JP2020082661A - Laminated base material, intermediate product and molded product - Google Patents

Laminated base material, intermediate product and molded product Download PDF

Info

Publication number
JP2020082661A
JP2020082661A JP2018224813A JP2018224813A JP2020082661A JP 2020082661 A JP2020082661 A JP 2020082661A JP 2018224813 A JP2018224813 A JP 2018224813A JP 2018224813 A JP2018224813 A JP 2018224813A JP 2020082661 A JP2020082661 A JP 2020082661A
Authority
JP
Japan
Prior art keywords
base material
individual unit
laminated base
individual
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018224813A
Other languages
Japanese (ja)
Inventor
細川 直史
Tadashi Hosokawa
直史 細川
鈴木 保
Tamotsu Suzuki
保 鈴木
泰啓 佐藤
Yasuhiro Sato
泰啓 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018224813A priority Critical patent/JP2020082661A/en
Publication of JP2020082661A publication Critical patent/JP2020082661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

To provide a laminated base material for eliminating an excess part generated at an end part of a pre-preg when shaping the pre-preg.SOLUTION: A laminated base material, containing at least pre-preg tapes which are made of a unidirectional reinforced fiber impregnated with a matrix resin and whose width is 2.5-40 mm, is used. A first unit is formed with the pre-preg tapes parallelly arranged at equal intervals. Then, a shift angle is determined based on a number of lamination axes. Then, a second unit is formed with pre-preg tapes inclined at an angle shifted by the determined shift angle from that of the lamination axes of the first unit and arranged at the equal intervals. Further, a third unit is formed with pre-preg tapes inclined at an angle shifted by the determined shift angle from that of the lamination axes of the second unit. Similarly, the above-mentioned steps are repeated a predetermined number of times, to provide the laminated base material in which the pre-preg tapes are laminated.SELECTED DRAWING: Figure 1-12

Description

本発明は、一方向強化繊維にマトリックス樹脂を含浸させたプリプレグテープを積層した積層基材に関する。 The present invention relates to a laminated base material in which a prepreg tape obtained by impregnating a unidirectional reinforcing fiber with a matrix resin is laminated.

炭素繊維やアラミド繊維、ガラス繊維等を強化繊維として用いた強化繊維プリプレグは、その高い比強度・比弾性率を生かして、航空機や自動車等の構造材料、スポーツ用品あるいは一般産業用途の素材として利用されている。特に航空機産業においては燃料節約及び操業コストの削減を目的に、幅広く利用されている。 Reinforcing fiber prepregs that use carbon fibers, aramid fibers, glass fibers, etc. as reinforcing fibers are used as structural materials for aircraft and automobiles, sports equipment, and materials for general industrial applications by taking advantage of their high specific strength and specific elastic modulus. Has been done. In particular, it is widely used in the aviation industry for the purpose of saving fuel and reducing operating costs.

一方向強化繊維にマトリックス樹脂を含浸させたプリプレグは三次元形状に成形し難い材料であるため、プリプレグを数mmの幅にまでスリットしてテープ状にし、三次元形状に並べて積層して用いることがある。積層方法としては、幅の狭いテープ自体を実質二次元形状に沿わせるだけで良く、複雑形状であっても形状追従可能とするオートテープレイアップと呼ばれる技術が用いられる。しかしながら、大面積、厚肉部材の三次元形状にまで積層するには生産性が低いという問題があった。 Since prepreg made by impregnating unidirectional reinforcing fibers with matrix resin is a material that is difficult to form into a three-dimensional shape, the prepreg should be slit to a width of a few mm to form a tape, and then lined up in a three-dimensional shape and stacked. There is. As a laminating method, a technique called auto tape layup is used, in which a tape having a narrow width is simply allowed to follow a substantially two-dimensional shape and the shape can be followed even in a complicated shape. However, there is a problem in that productivity is low when stacking a large area and a three-dimensional shape of a thick member.

一方、生産性に優れるプロセスとして、平板上に積層したプリプレグを一気に三次元形状に賦形するホットフォーミングが知られている。しかしながら、賦形時にプリプレグの変形能不足に起因するシワやブリッジング(繊維の突っ張り)が発生し、繊維強化プラスチックの歩止まりが落ちるという課題が存在した。具体的には、形状変化のある部位、例えば屈曲部では、プリプレグ積層体の上下で周長差が生じる。プリプレグ積層体が固化され繊維強化プラスチックとなる過程で、プリプレグに含浸されたマトリックス樹脂の熱収縮による厚み減少が生じるものの、プリプレグ積層体は伸張性の低い強化繊維が連続しているため、周長差を解消させるには強化繊維自身が座屈してシワを発生させるか、ブリッジングを起こすことで、繊維強化プラスチックの成形不具合を引き起こしていた。また、ブリッジングが発生した直下の部位では成形圧が加わり難いことから、ボイドが発生しやすいといったデメリットも併発していた。このボイド発生は真空ポンプを加圧手段としたオーブン成形など低圧成形においてより顕著な問題であった。 On the other hand, as a process with excellent productivity, hot forming is known in which a prepreg laminated on a flat plate is immediately formed into a three-dimensional shape. However, there has been a problem that wrinkles and bridging (fiber tension) occur due to the insufficient deformability of the prepreg during shaping, and the yield of the fiber-reinforced plastic decreases. Specifically, at a portion where the shape changes, for example, a bent portion, a difference in peripheral length occurs above and below the prepreg laminate. Although the thickness of the prepreg laminate is reduced due to heat shrinkage of the matrix resin impregnated in the prepreg during the process of solidification into fiber-reinforced plastic, the prepreg laminate has continuous stretch fibers with low elongation In order to eliminate the difference, the reinforcing fiber itself buckles to cause wrinkles or bridging, which causes a molding defect of the fiber-reinforced plastic. Further, since it is difficult to apply the molding pressure to the portion immediately below where the bridging occurs, there is a demerit that voids are likely to occur. This void generation was a more remarkable problem in low pressure molding such as oven molding using a vacuum pump as a pressurizing means.

フォーミング中の皺を低減する技術として、平板上に積層したプリプレグの面外方向に圧縮力を加え続けることで、座屈を低減する方法が知られている(例えば、特許文献1)。特許文献1に開示された技術では、積層したプリプレグ上に引張材料を載置し外縁から張力を保持し続けることで、平板上に積層したプリプレグの面外方向に圧縮力を加え続け、座屈を低減することができる。 As a technique for reducing wrinkles during forming, a method is known in which buckling is reduced by continuously applying a compressive force in the out-of-plane direction of a prepreg laminated on a flat plate (for example, Patent Document 1). In the technique disclosed in Patent Document 1, a tensile material is placed on the laminated prepregs and the tension is continuously maintained from the outer edge, so that a compressive force is continuously applied in the out-of-plane direction of the prepregs laminated on the flat plate to cause buckling. Can be reduced.

また、三次元形状への賦形性を向上させる技術として、織物構造のプリプレグを用いることで、繊維の屈曲や織物の目の部分を活用し、面内変形能を高めることで皺を低減する方法が、知られている。特に航空機部材において、面内変形能が必要な部分において、織物プリプレグが使われている。 Further, as a technique for improving the shapeability to a three-dimensional shape, by using a prepreg having a woven structure, it is possible to reduce wrinkles by increasing the in-plane deformability by utilizing the bending of fibers and the eye part of the woven fabric. The method is known. In particular, in aircraft parts, woven prepregs are used in portions where in-plane deformability is required.

特表2016−514634号公報Japanese Patent Publication No. 2016-514634

しかしながら、特許文献1に開示されるフォーミング中の皺を低減する方法は、プリプレグを賦形した際に生じる余剰部を解消することができないという問題があった。また、織物構造のプリプレグは、その織工程のコストが高いという問題があった。 However, the method of reducing wrinkles during forming disclosed in Patent Document 1 has a problem in that it is not possible to eliminate an excess portion generated when a prepreg is shaped. Further, the prepreg having a woven structure has a problem that the cost of the weaving process is high.

そこで本発明の課題は、プリプレグの賦形時に余剰部を発生させることなく皺の発生を低減できる積層基材を提供することにある。 Then, the subject of this invention is providing the laminated base material which can reduce generation|occurrence|production of a wrinkle, without generating an excessive part at the time of shaping of a prepreg.

上記課題を達成するために、本発明の積層基材は、以下の構成を採用する。すなわち、
(1)一方向強化繊維にマトリックス樹脂を含浸させたプリプレグテープを少なくとも含む積層基材であって、前記プリプレグテープの繊維配向方向に直交する幅は2.5mm以上40mm以下の一定幅を有し、以下の構成となるように前記プリプレグテープを配置したことを特徴とする積層基材。
[1]複数のプリプレグテープ(幅:a(mm))を、下記式で示す個別クリアランス離して等間隔に平行に配置した個別ユニットを形成する。前記プリプレグテープの繊維配向方向を積層軸という。
個別クリアランス=a×d+(1+d)×b(mm)
ここでb(mm)は、積層基材の完成形態における、同一方向となる積層軸で隣接するプリプレグテープ間の距離(−a/2 mm≦b≦5mm))である。なお、距離のマイナス表示は、プリプレグテープ同士が重なり合って積層された状態を示す。またdは、後述する積層基材の完成に至るまでのステップの総数である。
[2]配置し終えた前記個別ユニットの上に、新たな個別ユニットを配置する。このとき、新たに配置する個別ユニットの積層軸の傾きは、直前に配置した個別ユニットの積層軸の傾きに対して、下記で規定する個別ユニット積層軸のずらし角度ずらして配置する。
個別ユニット積層軸のずらし角度=180/e
なお、eは個別ユニットの集合体に含まれる積層軸本数である。
これを、最初の個別ユニットと同じ積層軸方向となる直前まで繰り返す。この繰り返し回数をループ数という。[1][2]の配置工程を1ステップと総称する。
[3]2ステップ目となる個別ユニットを配置する。2ステップ目の最初の個別ユニットの積層軸方向は、1ステップ目の最初に配置した個別ユニットと同じ積層軸方向であり、1ステップ目の個別ユニットを構成するプリプレグテープに対し、下記式で示す平行移動距離だけずらして配置する。
平行移動距離:a+b
以下、[2]の記載と同様に、積層軸の角度をずらして新たな個別ユニットを配置し、2ステップ目を構成する全ての個別ユニットを配置する。
[4]ステップ数がdになるまで個別ユニットの配置を繰り返す。
(2)前記繊維配向方向が3方向以上である(1)に記載の積層基材。
(3)(1)または(2)に記載の積層基材を賦形してなる中間体。
(4)(1)または(2)に記載の積層基材、または(3)に記載の中間体を成形してなる成形体。
である。
In order to achieve the above object, the laminated base material of the present invention employs the following configurations. That is,
(1) A laminated base material including at least a prepreg tape in which unidirectional reinforcing fibers are impregnated with a matrix resin, and a width of the prepreg tape orthogonal to a fiber orientation direction has a constant width of 2.5 mm or more and 40 mm or less. A laminated base material in which the prepreg tape is arranged so as to have the following configuration.
[1] An individual unit in which a plurality of prepreg tapes (width: a (mm)) are arranged in parallel at equal intervals with the individual clearances shown by the following formulas being formed. The fiber orientation direction of the prepreg tape is called a lamination axis.
Individual clearance = a x d + (1 + d) x b (mm)
Here, b (mm) is a distance (−a/2 mm≦b≦5 mm) between the prepreg tapes which are adjacent to each other in the laminating axis in the same direction in the completed form of the laminated base material. In addition, the minus display of the distance indicates a state in which the prepreg tapes are overlapped and laminated. Further, d is the total number of steps until the completion of the laminated base material described later.
[2] A new individual unit is arranged on the arranged individual unit. At this time, the inclination of the stacking axis of the newly arranged individual unit is displaced from the inclination of the stacking axis of the immediately preceding individual unit by a shift angle of the individual unit stacking axis defined below.
Shift angle of individual unit stacking axis = 180/e
Note that e is the number of laminated axes included in the aggregate of individual units.
This is repeated until just before the first individual unit has the same stacking axis direction. The number of repetitions is called the number of loops. The placement process of [1] and [2] is collectively referred to as one step.
[3] Arrange the individual unit for the second step. The stacking axis direction of the first individual unit in the second step is the same stacking axis direction as the first individual unit arranged in the first step, and is represented by the following formula for the prepreg tape constituting the first step individual unit. It is arranged by shifting the parallel movement distance.
Translation distance: a+b
Hereinafter, similar to the description in [2], a new individual unit is arranged by shifting the angle of the stacking axis, and all the individual units forming the second step are arranged.
[4] The arrangement of individual units is repeated until the number of steps reaches d.
(2) The laminated base material according to (1), wherein the fiber orientation directions are three or more directions.
(3) An intermediate obtained by shaping the laminated base material according to (1) or (2).
(4) A molded product obtained by molding the laminated base material described in (1) or (2) or the intermediate body described in (3).
Is.

本発明によれば、プリプレグの賦形時にプリプレグの端部に発生する余剰部を解消する積層基材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated base material which eliminates the surplus part which generate|occur|produces at the edge part of a prepreg at the time of shaping a prepreg can be provided.

本発明の一実施態様に係る積層基材を得るための途中経過の概略図であって、積層基材は軸数e=3、積層基材の完成に至るまでのステップの総数d=4、積層基材の完成形態における同一方向となる積層軸で隣接するプリプレグテープ間の距離b=0.5mmであり、個別ユニット3(ステップ数1、ループ数1)を配置した状態を図示している。FIG. 3 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, in which the number of axes of the laminated base material is e=3, and the total number of steps until the completion of the laminated base material is d=4. In the completed form of the laminated base material, the distance b between prepreg tapes adjacent to each other in the laminating axis in the same direction is b=0.5 mm, and the individual unit 3 (the number of steps is 1, the number of loops is 1) is arranged. .. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数1、ループ数2)を配置した状態を図示している。FIG. 4 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (the number of steps is 1 and the number of loops is 2) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数1、ループ数3)を配置した状態を図示している。FIG. 6 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (step number 1, loop number 3) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数2、ループ数1)を配置した状態を図示している。FIG. 4 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (two steps, one loop) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数2、ループ数2)を配置した状態を図示している。FIG. 4 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (two steps and two loops) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数2、ループ数3)を配置した状態を図示している。FIG. 4 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (two steps, three loops) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数3、ループ数1)を配置した状態を図示している。FIG. 6 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (three steps, one loop) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数3、ループ数2)を配置した状態を図示している。FIG. 6 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (three steps, two loops) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数3、ループ数3)を配置した状態を図示している。FIG. 3 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (3 steps, 3 loops) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数4、ループ数1)を配置した状態を図示している。FIG. 3 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (the number of steps is 4, the number of loops is 1) are arranged. 本発明の一実施態様に係る積層基材を得るための途中経過の概略図であり、個別ユニット3(ステップ数4、ループ数2)を配置した状態を図示している。FIG. 3 is a schematic view of a process for obtaining a laminated base material according to an embodiment of the present invention, showing a state in which individual units 3 (the number of steps is 4, the number of loops is 2) are arranged. 本発明の一実施態様に係る積層基材の概略図であり、個別ユニット3(ステップ数4、ループ数3)を配置した状態を図示している。It is a schematic diagram of a layered substrate concerning one embodiment of the present invention, and shows the state where individual units 3 (the number of steps 4 and the number of loops 3) are arranged. 本発明の一実施態様に係る積層基材の概略図であり、軸数e=4、積層基材の完成に至るまでのステップの総数d=8、積層基材の完成形態における同一方向となる積層軸で隣接するプリプレグテープ間の距離b=テープ半幅、の積層基材を図示している。FIG. 3 is a schematic view of a laminated base material according to an embodiment of the present invention, in which the number of axes e=4, the total number of steps until completion of the laminated base material d=8, and the same direction in the completed form of the laminated base material. The laminated base material in which the distance b between prepreg tapes adjacent to each other on the laminating axis=tape half width is illustrated. 本発明の一実施態様に係る積層基材の概略図であり、軸数e=5、積層基材の完成に至るまでのステップの総数d=4、積層基材の完成形態における同一方向となる積層軸で隣接するプリプレグテープ間の距離b=0.5mm、の積層基材を図示している。FIG. 3 is a schematic view of a laminated base material according to an embodiment of the present invention, in which the number of axes e=5, the total number of steps until completion of the laminated base material d=4, and the same direction in the completed form of the laminated base material. The laminated base material in which the distance b between adjacent prepreg tapes on the laminating axis is 0.5 mm is illustrated.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。ただし、以下に示す実施態様は、あくまで本発明の望ましい実施の形態の例示であって、本発明は、これら実施態様に限定されるものではない。 Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiments described below are merely examples of preferred embodiments of the present invention, and the present invention is not limited to these embodiments.

本発明は、一方向強化繊維にマトリックス樹脂を含浸させたプリプレグテープを少なくとも含む積層基材であって、前記プリプレグテープの繊維配向方向に直交する幅は2.5mm以上40mm以下の一定幅を有し、以下の構成となるように前記プリプレグテープを配置したことを特徴とする積層基材である。
[1]複数のプリプレグテープ(幅:a(mm))を、下記式で示す個別クリアランス離して等間隔に平行に配置した個別ユニットを形成する。前記プリプレグテープの繊維配向方向を積層軸という。
個別クリアランス=a×d+(1+d)×b(mm)
ここでb(mm)は、積層基材の完成形態における、同一方向となる積層軸で隣接するプリプレグテープ間の距離(−a/2 mm≦b≦5mm))である。なお、距離のマイナス表示は、プリプレグテープ同士が重なり合って積層された状態を示す。またdは、後述する積層基材の完成に至るまでのステップの総数である。
[2]配置し終えた前記個別ユニットの上に、新たな個別ユニットを配置する。このとき、新たに配置する個別ユニットの積層軸の傾きは、直前に配置した個別ユニットの積層軸の傾きに対して、下記で規定する個別ユニット積層軸のずらし角度ずらして配置する。
個別ユニット積層軸のずらし角度=180/e
なお、eは個別ユニットの集合体に含まれる積層軸本数である。
これを、最初の個別ユニットと同じ積層軸方向となる直前まで繰り返す。この繰り返し回数をループ数という。
[1][2]の配置工程を1ステップと総称する。
[3]2ステップ目となる個別ユニットを配置する。2ステップ目の最初の個別ユニットの積層軸方向は、1ステップ目の最初に配置した個別ユニットと同じ積層軸方向であり、1ステップ目の個別ユニットを構成するプリプレグテープに対し、下記式で示す平行移動距離だけずらして配置する。
平行移動距離:a+b
以下、[2]の記載と同様に、積層軸の角度をずらして新たな個別ユニットを配置し、2ステップ目を構成する全ての個別ユニットを配置する。
[4]ステップ数がdになるまで個別ユニットの配置を繰り返す。
The present invention is a laminated base material including at least a prepreg tape in which unidirectional reinforcing fibers are impregnated with a matrix resin, and the width of the prepreg tape orthogonal to the fiber orientation direction has a constant width of 2.5 mm or more and 40 mm or less. The prepreg tape is arranged so as to have the following structure.
[1] An individual unit in which a plurality of prepreg tapes (width: a (mm)) are arranged in parallel at equal intervals with the individual clearances shown by the following formulas being formed. The fiber orientation direction of the prepreg tape is called a lamination axis.
Individual clearance = a x d + (1 + d) x b (mm)
Here, b (mm) is a distance (−a/2 mm≦b≦5 mm) between the prepreg tapes which are adjacent to each other in the laminating axis in the same direction in the completed form of the laminated base material. In addition, the minus display of the distance indicates a state in which the prepreg tapes are overlapped and laminated. Further, d is the total number of steps until the completion of the laminated base material described later.
[2] A new individual unit is arranged on the arranged individual unit. At this time, the inclination of the stacking axis of the newly arranged individual unit is displaced from the inclination of the stacking axis of the immediately preceding individual unit by a shift angle of the individual unit stacking axis defined below.
Shift angle of individual unit stacking axis = 180/e
Note that e is the number of laminated axes included in the aggregate of individual units.
This is repeated until just before the first individual unit has the same stacking axis direction. The number of repetitions is called the number of loops.
The placement process of [1] and [2] is collectively referred to as one step.
[3] Arrange the individual unit for the second step. The stacking axis direction of the first individual unit in the second step is the same stacking axis direction as the first individual unit arranged in the first step, and is represented by the following formula for the prepreg tape constituting the first step individual unit. It is arranged by shifting the parallel movement distance.
Translation distance: a+b
Hereinafter, similar to the description in [2], a new individual unit is arranged by shifting the angle of the stacking axis, and all the individual units forming the second step are arranged.
[4] The arrangement of individual units is repeated until the number of steps reaches d.

積層基材の一例を図1−12に示す。図1−12に例示する積層基材は、軸数e=3、積層基材の完成に至るまでのステップの総数d=4、積層基材の完成形態における同一方向となる積層軸で隣接するプリプレグテープ間の距離b=0.5mmとして構成されたものである。 An example of the laminated base material is shown in FIGS. The laminated base materials illustrated in FIGS. 1 to 12 are adjacent to each other with the number of axes e=3, the total number of steps until completion of the laminated base material d=4, and the laminated axes in the same direction in the completed form of the laminated base material. The distance between the prepreg tapes is set to b=0.5 mm.

プリプレグテープ1は一方向強化繊維とマトリックス樹脂から構成されている。強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ケブラー繊維等を用いることが好ましい。マトリックス樹脂としては、熱硬化性樹脂と熱可塑性樹脂を例示することができる。熱硬化性樹脂としては、エポキシ樹脂、等が利用できる。熱可塑性樹脂としては、例えば、ナイロン樹脂やPPS(ポリフェニレンサルファイド)樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、等が利用できる。プリプレグテープの幅:a(mm)は2.5mm以上であり、40mm以下であることが重要である。プリプレグの幅:a(mm)が2.5mmを下回ると、一度に積層できる量が少なく、経済的ではなくなる。プリプレグの幅:a(mm)が40mmを上回ると、曲線上にプリプレグを配置しようとした際に、テープの周長差により配置できる曲率が制限され、配置の自由度が小さくなる。 The prepreg tape 1 is composed of unidirectional reinforcing fibers and matrix resin. As the reinforcing fiber, it is preferable to use, for example, carbon fiber, glass fiber, aramid fiber, Kevlar fiber, or the like. Examples of the matrix resin include a thermosetting resin and a thermoplastic resin. An epoxy resin or the like can be used as the thermosetting resin. As the thermoplastic resin, for example, nylon resin, PPS (polyphenylene sulfide) resin, PEEK (polyether ether ketone) resin, or the like can be used. The width: a (mm) of the prepreg tape is 2.5 mm or more, and it is important that it is 40 mm or less. If the width: a (mm) of the prepreg is less than 2.5 mm, the amount that can be laminated at one time is small, which is not economical. When the width of the prepreg: a (mm) exceeds 40 mm, when the prepreg is to be arranged on a curved line, the curvature that can be arranged is limited due to the difference in the circumferential length of the tape, and the degree of freedom of arrangement becomes small.

次に、プリプレグテープの具体的な配置手段について順に説明する。
[1]複数のプリプレグテープ(幅:a(mm))を、下記式で示す個別クリアランス離して等間隔に平行に配置した個別ユニットを形成する。前記プリプレグテープの繊維配向方向を積層軸という。
個別クリアランス=a×d+(1+d)×b(mm)
Next, a specific arrangement means of the prepreg tape will be described in order.
[1] An individual unit in which a plurality of prepreg tapes (width: a (mm)) are arranged in parallel at equal intervals with the individual clearances shown by the following formulas being formed. The fiber orientation direction of the prepreg tape is called a lamination axis.
Individual clearance = a x d + (1 + d) x b (mm)

ここでb(mm)は、積層基材の完成形態における、同一方向となる積層軸で隣接するプリプレグテープ間の距離(−a/2 mm≦b≦5mm))である。なお、距離のマイナス表示は、プリプレグテープ同士が重なり合って積層された状態を示す。またdは、後述する積層基材の完成に至るまでのステップの総数である。 Here, b (mm) is a distance (−a/2 mm≦b≦5 mm) between the prepreg tapes which are adjacent to each other in the laminating axis in the same direction in the completed form of the laminated base material. In addition, the minus display of the distance indicates a state in which the prepreg tapes are overlapped and laminated. Further, d is the total number of steps until the completion of the laminated base material described later.

ステップの総数dの値を大きくすると、厚み方向に横切るプリプレグテープの本数が増えるため、層間強度が高くなることが期待されるが、ステップ数が増えるため積層時間は増加する。目的とする製品物性やプロセス性に応じて、dの値を定めることが望ましい。 If the value of the total number d of steps is increased, the number of prepreg tapes that traverse in the thickness direction increases, so that the interlayer strength is expected to increase, but the number of steps increases, so the lamination time increases. It is desirable to determine the value of d according to the intended product physical properties and process properties.

個別ユニットを1つ形成した状態を図1−1に示す。図1−1に示す個別ユニット3(ステップ数1、ループ数1)は、複数のプリプレグテープ1(幅:a(mm))を、下記式で示す個別クリアランス5離して等間隔に平行に配置したものである。図1−1下方に示す左右方向の矢印が積層軸4である。 The state where one individual unit is formed is shown in FIG. In the individual unit 3 (the number of steps is 1 and the number of loops is 1) shown in FIG. 1-1, a plurality of prepreg tapes 1 (width: a (mm)) are arranged in parallel at equal intervals with an individual clearance 5 shown by the following formula. It was done. The arrow in the left-right direction shown in the lower part of FIG.

また、個別クリアランスは以下の式で示される。
個別クリアランス=a×d+(1+d)×b(mm)
The individual clearance is shown by the following formula.
Individual clearance = a x d + (1 + d) x b (mm)

ここでb(mm)は、積層基材の完成形態における、同一方向となる積層軸で隣接するプリプレグテープ間の距離(−a/2 mm≦b≦5mm))である。bの値を大きくすると、賦形時において、プリプレグテープが動くことができる余地が大きくなるため、賦形性は向上するが、物性は低下する。bの値を小さくすると、物性は向上するが、賦形性は低下する。目的とする製品形状や物性に応じて、bの値を定めることが望ましい。bが5mmを上回ると、物性が著しく低下する恐れがある。 Here, b (mm) is a distance (−a/2 mm≦b≦5 mm) between the prepreg tapes which are adjacent to each other in the laminating axis in the same direction in the completed form of the laminated base material. When the value of b is increased, there is more room for the prepreg tape to move during shaping, so that the shaping property is improved but the physical properties are reduced. When the value of b is decreased, the physical properties are improved, but the shapeability is decreased. It is desirable to determine the value of b according to the intended product shape and physical properties. If b exceeds 5 mm, the physical properties may be significantly reduced.

また、bの値が0を下回ると、プリプレグテープが重なり合うことになる。この重なりが増えると、一度に積層するプリプレグテープの数が増えるため、積層時間が減る一方、物性は低下する。bが−a/2mmを下回ると、物性が著しく低下する恐れがある。 If the value of b is less than 0, the prepreg tapes will overlap. When this overlap increases, the number of prepreg tapes laminated at one time increases, so that the lamination time decreases but the physical properties decrease. If b is less than -a/2 mm, the physical properties may be significantly deteriorated.

配置し終えた前記個別ユニット3の上に、新たな個別ユニット3を配置する手順について、図1−2を例に示す。 A procedure for arranging a new individual unit 3 on the individual unit 3 that has been arranged is shown in FIG. 1-2 as an example.

図1−2では、配置し終えた前記個別ユニット3の上に、新たな個別ユニット3を配置する。このとき、新たに配置する個別ユニットの積層軸4の傾きは、直前に配置した個別ユニットの積層軸4の傾きに対して、下記で規定する個別ユニット積層軸のずらし角度ずらして配置する。
個別ユニット積層軸のずらし角度=180/e
In FIG. 1-2, a new individual unit 3 is placed on the individual unit 3 that has been placed. At this time, the inclination of the stacking axis 4 of the newly arranged individual unit is displaced from the inclination of the stacking axis 4 of the immediately preceding individual unit by a shift angle of the individual unit stacking axis defined below.
Shift angle of individual unit stacking axis = 180/e

なお、eは個別ユニットの集合体に含まれる積層軸本数である。 Note that e is the number of laminated axes included in the aggregate of individual units.

これらの動作を、最初の個別ユニットと同じ積層軸方向となる直前まで繰り返す(図1−1、1−2,1−3)。この繰り返し回数をループ数という。 These operations are repeated until just before the first individual unit has the same stacking axis direction (FIGS. 1-1, 1-2, and 1-3). The number of repetitions is called the number of loops.

積層軸4は、一層目における軸方向を、xy平面のx軸と同方向と定義することができる。また、個別ユニット積層軸のずらし角度の角度間隔は、等間隔である。後述のループを進めるごとに積層軸の傾きを変える操作について、その回転方向は時計回りでも反時計回りでも可能である。 The axial direction of the first layer of the stacking axis 4 can be defined as the same direction as the x axis of the xy plane. Further, the angular intervals of the shift angles of the individual unit stacking axes are equal intervals. Regarding the operation of changing the inclination of the stacking axis each time the loop described below is advanced, the rotation direction can be clockwise or counterclockwise.

個別ユニットの集合体に含まれる積層軸本数eは、図では3軸となっているが、2軸以上が好ましい。軸数を増加させると、材料の物性はより等方に近づくが、10軸を上回ると、積層時間が増加し不経済になる恐れがある。好ましくは8軸以下、より好ましくは6軸以下である。 The number e of stacked axes included in the aggregate of the individual units is three axes in the figure, but is preferably two or more axes. If the number of axes is increased, the physical properties of the material will be more isotropic, but if the number of axes is more than 10, the lamination time will increase and there is a risk of being uneconomical. It is preferably 8 axes or less, more preferably 6 axes or less.

ループは、ステップの中の手順であり、図1−2のように、積層軸4を変えた個別ユニット3を配置する場合に、その値が1つすすむ。個別ユニット3は、その手順の値に合わせて、個別ユニット3(ステップ数、ループ数)と表記できる。例えば、図1−1は個別ユニット3(ステップ数1、ループ数1)の配置を示し、図1−2は個別ユニット3(ステップ数1、ループ数2)の配置を示す。ループ数の上限は、総積層軸数をeとした場合、eであり、eの次の手順に進むとき、ステップ数の値が1つ進み、ループ数の値は1に戻る。例えば、図1−3は個別ユニット3(ステップ数1、ループ数3)を示し、図1−4は個別ユニット3(ステップ数2、ループ数1)を示す。 The loop is a procedure in steps, and when the individual unit 3 in which the stacking axis 4 is changed is arranged as shown in FIG. 1-2, its value is one. The individual unit 3 can be described as an individual unit 3 (the number of steps and the number of loops) according to the value of the procedure. For example, FIG. 1-1 shows the arrangement of the individual units 3 (the number of steps is 1, the number of loops 1), and FIG. 1-2 shows the arrangement of the individual units 3 (the number of steps is 1, the number of loops 2). The upper limit of the number of loops is e, where e is the total number of stacking axes, and the value of the number of steps advances by 1 and the value of the number of loops returns to 1 when proceeding to the procedure following e. For example, FIGS. 1-3 show the individual unit 3 (step number 1, loop number 3), and FIGS. 1-4 show the individual unit 3 (step number 2, loop number 1).

続いて、2ステップ目となる個別ユニットを配置する。ステップは、積層の手順であり、ループが一巡すると、ステップの値が一つ進む。図1−1(ステップ1、ループ1)と図1−4(ステップ2、ループ1)の比較で示すように、2ステップ目の最初の個別ユニットの積層軸方向は、1ステップ目の最初に配置した個別ユニットと同じ積層軸方向であり、1ステップ目の個別ユニットを構成するプリプレグテープに対し、下記式で示す平行移動距離だけずらして配置する。
平行移動距離:a+b
Then, the individual unit for the second step is arranged. A step is a stacking procedure, and when the loop completes one cycle, the value of the step advances by one. As shown in the comparison between FIG. 1-1 (step 1, loop 1) and FIG. 1-4 (step 2, loop 1), the stacking axial direction of the first individual unit in the second step is the first in the first step. It is arranged in the same stacking axis direction as the arranged individual units, and is displaced by the parallel movement distance shown by the following formula with respect to the prepreg tape constituting the first unit of the individual units.
Translation distance: a+b

以下同様に、図1−4、図1−5、図1−6、で図示するように、積層軸4の角度をずらして新たな個別ユニットを配置し、2ステップ目を構成する全ての個別ユニットを配置する。 Similarly, as shown in FIG. 1-4, FIG. 1-5, and FIG. 1-6, by displacing the angle of the stacking axis 4 and disposing a new individual unit, all the individual units constituting the second step are arranged. Place the unit.

続いて、ステップ数がdになるまで、図1−7〜図1−12で図示するように、個別ユニットの配置を繰り返す。 Subsequently, the arrangement of the individual units is repeated until the number of steps reaches d, as illustrated in FIGS. 1-7 to 1-12.

ステップ数dは、2以上であり、10以下である必要がある。1では基材が成立しなくなり、10を上回ると、積層時間が増加し不経済になる恐れがある。ステップ数dは8以下が好ましく、6以下がさらに好ましい。図1−12で示すように、繰り返しユニット7を構成するプリプレグテープの数は、それぞれの積層軸4に対して、4本である。この、繰り返しユニット7を構成するプリプレグテープの数はdと定義され、2以上の自然数であればよい。 The number of steps d must be 2 or more and 10 or less. In the case of 1, the base material is not established, and in the case of more than 10, there is a possibility that the lamination time increases and it becomes uneconomical. The number of steps d is preferably 8 or less, more preferably 6 or less. As shown in FIG. 1-12, the number of the prepreg tapes constituting the repeating unit 7 is four for each lamination axis 4. The number of prepreg tapes forming the repeating unit 7 is defined as d, and may be a natural number of 2 or more.

図2は、本発明の一実施態様に係る積層基材の一例であり、軸数=4、繰り返しユニット=8、ラップ長さ=テープ半幅、ギャップ長さ=0、で規定される積層基材の積層態様を示している。 FIG. 2 is an example of a laminated base material according to an embodiment of the present invention, which is defined by the number of axes=4, the repeating unit=8, the wrap length=the tape half width, and the gap length=0. FIG.

図3は、本発明の一実施態様に係る積層基材の一例であり、軸数=5、繰り返しユニット=4、ラップ長さ=0、ギャップ長さ=0.5mm、で規定される積層基材の積層態様を示している。 FIG. 3 is an example of a laminated base material according to an embodiment of the present invention, and is a laminated base defined by the number of axes=5, the repeating unit=4, the lap length=0, and the gap length=0.5 mm. The lamination mode of the material is shown.

積層基材は、賦形して中間体としても使用することができる。また、積層基材を賦形工程等により成形体の形状に賦形した後、オートクレーブ等の成形工程により成形体を得ることができる。さらに、前述の中間体を直接オートクレーブ等の成形工程により成形体を得ることもできる。 The laminated base material can be shaped and used as an intermediate. Further, after the laminated base material is shaped into the shape of the shaped body by the shaping step or the like, the shaped body can be obtained by the shaping step such as autoclave. Further, a molded body can be obtained by directly subjecting the above-mentioned intermediate body to a molding process such as an autoclave.

本発明に係る、幾何学的に生じる繊維余りを解消する強化繊維多軸基材により、賦形工程が容易になり、航空機産業や自動車産業に適用できる。 The reinforcing fiber multiaxial substrate according to the present invention that eliminates geometrically generated fiber surplus facilitates the shaping process and can be applied to the aircraft industry and the automobile industry.

1 プリプレグテープ
2 プリプレグテープの幅
3 個別ユニット
4 積層軸
5 個別クリアランス
6 平行移動距離
7 繰り返しユニット
8 隣接する二つのプリプレグテープ
9 隣接する二つのプリプレグテープを横切って配置されるプリプレグテープ
10 隣接する二つのプリプレグテープを横切って配置されるプリプレグテープが、隣接する二つのプリプレグテープに上下挟まれている部位
1 prepreg tape 2 width of prepreg tape 3 individual unit 4 stacking axis 5 individual clearance 6 parallel movement distance 7 repeating unit 8 two adjacent prepreg tapes 9 prepreg tape 10 placed across two adjacent prepreg tapes 10 adjacent two A part where the prepreg tape placed across two prepreg tapes is vertically sandwiched between two adjacent prepreg tapes.

Claims (4)

一方向強化繊維にマトリックス樹脂を含浸させたプリプレグテープを少なくとも含む積層基材であって、前記プリプレグテープの繊維配向方向に直交する幅は2.5mm以上40mm以下の一定幅を有し、以下の構成となるように前記プリプレグテープを配置したことを特徴とする積層基材。
[1]複数のプリプレグテープ(幅:a(mm))を、下記式で示す個別クリアランス離して等間隔に平行に配置した個別ユニットを形成する。前記プリプレグテープの繊維配向方向を積層軸という。
個別クリアランス=a×d+(1+d)×b(mm)
ここでb(mm)は、積層基材の完成形態における、同一方向となる積層軸で隣接するプリプレグテープ間の距離(−a/2 mm≦b≦5mm))である。なお、距離のマイナス表示は、プリプレグテープ同士が重なり合って積層された状態を示す。またdは、後述する積層基材の完成に至るまでのステップの総数である。
[2]配置し終えた前記個別ユニットの上に、新たな個別ユニットを配置する。このとき、新たに配置する個別ユニットの積層軸の傾きは、直前に配置した個別ユニットの積層軸の傾きに対して、下記で規定する個別ユニット積層軸のずらし角度ずらして配置する。
個別ユニット積層軸のずらし角度=180/e
なお、eは個別ユニットの集合体に含まれる積層軸本数である。
これを、最初の個別ユニットと同じ積層軸方向となる直前まで繰り返す。この繰り返し回数をループ数という。[1][2]の配置工程を1ステップと総称する。
[3]2ステップ目となる個別ユニットを配置する。2ステップ目の最初の個別ユニットの積層軸方向は、1ステップ目の最初に配置した個別ユニットと同じ積層軸方向であり、1ステップ目の個別ユニットを構成するプリプレグテープに対し、下記式で示す平行移動距離だけずらして配置する。
平行移動距離:a+b
以下、[2]の記載と同様に、積層軸の角度をずらして新たな個別ユニットを配置し、2ステップ目を構成する全ての個別ユニットを配置する。
[4]ステップ数がdになるまで個別ユニットの配置を繰り返す。
A laminated base material including at least a prepreg tape in which unidirectional reinforcing fibers are impregnated with a matrix resin, wherein a width of the prepreg tape orthogonal to a fiber orientation direction has a constant width of 2.5 mm or more and 40 mm or less. A laminated base material, wherein the prepreg tape is arranged so as to have a constitution.
[1] An individual unit in which a plurality of prepreg tapes (width: a (mm)) are arranged in parallel at equal intervals with the individual clearances shown by the following formulas being formed. The fiber orientation direction of the prepreg tape is called a lamination axis.
Individual clearance = a x d + (1 + d) x b (mm)
Here, b (mm) is a distance (−a/2 mm≦b≦5 mm) between the prepreg tapes which are adjacent to each other in the laminating axis in the same direction in the completed form of the laminated base material. In addition, the minus display of the distance indicates a state in which the prepreg tapes are overlapped and laminated. Further, d is the total number of steps until the completion of the laminated base material described later.
[2] A new individual unit is arranged on the arranged individual unit. At this time, the inclination of the stacking axis of the newly arranged individual unit is displaced from the inclination of the stacking axis of the immediately preceding individual unit by a shift angle of the individual unit stacking axis defined below.
Shift angle of individual unit stacking axis = 180/e
Note that e is the number of laminated axes included in the aggregate of individual units.
This is repeated until just before the first individual unit has the same stacking axis direction. The number of repetitions is called the number of loops. The placement process of [1] and [2] is collectively referred to as one step.
[3] Arrange the individual unit for the second step. The stacking axis direction of the first individual unit in the second step is the same stacking axis direction as the first individual unit arranged in the first step, and is represented by the following formula for the prepreg tape constituting the first step individual unit. It is arranged by shifting the parallel movement distance.
Translation distance: a+b
Hereinafter, similar to the description in [2], a new individual unit is arranged by shifting the angle of the stacking axis, and all the individual units forming the second step are arranged.
[4] The arrangement of individual units is repeated until the number of steps reaches d.
前記繊維配向方向が3方向以上である請求項1に記載の積層基材。 The laminated base material according to claim 1, wherein the fiber orientation directions are three or more directions. 請求項1または2に記載の積層基材を賦形してなる中間体。 An intermediate obtained by shaping the laminated base material according to claim 1 or 2. 請求項1または2に記載の積層基材、または請求項3に記載の中間体を成形してなる成形体。 A molded body obtained by molding the laminated base material according to claim 1 or 2, or the intermediate body according to claim 3.
JP2018224813A 2018-11-30 2018-11-30 Laminated base material, intermediate product and molded product Pending JP2020082661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018224813A JP2020082661A (en) 2018-11-30 2018-11-30 Laminated base material, intermediate product and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018224813A JP2020082661A (en) 2018-11-30 2018-11-30 Laminated base material, intermediate product and molded product

Publications (1)

Publication Number Publication Date
JP2020082661A true JP2020082661A (en) 2020-06-04

Family

ID=70905665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224813A Pending JP2020082661A (en) 2018-11-30 2018-11-30 Laminated base material, intermediate product and molded product

Country Status (1)

Country Link
JP (1) JP2020082661A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071958A (en) * 2001-09-03 2003-03-12 Asahi Fiber Glass Co Ltd Composite molding and its manufacturing method
JP2009274412A (en) * 2008-05-19 2009-11-26 Toray Ind Inc Manufacturing process of unidirectional sheet base material consisting of discontinuous fibers
JP2013530063A (en) * 2010-01-28 2013-07-25 シュティッヒティング・ナショナール・ルット−エン・ロイムテファールト・ラボラトリウム Method for producing composite material, composite material and final product
WO2015152331A1 (en) * 2014-04-02 2015-10-08 株式会社Ihi Pre-preg sheet lamination device
WO2018181983A1 (en) * 2017-03-31 2018-10-04 三菱ケミカル株式会社 Prepreg sheet, method for manufacturing same, skin material-provided unitary layer, method for manufacturing article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071958A (en) * 2001-09-03 2003-03-12 Asahi Fiber Glass Co Ltd Composite molding and its manufacturing method
JP2009274412A (en) * 2008-05-19 2009-11-26 Toray Ind Inc Manufacturing process of unidirectional sheet base material consisting of discontinuous fibers
JP2013530063A (en) * 2010-01-28 2013-07-25 シュティッヒティング・ナショナール・ルット−エン・ロイムテファールト・ラボラトリウム Method for producing composite material, composite material and final product
WO2015152331A1 (en) * 2014-04-02 2015-10-08 株式会社Ihi Pre-preg sheet lamination device
WO2018181983A1 (en) * 2017-03-31 2018-10-04 三菱ケミカル株式会社 Prepreg sheet, method for manufacturing same, skin material-provided unitary layer, method for manufacturing article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP6222370B2 (en) Manufacturing method of fiber reinforced composite material
Cox et al. Handbook of analytical methods for textile composites
US20230271389A1 (en) Composite-material aircraft part and method of manufacturing same
JP5429599B2 (en) Curved reinforced fiber laminate, preform, and method for producing fiber reinforced resin composite material
EP2170587B1 (en) A method of manufacturing a curved element made of composite material
TWI760329B (en) Manufacturing method of fiber reinforced plastic
WO2009088029A1 (en) Reinforcing fiber base of curved shape, layered product employing the same, preform, fiber-reinforced resin composite material, and processes for producing these
KR101886877B1 (en) Woven preform, composite, and method of making thereof
US20100310818A1 (en) Method of moulding a charge
EP2737995A1 (en) Fiber-reinforced composite material
WO2017212835A1 (en) Reinforced base material for composite material component, composite material component, and method for manufacturing same
US11173687B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
JP6843540B2 (en) Multi-state bladder for the manufacture of composites
US10018175B2 (en) Induction consolidation for wind blade fabrication
JP2007056441A (en) Reinforcing woven fabric and method for producing the same
US20210284317A1 (en) Composite-material aircraft part and method of manufacturing same
TW201920398A (en) Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
JPWO2019031478A1 (en) Fiber-reinforced plastic and method for producing fiber-reinforced plastic
JP2020082661A (en) Laminated base material, intermediate product and molded product
Schuster et al. Manufacturing and Testing of Curved Fibrecomposites Using Vacuum Assisted Resin Transfer Moulding (VARTM)
JP2015189150A (en) Manufacturing method of frp structure
JP2020001171A (en) Resin-injection molded article and method for manufacture the same
JP7240559B2 (en) Manufacturing method for intermediate products of aircraft parts and aircraft parts
JP2018122523A (en) Bagging sheet
KR102401275B1 (en) Fiber reinforced composite material having a hollow section and methode for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328