JP2020084524A - Method for constructing underground structure - Google Patents
Method for constructing underground structure Download PDFInfo
- Publication number
- JP2020084524A JP2020084524A JP2018219052A JP2018219052A JP2020084524A JP 2020084524 A JP2020084524 A JP 2020084524A JP 2018219052 A JP2018219052 A JP 2018219052A JP 2018219052 A JP2018219052 A JP 2018219052A JP 2020084524 A JP2020084524 A JP 2020084524A
- Authority
- JP
- Japan
- Prior art keywords
- core material
- underground
- liquid
- hole
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Piles And Underground Anchors (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
Abstract
Description
本発明は、地盤改良体を用いた地中構造物を構築するための地中構造物の構築方法に関する。 TECHNICAL FIELD The present invention relates to a method of constructing an underground structure for constructing an underground structure using a ground improvement body.
従来より、地中にソイルセメントよりなる地盤改良体を造成し、これを利用して仮設の山留壁等を構築する方法が広く知られている。例えば特許文献1では、ソイルセメント構造物を構成する地盤改良体を、小型の地盤改良装置にて造成する方法が開示されている。 BACKGROUND ART Conventionally, a method of forming a ground improvement body made of soil cement in the ground and using it to construct a temporary mountain retaining wall or the like is widely known. For example, Patent Document 1 discloses a method of forming a ground improvement body constituting a soil cement structure with a small ground improvement apparatus.
具体的には、下端部近傍に掘削ビットを備えるロッドに起振力を伝達する起振装置を接続し、ロッドに上下方向の起振力を付与しながら回転させることにより地盤を削孔しつつロッドの先端よりセメントミルクを吐出し、掘削土とセメントミルクを混合撹拌して地盤中にソイルセメントよりなる地盤改良体を造成する。 Specifically, a drilling bit is provided in the vicinity of the lower end, and an exciter that transmits an exciting force is connected to the rod, and the rod is rotated while applying an up-and-down exciting force while drilling the ground. Cement milk is discharged from the tip of the rod, and excavated soil and cement milk are mixed and stirred to form a soil improvement body made of soil cement in the ground.
上記特許文献1の方法は、小型の地盤改良装置を使用して地盤改良体を造成できることから、施工対象領域が狭隘な敷地に位置する場合に適した方法であるといえる。 The method of Patent Document 1 can be said to be a method suitable for a case where the construction target area is located on a narrow site because the ground improvement body can be created using a small ground improvement device.
しかし、地盤を削孔しながらセメントミルクを吐出するため、セメントミルクと掘削土の混合物は撹拌終了直後から硬化が始まる。したがって、例えば、地盤改良体に芯材を備える地中構造物を構築しようとする場合、セメントミルクと掘削土との混合物に対して速やかに芯材を貫入して建て込まなければならず、建て込み作業が煩雑となりやすい。 However, since the cement milk is discharged while drilling the ground, the mixture of the cement milk and the excavated soil begins to harden immediately after the stirring is completed. Therefore, for example, when trying to construct an underground structure including a core material in a ground improvement body, the core material must be quickly penetrated into the mixture of cement milk and excavated soil, and the building must be built. Incorporation work tends to be complicated.
さらに、地中構造物が深度方向に長大である場合には、芯材の建て込み作業に時間を要することからソイルセメントの硬化が進行して所定の深さまで貫入できずに高止まりが生じることも想定され、地中構造物に高い品質を確保することが困難となりやすい。 Furthermore, when the underground structure is large in the depth direction, it takes time to assemble the core material, so hardening of the soil cement progresses and it cannot penetrate to a predetermined depth, and a high stop occurs. It is likely that it will be difficult to ensure high quality for underground structures.
本発明は、かかる課題に鑑みなされたものであって、その主な目的は、地盤改良体を用いた地中構造物を効率よく構築することの可能な、地中構造物の構築方法を提供することである。 The present invention has been made in view of the above problems, and its main purpose is to provide a method for constructing an underground structure, which is capable of efficiently constructing an underground structure using a ground improvement body. It is to be.
かかる目的を達成するため、本発明の地中構造物の構築方法は、地盤改良体を用いた地中構造物を構築する地中構造物の構築方法であって、調整液を供給しながら、回転させた削孔撹拌装置の掘削撹拌部にて地盤を削孔し、掘削土混じりの調整液で満たされた地中孔を構築する工程と、該地中孔に芯材を建て込む工程と、前記地中孔を満たす前記掘削土混じりの調整液の一部をセメント系固化液に置換する工程と、孔底にて圧縮空気を噴射して前記地中孔内に上昇流を生じさせ、前記セメント系固化液と前記掘削土混じりの調整液とを混合撹拌する工程と、を備えることを特徴とする。 In order to achieve such an object, the method of constructing an underground structure of the present invention is a method of constructing an underground structure using a ground improvement body, while supplying a conditioning liquid, A step of boring the ground in the excavation and stirring section of the rotated boring and stirring device to construct an underground hole filled with the adjustment liquid containing the excavated soil, and a step of building a core material in the underground hole. , A step of replacing a part of the adjustment liquid of the excavated soil mixed with the cement-based solidifying liquid that fills the underground hole, and injecting compressed air at the bottom of the hole to generate an upward flow in the underground hole, And a step of mixing and stirring the cement-based solidifying liquid and the adjustment liquid mixed with the excavated soil.
上述する本発明の地中構造物の構築方法によれば、芯材を、セメント系固化液が混合されていない状態の掘削土混じりの調整液で満たされた地中孔に建て込むことができる。これにより、セメント系固化液の硬化に起因する作業時間の制約を受けることなく芯材を建て込むことができるため、芯材の建て込み作業に係る自由度を高めることが可能となる。また、不慮の事態に対応して芯材の建て込み作業を中断することもでき、地中構造物の施工性を大幅に向上することが可能となる。 According to the method for constructing an underground structure of the present invention described above, the core material can be built in the underground hole filled with the adjustment liquid mixed with the excavated soil in the state where the cement-based solidifying liquid is not mixed. .. As a result, the core material can be built without being restricted by the working time due to the hardening of the cement-based solidifying liquid, so that it is possible to increase the degree of freedom in the work of building the core material. In addition, it is possible to interrupt the work of building the core material in response to an unexpected situation, and it is possible to significantly improve the workability of the underground structure.
また、孔底にて圧縮空気を噴射して前記地中孔内に上昇流を生じさせることにより、地中孔内で掘削土混じりの調整液とセメント系固化液とを混合撹拌する。これにより、地中孔には高さ方向に均質な混合物が作製することができ、硬化後の地盤改良体に高い品質を確保することが可能となる。 Further, by injecting compressed air at the bottom of the hole to generate an upward flow in the underground hole, the adjusting liquid mixed with the excavated soil and the cement-based solidifying liquid are mixed and stirred in the underground hole. Thereby, a homogeneous mixture in the height direction can be produced in the underground hole, and it becomes possible to secure high quality in the ground improvement body after curing.
本発明の地中構造物の構築方法は、前記芯材を建て込む工程では、前記掘削土混じりの調整液で満たされた地中孔内で、複数の芯材分割体を継ぎ足すことにより芯材を構築し建て込むことを特徴とする。 In the method of constructing an underground structure of the present invention, in the step of building the core material, a core is added by adding a plurality of core material divided bodies in an underground hole filled with the adjustment liquid containing the excavated soil. Characterized by building and building timber.
上述する本発明の地中構造物の構築方法によれば、施工対象領域が空頭制限のある敷地に位置していても、深度方向に長大な地中構造物を効率よく構築することが可能となる。 According to the method for constructing an underground structure of the present invention described above, it is possible to efficiently construct a long underground structure in the depth direction even if the construction target area is located on a site with a head limitation. Become.
本発明によれば、芯材を、セメント系固化液が混合されていない状態の掘削土混じりの調整液で満たされた地中孔に建て込むことから、セメント系固化液の硬化に起因する作業時間の制約を受けることなく芯材を建て込むことができる。これにより、芯材の建て込み作業に係る自由度を高めて施工性を大幅に向上でき、効率よく地中構造物を構築することが可能となる。 According to the present invention, since the core material is built in the underground hole filled with the adjustment liquid mixed with the excavated soil in the state where the cement-based solidifying liquid is not mixed, the work resulting from the hardening of the cement-based solidifying liquid The core material can be built without being restricted by time. As a result, it is possible to increase the degree of freedom regarding the work of building the core material and significantly improve the workability, and it is possible to efficiently construct an underground structure.
本発明は、地盤改良体を用いた山留杭や支持杭等の地中構造物を構築するための方法であり、なかでも、施工対象領域が空頭制限のある敷地に位置する場合に好適な方法である。本実施の形態では、地中構造物として、地盤改良体に芯材を貫入した山留杭を事例に挙げ、その詳細を説明する。 The present invention is a method for constructing an underground structure such as a mountain retaining pile or a supporting pile using a ground improvement body, and among them, it is suitable when the construction target area is located on a site with a head limitation. Is the way. In the present embodiment, as an underground structure, a mountain retaining pile having a core material penetrating a ground improvement body is taken as an example, and the details thereof will be described.
図1(a)(b)で示すように、山留杭1は、円柱状に形成された地中構造物であり、本実施の形態では、断面径400mm〜800mm程度の地中孔Hに建て込まれた芯材2と、芯材2を内包するように地中孔Hに造成される地盤改良体3とにより構成され、芯材2には、エア供給ホース4と固化液供給ホース5が固定されている。なお、地中孔Hの断面径は、必ずしも限定されるものではなく、例えば800mm以上の断面径を採用してよい。 As shown in FIGS. 1(a) and 1(b), the mountain retaining pile 1 is an underground structure formed in a columnar shape, and in the present embodiment, a ground hole H having a cross-sectional diameter of about 400 mm to 800 mm is formed. It is composed of a built-in core material 2 and a ground improvement body 3 formed in the underground hole H so as to include the core material 2. The core material 2 includes an air supply hose 4 and a solidified liquid supply hose 5 Is fixed. The cross-sectional diameter of the underground hole H is not necessarily limited, and for example, a cross-sectional diameter of 800 mm or more may be adopted.
芯材2は、複数の芯材分割体21を長手方向に直列に連結することにより構成されており、芯材分割体21としては、本実施の形態では、250〜400mm程度の断面幅を備えるH形鋼等の長尺鋼材を採用している。これらは、長手方向に直列に配置した状態で隣り合うフランジに跨るように配置されるガセットプレート22を介して、ボルト結合により着脱自在に連結される。なお、芯材分割体21の断面幅は、必ずしも限定されるものではなく、例えば400mm以上の断面幅を採用してよい。 The core material 2 is configured by connecting a plurality of core material divided bodies 21 in series in the longitudinal direction, and the core material divided body 21 has a sectional width of about 250 to 400 mm in the present embodiment. Long steel material such as H-section steel is used. These are detachably connected by bolt connection via a gusset plate 22 arranged so as to straddle the adjacent flanges while being arranged in series in the longitudinal direction. The sectional width of the core material divided body 21 is not necessarily limited, and for example, a sectional width of 400 mm or more may be adopted.
芯材分割体21は、必ずしも長尺鋼材に限定されるものではなく、山留杭1の芯材として機能できる程度の剛性を有する材料であれば、いずれの長尺材を採用してもよい。また、芯材分割体21は、その部材長をいずれに設定してもよく、例えば、施工対象領域に空頭制限がある場合には、その高さに応じて適したものを適宜設定すればよい。 The core material dividing body 21 is not necessarily limited to the long steel material, and any long material may be adopted as long as it is a material having rigidity enough to function as the core material of the mountain piles 1. .. The member length of the core material divided body 21 may be set to any value. For example, when the construction target area has an empty space limitation, a suitable material may be appropriately set according to the height thereof. ..
さらに、芯材2を構成するべく用いる芯材分割体21の数量も、芯材2の必要長さに応じて適宜決定すればよい。したがって、構築予定の山留杭1の全長が短く、芯材分割体21を複数連結する必要がない場合には、芯材2として1本の芯材分割体21のみを使用してもよい。 Further, the number of the core material divided bodies 21 used to form the core material 2 may be appropriately determined according to the required length of the core material 2. Therefore, when the total length of the pile retaining pile 1 to be constructed is short and it is not necessary to connect a plurality of core material divided bodies 21, only one core material divided body 21 may be used as the core material 2.
また、芯材分割体21には、2本のエア供給ホース4と1本の固化液供給ホース5を保持するべく、図1および図4で示すように、ウェブの一方の面にエア供給ホース4を固定するためのエア供給ホース把持具41と固化液供給ホース5を固定するための固化液供給ホース把持具51が設置されている。また、他方の面にエア供給ホース4を固定するためのエア供給ホース把持具41のみが設置されている。 In addition, in order to hold two air supply hoses 4 and one solidified liquid supply hose 5 in the core material divided body 21, as shown in FIGS. 1 and 4, one side of the web is provided with an air supply hose. An air supply hose gripper 41 for fixing 4 and a solidification liquid supply hose gripper 51 for fixing the solidification liquid supply hose 5 are installed. Further, only the air supply hose gripper 41 for fixing the air supply hose 4 is installed on the other surface.
なお、エア供給ホース把持具41および固化液供給ホース把持具51は、エア供給ホース4および固化液供給ホース5をそれぞれ把持可能であれば、その形状はいずれに形成されたものであってもよい。 Note that the air supply hose gripper 41 and the solidification liquid supply hose gripper 51 may have any shape as long as they can grip the air supply hose 4 and the solidification liquid supply hose 5, respectively. ..
エア供給ホース4は、図4で示すように、圧縮空気Aが流動可能な管部材よりなり、基端部が地上に設置されているエアコンプレッサ81に連結され、先端部にはエア噴射管6が設置される。なお、エア供給ホース4の形状および材質は、気体を通すことの可能な中空材料であればいずれを採用してもよい。また、エア供給ホース4とエアコンプレッサ81との間には空気流量計82が設置されており、エア噴射管6に供給される圧縮空気Aの流量を測定可能となっている。 As shown in FIG. 4, the air supply hose 4 is composed of a pipe member through which the compressed air A can flow, and has a base end portion connected to an air compressor 81 installed on the ground and an air injection pipe 6 at the tip end portion. Is installed. The shape and material of the air supply hose 4 may be any hollow material that allows gas to pass therethrough. An air flow meter 82 is installed between the air supply hose 4 and the air compressor 81 so that the flow rate of the compressed air A supplied to the air injection pipe 6 can be measured.
一方、固化液供給ホース5は、セメント系固化液Cが流動可能な管部材よりなり、基端部が地上に設置されている固化液供給装置91に連結され、先端部には固化液吐出管7が設置される。固化液供給装置91では、固化液供給ホース5に供給するセメント系固化液Cの配合および流量を管理し所定量のセメント系固化液を供給する。なお、固化液供給ホース5の形状および材質は、液体を通すことの可能な中空材料であればいずれを採用してもよい。 On the other hand, the solidification liquid supply hose 5 is composed of a pipe member through which the cement-based solidification liquid C can flow, and its base end is connected to the solidification liquid supply device 91 installed on the ground, and the solidification liquid discharge pipe is provided at the tip. 7 is installed. The solidification liquid supply device 91 manages the composition and flow rate of the cementation solidification liquid C to be supplied to the solidification liquid supply hose 5, and supplies a predetermined amount of the cementation solidification liquid. The solidification liquid supply hose 5 may have any shape and material as long as it is a hollow material that allows liquid to pass therethrough.
これらエア供給ホース4に設置したエア噴射管6および固化液供給ホース5に設置した固化液吐出管7にはそれぞれ、図1(b)で示すようにエア噴射口61および固化液吐出口71が設けられている。エア噴射口61および固化液吐出口71の数量は、例えば2カ所もしくは4カ所のように対となる数量とすればいずれでもよいが、本実施の形態ではともに2カ所設けており、これらエア噴射口61および固化液吐出口71が、芯材2の最下端を構成する芯材分割体21の下端より下方に位置するように、エア噴射管6および固化液吐出管7が配置されている。 As shown in FIG. 1B, the air injection pipe 6 installed in the air supply hose 4 and the solidification liquid discharge pipe 7 installed in the solidification liquid supply hose 5 respectively have an air injection port 61 and a solidification liquid discharge port 71. It is provided. The numbers of the air injection ports 61 and the solidified liquid discharge ports 71 may be any number as long as they are paired, for example, two or four, but in the present embodiment, both are provided and the air injection ports are provided. The air injection pipe 6 and the solidification liquid discharge pipe 7 are arranged so that the port 61 and the solidification liquid discharge port 71 are located below the lower end of the core material divided body 21 that constitutes the lowermost end of the core material 2.
そして、2本のエア供給ホース4各々に設置したエア噴射管6は、図7(b)で示すように、合計4つのエア噴射口61が地中孔Hの平面視で四方に向けて圧縮空気Aを噴射できるよう、それぞれ噴射方向を調整して配置されている。また、1本の固化液供給ホース5に設置した固化液吐出管7は、図6(b)で示すように、2つの固化液吐出口71が芯材2のウェブと平行な方向にセメント系固化液を吐出できるよう、向きを調整して配置されている。 Then, as shown in FIG. 7B, the air injection pipes 6 installed on each of the two air supply hoses 4 have a total of four air injection ports 61 compressed in four directions in a plan view of the underground hole H. The injection directions are adjusted so that the air A can be injected. Further, as shown in FIG. 6( b ), the solidified liquid discharge pipe 7 installed in the single solidified liquid supply hose 5 has two solidified liquid discharge ports 71 which are cement-based in a direction parallel to the web of the core material 2. The orientation is adjusted so that the solidified liquid can be discharged.
地盤改良体3は、図6(a)および図7(a)で示すように、地中孔Hを構築するべく地中を削孔した際の掘削土を含む掘削土混じりの調整液W1と、所定量のセメント系固化液Cとを、混合撹拌した後に硬化させたソイルセメント硬化体よりなるものであり、円柱状に造成されている。 As shown in FIGS. 6(a) and 7(a), the ground improvement body 3 has an adjustment liquid W1 containing a mixture of excavated soil and excavated soil when excavating the underground to construct an underground hole H. The cement-based solidifying liquid C of a predetermined amount is mixed, stirred, and then cured to form a hardened cement cement, which is formed into a columnar shape.
ここで、掘削土混じりの調整液W1は、調整液Wを用いて地盤を削孔した際、削孔時に発生する掘削土と調整液Wが混じり合ったものであり、調整液Wは、地中孔Hの孔壁を保護する機能と、地盤を削孔した際の掘削土を排出する機能と、セメント系固化液Cと混合撹拌されて硬化する機能とを併せ持つよう、施工対象領域の地盤性状に応じて、比重および粘度を調整管理された液体よりなる。 Here, the adjusting liquid W1 mixed with the excavating soil is a mixture of the excavating soil and the adjusting liquid W which are generated at the time of boring the ground when the adjusting liquid W is used for boring the ground. In order to have a function of protecting the hole wall of the intermediate hole H, a function of discharging excavated soil when the ground is drilled, and a function of being hardened by being mixed and stirred with the cement-based solidifying liquid C, the ground of the construction target area is combined. It is a liquid whose specific gravity and viscosity are adjusted and controlled according to its properties.
したがって、調整液Wは、上記の3つの機能を有する液体であれば、例えば、ベントナイト泥水や分散剤が添加されたポリマー系水溶液等、いずれを採用するものであってもよい。 Therefore, the adjustment liquid W may be any liquid that has the above-mentioned three functions, such as bentonite muddy water or a polymer-based aqueous solution to which a dispersant is added.
上記の構成を有する山留杭1を含む地中構造物の構築方法を、施工時に使用する削孔撹拌装置10、門型クレーン20および芯材把持装置30の詳細と併せて、以下に詳述する。 The method for constructing an underground structure including the mountain retaining pile 1 having the above configuration will be described below in detail together with the details of the hole drilling stirring device 10, the gate crane 20 and the core material gripping device 30 used during construction. To do.
≪第1の工程≫
図2で示すように、山留杭1の施工対象領域の所定位置に後述する削孔撹拌装置10を据え付け、調整液Wを供給しながら削孔撹拌装置10を介して地盤を所定の深度に達するまで削孔し、図3で示すような、孔内が掘削土混じりの調整液W1で満たされた地中孔Hを構築する。
≪First step≫
As shown in FIG. 2, a drilling stirrer 10 described below is installed at a predetermined position in the construction target area of the mountain retaining pile 1, and the ground is adjusted to a predetermined depth via the drilling stirrer 10 while supplying the adjusting liquid W. The hole is drilled until it reaches, and the underground hole H, as shown in FIG. 3, in which the inside of the hole is filled with the adjusting liquid W1 containing the excavated soil is constructed.
なお、山留杭1の構築予定位置には、削孔撹拌装置10にて削孔を開始する前に、孔壁保護のため地表面から口元管Pを貫入したうえで、口元管P内をあらかじめ余掘りをしておく。なお、必ずしも口元管Pを適用する必要はなく、例えば作業地盤が強固であれば、素掘りおよび敷き鉄板等による整備のみでもよい。また、地中孔Hを構築するべく削孔作業を開始する際には、調整液Wを利用して削孔により発生した掘削土を排泥するための排泥管Sを、地中孔Hの孔口近傍に設置しておく。 At the planned construction position of the Yamadome pile 1, before starting the drilling with the drilling agitation device 10, after the mouthpiece P penetrates from the ground surface to protect the hole wall, the inside of the mouthpiece P is Excavate in advance. Note that the mouth pipe P does not necessarily have to be applied, and if the work ground is strong, for example, it is sufficient to perform maintenance only by digging and laying an iron plate. Further, when starting the drilling work to construct the underground hole H, the drainage pipe S for draining the excavated soil generated by the drilling using the adjusting liquid W is used as the underground hole H. Install near the mouth of the hole.
<削孔撹拌装置10>
施工対象領域の地盤中を削孔する際に使用する削孔撹拌装置10は、図2で示すように、キャタピラからなる移動機構11と、移動機構11によって移動可能な台座部12と、台座部12により鉛直方向に延びるように支持されたリーダー13と、リーダー13に沿って上下方向に移動可能に設置された起振装置14と、頭部が起振装置14に接続されたロッド15と、ロッド15の先端に取り付けられた掘削撹拌部16と、掘削撹拌部16の先端から吐出される調整液Wをロッド15の内部に供給する調整液供給装置17と、ロッド15に回転力を付与する回転装置18と、を備えている。
<Drilling stirrer 10>
As shown in FIG. 2, a boring and stirring device 10 used when boring the ground in a construction target area includes a moving mechanism 11 composed of a caterpillar, a pedestal portion 12 movable by the moving mechanism 11, and a pedestal portion. A leader 13 supported by 12 so as to extend in the vertical direction, an oscillating device 14 installed movably in the vertical direction along the reader 13, and a rod 15 whose head is connected to the oscillating device 14. The excavation stirring unit 16 attached to the tip of the rod 15, the adjustment liquid supply device 17 that supplies the adjustment liquid W discharged from the tip of the excavation stirring unit 16 to the inside of the rod 15, and the rotational force is applied to the rod 15. The rotating device 18 is provided.
起振装置14は、偏芯重錘を回転させることで上下方向の起振力を発生させる装置であり、リーダー13に沿って鉛直移動可能に設置されている。なお、起振装置14は、ロッド15に対して上下方向又は横方向のうち少なくとも何れかの成分を含む振動を伝達可能な起振力を発生できる装置であればいずれを用いてもよい。 The vibration generator 14 is a device that generates a vertical vibration force by rotating an eccentric weight, and is installed so as to be vertically movable along the reader 13. The vibration generating device 14 may be any device as long as it can generate a vibration generating force capable of transmitting a vibration including at least one component in the vertical direction or the horizontal direction with respect to the rod 15.
回転装置18は、その内方に備えられた図示しないロッド把持部にてロッド15の周面を把持し、ロッド15に対してその軸を中心とした正方向もしくは逆方向の回転力を付与する装置であり、起振装置14の下側に位置し、起振装置14とともにリーダー13に沿って鉛直移動可能に設置されている。 The rotating device 18 grips the peripheral surface of the rod 15 with a rod gripping portion (not shown) provided inside thereof, and applies a rotational force in the forward direction or the reverse direction about the axis of the rod 15 to the rod 15. The device is located below the vibration generating device 14 and is vertically movable along with the vibration generating device 14 along the reader 13.
ロッド15は、中空を備える一重管よりなり、起振装置14にて頭部を支持された状態で立設され、中間部に設置されたスイベル151を介して調整液供給装置17に接続されるとともに、先端部に掘削撹拌部16が接続されている。 The rod 15 is composed of a hollow single tube, is erected with its head supported by the vibrating device 14, and is connected to the adjusting liquid supply device 17 via a swivel 151 installed in the middle part. At the same time, the excavation and stirring unit 16 is connected to the tip.
掘削撹拌部16は、ロッド15に接続される軸部161と、軸部161の先端部近傍であって側方に延びるように取り付けられた掘削翼本体162と、掘削翼本体162に取り付けられた掘削ビット163と、を備える。また、軸部161の先端には、先端ビット164が取り付けられるとともに、調整液吐出口(図示せず)が設けられている。 The excavation and agitation unit 16 is attached to the shaft portion 161, which is connected to the rod 15, the excavation blade main body 162 which is attached so as to extend laterally in the vicinity of the tip end portion of the shaft portion 161, and the excavation blade main body 162. And a drill bit 163. Further, a tip bit 164 is attached to the tip of the shaft portion 161, and an adjustment liquid discharge port (not shown) is provided.
調整液供給装置17は、前述した調整液Wを製造するプラント171と、製造された調整液Wをロッドに供給するための調整液供給管172とを備える。本実施の形態では、地中孔Hを満たす掘削土混じりの調整液W1が比重1.5程度となるよう、調整液Wの比重を地盤の性状等を考慮しつつ調整管理している。 The adjustment liquid supply device 17 includes a plant 171 for producing the adjustment liquid W described above, and an adjustment liquid supply pipe 172 for supplying the produced adjustment liquid W to the rod. In the present embodiment, the specific gravity of the adjusting liquid W is adjusted and managed in consideration of the properties of the ground so that the adjusting liquid W1 mixed with excavated soil that fills the underground hole H has a specific gravity of about 1.5.
上記の構成により削孔撹拌装置10の掘削撹拌部16は、余掘りした口元管P内に貫入させた状態で作動させると、起振装置14により上下方向の振動を付与されつつ回転装置18によりロッド15の軸を中心に正回転する。これと同時に、掘削撹拌部16の軸部161先端に設けられた調整液吐出口より、調整液供給装置17から供給されロッド15の中空部を流下した調整液Wが吐出される。 When the excavation and agitation unit 16 of the hole agitation agitation device 10 having the above-described configuration is operated in a state where the excavation agitation unit 16 penetrates into the overexcavated mouth pipe P, the oscillating device 14 applies vertical vibration to the excavation agitation device 16 and the rotation device 18 causes It rotates forward about the axis of the rod 15. At the same time, the adjustment liquid W supplied from the adjustment liquid supply device 17 and flowing down the hollow portion of the rod 15 is discharged from the adjustment liquid discharge port provided at the tip of the shaft portion 161 of the excavation and stirring unit 16.
これにより、図3で示すように、掘削撹拌部16に備えた掘削ビット163および先端ビット164にて、地盤が回転掘削されて地中孔Hが構築されるとともに、地中孔H内で掘削土と調整液Wが混合撹拌され、地中孔H内は掘削土混じりの調整液W1で満たされる。 As a result, as shown in FIG. 3, the ground is excavated by the excavation bit 163 and the tip bit 164 provided in the excavation and agitation unit 16 to form the underground hole H, and the underground hole H is also excavated. The soil and the adjusting liquid W are mixed and stirred, and the underground hole H is filled with the adjusting liquid W1 containing the excavated soil.
なお、上記の削孔撹拌装置10を用いた削孔作業は、余剰な掘削土混じりの調整液W1とともに排泥管Sを介して排泥しつつ行う。また、地中孔Hの構築後に掘削撹拌部16を撤去する際には、孔底に貯留する掘削土を流動させるとともにまき上げ、地中孔H内の高さ方向で掘削土混じりの調整液W1の比重が均一になるよう、図3で示すように、掘削時と同様にロッド15の軸を中心に回転させつつ引き抜く。 The boring work using the boring agitator 10 is performed while sludge is discharged through the mud discharge pipe S together with the excess adjustment liquid W1 containing the excavated soil. Further, when removing the excavation and agitation unit 16 after constructing the underground hole H, the excavated soil stored at the bottom of the hole is fluidized and lifted up, and the adjustment liquid for mixing the excavated soil in the height direction inside the underground hole H. In order to make the specific gravity of W1 uniform, as shown in FIG. 3, the rod 15 is pulled out while being rotated about the axis thereof as in the case of excavation.
≪第2の工程≫
次に、図4および図5で示すように、掘削土混じり調整液W1で満たされた地中孔H内で、芯材分割体21を吊り降ろしつつ継ぎ足しながら芯材2を構築し、地中孔Hの所定位置に芯材2を建て込む。
<<Second step>>
Next, as shown in FIGS. 4 and 5, in the underground hole H filled with the excavated soil mixture adjusting liquid W1, the core material divided body 21 is hung and added to build the core material 2, The core material 2 is built in a predetermined position of the hole H.
本実施の形態では、芯材2の建て込み作業に、芯材分割体21を揚重可能な門型クレーン20と、地中孔Hに挿入された状態の芯材分割体21を把持可能な芯材把持装置30とを用いる。 In the present embodiment, the gate-type crane 20 capable of hoisting the core material divided body 21 and the core material divided body 21 inserted in the underground hole H can be grasped for the work of building the core material 2. The core material holding device 30 is used.
<門型クレーンおよび芯材把持装置>
図4で示すように、門型クレーン20は、間隔を有して並列配置される一対の脚部201と、脚部201の上端部どうしを連結する梁部202とを備えている。脚部201は、その下端にホイール等の走行手段203を備えるとともに、例えば油圧ジャッキ等の伸縮装置204を備えており、図4および5で示すように、高さ方向に伸縮自在な構成となっている。
<Gate type crane and core material gripping device>
As shown in FIG. 4, the portal crane 20 includes a pair of leg portions 201 that are arranged in parallel at a distance, and a beam portion 202 that connects upper end portions of the leg portions 201. The leg portion 201 is provided with traveling means 203 such as a wheel at the lower end thereof and an expansion/contraction device 204 such as a hydraulic jack, and is configured to be expandable/contractible in the height direction as shown in FIGS. 4 and 5. ing.
また、梁部202には、ワイヤー等を介して芯材分割体21を吊持可能な、例えばホイスト等の揚重機205が備えられており、この揚重機205は、梁部202の長さ方向(水平方向)に移動自在に設置されている。 Further, the beam portion 202 is provided with a lifting machine 205 such as a hoist capable of suspending the core material divided body 21 via a wire or the like, and the lifting machine 205 has a length direction of the beam section 202. It is installed so that it can be moved in the horizontal direction.
したがって、門型クレーン20を梁部202の軸線が地中孔Hの直径方向と鉛直面内で平行となるように据え付け、揚重機205を梁部202に適宜移動させることにより、揚重機205に吊持された状態の芯材分割体21は、その軸心を地中孔Hの軸心と合致させることが可能となる。また、揚重機205に吊持された状態の芯材分割体21は、伸縮装置204による一対の脚部201の伸縮と揚重機205に備えたワイヤーの巻上げもしくは巻き戻しにより、地中孔H内への吊上げもしくは吊下ろしが可能となる。 Therefore, the portal crane 20 is installed so that the axis of the beam portion 202 is parallel to the diameter direction of the underground hole H in the vertical plane, and the lifting machine 205 is appropriately moved to the beam section 202 so that the lifting machine 205 is installed. It is possible to make the axis of the suspended core material 21 coincide with the axis of the underground hole H. In addition, the core material divided body 21 in a state of being suspended by the lifting machine 205 is arranged in the underground hole H by the expansion and contraction of the pair of leg portions 201 by the expansion and contraction device 204 and the winding or unwinding of the wire included in the lifting machine 205. It is possible to hang or hang.
一方、芯材把持装置30は、地表面に設置され、中央に地中孔Hより大径の孔を備える架台301と、貫通孔に挿入された芯材分割体21を挟持および解放することの可能なチャック部材302とを備える。なお、芯材把持装置30は、芯材20を把持可能であれば、その形状はいずれに形成されたものであってもよい。 On the other hand, the core material gripping device 30 is installed on the ground surface and holds and releases the pedestal 301 having a hole having a diameter larger than the underground hole H in the center and the core material divided body 21 inserted into the through hole. Possible chuck member 302. Note that the core material gripping device 30 may have any shape as long as it can grip the core material 20.
上記の門型クレーン20と芯材把持装置30とを用いた芯材2の構築方法および建て込み方法は、以下のとおりである。図4および5で示すように、まず、地表面上で地中孔Hを囲うようにして芯材把持装置30を据え付けるとともに、梁部202の軸線が地中孔Hの直径方向と鉛直平面内で平行となるように、門型クレーン20を据え付ける。 The construction method and the construction method of the core 2 using the portal crane 20 and the core gripping device 30 described above are as follows. As shown in FIGS. 4 and 5, first, the core material holding device 30 is installed so as to surround the underground hole H on the ground surface, and the axis of the beam portion 202 is in the diametrical direction of the underground hole H and in the vertical plane. Install the portal crane 20 so that it is parallel to.
次に、門型クレーン20の揚重機205に芯材分割体21を吊持させ、芯材分割体21と地中孔Hの軸心合わせを行うとともに、地中孔H内に吊り下ろす。この後、芯材分割体21の上端部近傍を、芯材把持装置30のチャック部材302にて把持させたうえで、芯材分割体21を揚重機205から取り外す。 Next, the hoisting machine 205 of the portal crane 20 suspends the core material division body 21 to align the core material division body 21 and the underground hole H with each other, and to hang the core material division body 21 in the underground hole H. Thereafter, the vicinity of the upper end of the core material dividing body 21 is grasped by the chuck member 302 of the core material grasping device 30, and then the core material dividing body 21 is removed from the lifting machine 205.
そして、門型クレーン20の揚重機205に新たな芯材分割体21を吊持させ、その下端が、芯材把持装置30に把持させた芯材分割体21の上端と対向するよう位置調整を行ったうえで、両者を突き合わせてガセットプレート22を用いてボルト接合により連結する。なお、芯材分割体21どうしの連結は例えば溶接等、いずれの接合手段を採用してもよい。 Then, the lifting machine 205 of the portal crane 20 suspends the new core material division body 21, and the position adjustment is performed so that the lower end thereof faces the upper end of the core material division body 21 gripped by the core material gripping device 30. After that, the two are abutted against each other and connected by bolt bonding using the gusset plate 22. In addition, any joining means such as welding may be employed to connect the core material divided bodies 21 to each other.
この後、連結した芯材分割体21を門型クレーン20にて吊持するとともに芯材把持装置30による把持を開放し、連結した芯材分割体21を所定深さまで吊り下ろしたところで、連結した芯材分割体21の上端部近傍を芯材把持装置30で把持し、上記の手順により新たな芯材分割体21を継ぎ足す。 After that, the connected core material divided body 21 was suspended by the gate crane 20, the grip by the core material grasping device 30 was released, and the connected core material divided body 21 was suspended to a predetermined depth, and then connected. The core material gripping device 30 grips the vicinity of the upper end portion of the core material divided body 21, and a new core material divided body 21 is added by the procedure described above.
上記の芯材分割体21を継ぎ足す作業を、芯材分割体21が連結されることで構築される芯材2が必要長さとなるまで繰り返す。なお、芯材分割体21を継ぎ足す作業と併せて、エア供給ホース4および固化液供給ホース5をそれぞれ、エア供給ホース把持具41および固化液供給ホース把持具51を利用して芯材分割体21に固定する。これらの作業により、所望の長さを有する芯材2が地中孔Hに、エア供給ホース4および固化液供給ホース5を設置された状態で建て込まれることとなる。 The above-described operation of adding the core material divided bodies 21 is repeated until the core material 2 constructed by connecting the core material divided bodies 21 has a required length. In addition to the work of adding the core material divided body 21, the air supply hose 4 and the solidification liquid supply hose 5 are respectively utilized by using the air supply hose gripper 41 and the solidification liquid supply hose gripper 51. Fix it to 21. By these operations, the core material 2 having a desired length is built in the underground hole H with the air supply hose 4 and the solidification liquid supply hose 5 installed.
なお、芯材2を建て込むにあたり、地中孔Hに貯留している掘削土混じりの調整液W1の粘性が高く、芯材2に貫入抵抗が作用する際には、エアコンプレッサ81からエア供給ホース4を介してエア噴射管6より圧縮空気Aを噴射させ、芯材2に作用する貫入抵抗を低減させるとよい。また、施工対象領域に空頭制限がない場合には、地上で芯材分割体21を継ぎ足して形成した芯材2を地中孔Hに建て込んでもよく、芯材2の建て込み方法は、施工環境に応じて適宜好適な方法を選択すればよい。 When the core material 2 is built, when the viscosity of the adjusting liquid W1 mixed with the excavated soil stored in the underground hole H is high and the penetration resistance acts on the core material 2, air is supplied from the air compressor 81. Compressed air A may be jetted from the air jet pipe 6 via the hose 4 to reduce the penetration resistance acting on the core material 2. Further, when the construction target area does not have an empty head restriction, the core material 2 formed by adding the core material divided bodies 21 to each other on the ground may be built in the underground hole H. A suitable method may be appropriately selected according to the environment.
≪第3の工程≫
掘削土混じりの調整液W1で満たされた地中孔Hに芯材2を建て込んだ後、図6(a)(b)で示すように、地中孔Hを満たす掘削土混じりの調整液W1の一部を、セメント系固化液Cに置換する。
≪Third process≫
After the core material 2 is built in the underground hole H filled with the adjustment liquid W1 containing the excavated soil, as shown in FIGS. 6(a) and 6(b), the adjustment liquid mixed with the excavated soil is filled with the adjustment liquid W1. A part of W1 is replaced with the cement-based solidifying liquid C.
セメント系固化液Cは、固化液供給装置91から芯材2に沿って設置されている固化液供給ホース5を介して固化液吐出管7に供給され、固化液吐出管7の固化液吐出口71から地中孔Hの孔底近傍に吐出する。 The cement-based solidification liquid C is supplied from the solidification liquid supply device 91 to the solidification liquid discharge pipe 7 through the solidification liquid supply hose 5 installed along the core material 2, and the solidification liquid discharge port of the solidification liquid discharge pipe 7 is supplied. It discharges from 71 in the vicinity of the hole bottom of the underground hole H.
また、セメント系固化液Cの供給と併せて、セメント系固化液Cの供給量に対応した掘削土混じり調整液W1を排泥管Sを介して排泥する。このとき、固化液吐出管7は前述したように芯材2の下端に配置されているため、地中孔Hの孔口から排泥される掘削土混じり調整液W1に、セメント系固化液Cがほとんど混在することはない。 In addition to the supply of the cement-based solidifying liquid C, the excavated soil mixing adjusting liquid W1 corresponding to the supply amount of the cement-based solidifying liquid C is discharged through the sludge pipe S. At this time, since the solidification liquid discharge pipe 7 is arranged at the lower end of the core material 2 as described above, the cement-based solidification liquid C is added to the excavated soil mixing adjustment liquid W1 discharged from the mouth of the underground hole H. Are rarely mixed.
なお、固化液吐出管7の設置位置は、セメント系固化液Cを地中孔Hに吐出する際、地中孔Hの孔口から排泥される掘削土混じり調整液W1に、セメント系固化液Cがほぼ混在しない高さであれば、必ずしも芯材2の下端でなくてもよい。 The setting position of the solidification liquid discharge pipe 7 is such that when the cement-based solidification liquid C is discharged into the underground hole H, the cement-based solidification liquid W1 is discharged from the mouth of the underground hole H to the cement-based solidification adjusting liquid W1. The lower end of the core material 2 does not necessarily have to be provided as long as the liquid C does not substantially coexist.
≪第4の工程≫
地中孔Hに所定量のセメント系固化液Cを吐出した後、図7(a)(b)で示すように、圧縮空気Aを地中孔Hの孔底近傍にて孔壁に向けて噴射し、これにより地中孔H内に生じる上昇流を利用して、セメント系固化液Cと掘削土混じりの調整液W1とを混合撹拌する。
<<Fourth step>>
After discharging a predetermined amount of the cement-based solidifying liquid C into the underground hole H, the compressed air A is directed toward the hole wall near the hole bottom of the underground hole H, as shown in FIGS. The cement-based solidifying liquid C and the adjusting liquid W1 mixed with the excavated soil are mixed and stirred by injecting and using the upward flow generated in the underground hole H by this.
圧縮空気Aは、エアコンプレッサ81から芯材2に沿って設置されているエア供給ホース4を介してエア噴射管6に供給され、エア噴射管6のエア噴射口61から地中孔Hの孔底近傍で孔壁に向けて噴射される。噴射した圧縮空気Aは、連続する気泡となって上昇し、地中孔H内に上昇流を生じさせる。これにより、地中孔H内で分離した状態のセメント系固化液Cと掘削土混じりの調整液W1は、高さ方向に混合撹拌され、地中孔Hの高さ方向に均質に混じり合った混合物となる。 The compressed air A is supplied from the air compressor 81 to the air injection pipe 6 through the air supply hose 4 installed along the core material 2, and the air injection port 61 of the air injection pipe 6 extends from the hole H to the hole H. It is jetted toward the hole wall near the bottom. The injected compressed air A rises as continuous bubbles and rises in the underground hole H. As a result, the cement-based solidifying liquid C separated in the underground hole H and the adjustment liquid W1 mixed with the excavated soil are mixed and stirred in the height direction, and uniformly mixed in the height direction of the underground hole H. It becomes a mixture.
なお、圧縮空気Aの噴射量および噴射時間は、地中孔H内でセメント系固化液Cと掘削土混じりの調整液W1とが均質に混じり合うよう、両者の粘性に応じて適宜調整すればよい。なお、噴射量は、500L/min以上2000L/min以下、噴射時間は5分以上20分以下程度が好適である。 In addition, the injection amount and the injection time of the compressed air A may be appropriately adjusted according to the viscosities of the two so that the cement-based solidifying liquid C and the adjustment liquid W1 mixed with the excavated soil are homogeneously mixed in the underground hole H. Good. The injection amount is preferably 500 L/min or more and 2000 L/min or less, and the injection time is preferably 5 minutes or more and 20 minutes or less.
セメント系固化液Cと掘削土混じりの調整液W1とが地中孔Hの高さ方向に均質に混じり合い混合物が作成されたところで圧縮空気Aの噴射を停止し、混合物を硬化させてソイルセメント硬化体である地盤改良体3を造成する。これにより、従来の方法で構築した地盤改良体、つまり、セメント系固化液を吐出しつつ地盤を削孔して掘削土とセメント系固化液を混合撹拌した混合物を硬化させたソイルセメント硬化体と同様の地盤改良体3を造成することが可能となり、図1で示すような、地盤改良体3に芯材2を備えた山留杭1が構築される。 When the cement-based solidifying liquid C and the adjusting liquid W1 mixed with the excavated soil are homogeneously mixed in the height direction of the underground hole H to form a mixture, the injection of the compressed air A is stopped and the mixture is hardened to cure the soil cement. The ground improvement body 3 which is a hardened body is created. Thereby, the soil improvement body constructed by the conventional method, that is, the soil cement hardened body obtained by hardening the mixture obtained by mixing and stirring the excavated soil and the cement-based hardening liquid by drilling the ground while discharging the cement-based hardening liquid. It becomes possible to construct the similar ground improvement body 3, and the mountain retaining pile 1 including the core material 2 in the ground improvement body 3 as shown in FIG. 1 is constructed.
上記の地中構造物の構築方法によれば、芯材2を、セメント系固化液Cが混合される前の掘削土混じりの調整液W1で満たされた地中孔Hに建て込むことから、芯材2の建て込み作業時間は、セメント系固化液Cの硬化に起因する作業時間の制約を受けることがない。したがって、山留杭1に複数の芯材分割体21よりなる芯材2を採用し、地中孔Hを利用して芯材分割体21を継ぎ足しながら芯材2を構築し建て込むことができる。 According to the method for constructing an underground structure, the core material 2 is built in the underground hole H filled with the adjustment liquid W1 containing the excavated soil before the cement-based solidifying liquid C is mixed, The work time for building the core material 2 is not restricted by the work time due to the hardening of the cement-based solidifying liquid C. Therefore, the core material 2 including the plurality of core material divided bodies 21 can be adopted for the mountain retaining pile 1, and the core material 2 can be constructed and built while utilizing the underground hole H to add the core material divided bodies 21. ..
これにより、山留杭1の施工対象領域が空頭制限のある敷地であっても、深度方向に長大な山留杭1を高品質に構築することが可能となる。また、不慮の事態に対応して、芯材2の建て込み作業を中断することも可能となり、山留杭1の施工性を大幅に向上することが可能となる。 As a result, even if the construction target area of the mountain retaining pile 1 is a site with a limited head, it is possible to construct the mountain retaining pile 1 that is long in the depth direction with high quality. Further, in response to an unexpected situation, it is possible to interrupt the work of building the core material 2, and it is possible to greatly improve the workability of the mountain retaining pile 1.
≪地中構造物の一軸圧縮強度試験≫
上述する地中構造物の構築方法の施工性を確認するために構築した山留杭1に対して実施した圧縮強度試験結果を、以下に説明する。試験対象は、断面径が750mm、設計体長が13.5m、地盤改良体3の設計強度が1.0kN/m2の山留杭1とした。なお、上述の地中構造物の施工対象領域は空頭制限のある敷地を想定しているが、下記の施工性確認のための山留杭1は空頭制限の無い施工対象領域で施工を行っている。
≪Unconfined compressive strength test of underground structure≫
The results of the compressive strength test performed on the mountain retaining pile 1 constructed to confirm the workability of the method for constructing an underground structure described above will be described below. The test object was a mountain retaining pile 1 having a cross-sectional diameter of 750 mm, a design body length of 13.5 m, and a ground improvement body 3 having a design strength of 1.0 kN/m 2 . In addition, although the construction target area of the above-mentioned underground structure is assumed to be a site with an empty head restriction, the mountain retaining pile 1 for confirming the following workability is constructed in the construction target area without an empty head restriction. There is.
試験対象の山留杭1を製造するにあたっては、まず、調整液Wを供給しつつ地盤を削孔し、断面径が約750mmで全長が約14mの地中孔Hを構築した。地盤の削孔時に用いる調整液Wには、構築後の地中孔Hに貯留する掘削土混じりの調整液W1が比重約1.5程度(孔内平均)となるよう、比重を1.01に調整管理したベントナイト泥水を採用した。また、掘削土混じりの調整液W1は、約20〜30重量%程度の掘削土が混じった状態となっている。 In manufacturing the mountain retaining pile 1 to be tested, first, the ground was drilled while supplying the adjusting liquid W to construct an underground hole H having a cross-sectional diameter of about 750 mm and a total length of about 14 m. The adjusting liquid W used when drilling the ground has a specific gravity of 1.01 so that the adjusting liquid W1 containing the excavated soil stored in the underground hole H after construction has a specific gravity of about 1.5 (in-hole average). The bentonite mud water that was adjusted and managed was adopted. Further, the adjustment liquid W1 mixed with excavated soil is in a state in which approximately 20 to 30% by weight of excavated soil is mixed.
次に、掘削土混じりの調整液W1が貯留する地中孔H内に、予め地上で連結した部材長が13.5mの芯材2を構築し、これを揚重機にて地中孔Hに建て込んだ。芯材2は、断面幅が約400mmのH形鋼を採用した。なお、空頭制限のある施工対象領域下での地中孔H内での芯材分割体21の継ぎ足し作業は、例えば図8(a)〜(c)で示すように、3日間にわたって実施し、1日目に3本、2日目に2本、4日目に2本の合計7本を継ぎ足す施工手順を想定している。 Next, a core material 2 having a member length of 13.5 m connected in advance on the ground is constructed in the underground hole H in which the adjustment liquid W1 mixed with the excavated soil is stored, and this is made into the underground hole H by a lifting machine. I built it. As the core material 2, H-section steel having a cross-sectional width of about 400 mm was adopted. In addition, the replenishment work of the core material division body 21 in the underground hole H under the construction target area with the head limitation is carried out over 3 days as shown in, for example, FIGS. 8(a) to 8(c), It is assumed that a total of 7 pieces will be added, 3 pieces on the 1st day, 2 pieces on the 2nd day, and 2 pieces on the 4th day.
その後、芯材2が建て込まれた地中孔Hにおいて、貯留する掘削土混じりの調整液W1の一部をセメント系固化液Cに置換した。セメント系固化液Cには、高炉セメントB種を主材とするセメント系固化液を採用した。 Then, in the underground hole H in which the core material 2 was built, a part of the stored adjustment liquid W1 containing excavated soil was replaced with the cement-based solidifying liquid C. As the cement-based solidifying liquid C, a cement-based solidifying liquid containing blast furnace cement type B as a main material was adopted.
そして、噴射量を約1000L/minに調整した圧縮空気Aを、地中孔Hの孔底近傍において孔壁に向けて2方向に噴射し、孔底から孔口に向けて上昇する気泡を連続的に発生させた。この気泡により生じる上昇流により、掘削土混じりの調整液W1とセメント系固化液Cとを、約10分間混合撹拌した。 Then, the compressed air A whose injection amount is adjusted to about 1000 L/min is injected in two directions toward the hole wall in the vicinity of the hole bottom of the underground hole H, and bubbles rising from the hole bottom toward the hole mouth are continuous. Generated. By the upward flow generated by the bubbles, the adjusting liquid W1 mixed with excavated soil and the cement-based solidifying liquid C were mixed and stirred for about 10 minutes.
地中孔H内で掘削土混じりの調整液W1とセメント系固化液Cとの混合物を作製した後、この混合物から未固結試料とコア抜きによる試料を採取し、未固結試料は材令28日、コア抜きによる試料は材令56日の時点で一軸圧縮強度試験を実施した。 After preparing a mixture of the adjusting liquid W1 mixed with excavated soil and the cement-based solidifying liquid C in the underground hole H, an unconsolidated sample and a sample without core are collected from the mixture, and the unconsolidated sample is a material The uniaxial compressive strength test was carried out on the 28th day and the sample after core removal on the 56th day.
未固結試料は、地盤改良体3に対して地表面から深さ方向に向かって0m、6m、10m、14mの各範囲毎に3体づつコア採取し、合せて12体の試験体各々について一軸圧縮試験を実施するとともに、前記4つの範囲各々で一軸圧縮強さの平均値を算出した。コア抜き試料は、地盤改良体3に対して地表面から深さ方向に向かって2〜4m、5〜7m、9〜11m、11〜14mの各範囲毎に3体づつコア採取し、合せて12体の試験体各々について一軸圧縮試験を実施するとともに、前記4つの範囲各々で一軸圧縮強さの平均値を算出した。 For the unconsolidated samples, cores were collected from the ground surface 3 in the depth direction from the ground surface in the range of 0 m, 6 m, 10 m, and 14 m, and three cores were collected from each of the 12 test samples. A uniaxial compression test was performed, and an average value of uniaxial compression strength was calculated in each of the above four ranges. The core-removed samples are collected from the ground surface 3 in the depth direction from the ground surface in the range of 2 to 4 m, 5 to 7 m, 9 to 11 m, and 11 to 14 m, and three cores are collected. A uniaxial compression test was performed on each of the 12 test bodies, and an average value of uniaxial compression strength was calculated in each of the four ranges.
図9(a)(b)を見ると、未固結試料とコア抜きによる試料ともに、前記4つの範囲各々で一軸圧縮強さの平均値が設計強度の1.0kN/m2を上回る強度を発現している様子がわかる。これにより、掘削土混じりの調整液W1が満たされた状態の地中孔Hに芯材2を建て込んだ後、掘削土混じりの調整液W1の一部をセメント系固化液Cに置換した場合にも、圧縮空気Aを噴射することにより地中孔H内に生じる上昇流を利用して、掘削土混じりの調整液W1とセメント系固化液Cとを混合撹拌することで、高さ方向に均質かつ健全な地盤改良体3を造成することが可能であることが見て取れる。 As shown in FIGS. 9(a) and 9(b), in both of the unconsolidated sample and the sample without core, the average value of the uniaxial compressive strength exceeds the designed strength of 1.0 kN/m 2 in each of the above four ranges. You can see how it is being expressed. As a result, when the core material 2 is built in the underground hole H in a state where the adjustment liquid W1 mixed with the excavated soil is filled, and then a part of the adjustment liquid W1 mixed with the excavated soil is replaced with the cement-based solidifying liquid C. Also, by utilizing the upward flow generated in the underground hole H by injecting the compressed air A, the adjustment liquid W1 mixed with the excavated soil and the cement-based solidifying liquid C are mixed and stirred, so that the height direction is increased. It can be seen that it is possible to create a homogeneous and sound ground improvement body 3.
また、芯材2の建て込み作業を数日にわたって実施することも可能であり、施工性を向上しつつ設計強度を満足する健全な山留杭1を構築することが可能となる。 Further, it is possible to carry out the work of building the core material 2 for several days, and it is possible to construct a sound mountain retaining pile 1 satisfying the design strength while improving the workability.
なお、本発明の地中構造物の構築方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることはいうまでもない。 Needless to say, the method of constructing an underground structure of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
例えば、本実施の形態では、地盤改良体3を用いた地中構造物として山留杭1を事例に挙げたが、地盤改良体3を用いた地中構造物であればいずれを採用してもよい。例えば、地中構造物として支持杭を構築する場合には、地盤改良体3の設計強度、芯材2の先端部の構造等を適宜変更し、所望の鉛直支持力を確保すればよい。 For example, in the present embodiment, the mountain retaining pile 1 is taken as an example of the underground structure using the ground improvement body 3, but any underground structure using the ground improvement body 3 may be adopted. Good. For example, when constructing a support pile as an underground structure, the design strength of the ground improvement body 3, the structure of the tip portion of the core material 2, and the like may be appropriately changed to secure a desired vertical support force.
また、本実施の形態では、芯材分割体21にH形鋼を採用し、ガセットプレート22を用いたボルト接合によりこれらを複数連結して芯材2を構築したが、芯材分割体21およびその連結方法はいずれでもよい。例えば、芯材分割体21に鋼管を採用した場合には、鋼管ネジ継手にて連結してもよく、構築しようとする地中構造物に適した芯材分割体21および接合方法を採用して、好適な芯材2を構築すればよい。 In addition, in the present embodiment, the H-shaped steel is adopted for the core material divided body 21, and a plurality of these are connected by bolt joining using the gusset plate 22 to construct the core material 2. Any connection method may be used. For example, when a steel pipe is adopted as the core material dividing body 21, it may be connected by a steel pipe screw joint, and the core material dividing body 21 and the joining method suitable for the underground structure to be constructed are adopted. The suitable core material 2 may be constructed.
さらに、本実施の形態では、芯材2に対して2本のエア供給ホース4と1本の固化液供給ホース5を設置したが、その数量はこれに限定されるものではなく、適宜増減させてもよい。また、エア供給ホース4および固化液供給ホース5を芯材2に対して固定し、構築後の山留杭1に残置する構成としたが、芯材2に対して着脱自在に設置して、エア供給ホース4および固化液供給ホース5を再利用可能な構成としてもよい。 Further, in the present embodiment, two air supply hoses 4 and one solidification liquid supply hose 5 are installed for the core material 2, but the numbers thereof are not limited to this, and may be increased or decreased as appropriate. May be. Further, although the air supply hose 4 and the solidified liquid supply hose 5 are fixed to the core material 2 and left on the mountain retaining pile 1 after construction, the air supply hose 4 and the solidification liquid supply hose 5 are detachably installed to the core material 2, The air supply hose 4 and the solidification liquid supply hose 5 may be reusable.
したがって、エア供給ホース4と固化液供給ホース5を、芯材2とは別体とし、芯材2を建て込む前後の適宜のタイミングで地中孔Hにそれぞれ挿入してもよく、この場合には、エア供給ホース4および固化液供給ホース5を地中孔Hに挿入するための補助具を用いるとよい。補助具としては、例えば棒材や単管等よりなる補助棒材を採用し、この補助棒材にエア供給ホース4および固化液供給ホース5を沿わせて、地中孔Hに挿入するとよい。 Therefore, the air supply hose 4 and the solidified liquid supply hose 5 may be separated from the core material 2 and inserted into the underground hole H at appropriate timings before and after the core material 2 is built. It is preferable to use an auxiliary tool for inserting the air supply hose 4 and the solidification liquid supply hose 5 into the underground hole H. As the auxiliary tool, for example, an auxiliary rod material such as a rod material or a single pipe may be adopted, and the air supply hose 4 and the solidified liquid supply hose 5 may be placed along the auxiliary rod material and inserted into the underground hole H.
また、本実施の形態では、掘削土まじりの調整液W1が充填された地中孔Hに芯材2を建て込む際、芯材2をスムーズに建て込むべくエア供給ホース4のエア噴射管6より圧縮空気Aを噴射させた。しかし、例えば、固化液供給ホース5をエアコンプレッサ81に接続し、固化液供給ホース5の固化液吐出管7から圧縮空気Aを噴射させてもよい。 Further, in the present embodiment, when the core material 2 is built in the underground hole H filled with the adjustment liquid W1 for excavated soil, the air injection pipe 6 of the air supply hose 4 is installed so as to smoothly build the core material 2. More compressed air A was injected. However, for example, the solidification liquid supply hose 5 may be connected to the air compressor 81, and the compressed air A may be jetted from the solidification liquid discharge pipe 7 of the solidification liquid supply hose 5.
さらに、本実施の形態では、削孔撹拌装置10を用いて地中孔Hを構築したが、必ずしもこれに限定されるものではなく、調整液Wを供給しつつ地盤を削孔し、掘削土混じりの調整液W1で満たされた地中孔Hを構築可能であれば、いずれの掘削装置を採用してもよい。 Further, in the present embodiment, the underground hole H is constructed by using the hole agitating device 10, but it is not necessarily limited to this, and the ground is drilled while the adjusting liquid W is supplied, and the excavated soil is excavated. Any excavating device may be adopted as long as the underground hole H filled with the mixed adjusting liquid W1 can be constructed.
1 山留杭(地中構造物)
2 芯材
21 芯材分割体
22 ガセットプレート
3 地盤改良体
4 エア供給ホース
5 固化液供給ホース
6 エア噴射管
61 エア噴射口
7 固化液吐出管
71 固化液吐出口
81 エアコンプレッサ
82 空気流量計
91 固化液供給装置
10 削孔撹拌装置
11 移動機構
12 台座部
13 リーダー
14 起振装置
15 ロッド
151 スイベル
16 掘削撹拌部
161 軸部
162 掘削翼本体
163 掘削ビット
164 先端ビット
17 調整液供給装置
18 回転装置
20 門型クレーン
201 脚部
202 梁部
203 走行手段
204 伸縮装置
205 揚重機
30 芯材把持装置
301 架台
302 チャック部材
A 圧縮空気
S 排泥管
P 孔壁保護管
W 調整液
W1 掘削土混じりの調整液
1 Yamadome pile (underground structure)
2 core material 21 core material division body 22 gusset plate 3 ground improvement body 4 air supply hose 5 solidification liquid supply hose 6 air injection pipe 61 air injection port 7 solidification liquid discharge pipe 71 solidification liquid discharge port 81 air compressor 82 air flow meter 91 Solidifying liquid supply device 10 Drilling stirring device 11 Moving mechanism 12 Pedestal part 13 Leader 14 Vibration generator 15 Rod 151 Swivel 16 Excavation stirring part 161 Shaft part 162 Excavation blade body 163 Excavation bit 164 Tip bit 17 Adjustment liquid supply device 18 Rotation device 20 Gate type crane 201 Leg 202 Beam 203 Traveling means 204 Telescopic device 205 Lifting machine 30 Core material gripping device 301 Frame 302 Chuck member
A Compressed air S Sewage sludge pipe P Hole wall protection pipe W Conditioning liquid W1 Conditioning liquid mixed with excavated soil
Claims (2)
調整液を供給しながら、回転させた削孔撹拌装置の掘削撹拌部にて地盤を削孔し、掘削土混じりの調整液で満たされた地中孔を構築する工程と、
該地中孔に芯材を建て込む工程と、
前記地中孔を満たす前記掘削土混じりの調整液の一部をセメント系固化液に置換する工程と、
孔底にて圧縮空気を噴射して前記地中孔内に上昇流を生じさせ、前記セメント系固化液と前記掘削土混じりの調整液とを混合撹拌する工程と、
を備えることを特徴とする地中構造物の構築方法。 A method of constructing an underground structure using a ground improvement body, comprising:
While supplying the adjustment liquid, a step of drilling the ground in the excavation stirring unit of the rotated drilling stirring device, and constructing an underground hole filled with the adjustment liquid containing the excavated soil,
A step of building a core material in the underground hole,
A step of replacing a part of the adjusting liquid of the excavated soil mixed with the cement-based solidifying liquid to fill the underground hole;
A step of injecting compressed air at the bottom of the hole to generate an upward flow in the underground hole, mixing and stirring the cement-based solidifying liquid and the adjustment liquid mixed with the excavated soil,
A method for constructing an underground structure, comprising:
前記芯材を建て込む工程では、前記掘削土混じりの調整液で満たされた前記地中孔内で、複数の芯材分割体を継ぎ足すことにより、前記芯材を構築し建て込むことを特徴とする地中構造物の構築方法。 The method for constructing an underground structure according to claim 1,
In the step of building the core material, the core material is constructed and built by adding a plurality of core material divided bodies in the underground hole filled with the adjustment liquid containing the excavated soil. The method of constructing an underground structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018219052A JP7230455B2 (en) | 2018-11-22 | 2018-11-22 | Construction method of underground structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018219052A JP7230455B2 (en) | 2018-11-22 | 2018-11-22 | Construction method of underground structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020084524A true JP2020084524A (en) | 2020-06-04 |
JP7230455B2 JP7230455B2 (en) | 2023-03-01 |
Family
ID=70909740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018219052A Active JP7230455B2 (en) | 2018-11-22 | 2018-11-22 | Construction method of underground structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7230455B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03180613A (en) * | 1989-12-08 | 1991-08-06 | Shimizu Corp | Underground continuous wall |
JPH04182513A (en) * | 1990-11-16 | 1992-06-30 | Kumagai Gumi Co Ltd | Method of solidifying stabilizer liquid in groove |
JP2002146775A (en) * | 2000-11-15 | 2002-05-22 | ▲高▼嶋建設工事株式会社 | Diaphragm-wall construction method |
JP2004068397A (en) * | 2002-08-06 | 2004-03-04 | Tenox Corp | Core-material building member and core-material building method in diaphragm wall |
-
2018
- 2018-11-22 JP JP2018219052A patent/JP7230455B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03180613A (en) * | 1989-12-08 | 1991-08-06 | Shimizu Corp | Underground continuous wall |
JPH04182513A (en) * | 1990-11-16 | 1992-06-30 | Kumagai Gumi Co Ltd | Method of solidifying stabilizer liquid in groove |
JP2002146775A (en) * | 2000-11-15 | 2002-05-22 | ▲高▼嶋建設工事株式会社 | Diaphragm-wall construction method |
JP2004068397A (en) * | 2002-08-06 | 2004-03-04 | Tenox Corp | Core-material building member and core-material building method in diaphragm wall |
Also Published As
Publication number | Publication date |
---|---|
JP7230455B2 (en) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101768961B (en) | Construction method of section-steel triaxial soil-cement mixing pile | |
CN102943466B (en) | Construction method for miniature steel pipe concrete pile to penetrate through roadbed layer for reinforcing soft foundation construction | |
CN103469789A (en) | Karst-area underwater bridge pier drilled pile construction method | |
JP5707529B1 (en) | Ground improvement method, excavation rod and ground improvement device used for ground improvement method | |
CN109083591B (en) | Drilling bored concrete pile body and pile cap integrated drilling pore-forming method | |
CN109457694A (en) | A kind of variable diameters steel reinforcement cage enlarged footing anti-floating or pressure bearing pile and construction in conjunction with mixing pile or rotary churning pile | |
CN108755671B (en) | Construction method of triaxial mixing pile of water-rich gravel layer | |
JP5078511B2 (en) | Embedded pile method using earth drill machine | |
JP2015124478A (en) | Construction method of earth retaining wall | |
JP6576230B2 (en) | Rotating cap, ready-made pile burying device, pile foundation construction method | |
JP4905394B2 (en) | Excavator | |
JP5015558B2 (en) | Fiber reinforced cement ground improvement method | |
KR20080112453A (en) | A ground improvement method of construction | |
JP2012246730A (en) | Method for constructing earth retaining wall | |
CN209669857U (en) | A kind of variable diameters steel reinforcement cage enlarged footing anchor pole anti-floating or pressure bearing pile | |
JP6645098B2 (en) | Removal method of existing pile | |
JP2020084524A (en) | Method for constructing underground structure | |
US11788249B2 (en) | Cutting tool adapter and method of underpinning structures using cutting tool adapter for soil mixing | |
JP7435060B2 (en) | How to build underground structures | |
JP2021080789A (en) | Ground backfilling method, and stirring blade | |
KR20160109395A (en) | Agitating road for excavating using soil earth cement mixing method and mixing agitator using the same | |
JP6634251B2 (en) | Pile foundation structure, ready-made pile burying device, method of constructing pile foundation structure using said ready-made pile burying device | |
CN111101865B (en) | High-efficiency drilling equipment | |
JP2013142256A (en) | Construction method associated with improvement of ground property | |
CN114508098A (en) | Pile foundation construction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7230455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |