotating cylinder (in the case of type B). To be done. The same material as the fan-shaped or partially cylindrical fixing plate can be used, but resin can also be used. It is preferable that the gap between the partition plate and the rotary disk (in the case of type A), or the space between the partition plate and the inner wall of the container is as narrow as possible in terms of fluid leakage prevention. If the partition plate is made of a conductive metal or a magnetic metal, the viscosity of the fluid in the gap increases when an electric field or a magnetic field is applied, which has the effect of preventing fluid leakage.

本発明に言う回転円盤とは、回転軸に直結した円盤であり、通常は1枚であるが、左右あるいは上下の内壁面側にそれぞれ1枚であっても良い。一般には金属製であるが、ER流体を用いる場合には表面を金属メッキして導電性を持たせた樹脂製でも良い。MR流体を用いる場合には、磁性金属が用いられる。回転円盤には仕切板や固定板が取り付けられる。 The rotating disk referred to in the present invention is a disk directly connected to the rotating shaft, and is usually one, but may be one on each of the left and right or upper and lower inner wall surfaces. Generally, it is made of metal, but when ER fluid is used, it may be made of resin whose surface is metal-plated to have conductivity. When using an MR fluid, a magnetic metal is used. A partition plate and a fixed plate are attached to the rotating disk.

本発明に言う扇型固定板と円盤の隙間あるいは部分円筒型固定板と円筒の隙間は、通常は1から5mm程度であり、狭すぎると流体の流れが悪くなり、基底抵抗(電場や磁場を印加しない際の回転抵抗)が大きくなる。また広すぎると、基底抵抗は小さくなるが、電場や磁場を印加した際のブレーキ力が低くなる。また間隙の長さを長くすると、ブレーキ力は大きくなるが、空転抵抗も大きくなり、また回転軸の回転可能な角度が狭くなる。 The gap between the fan-shaped fixed plate and the disk or the gap between the partially cylindrical fixed plate and the cylinder referred to in the present invention is usually about 1 to 5 mm, and if it is too narrow, the fluid flow deteriorates and the basal resistance (electric field or magnetic field Rotational resistance when not applied) increases. On the other hand, if it is too wide, the basal resistance decreases, but the braking force when an electric field or magnetic field is applied decreases. Further, if the length of the gap is increased, the braking force is increased, but the idling resistance is also increased, and the rotatable angle of the rotary shaft is narrowed.

本発明に言う間隙に電場をかける方法としては、固定板と容器内壁面の間に、あるいは回転円盤と容器内壁面の間に電圧を印加するが、回転円盤とそれに取り付けられた固定板(タイプAの場合)あるいは回転円盤(タイプBの場合)に高電圧を、容器内壁(タイプAの場合)あるいは容器内壁とそれに取り付けられた固定板(タイプBの場合)に低電圧(アース)をかけることが、安全上望ましい。勿論、回転円盤を取り付けた回転軸と容器内壁とは、Oリングなどのシールで流体漏れを防ぐと共に、樹脂製の軸受け等を使用して絶縁する必要がある。 As a method of applying an electric field to the gap according to the present invention, a voltage is applied between the fixed plate and the inner wall surface of the container, or between the rotating disk and the inner wall surface of the container, and the rotating disk and the fixed plate (type A) or a rotating disk (type B) with high voltage, and a low voltage (ground) with the inner wall of the container (type A) or the inner wall of the container and the fixed plate attached (with type B). Is desirable for safety. Of course, it is necessary to prevent fluid leakage by a seal such as an O-ring and to insulate the rotary shaft to which the rotary disk is attached from the inner wall of the container by using a bearing made of resin or the like.

一方、間隙に磁場を印加する方法としては、実施例7のように外部から電磁石や永久磁石で印加する方法もあるが、実施例8のように軸芯にコイルを巻いて内部から印加する方法もある。 On the other hand, as a method of applying a magnetic field to the gap, there is a method of applying with an electromagnet or a permanent magnet from the outside as in Example 7, but a method of applying a coil from the inside by winding a coil around the shaft core as in Example 8. There is also.

取り分け、実施例8に示すようなコイルを回転軸心に巻いた電磁石内蔵型はコンパクト性に優れる。 In particular, the electromagnet built-in type in which the coil is wound around the rotation axis as shown in Example 8 is excellent in compactness.

なお、本発明のブレーキは、シリンダ形(円盤型)以外にも、図6に示すような一部を欠損させた円盤型であっても良い。この場合、欠損部の左右の内壁面は仕切板と見なして良い。 Note that the brake of the present invention may be a disc type with a part thereof removed as shown in FIG. 6, in addition to the cylinder type (disc type). In this case, the left and right inner wall surfaces of the defective portion may be regarded as partition plates.

本発明に言う電場や磁場に応答して粘性を変化させる機能性流体は、一般にER(エレクトロレオロジー)流体、あるいはMR(マグネトロレオロジー)流体と呼ばれる流体である。 The functional fluid that changes its viscosity in response to an electric field or a magnetic field as referred to in the present invention is a fluid generally called an ER (electrorheology) fluid or an MR (magnetorheology) fluid.

また、磁性流体と呼ばれる流体に適応することも可能である。 It is also possible to adapt to a fluid called magnetic fluid.

ER流体とは、電圧を印加した際にその粘性が瞬間的にかつ大きく変化し、その変化が可逆的である流体である。ER流体はミクロンサイズの誘電体粒子を絶縁油に分散させた分散系と、粒子を用いない均一系に大別される。前者に用いられる粒子としては、イオン分極が可能な水、酸、アルカリあるいは有機電解質などを含んだ、シリカやゼオライト等の無機粒子、あるいはイオン交換樹脂やセルロースなどの有機粒子、水を含まずイオン分極よりは電子分極を生じ易いカーボンやポリアニリン、金属フタロシアニン等の半導電体粒子、表面に絶縁性薄膜層を形成した金属粒子や導電ポリマー粒子、などが挙げられる。絶縁油としては、鉱物油、シリコン油、フッ素油などが用いられる。また後者の均一系としては、液晶、特に高分子液晶が好ましいものとして挙げられる。前者の分散系は電界印加時に剪断応力が剪断速度によらずほぼ一定である、いわゆるビンガム流動を示す。一方、後者の均一系は一般に剪断応力が剪断速度に比例する、いわゆるニュートン流動を示す。本発明にはいずれの流体をも使用することできる。 An ER fluid is a fluid whose viscosity changes momentarily and greatly when a voltage is applied, and the change is reversible. The ER fluid is roughly classified into a dispersion system in which micron-sized dielectric particles are dispersed in insulating oil and a uniform system in which particles are not used. As the particles used in the former, water capable of ionic polarization, containing acid, alkali or organic electrolyte, inorganic particles such as silica and zeolite, or organic particles such as ion exchange resin and cellulose, water-free ions Examples thereof include semiconductive particles such as carbon, polyaniline, and metal phthalocyanine that easily generate electronic polarization rather than polarization, and metal particles and conductive polymer particles having an insulating thin film layer formed on the surface. As the insulating oil, mineral oil, silicon oil, fluorine oil or the like is used. As the latter homogeneous system, liquid crystals, particularly polymer liquid crystals, are mentioned as preferable ones. The former dispersion system exhibits so-called Bingham flow, in which the shear stress is almost constant regardless of the shear rate when an electric field is applied. On the other hand, the latter homogeneous system generally exhibits so-called Newtonian flow in which the shear stress is proportional to the shear rate. Any fluid can be used in the present invention.

一方、MR流体とは磁性粒子を媒体に分散させた流体で、外部磁場の印加によって、粘性を大きく変化できる流体である。磁性粒子の材料としては、鉄、カルボニル鉄、窒化鉄、炭化鉄、低炭素鋼、ニッケル、コバルト等が挙げられる。またアルミニウム、ケイ素、コバルト、ニッケルなどの元素を含む鉄合金でも良い。また、ガドリニウム、ガドリニウム有機誘導体からなる常磁性、超常磁性あるいは強磁性化合物粒子及びこれらの混合物からなる粒子であっても良い。中でも、カルボニル鉄は最も適した材料である。磁性粒子の粒径は平均粒径としては、数μmから数十μmが好ましく、例えば、サブμmやナノμmの粒子が含まれていても良い。分散媒体としては、鉱物油、シリコン油、フッ素油、パラフィンなどが用いられる。磁性粒子は媒体に容積比で15〜45%、一般的には20〜40%で分散したものが用いられている。 On the other hand, the MR fluid is a fluid in which magnetic particles are dispersed in a medium, and its viscosity can be greatly changed by applying an external magnetic field. Examples of the material of the magnetic particles include iron, carbonyl iron, iron nitride, iron carbide, low carbon steel, nickel and cobalt. Further, an iron alloy containing an element such as aluminum, silicon, cobalt or nickel may be used. In addition, particles of paramagnetic, superparamagnetic or ferromagnetic compound particles of gadolinium or an organic derivative of gadolinium and particles of a mixture thereof may be used. Of these, carbonyl iron is the most suitable material. The average particle diameter of the magnetic particles is preferably several μm to several tens μm, and for example, particles of sub μm or nano μm may be included. As the dispersion medium, mineral oil, silicon oil, fluorine oil, paraffin or the like is used. The magnetic particles are used by being dispersed in a medium at a volume ratio of 15 to 45%, generally 20 to 40%.

せん断流れを用いたER流体やMR流体ブレーキでは、電場や磁場を印加した際の到達せん断応力は低いが、本発明の圧縮流れやスクイーズ流れを用いた方法では、隙間の設計により、ER流体でも大きなブレーキ力を得ることが可能であり、容器内壁面と回転円盤の隙間にも強い電場をかけて流体漏れを防止できることから、とりわけER流体に適した構造のブレーキと言える。 In an ER fluid or MR fluid brake that uses a shear flow, the ultimate shear stress when an electric field or magnetic field is applied is low, but in the method of using the compressive flow or squeeze flow of the present invention, even an ER fluid can be created by designing a gap. Since a large braking force can be obtained and a strong electric field can be applied to the gap between the inner wall surface of the container and the rotating disk to prevent fluid leakage, it can be said that the brake has a structure particularly suitable for ER fluid.

なお、本発明の構造のブレーキは、容器側あるいは回転軸側を回転入力手段に接続することにより、回転角度は制限されるが、クラッチとしての利用も可能である。 The brake having the structure of the present invention can be used as a clutch, although the rotation angle is limited by connecting the container side or the rotating shaft side to the rotation input means.

本発明のER(電気粘性)流体やMR(磁気粘性MR)流体などの機能性流体を用いたブレーキは、応答性が良く、焼き付きを起こすことはなく、騒音も小さく、固体摩擦版のような摩擦粉末も発生しない。本発明のブレーキは、流体の圧縮流れ抵抗あるいはスクイーズ流れ抵抗を用いるもので、従来の流体のせん断流れ抵抗を利用したものに比べて、コンパクトで大きなブレーキ力を得ることができ、部品点数も少なく簡素な構造で、小型化もでき、多量生産にも向く。また、容器内壁面と回転円盤の隙間や、容器内壁面と固定板や仕切板の隙間にも電場や磁場をかけることができ、特殊なシールが無くても、これらの隙間からの漏れを抑えることができ、ブレーキ力の向上が図れる。 A brake using a functional fluid such as an ER (electrorheological) fluid or an MR (magnetorheological MR) fluid of the present invention has good responsiveness, does not cause seizure, has a low noise, and is like a solid friction plate. No friction powder is generated. The brake of the present invention uses a compression flow resistance or a squeeze flow resistance of fluid, and is compact and can obtain a large braking force, and has a small number of parts, as compared with a conventional brake fluid flow shear resistance. It has a simple structure, can be downsized, and is suitable for mass production. In addition, an electric field or magnetic field can be applied to the gap between the inner wall surface of the container and the rotating disk, or the gap between the inner wall surface of the container and the fixed plate or partition plate, and leakage from these gaps can be suppressed even without a special seal. Therefore, the braking force can be improved.

流体の3つの流れモードを示す。3 illustrates three flow modes of a fluid. せん断流れモードを利用した回転型ブレーキの基本構造を示す。The basic structure of a rotary brake using the shear flow mode is shown. 圧力流れモードとスクイーズ流れモードを利用した先行技術のMR流体ブレーキを示す。1 illustrates a prior art MR fluid brake utilizing pressure and squeeze flow modes. 本発明のタイプAおよびタイプBの二つのタイプのブレーキの構造の違いを分かり易くするために示した基本構造の図である。It is a figure of the basic structure shown in order to make it easy to understand the difference in structure of two types of brakes, Type A and Type B, of the present invention. 本発明に言う扇型と部分円筒型の固定板を分かり易くするために描いた概念図である。It is the conceptual diagram drawn in order to make it easy to understand the fixing plate of a fan type and a partial cylinder type said to this invention. 本発明の容器のシリンダ形以外の形状の一つである一部欠損型のシリンダ形の容器の例を示す。An example of a partially defective cylinder-shaped container which is one of the shapes other than the cylinder-shaped container of the present invention is shown. シリンダ形の容器の内壁面に仕切板を取り付け、回転円盤には扇型の固定板を取り付けた実施例1の本発明に言うタイプAのER流体ブレーキの断面図を示す。1 is a sectional view of a type A ER fluid brake according to the present invention of Example 1 in which a partition plate is attached to the inner wall surface of a cylindrical container and a fan-shaped fixed plate is attached to a rotating disk. シリンダ形の容器の内壁面に扇型の固定板を取り付け、回転円盤には仕切板を取り付けた実施例2の本発明に言うタイプBのER流体ブレーキの断面図を示す。The sectional view of the type B ER fluid brake of the second embodiment of the present invention in which a fan-shaped fixed plate is attached to the inner wall surface of a cylindrical container and a partition plate is attached to the rotating disk is shown. 扇型の固定板枚を容器の内壁に取り付け、固定板を対向して挟むように回転円盤を2枚にした実施例3の本発明に言うタイプAのER流体ブレーキの断面構造を示す。The cross-sectional structure of the type A ER fluid brake according to the present invention of Example 3 in which a fan-shaped fixed plate is attached to the inner wall of the container and two rotating disks are sandwiched so that the fixed plates face each other is shown. 2枚の扇型の固定板を容器の内壁に取り付け、それぞれの固定板を対向して挟むように回転円盤を3枚にした実施例4の本発明に言うタイプAのER流体ブレーキの断面構造を示す。Sectional structure of the type A ER fluid brake according to the present invention of Example 4 in which two fan-shaped fixing plates are attached to the inner wall of the container, and three rotating disks are provided so as to sandwich the fixing plates facing each other. Indicates. 容器の内壁に部分円筒型の固定板を取り付け、回転円盤にはこの部分円筒型の固定板の両面に一定の隙間を取りながら挟み込むように円筒型の溝を設けた構造の実施例5の本発明に言うタイプAのER流体ブレーキの断面構造を示す。A partial cylindrical fixing plate is attached to the inner wall of the container, and the rotary disk is provided with a cylindrical groove so as to be sandwiched on both sides of the partial cylindrical fixing plate with a certain gap therebetween. 1 shows a sectional structure of a type A ER fluid brake according to the invention. 容器の内壁に部分円筒型の固定板を2重に取り付け、回転円盤にはこの部分円筒型の固定板を挟み込むように円筒型の溝が2列に設けられた構造の実施例6の本発明に言うタイプAのER流体ブレーキの断面構造を示す。The present invention according to the sixth embodiment of the present invention having a structure in which the partial cylindrical fixing plates are doubly attached to the inner wall of the container and the cylindrical grooves are provided in two rows on the rotating disk so as to sandwich the partial cylindrical fixing plates. 2 shows a cross-sectional structure of the type A ER fluid brake. シリンダ容器4の内壁面に扇型の固定板を取り付け、回転円盤に仕切板を取り付けた実施例7の本発明に言うタイプAのMR流体ブレーキの断面図を示す。The sectional view of the type A MR fluid brake according to the present invention of Example 7 in which a fan-shaped fixed plate is attached to the inner wall surface of the cylinder container 4 and a partition plate is attached to the rotating disk is shown. 実施例7で容器の外部から永久磁石を用いて磁場の印加をMR流体ブレーキの磁場の印加方法を示す。In Example 7, a method of applying a magnetic field from the outside of the container using a permanent magnet will be described. 扇型の固定板枚を容器の内壁に取り付け、固定板を対向して挟むように回転円盤を2枚にし、また電磁石コイルを内蔵した実施例8の本発明に言うタイプAのMR流体ブレーキの断面構造を示す。A fan-shaped fixed plate is attached to the inner wall of the container, two rotating discs are provided so as to sandwich the fixed plates facing each other, and an electromagnet coil is incorporated in the MR fluid brake of the type A referred to in the present invention of Example 8. A cross-sectional structure is shown.

以下、実施例をもって本発明の内容を補足する。 Hereinafter, the contents of the present invention will be supplemented with examples.

図7(A)は、シリンダ容器4の内壁面に仕切板18を取り付け、回転円盤15には扇型の固定板16を取り付けた本発明に言うタイプAのER流体ブレーキの断面図を示す。図7(B)はそのA−A面の図を示す。これらの部材はステンレス製の回転軸7以外いずれもアルミ製で通電性がある。容器4の内部にはER流体(図示されず)が完全に充填され、回転軸7を回すと、固定板16に押された流体が固定板16と容器4の内壁の隙間(流路)17を通して、反対方向に流れ込む。回転軸7には液漏れ防止用のOリングシール(図示されず)と共に樹脂製の軸受(図示されず)が取り付けられ、液漏れと共に、容器4と回転軸7および固定板16との電気的な絶縁性が保たれている。容器4の内径は30mm、内部長さ(高さ)は15mm、回転軸4の径は5mm、扇型固定板16の角度は45度、固定板16と容器4の隙間17は3mmである。また回転円盤15と容器4の隙間、仕切板18と容器4の隙間は1mmである。容器4は低電圧(アース)配線22が、扇型固定板16には回転軸4を通して高電圧配線22が繋がれ、最大でDC3kVまでかけることができる。 FIG. 7A shows a sectional view of a type A ER fluid brake according to the present invention in which a partition plate 18 is attached to the inner wall surface of the cylinder container 4 and a fan-shaped fixed plate 16 is attached to the rotating disk 15. FIG. 7B shows a view of the AA plane. All of these members are made of aluminum except for the rotating shaft 7 made of stainless steel, and have electrical conductivity. The inside of the container 4 is completely filled with ER fluid (not shown), and when the rotating shaft 7 is rotated, the fluid pushed by the fixed plate 16 causes a gap (flow passage) 17 between the fixed plate 16 and the inner wall of the container 4. Through the opposite direction. A resin bearing (not shown) is attached to the rotary shaft 7 together with an O-ring seal (not shown) for preventing liquid leakage, so that when the liquid leaks, electrical contact between the container 4, the rotary shaft 7, and the fixed plate 16 is made. Good insulation is maintained. The inner diameter of the container 4 is 30 mm, the internal length (height) is 15 mm, the diameter of the rotating shaft 4 is 5 mm, the angle of the fan-shaped fixing plate 16 is 45 degrees, and the gap 17 between the fixing plate 16 and the container 4 is 3 mm. The gap between the rotary disk 15 and the container 4 and the gap between the partition plate 18 and the container 4 are 1 mm. A low voltage (ground) wiring 22 is connected to the container 4, and a high voltage wiring 22 is connected to the fan-shaped fixing plate 16 through the rotating shaft 4, so that a maximum DC 3 kV can be applied.

図8(A)は、シリンダ容器4の内壁面に扇型の固定板16を取り付け、回転円盤15には仕切板18を取り付けた、本発明に言うタイプBのER流体ブレーキの断面図を示す。図8(B)はA−A面の断面、図8(C)はB−B面の断面を示す。部材や、基本構造、寸法は実施例1と同じである。ER流体は容器内に完全に充填されているが、配線などと共に図には示されていない。 FIG. 8A shows a sectional view of a type B ER fluid brake according to the present invention in which a fan-shaped fixed plate 16 is attached to the inner wall surface of the cylinder container 4 and a partition plate 18 is attached to the rotary disk 15. .. FIG. 8B shows a cross section taken along the line AA, and FIG. 8C shows a cross section taken along the line BB. The members, basic structure, and dimensions are the same as in the first embodiment. The ER fluid is completely filled in the container, but is not shown in the figure along with wiring and the like.

図9(A)は扇型の固定板枚16を容器4の内壁に取り付け、固定板16を対向して挟むように回転円盤15を2枚にした、本発明に言うタイプAのER流体ブレーキの断面構造を示す。図9(A)はA−A面の、図9(B)はB−B面の断面を示す。部材や、基本構造は実施例1と同じであるが、回転円盤15と固定板16の隙間は2mmである。 FIG. 9A shows a type A ER fluid brake according to the present invention in which a fan-shaped fixed plate 16 is attached to the inner wall of the container 4 and two rotary disks 15 are provided so as to sandwich the fixed plate 16 so as to face each other. The cross-sectional structure of is shown. 9A shows a cross section taken along the line AA, and FIG. 9B shows a cross section taken along the line BB. The members and the basic structure are the same as in Example 1, but the gap between the rotary disk 15 and the fixed plate 16 is 2 mm.

図10(A)は2枚の扇型の固定板16を容器4の内壁に取り付け、それぞれの固定板16を対向して挟むように回転円盤15を3枚にした、本発明に言うタイプAのER流体ブレーキの断面構造を示す。図10(A)はA−A面の、図10(B)はB−B面の断面を示す。部材や、基本構造は実施例1と同じであるが、回転円盤と固定板の隙間は2mmである。 FIG. 10A shows a type A according to the invention in which two fan-shaped fixing plates 16 are attached to the inner wall of the container 4 and three rotating disks 15 are provided so as to sandwich the fixing plates 16 facing each other. 2 shows a sectional structure of the ER fluid brake of FIG. 10A shows a cross section taken along the line AA, and FIG. 10B shows a cross section taken along the line BB. The members and the basic structure are the same as in Example 1, but the gap between the rotating disk and the fixed plate is 2 mm.

図11(A)は、容器4の内壁に部分円筒型の固定板21を取り付け、回転円盤15にはこの部分円筒型の固定板21の両面に一定の隙間17を取りながら挟み込むように円筒型の溝を設けた構造の、本発明に言うタイプAのER流体ブレーキの断面構造を示す。図11(B)はA−A面の断面を示す。部材や、基本構造は実施例1と同じであるが、部分円筒型の固定板21と回転円盤15の溝との隙間は2mm、容器4の内面と円筒との隙間は1mmである。 In FIG. 11(A), a partial cylindrical fixed plate 21 is attached to the inner wall of the container 4, and the rotary disk 15 is formed into a cylindrical type so as to be sandwiched on both sides of the partial cylindrical fixed plate 21 while leaving a constant gap 17. 2 shows a sectional structure of an ER fluid brake of type A according to the present invention, which has a structure in which the groove of FIG. FIG. 11B shows a cross section taken along the line AA. The members and the basic structure are the same as in Example 1, but the gap between the partially cylindrical fixed plate 21 and the groove of the rotary disk 15 is 2 mm, and the gap between the inner surface of the container 4 and the cylinder is 1 mm.

図12(A)は、容器4の内壁に部分円筒型の固定板19を2重に取り付け、回転円盤15にはこの部分円筒型の固定板19を挟み込むように円筒型の溝が2列に設けられた構造の、本発明に言うタイプAのER流体ブレーキの断面構造を示す。図12(B)はA−A面の断面を示す。部材や、基本構造は実施例1と同じであるが、部分円筒型の固定板19と回転円盤15の溝との隙間は2mm、容器4の内面と円筒20の最外面との隙間は1mmである。 In FIG. 12(A), the partial cylindrical fixing plates 19 are doubly attached to the inner wall of the container 4, and the rotary disk 15 has two rows of cylindrical grooves so as to sandwich the partial cylindrical fixing plates 19. 1 shows a sectional structure of a type A ER fluid brake according to the present invention having the structure provided. FIG. 12B shows a cross section taken along the line AA. The members and the basic structure are the same as in Example 1, but the gap between the partially cylindrical fixed plate 19 and the groove of the rotary disk 15 is 2 mm, and the gap between the inner surface of the container 4 and the outermost surface of the cylinder 20 is 1 mm. is there.

図13(A)は、シリンダ容器4の内壁面に扇型の固定板16を取り付け、回転円盤15に仕切板18を取り付けた本発明に言うタイプAのMR流体ブレーキの断面図を示す。図13(B)はそのA−A面の断面を、図13(C)はB−B面の断面を示す。これらの部材はいずれも磁性体のケイ素鋼である。容器4の内部にはMR流体(図示されず)が完全に充填され、ステンレス製の回転軸7を回すと、扇型の固定板16に押された流体が固定板16と容器4の内壁の隙間を通して、反対方向に流れ込む。回転軸7には液漏れ防止用のOリングシール(図示されず)が取り付けられている。容器の内径は30mm、内部長さ(高さ)は15mm、回転軸7の径は5mm、扇型の固定板16と角度は45度、固定板16と容器4の隙間は2mmである。また回転円盤15と容器4の隙間、仕切板18と容器4の隙間は0.2mmである。容器4の外部には図14に示すように永久磁石23が取り付けられ、レバー(図示されず)で容器4との距離を近づけたり離したりして、磁場の強さを調整できるようになっている。 FIG. 13A shows a sectional view of a type A MR fluid brake according to the present invention in which a fan-shaped fixed plate 16 is attached to the inner wall surface of the cylinder container 4 and a partition plate 18 is attached to the rotary disk 15. 13B shows a cross section taken along the line AA, and FIG. 13C shows a cross section taken along the line BB. All of these members are magnetic silicon steels. The MR fluid (not shown) is completely filled in the container 4, and when the rotating shaft 7 made of stainless steel is rotated, the fluid pressed by the fan-shaped fixing plate 16 is removed from the fixing plate 16 and the inner wall of the container 4. Flow in the opposite direction through the gap. An O-ring seal (not shown) for preventing liquid leakage is attached to the rotary shaft 7. The inner diameter of the container is 30 mm, the inner length (height) is 15 mm, the diameter of the rotating shaft 7 is 5 mm, the angle between the fan-shaped fixing plate 16 and the container is 45 degrees, and the gap between the fixing plate 16 and the container 4 is 2 mm. The gap between the rotary disk 15 and the container 4 and the gap between the partition plate 18 and the container 4 are 0.2 mm. A permanent magnet 23 is attached to the outside of the container 4 as shown in FIG. 14, and the strength of the magnetic field can be adjusted by moving the distance from and away from the container 4 with a lever (not shown). There is.

図15(A)は、扇型の固定板枚16を容器4の内壁に取り付け、固定板16を対向して挟むように回転円盤15を2枚にした、本発明に言うタイプAのMR流体ブレーキの断面構造を示す。コイル24が回転円盤15の回転軸7に巻かれており、コイル24の外面には細いOリングシール(図示されず)を挟んで樹脂製の隔離円筒25が取り付けられている。図15(A)はA−A面の、15図(B)はB−B面の断面を示す。部材や、基本構造は実施例7と同じである。回転円盤15と固定板16の隙間17は2mmである。コイル24に電流を流すと、赤い矢印の方向に磁場が発生して、固定板16と回転円盤15の隙間17を通過するMR流体(図示されず)の流動性を変化して、ブレーキ力が制御される。また、電流を流して磁場を発生させることにより容器4の内壁と回転円盤16の隙間のMR流体の粘性も変化し、この部分での流体漏れが防止される。 FIG. 15(A) shows a type A MR fluid according to the present invention in which a fan-shaped fixed plate 16 is attached to the inner wall of the container 4 and two rotary disks 15 are provided so as to sandwich the fixed plate 16 so as to face each other. The cross-sectional structure of a brake is shown. The coil 24 is wound around the rotary shaft 7 of the rotating disk 15, and a resin-made isolation cylinder 25 is attached to the outer surface of the coil 24 with a thin O-ring seal (not shown) interposed therebetween. 15A shows a cross section taken along the line AA, and FIG. 15B shows a cross section taken along the line BB. The members and the basic structure are the same as in the seventh embodiment. The gap 17 between the rotating disk 15 and the fixed plate 16 is 2 mm. When an electric current is applied to the coil 24, a magnetic field is generated in the direction of the red arrow, changing the fluidity of the MR fluid (not shown) passing through the gap 17 between the fixed plate 16 and the rotating disk 15, and the braking force is increased. Controlled. In addition, the viscosity of the MR fluid in the gap between the inner wall of the container 4 and the rotating disk 16 is changed by flowing a current to generate a magnetic field, and fluid leakage at this portion is prevented.

多回転を必要としないメカトロニクス分野での回転力の伝達や制止に利用が期待される。取り分け、最近の人間共存型ロボットの進展とともに、関節部の動きの制御や触覚提示などの用途において、回転数が多回転でなく1回転以下の回転角度で使用する回転軸型のブレーキとしての利用に期待できる。 It is expected to be used for transmission and stopping of rotational force in the field of mechatronics that does not require multiple rotations. In particular, with the recent development of human coexistence type robots, in applications such as joint movement control and tactile presentation, use as a rotating axis type brake that is used at a rotation angle of one rotation or less instead of multiple rotations. Can be expected to.

1:流体
2:基板
3:ピストン
4:ハウジング(容器)
5:シリンダ
6:ディスク
7:回転軸(回動軸)
8:堰止板
9:連通孔
10:コイル
11:流体室
12:MR流体
13:バイパス流路
14:永久磁石
15:回転円盤
16:扇型固定板
17:隙間
18:仕切板
19:円筒型部分円筒
20:円筒
21:配線(高電圧側)
22:配線(低電圧側)
23:永久磁石
24:コイル
25:隔離円筒
1: Fluid 2: Substrate 3: Piston 4: Housing (container)
5: Cylinder 6: Disc 7: Rotating shaft (rotating shaft)
8: Dam plate 9: Communication hole 10: Coil 11: Fluid chamber 12: MR fluid 13: Bypass flow path 14: Permanent magnet 15: Rotating disk 16: Fan type fixed plate 17: Gap 18: Partition plate 19: Cylindrical type Partial cylinder 20: Cylinder 21: Wiring (high voltage side)
22: Wiring (low voltage side)
23: Permanent magnet 24: Coil 25: Isolation cylinder

Claims (5)

電場あるいは磁場の強さに応答して粘性を変化する機能性流体を充填したシリンダ形の回転軸型ブレーキにおいて、シリンダ容器の円周内壁面から中心軸に向かって軸と同じ方向に仕切板が、シリンダ容器内壁面に取り付け(この取り付けの場合を以下タイプAと呼ぶ)られ、あるいは回転円盤に取り付け(この取り付けの場合を以下タイプBと呼ぶ)られ、また、扇型または部分円筒型の固定板が、回転円盤(タイプAの場合)に、あるいはシリンダ容器の内壁面(タイプBの場合)に取り付けられ、
シリンダ容器の内壁面と固定板が対向する面(タイプAの場合)、あるいは固定板と回転円盤が対向する面(タイプBの場合)には、隙間が設けられ、
仕切板と固定板で区切られた2つの流体室には機能性流体が充填されており、回転円盤の回転軸を回すと、この流体が固定板(タイプAの場合)あるいは仕切板(タイプBの場合)に押されて、この隙間を通して他方の流体室に流れ込み、
この間隙には電場や磁場がかけられるようになっており、電場や磁場の強さを変化させることで、この隙間を流れる流体の流動抵抗を変化させ、回転軸の回転抵抗を制御する、
上記のような構造からなる機能性流体ブレーキ。
In a cylinder type rotary shaft type brake filled with a functional fluid whose viscosity changes in response to the strength of an electric field or magnetic field, a partition plate is installed in the same direction as the axis from the inner wall surface of the cylinder container toward the central axis. , Mounted on the inner wall surface of the cylinder container (this type of installation is hereinafter referred to as type A), or mounted on a rotating disk (this type of installation is hereinafter referred to as type B), and fixed in the shape of a fan or a partial cylinder. The plate is attached to the rotating disk (for type A) or the inner wall surface of the cylinder container (for type B),
A gap is provided on the surface where the inner wall surface of the cylinder container faces the fixed plate (in the case of type A) or the surface where the fixed plate and the rotating disk face (in the case of type B).
The two fluid chambers, which are divided by the partition plate and the fixed plate, are filled with functional fluid, and when the rotating shaft of the rotating disk is rotated, this fluid is fixed plate (in the case of type A) or partition plate (type B). In the case of), flow into the other fluid chamber through this gap,
An electric field or magnetic field can be applied to this gap. By changing the strength of the electric field or magnetic field, the flow resistance of the fluid flowing through this gap is changed, and the rotation resistance of the rotating shaft is controlled.
A functional fluid brake having the above structure.
シリンダ容器の内壁面(タイプAの場合)あるいは回転円盤(タイプBの場合)に取り付けられた扇型または部分円筒型の固定板が複数個であり、回転円盤(タイプAの場合)あるいは容器の内壁面(タイプBの場合)に、それら複数個の固定板をそれぞれ挟む複数個の回転円盤あるいは円筒が取り付けられたことを特徴とする請求項1の機能性流体ブレーキ。There are a plurality of fan-shaped or partially cylindrical fixed plates attached to the inner wall surface (in the case of type A) or the rotating disk (in the case of type B) of the cylinder container. 2. The functional fluid brake according to claim 1, wherein a plurality of rotating disks or cylinders sandwiching the plurality of fixed plates are attached to the inner wall surface (in the case of type B). 機能性流体がER(電気粘性)流体であり、回転軸に取り付けられた回転円盤とそれに取り付けられた固定板(タイプAの場合)あるいは回転円盤(タイプBの場合)には高電圧がかけられ、容器の内壁(タイプAの場合)あるいは容器の内壁とそれに取り付けられた固定板(タイプBの場合)には、低電圧(アース)がかけられることを特徴とする請求項1又は請求項2の機能性流体ブレーキ。The functional fluid is an ER (electrorheological) fluid, and a high voltage is applied to the rotating disk attached to the rotating shaft and the fixed plate (for type A) or rotating disk (for type B) attached to it. 3. A low voltage (ground) is applied to the inner wall of the container (in the case of type A) or the inner wall of the container and the fixing plate attached thereto (in the case of type B). Functional fluid brake. 機能性流体がMR(磁気粘性)流体であり、磁場を発生させるコイルが軸中心部に巻かれたことを特徴とする請求項1又は請求項2の機能性流体ブレーキ。 The functional fluid brake according to claim 1 or 2, wherein the functional fluid is an MR (Magnetic Viscosity) fluid, and a coil for generating a magnetic field is wound around a central portion of the shaft. 機能性流体がMR(磁気粘性)流体であり、磁場がシリンダ容器の外側からかけられることを特徴とする請求項1又は請求項2の機能性流体ブレーキ。 The functional fluid brake according to claim 1 or 2, wherein the functional fluid is an MR (magnetorheological) fluid, and the magnetic field is applied from the outside of the cylinder container.
JP2018230391A 2018-11-19 2018-11-19 Brake employing functional fluid Pending JP2020085232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018230391A JP2020085232A (en) 2018-11-19 2018-11-19 Brake employing functional fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018230391A JP2020085232A (en) 2018-11-19 2018-11-19 Brake employing functional fluid

Publications (1)

Publication Number Publication Date
JP2020085232A true JP2020085232A (en) 2020-06-04

Family

ID=70907498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230391A Pending JP2020085232A (en) 2018-11-19 2018-11-19 Brake employing functional fluid

Country Status (1)

Country Link
JP (1) JP2020085232A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022872A (en) * 2020-11-01 2021-06-25 许昌学院 Executing device and unmanned aerial vehicle airborne cradle head using same
CN114382820A (en) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 Double-shaft independently controllable actuator based on magnetorheological glue
CN114382804A (en) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 Double-shaft independently controllable single-disc brake based on double-coil excitation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273575A (en) * 1996-04-02 1997-10-21 Akebono Brake Res & Dev Center Ltd Braking device using electroviscous fluid
JP2000157585A (en) * 1998-11-30 2000-06-13 Asahi Chem Ind Co Ltd Auxiliary vehicle for welfare and medical use
JP2005172096A (en) * 2003-12-10 2005-06-30 Kayaba Ind Co Ltd Mr fluid type rotary steer damper
JP2007139083A (en) * 2005-11-18 2007-06-07 Bando Chem Ind Ltd Rocking type damping device and belt tensioner device equipped therewith
JP2009287639A (en) * 2008-05-28 2009-12-10 Kayaba Ind Co Ltd Rotary damper
JP2016140744A (en) * 2015-02-02 2016-08-08 株式会社日本リハビリデバイス技術研究所 Upper/lower limb rehabilitation training device using brake and haptic device
WO2017094894A1 (en) * 2015-12-04 2017-06-08 旭化成株式会社 Electrorheological fluid and electric device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273575A (en) * 1996-04-02 1997-10-21 Akebono Brake Res & Dev Center Ltd Braking device using electroviscous fluid
JP2000157585A (en) * 1998-11-30 2000-06-13 Asahi Chem Ind Co Ltd Auxiliary vehicle for welfare and medical use
JP2005172096A (en) * 2003-12-10 2005-06-30 Kayaba Ind Co Ltd Mr fluid type rotary steer damper
JP2007139083A (en) * 2005-11-18 2007-06-07 Bando Chem Ind Ltd Rocking type damping device and belt tensioner device equipped therewith
JP2009287639A (en) * 2008-05-28 2009-12-10 Kayaba Ind Co Ltd Rotary damper
JP2016140744A (en) * 2015-02-02 2016-08-08 株式会社日本リハビリデバイス技術研究所 Upper/lower limb rehabilitation training device using brake and haptic device
WO2017094894A1 (en) * 2015-12-04 2017-06-08 旭化成株式会社 Electrorheological fluid and electric device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022872A (en) * 2020-11-01 2021-06-25 许昌学院 Executing device and unmanned aerial vehicle airborne cradle head using same
CN113022872B (en) * 2020-11-01 2023-09-22 许昌学院 Execution device and unmanned aerial vehicle airborne cradle head using same
CN114382820A (en) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 Double-shaft independently controllable actuator based on magnetorheological glue
CN114382804A (en) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 Double-shaft independently controllable single-disc brake based on double-coil excitation
CN114382820B (en) * 2022-01-25 2023-04-28 江苏省特种设备安全监督检验研究院 Double-shaft independent controllable brake based on magnetorheological glue

Similar Documents

Publication Publication Date Title
Li et al. Design and experimental evaluation of a magnetorheological brake
JP2020085232A (en) Brake employing functional fluid
Zhang et al. Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment
JP4695835B2 (en) Brake with magnetic field responsive material
US5549837A (en) Magnetic fluid-based magnetorheological fluids
US5007513A (en) Electroactive fluid torque transmission apparatus with ferrofluid seal
US20140339029A1 (en) Magnetic functional fluid, damper and clutch using magnetic functional fluid
JP2002501591A (en) Magnetic particle damper device
CN109630596B (en) Rotary type damping-adjustable silicone oil-magnetorheological torsional vibration damper
Latha et al. Design and manufacturing aspects of magneto-rheological fluid (MRF) clutch
JP2014181778A (en) Rotation brake
Jinaga et al. Design, fabrication and testing of a magnetorheologic fluid braking system for machine tool application
JP2010242945A (en) Magnetic viscous fluid device
Carlson et al. Magnetorheological fluids
JP4728862B2 (en) Magnetorheological fluid damper
US20220163078A1 (en) Controllable rotary brake
CN114382804B (en) Double-shaft independent controllable single-disc brake based on double-coil excitation
Chen et al. Cylindrical Magnetorheological Fluid Variable Transmission Controlled by Shape‐Memory Alloy
WO2015091722A1 (en) Sealing arrangement
US2809731A (en) Magnetic particle coupling device with nickel-coated iron particles
JP6671074B2 (en) Magneto-rheological fluid device
JP7269048B2 (en) Seal structure of rotating shaft of magneto-rheological fluid device
CN211648852U (en) Sealing structure of blade type magnetorheological fluid retarder
JP2020118290A (en) Rotary shaft type brake using fluid
KR102174110B1 (en) MR brake device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131