JP2020082002A - Multi-electron oxidation-reduction catalyst - Google Patents

Multi-electron oxidation-reduction catalyst Download PDF

Info

Publication number
JP2020082002A
JP2020082002A JP2018223005A JP2018223005A JP2020082002A JP 2020082002 A JP2020082002 A JP 2020082002A JP 2018223005 A JP2018223005 A JP 2018223005A JP 2018223005 A JP2018223005 A JP 2018223005A JP 2020082002 A JP2020082002 A JP 2020082002A
Authority
JP
Japan
Prior art keywords
pyp
synthesis
salen
fetm
cotm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223005A
Other languages
Japanese (ja)
Other versions
JP7236722B2 (en
Inventor
浩良 川上
Hiroyoshi Kawakami
浩良 川上
陸 窪田
Riku Kubota
陸 窪田
友和 青山
Tomokazu Aoyama
友和 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2018223005A priority Critical patent/JP7236722B2/en
Publication of JP2020082002A publication Critical patent/JP2020082002A/en
Application granted granted Critical
Publication of JP7236722B2 publication Critical patent/JP7236722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

To provide a multi-electron oxidation-reduction catalyst that has a higher catalytic activity and is excellent in catalytic activity especially in the production of hydrogen, without using expensive metals.SOLUTION: Provided is a multi-electron oxidation-reduction catalyst composed of a cyclic compound having a 7 to 14-membered-ring cucurbit structure and a bulky compound included in the cyclic compound, and in which the bulky compound is two molecules of a metalloporphyrin compound represented by the following chemical formula (I) and a metal pearene or a metal salen. In the above formula, M1 represents a transition metal element or a base metal element.SELECTED DRAWING: None

Description

本発明は金属ポルフィリン錯体と金属ピアレンあるいは金属サレンが、ククルビット[10]ウリル等の環状化合物内部に包摂された新規な超分子系の多電子酸化還元触媒に関する。 The present invention relates to a novel supramolecular multi-electron redox catalyst in which a metalloporphyrin complex and a metal pialene or a metal salen are included inside a cyclic compound such as cucurbit[10]uril.

水素は、その高いエネルギー密度や、燃焼により二酸化炭素を排出しない等という特長から、次世代型の高効率発電手段として脚光を浴びている。一方水素には、常温常圧で気体であるため長距離輸送が困難である、保存容器からの漏洩が容易に起こる、空気との混合により爆発が起こるといった深刻な課題が残されている。従って、水素を安定的に保存する方法論の確立は、水素をエネルギー源として有効利用する水素社会の実現には必須であると言える。
水素を安定的に保存するには、化合物中への水素原子の導入(水素キャリア)が有効である。例えば、二酸化炭素の還元により生じる化合物(ギ酸、ホルムアルデヒド、メタノール、メタン)や、窒素の還元により生じる化合物(ヒドラジン、アンモニア)は水素キャリアとして扱われる。
水素キャリアを効率よく生成する従来のアプローチとして、金属二核錯体触媒が挙げられる。二つの金属の共同的な触媒反応により効率的な水素キャリア生成が可能であるが、従来のアプローチでは、水素キャリアの化学構造に応じた複雑な分子設計、触媒合成が求められるのが現状である。
従って、水素社会の実現には、水素キャリアとして着目されている様々な化合物に適用可能となる統一的な触媒技術の確立が求められる。また、資源の枯渇を避けるという観点から、天然に豊富に存在する金属を用いることが求められる。
そこで、種々提案がなされており、例えば非特許文献1ではアンモニア生成を起こす触媒として、稀少金属であるルテニウムを用いた金属二核錯体が提案されている。また、非特許文献2ではギ酸生成を起こす触媒としてルテニウムを用いた金属二核錯体が提案されている。
また、本発明者らは、特許文献1において、水系溶媒中において様々な構造を容易に形成でき、かつ天然に豊富に存在する金属種を用いて高い酸化還元反応性を示す多電子酸化還元触媒として、7〜14員環のククルビット構造を有する環状化合物と、金属ポルフィリン化合物と、金属ポルフィリン化合物及び金属ビピリジン化合物からなる群より選択される化合物との2分子が包摂されている多電子酸化還元触媒を提案している。
Hydrogen is in the limelight as a next-generation high-efficiency power generation means because of its high energy density and the fact that it does not emit carbon dioxide when burned. On the other hand, hydrogen has serious problems such that it is difficult to transport over a long distance because it is a gas at room temperature and atmospheric pressure, it easily leaks from a storage container, and it explodes when mixed with air. Therefore, it can be said that establishment of a methodology for stable storage of hydrogen is essential for realizing a hydrogen society in which hydrogen is effectively used as an energy source.
Introduction of hydrogen atoms (hydrogen carrier) into the compound is effective for stable storage of hydrogen. For example, compounds produced by reduction of carbon dioxide (formic acid, formaldehyde, methanol, methane) and compounds produced by reduction of nitrogen (hydrazine, ammonia) are treated as hydrogen carriers.
A conventional approach to efficiently generate a hydrogen carrier is a metal binuclear complex catalyst. Efficient hydrogen carrier generation is possible by the joint catalytic reaction of two metals. However, the conventional approach requires complicated molecular design and catalytic synthesis according to the chemical structure of the hydrogen carrier. ..
Therefore, in order to realize a hydrogen society, it is necessary to establish a unified catalyst technology that can be applied to various compounds that are attracting attention as hydrogen carriers. Further, from the viewpoint of avoiding resource depletion, it is required to use metals that are abundant in nature.
Therefore, various proposals have been made, for example, Non-Patent Document 1 proposes a binuclear metal complex using ruthenium, which is a rare metal, as a catalyst for generating ammonia. Further, Non-Patent Document 2 proposes a metal binuclear complex using ruthenium as a catalyst for generating formic acid.
In addition, the inventors of the present invention have disclosed in Patent Document 1 that a multi-electron redox catalyst capable of easily forming various structures in an aqueous solvent and exhibiting high redox reactivity by using a metal species that is abundant in nature. , A multi-electron redox catalyst in which two molecules of a cyclic compound having a 7 to 14-membered cucurbit structure, a metalloporphyrin compound, and a compound selected from the group consisting of metalloporphyrin compounds and metal bipyridine compounds are included Is proposed.

特願2017−158456号Japanese Patent Application No. 2017-158456

Y. Arikawa et al., J. Am. Chem. Soc., 2018, 140, 842~847.Y. Arikawa et al., J. Am. Chem. Soc., 2018, 140, 842~847. T, Ono et al., ChemCatChem, 2013, 5, 3897~3903.T, Ono et al., ChemCatChem, 2013, 5, 3897~3903.

しかしながら、上述の非特許文献の提案にかかる触媒では、ルテニウムといった高価な金属を用いる必要があり、未だ十分な触媒活性が得られていない。また、上述の特許文献にかかる提案では、高い触媒活性は得られているものの、より高い触媒活性、特に水素製造に際しての触媒活性の要求を満足できていない。このため、より高い触媒活性、特に水素製造に際しての触媒活性に優れた触媒の開発が要望されている。
したがって、本発明の目的は、高価な金属を用いることなく、より高い触媒活性、特に水素製造に際しての触媒活性に優れた多電子酸化還元触媒を提供することにある。
However, in the catalyst proposed in the above-mentioned non-patent document, it is necessary to use an expensive metal such as ruthenium, and sufficient catalytic activity has not yet been obtained. Further, in the proposals of the above-mentioned patent documents, although a high catalytic activity is obtained, it is not possible to satisfy the demand for a higher catalytic activity, particularly a catalytic activity in hydrogen production. Therefore, there is a demand for the development of a catalyst having a higher catalytic activity, particularly a catalytic activity in the production of hydrogen.
Therefore, an object of the present invention is to provide a multi-electron redox catalyst which has a higher catalytic activity, especially a catalytic activity in hydrogen production, without using an expensive metal.

本発明者らは、上記課題を解消すべく鋭意検討した結果、検討したところ、特定の金属ポルフィリンと特定の金属サレンとをククルビット化合物で包摂した金属錯体が高い触媒効果を呈することを知見し、更にポルフィリンと組み合わせることが有効な化合物を検討し、本発明を完成するに至った。
すなわち、本発明は以下の各発明を提供するものである。
1.7〜14員環のククルビット構造を有する環状化合物と、
該環状化合物中に包摂される嵩高化合物とからなる触媒であって、
該嵩高化合物は、下記化学式(I)で表される金属ポルフィリン化合物と、下記化学式(I)で表される金属ポルフィリン化合物、下記化学式(II)で表される該金属ピアレン又は下記化学式(III)で表される金属サレンとの2分子であることを特徴とする多電子酸化還元触媒。

上記各式中、M1およびM2は、それぞれ同一または異なる原子であって、遷移金属元素又は卑金属元素を示す。
R5〜R8は、それぞれ同一または異なる基であって、水素原子、アルキル基、アルコキシ基を示す。
As a result of intensive studies to solve the above problems, the present inventors have found that a metal complex including a specific metal porphyrin and a specific metal salen with a cucurbit compound exhibits a high catalytic effect. Further, a compound effective in combination with porphyrin was investigated, and the present invention was completed.
That is, the present invention provides each of the following inventions.
A cyclic compound having a cucurbit structure of 1.7 to 14-membered ring;
A catalyst consisting of a bulky compound included in the cyclic compound,
The bulky compound includes a metalloporphyrin compound represented by the following chemical formula (I), a metalloporphyrin compound represented by the following chemical formula (I), the metal pierlen represented by the following chemical formula (II) or the following chemical formula (III). A multi-electron redox catalyst characterized by being two molecules with a metal salen represented by:

In the above formulas, M1 and M2 are the same or different atoms and represent a transition metal element or a base metal element.
R5 to R8 are the same or different groups and represent a hydrogen atom, an alkyl group or an alkoxy group.

本発明の多電子酸化還元触媒は、高価な金属を用いることなく、より高い触媒活性、特に水素製造に際しての触媒活性に優れたものである。 INDUSTRIAL APPLICABILITY The multi-electron redox catalyst of the present invention is excellent in higher catalytic activity, particularly in hydrogen production, without using an expensive metal.

図1(a)及び(b)は、実施例1で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。FIGS. 1A and 1B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 1. 図2(a)及び(b)は、実施例2で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。2A and 2B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 2. 図3(a)及び(b)は、実施例3で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。3A and 3B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 3. 図4(a)及び(b)は、実施例3で得られたjob’s plotの結果を示すチャートである。FIGS. 4A and 4B are charts showing the results of job's plot obtained in Example 3. 図5(a)及び(b)は、実施例4で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。5A and 5B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 4. 図6(a)及び(b)は、実施例5で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。FIGS. 6A and 6B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 5. 図7(a)及び(b)は、実施例6で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。7A and 7B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 6. 図8(a)及び(b)は、実施例7で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。8A and 8B are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 7. 図9は、実施例8で得られたFeTM-4-PyP/Co-Salen/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 9 is a chart of the ultraviolet-visible absorption spectrum of FeTM-4-PyP/Co-Salen/CB[10] obtained in Example 8. 図10は、実施例9で得られたFeTM-4-PyP/Co-Salen(OMe)/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 10 is a chart of an ultraviolet-visible absorption spectrum of FeTM-4-PyP/Co-Salen(OMe)/CB[10] obtained in Example 9. 図11は、実施例10で得られたFeTM-4-PyP/Fe-Salen(OMe)/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 11 is a chart of an ultraviolet-visible absorption spectrum of FeTM-4-PyP/Fe-Salen(OMe)/CB[10] obtained in Example 10. 図12は、実施例11で得られたFeTM-4-PyP/Fe-Salen/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 12 is a chart of an ultraviolet-visible absorption spectrum of FeTM-4-PyP/Fe-Salen/CB[10] obtained in Example 11. 図13は、実施例12で得られたFeTM-4-PyP/ Fe-Pyalen/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 13 is a chart of an ultraviolet-visible absorption spectrum of FeTM-4-PyP/Fe-Pyalen/CB[10] obtained in Example 12. 図14は、実施例13で得られたFeTM-4-PyP/Co-Pyalen/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 14 is a chart of an ultraviolet-visible absorption spectrum of FeTM-4-PyP/Co-Pyalen/CB[10] obtained in Example 13. 図15は、実施例14で得られた(trans-CoM4Py2P)2/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 15 is a chart of an ultraviolet-visible absorption spectrum of (trans-CoM4Py 2 P) 2 /CB[10] obtained in Example 14. 図16は、実施例15で得られた(trans-ZnM4Py2P)2/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 16 is a chart of an ultraviolet-visible absorption spectrum of (trans-ZnM4Py 2 P) 2 /CB[10] obtained in Example 15. 図17は、実施例16で得られた(trans-FeM4Py2P)2/CB[10]の紫外可視吸収スペクトルのチャートである。FIG. 17 is a chart of the ultraviolet-visible absorption spectrum of (trans-FeM4Py 2 P) 2 /CB[10] obtained in Example 16. 図18は、実施例17で行ったサイクリックボルタンメトリー測定結果を示すチャートである。FIG. 18 is a chart showing the results of cyclic voltammetry measurement performed in Example 17. 図19(a)及び(b)は、それぞれ実施例18で行ったグルコース改質反応後のガスクロマトグラフ測定結果を示すチャートである。19(a) and 19(b) are charts showing the results of gas chromatograph measurement after the glucose reforming reaction performed in Example 18, respectively. 図20(a)及び(b)は、それぞれ実施例19で行った窒素還元反応の結果を示すチャートであり、(a)はヘリウム雰囲気下におけるサイクリックボルタモグラムを示し、(b)は窒素雰囲気下におけるサイクリックボルタモグラムを示す。20(a) and 20(b) are charts showing the results of the nitrogen reduction reaction performed in Example 19, (a) showing a cyclic voltammogram in a helium atmosphere, and (b) showing a nitrogen atmosphere. 3 shows a cyclic voltammogram in FIG.

以下、本発明をさらに詳細に説明する。
本発明の多電子酸化還元触媒は、環状化合物と、該環状化合物中に包摂される嵩高化合物とからなる。
<環状化合物>
本発明において上記環状化合物として用いられる化合物は、7〜14員環、好ましくは10〜14員環、最も好ましくは10員環のククルビット構造を有する化合物(以下「ククルビット化合物」という)である。
上記ククルビット化合物としては、ククルビット[10]ウリル(以下、「CB[10]」という)、ククルビット[8]ウリル(以下、「CB[8]」という)、ククルビット[7]ウリル(以下、「CB[7]」という)、ククルビット[14]ウリル(以下、「CB[14]」という)等を挙げることができる。CB[10]の構造式を以下に示す。
上記ククルビット化合物は、公知の手法、たとえば実施例に記載の方法などを用いて得ることができる。
Hereinafter, the present invention will be described in more detail.
The multi-electron redox catalyst of the present invention comprises a cyclic compound and a bulky compound included in the cyclic compound.
<Cyclic compound>
The compound used as the cyclic compound in the present invention is a compound having a cucurbit structure having a 7 to 14 membered ring, preferably a 10 to 14 membered ring, and most preferably a 10 membered ring (hereinafter referred to as "cucurbit compound").
Examples of the cucurbit compound include cucurbit[10]uril (hereinafter referred to as “CB[10]”), cucurbit[8]uril (hereinafter referred to as “CB[8]”), cucurbit[7]uril (hereinafter referred to as “CB”). [7]”, cucurbit[14]uril (hereinafter referred to as “CB[14]”), and the like. The structural formula of CB[10] is shown below.
The cucurbit compound can be obtained by a known method, for example, the method described in Examples.

<嵩高化合物>
本発明において用いられる上記嵩高化合物は、下記化学式(I)で表される金属ポルフィリン化合物と、下記化学式(I)で表される金属ポルフィリン化合物、下記化学式(II)で表される該金属ピアレン又は下記化学式(III)で表される金属サレンとの2分子である。

また、R5、R6、R7、R8は、それぞれ同一または異なる置換基であって、それぞれ、水素原子、アルキル基、又はアルコシキ基を示す。
アルキル基及びアルコシキ基の炭素数は、1〜10であるのが好ましく、1〜5であるのが更に好ましい。具体的には、アルキル基としては、−CH、−CH2CH3、−CH2CH2CH3、−CH2CH2CH2CH3等を挙げることができ、アルコシキ基としては、−OCH、−OCH2CH3、−CH2CH2OCH3 等を挙げることができる。
M1およびM2は、それぞれ同一または異なる原子であって、遷移元素、卑金属元素を示す。
上記遷移元素としてはFe,Ni,Cu,Ru,Ir,Rh,Re等を挙げることができ、上記卑金属元素としては、Zn,Mg,Mn,Co,Mo等を挙げることができる。
上記M1および上記M2としては、特に好ましくはMo、Fe又はCoである。
上記嵩高化合物は、それぞれ実施例に記載の手法などを用いて得ることができる。
上記金属ポルフィリン化合物としては具体的には以下の化合物などを挙げることができる。
また、上記金属ピアレン及び上記金属サレンとしては具体的には以下の化合物などを挙げることができる。
<Bulk compound>
The bulky compound used in the present invention includes a metalloporphyrin compound represented by the following chemical formula (I), a metalloporphyrin compound represented by the following chemical formula (I), and a metal pierne represented by the following chemical formula (II) or It is two molecules with a metal salen represented by the following chemical formula (III).

R5, R6, R7, and R8 are the same or different substituents, and each represents a hydrogen atom, an alkyl group, or an alkoxy group.
The alkyl group and alkoxy group preferably have 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms. Specifically, the alkyl group, -CH 3, -CH 2 CH 3 , -CH 2 CH 2 CH 3, can be cited such as -CH 2 CH 2 CH 2 CH 3 , as the alkoxy group, - OCH 3, -OCH 2 CH 3, may be mentioned -CH 2 CH 2 OCH 3 and the like.
M1 and M2 are the same or different atoms and represent a transition element and a base metal element.
Examples of the transition element include Fe, Ni, Cu, Ru, Ir, Rh and Re, and examples of the base metal element include Zn, Mg, Mn, Co and Mo.
The above M1 and M2 are particularly preferably Mo, Fe or Co.
The bulky compound can be obtained by using the method described in each example.
Specific examples of the metal porphyrin compound include the following compounds.
Specific examples of the metal pialene and the metal salen include the following compounds.

<具体例>
上記環状化合物と上記嵩高化合物とからなる本発明の多電子酸化還元触媒としては以下の構造式で表される化合物等を好ましく挙げることができる。

<Specific example>
Preferred examples of the multi-electron redox catalyst of the present invention composed of the above cyclic compound and the above bulky compound include compounds represented by the following structural formulas.

<製造方法>
本発明の多電子酸化還元触媒は、一つの嵩高化合物の水溶液に環状化合物を添加し、0〜100℃にて1〜60分間、超音波処理する等して反応を行った後、得られた水溶液にもう一つの嵩高化合物の水溶液を加え、緩衝液を添加して撹拌混合することで、反応を行い、得ることができる。
<Manufacturing method>
The multi-electron redox catalyst of the present invention was obtained after adding a cyclic compound to an aqueous solution of one bulky compound and performing a reaction by sonicating at 0 to 100° C. for 1 to 60 minutes. It is possible to obtain the reaction by adding another aqueous solution of the bulky compound to the aqueous solution, adding the buffer solution, and stirring and mixing.

<使用方法・効果>
本発明の多電子酸化還元触媒は、各種酸化還元反応において触媒として用いることができるが、特に、下記する反応系において好ましく用いることができ、これらの反応系においては触媒を用いない場合に比して数倍の反応効率の向上を図ることも可能である。
(反応系)
酸素を原料とし、アスコルビン酸を還元剤とする反応系(酸素の四電子還元反応)
水素燃料電池用電極触媒(カソード電極における酸素の四電子還元反応)
水素イオンを基質とし、電気化学的に水素ガスを発生させる反応系
二酸化炭素とエポキシ化合物を原料とし、シクロカーボネートを目的物とする反応系
二酸化炭素を電気化学的に還元する反応系
水の分解により水素と酸素を発生させる電気化学反応系
水の分解により水素と酸素を発生させる光化学反応系
水とアルコールを原料とし、二酸化炭素と水素を目的物とする反応系
<How to use/effect>
Although the multi-electron redox catalyst of the present invention can be used as a catalyst in various redox reactions, it can be particularly preferably used in the reaction systems described below, as compared with the case where no catalyst is used in these reaction systems. It is also possible to improve the reaction efficiency several times.
(Reaction system)
Reaction system using oxygen as a raw material and ascorbic acid as a reducing agent (four-electron reduction reaction of oxygen)
Electrode catalyst for hydrogen fuel cell (four-electron reduction reaction of oxygen at cathode electrode)
By using the reaction system carbon dioxide that uses hydrogen ions as a substrate and electrochemically generating hydrogen gas and the epoxy compound as a raw material, and the reaction system carbon dioxide that electrochemically reduces the reaction system carbon dioxide whose target is cyclocarbonate Electrochemical reaction system that produces hydrogen and oxygen Photochemical reaction system that produces hydrogen and oxygen by the decomposition of water A reaction system that uses water and alcohol as raw materials and carbon dioxide and hydrogen

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
なお、多電子酸化還元触媒の合成確認には、汎用性の高い手法であるUV/visスペクトル測定を用いた。(たとえば、当該UV/visスペクトル測定の先行論文として S.Liu et al.,Angew. Chem. Int. Ed.,2008,47,2657〜2660を参照)
〔実施例1〕
CoTM-4-PyP/Co-Salen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Co-Salen/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Salenの合成、(4)SalenへのCo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Co-Salen/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成
出発原料として、5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン(Aldrich社製)、p-トルエンスルホン酸メチル(東京化成社製)、塩化コバルト六水和物(II)(関東化学製)を用いた。
(a)5,10,15,20-テトラ(4-メチルピリジニウム)-21H,23H-ポルフィン(H2TM-4-PyP)の合成
50mgの5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン(0.081mmol)と10mLのp-トルエンスルホン酸メチル(66.3mmol)を、窒素雰囲気下30mLのN,N-ジメチルホルムアミド(DMF)中110℃で24時間加熱還流した。
24時間後、反応の進行はシリカTLC(アセトニトリル/水/KNO3aq)=(8/2/1)により確認した。DMFはエバポレートにより除去し、未反応のp-トルエンスルホン酸メチルは分液(クロロホルム/水)により除去した。分液後、水層にヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し、紫色固体を得た。紫色固体をアセトンに溶解させ、テトラブチルアンモニウムクロリド添加により生じた紫色固体をろ過により回収し、目的物H2TM-4-PyPを得た。収量は45.2mg、収率は68.2%であった。
合成の確認は、先行報告に従い1H-NMRにより行った。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
Note that UV/vis spectrum measurement, which is a highly versatile method, was used to confirm the synthesis of the multi-electron redox catalyst. (See, for example, S. Liu et al., Angew. Chem. Int. Ed., 2008, 47, 2657-2660 as a prior article on the UV/vis spectrum measurement).
Example 1
Synthesis of multi-electron redox catalyst "CoTM-4-PyP/Co-Salen/CB[10]" of the present invention comprising CoTM-4-PyP/Co-Salen/CB[10].
(1) CoTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Salen synthesis, (4) Co introduction into Salen (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/Co-Salen/CB[10].
(1) Synthesis of CoTM-4-PyP As a starting material, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (manufactured by Aldrich), methyl p-toluenesulfonate (Tokyo Kasei) Co., Ltd.) and cobalt chloride hexahydrate (II) (manufactured by Kanto Kagaku).
(a) Synthesis of 5,10,15,20-tetra(4-methylpyridinium)-21H,23H-porphine (H2TM-4-PyP)
50 mg of 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (0.081 mmol) and 10 mL of methyl p-toluenesulfonate (66.3 mmol), 30 mL of N,N- under a nitrogen atmosphere. The mixture was heated under reflux in dimethylformamide (DMF) at 110°C for 24 hours.
After 24 hours, the progress of the reaction was confirmed by silica TLC (acetonitrile/water/KNO3aq)=(8/2/1). DMF was removed by evaporation, and unreacted methyl p-toluenesulfonate was removed by liquid separation (chloroform/water). After liquid separation, ammonium hexafluorophosphate (NH4PF6) was added to the aqueous layer to obtain a purple solid. The purple solid was dissolved in acetone, and the purple solid produced by adding tetrabutylammonium chloride was collected by filtration to obtain the target product H2TM-4-PyP. The yield was 45.2 mg, and the yield was 68.2%.
The synthesis was confirmed by 1H-NMR according to the previous report.

(b)CoTM-4-PyPの合成
H2TM-4-PyP(50mg, 0.061mmol)と塩化コバルト六水和物(II)(300 mg, 0.366mmol)を76.8 mLの水に溶解させ、塩酸を用いてpH4に合成し、窒素雰囲気下100℃で加熱還流した。反応進行はシリカTLC(アセトニトリル/水/KNO3aq)=(8/2/1)により確認した。
反応後、析出した赤褐色沈殿をろ過により除去し、ろ液にヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し、紫色固体を得た。紫色固体をアセトンに溶解させ、テトラブチルアンモニウムクロリド添加により生じた紫色固体をろ過により回収し、目的物CoTM-4-PyPを得た。収量は60mg、収率は32.1%であった。
(b) Synthesis of CoTM-4-PyP
H2TM-4-PyP (50 mg, 0.061 mmol) and cobalt chloride hexahydrate (II) (300 mg, 0.366 mmol) were dissolved in 76.8 mL of water and synthesized to pH 4 using hydrochloric acid, and the pH was adjusted to 100 under a nitrogen atmosphere. Heated to reflux at °C. The progress of the reaction was confirmed by silica TLC (acetonitrile/water/KNO3aq)=(8/2/1).
After the reaction, the reddish brown precipitate that had precipitated was removed by filtration, and ammonium hexafluorophosphate (NH4PF6) was added to the filtrate to obtain a purple solid. The purple solid was dissolved in acetone, and the purple solid generated by addition of tetrabutylammonium chloride was collected by filtration to obtain the target product CoTM-4-PyP. The yield was 60 mg, and the yield was 32.1%.

(2)CB[10]の合成
出発原料として、グリコールウリル(Aldrich社製)、パラホルムアルデヒド(Aldrich社製)、シアヌル酸クロリド(東京化成社製)、4-[(N-Boc)アミノメチル]アニリン(Aldrich社製)を用いた。
(a) CB[5]/CB[10]の合成
グリコールウリル(53g,0.37mol)とパラホルムアルデヒド(23.6g,0.75mol)を粉末状態でよく混合した。4℃に冷却した濃塩酸75.3mLを加え。アイスバス中で溶液がゲル化するまで攪拌した。次に、オイルバス中110℃で17時間加熱還流した。
反応後、反応溶液を水で10倍に希釈し、析出した白色固体をろ過により回収し、真空オーブン中50℃で一晩乾燥した。得られた固体を濃塩酸中100℃で繰り返し再結晶することにより、目的物であるCB[5]/CB[10]を得た。収量は0.8g、収率は2%であった。合成の確認は、先行報告に従い1H-NMR測定により行った。
(2) Synthesis of CB[10] As a starting material, glycoluril (manufactured by Aldrich), paraformaldehyde (manufactured by Aldrich), cyanuric chloride (manufactured by Tokyo Kasei), 4-[(N-Boc)aminomethyl] Aniline (manufactured by Aldrich) was used.
(a) Synthesis of CB[5]/CB[10]
Glycoluril (53g, 0.37mol) and paraformaldehyde (23.6g, 0.75mol) were mixed well in powder form. Add 75.3 mL of concentrated hydrochloric acid cooled to 4°C. Stir in an ice bath until the solution gels. Next, the mixture was heated under reflux in an oil bath at 110° C. for 17 hours.
After the reaction, the reaction solution was diluted 10 times with water, the precipitated white solid was collected by filtration, and dried in a vacuum oven at 50° C. overnight. The target solid, CB[5]/CB[10], was obtained by repeatedly recrystallizing the obtained solid in concentrated hydrochloric acid at 100°C. The yield was 0.8 g, and the yield was 2%. The synthesis was confirmed by 1H-NMR measurement according to the previous report.

(b)内部CB[5]を除去するゲスト分子(中間体2)の合成
(i)中間体1の合成
4-[(N-Boc)アミノメチル]アニリン(1.0g, 4.5mmol)を3.3 mLのテトラヒドロフラン(THF)に溶解させた。シアヌル酸クロリド(0.40g, 2.2mmol)と0.67 mLのN,N-ジイソプロピルエチルアミンを溶液に添加し、0℃で2時間攪拌し、さらに室温で24時間攪拌した。反応後,反応液を濾過し溶媒をエバポレートし、目的物である中間体1を得た。収量は0.95g、収率は86.4%であった。
(b) Synthesis of guest molecule (intermediate 2) that removes internal CB[5]
(i) Synthesis of intermediate 1
4-[(N-Boc)aminomethyl]aniline (1.0 g, 4.5 mmol) was dissolved in 3.3 mL of tetrahydrofuran (THF). Cyanuric acid chloride (0.40 g, 2.2 mmol) and 0.67 mL of N,N-diisopropylethylamine were added to the solution, and the mixture was stirred at 0° C. for 2 hours and further at room temperature for 24 hours. After the reaction, the reaction solution was filtered and the solvent was evaporated to obtain the intermediate 1, which was the desired product. The yield was 0.95 g, and the yield was 86.4%.

(ii)中間体2の合成
中間体1 (0.3g, 0.54mmol)を、水5 mL/トリフルオロ酢酸3 mLの混合溶媒に溶解させ、85℃で10時間加熱還流した。反応後、反応液を室温まで放冷し、冷蔵庫中(4℃)で1日間静置した。析出した結晶を濾過により回収し、目的物である中間体2を得た。収量は280 mg、収率は92%であった。合成の確認は1H NMR測定により行った。
(ii) Synthesis of intermediate 2
Intermediate 1 (0.3 g, 0.54 mmol) was dissolved in a mixed solvent of 5 mL of water/3 mL of trifluoroacetic acid, and the mixture was heated under reflux at 85° C. for 10 hours. After the reaction, the reaction solution was allowed to cool to room temperature and left standing in a refrigerator (4°C) for 1 day. The precipitated crystals were collected by filtration to obtain the intermediate product 2 as a target. The yield was 280 mg, and the yield was 92%. The synthesis was confirmed by 1H NMR measurement.

(b) CB[10]の合成
CB[5]/CB[10](0.70g, 0.26mmol)と中間体2(0.73g, 1.30mmol)を170 mLの水に溶解させ90℃で30分間加熱還流した。反応後、溶液を空冷し濾液を濾過により回収した。濾液を40 mLまで濃縮し冷蔵庫(4℃)中で2時間静置、濾過し濾液を回収した。濾液をエバポレートにより乾固し、得られた固体を50mLのメタノールで繰り返し洗浄することで、CB[10]・中間体2(0.39g, 0.18mmol)を得た。
CB[10]・中間体2(0.37g,0.50mmol)を10mLの無水酢酸に懸濁させ100℃で16時間加熱還流した。沈殿を遠心分離により回収し、20mLのメタノール、20mLのジメチルスルホキシド、及び20 mLの水で洗浄した。固体を真空オーブン中で乾燥させることで、目的物であるCB[10](200mg, 0.12mmol)を得た。収率は73%であった。
(b) Synthesis of CB[10]
CB[5]/CB[10] (0.70 g, 0.26 mmol) and intermediate 2 (0.73 g, 1.30 mmol) were dissolved in 170 mL of water, and the mixture was heated under reflux at 90°C for 30 minutes. After the reaction, the solution was air-cooled and the filtrate was collected by filtration. The filtrate was concentrated to 40 mL, allowed to stand in a refrigerator (4° C.) for 2 hours and filtered to collect the filtrate. The filtrate was evaporated to dryness, and the obtained solid was repeatedly washed with 50 mL of methanol to obtain CB[10].intermediate 2 (0.39 g, 0.18 mmol).
CB[10]-Intermediate 2 (0.37 g, 0.50 mmol) was suspended in 10 mL of acetic anhydride and heated under reflux at 100°C for 16 hours. The precipitate was collected by centrifugation and washed with 20 mL methanol, 20 mL dimethylsulfoxide, and 20 mL water. The solid was dried in a vacuum oven to obtain the target product, CB[10] (200 mg, 0.12 mmol). The yield was 73%.

(3)Salenの合成
出発原料として、エチレンジアミン(東京化成社製)、サリチルアルデヒド(東京化成社製)、o-バニリン(東京化成社製)、1.3ジアミノプロパン(東京化成社製)、ピリジン-2-カルボキシアルデヒド(東京化成社製)を用いた。
メタノール332.7 mlにエチレンジアミン(1.0g, 0.017mol)とサリチルアルデヒド(4.06g, 0.033mol)を加え、室温で1日攪拌した。生成した沈殿物を濾過により回収し、真空オーブン中30℃で一晩乾燥した。目的物は収量2.60g、収率58.3%であった。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(4)Co-Salenの合成
メタノール50mlに上述(3)(0.32g, 1.2mmol)を加え、そこに塩化コバルト六水和物(II) (関東化学製) (0.238g, 1mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量42mg、収率26.1%で得た。合成の確認はFAB-MS測定により行った。
(3) As a starting material for the synthesis of Salen, ethylenediamine (manufactured by Tokyo Kasei), salicylaldehyde (manufactured by Tokyo Kasei), o-vanillin (manufactured by Tokyo Kasei), 1.3 diaminopropane (manufactured by Tokyo Kasei), pyridine-2 -Carboxaldehyde (manufactured by Tokyo Kasei) was used.
Ethylenediamine (1.0 g, 0.017 mol) and salicylaldehyde (4.06 g, 0.033 mol) were added to 332.7 ml of methanol, and the mixture was stirred at room temperature for 1 day. The resulting precipitate was collected by filtration and dried in a vacuum oven at 30°C overnight. The amount of the target product was 2.60 g, and the yield was 58.3%. The synthesis was confirmed by 1 H-NMR measurement according to the previous report.
(4) Synthesis of Co-Salen The above (3) (0.32 g, 1.2 mmol) was added to 50 ml of methanol, and cobalt chloride hexahydrate (II) (manufactured by Kanto Kagaku) (0.238 g, 1 mmol) was dissolved therein, Synthesized to pH 4 using hydrochloric acid, and stirred for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried in a vacuum oven at 40° C. overnight to obtain 42 mg of the target product and 26.1% in yield. Confirmation of synthesis was performed by FAB-MS measurement.

(5)CoTM-4-PyP/CB[10]の合成

CoTM-4-PyP 1.0mgを5mLの水に溶解させた。溶液にCB[10] 2.6mgを添加し、室温で10分間超音波処理した。未反応のCB[10]をフィルター濾過により除去し、CoTM-4-PyP/CB[10]を水溶液として得た。CoTM-4-PyP/CB[10]形成は定量的に進行した。合成の確認は、UV/visスペクトルにより行った。
(6)CoTM-4-PyP/Co-Salen/CB[10]の合成
式中、MはCoを示す。
図1(a)に示す結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるCo-Salenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図1(b)に示すように434 nmにおけるプロットは1:1のフィッティングカーブを示している。これらのことから、CB[10]内部でCoTM-4-PyPとCo-Salenが二核錯体を形成していることがわかる。
(5) Synthesis of CoTM-4-PyP/CB[10]

CoTM-4-PyP 1.0 mg was dissolved in 5 mL water. 2.6 mg of CB[10] was added to the solution and sonicated at room temperature for 10 minutes. Unreacted CB[10] was removed by filtration to obtain CoTM-4-PyP/CB[10] as an aqueous solution. CoTM-4-PyP/CB[10] formation proceeded quantitatively. Confirmation of the synthesis was performed by UV/vis spectrum.
(6) Synthesis of CoTM-4-PyP/Co-Salen/CB[10]
In the formula, M represents Co.
As is clear from the results shown in Fig. 1(a), Co-Salen with different concentrations was added to CoTM-4-PyP/CB[10] with a constant concentration. A large change was observed in the belt. Further, as shown in FIG. 1(b), the plot at 434 nm shows a 1:1 fitting curve. From these, it can be seen that CoTM-4-PyP and Co-Salen form a binuclear complex inside CB[10].

〔実施例2〕
CoTM-4-PyP/Fe-Salen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Fe-Salen/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Salenの合成、(4)Salenへの金属導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Fe -Salen/CB[10]の合成の6ステップで行った。
(1) CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2) CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Salenの合成は、上述の実施例1と同様にして行い、目的物を得た。
(4) Fe-Salenの合成(SalenへのFe導入)
メタノール50 mlに上述(3)(0.32 g,1.2 mmol)を加え、そこに塩化鉄(II)(関東化学製) (0.200 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量103 mg、収率31.9%で得た。合成の確認はFAB-MS測定により行った。
(5) CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Fe-Salen/CB[10]の合成
式中、MはCoを示す。
CoTM-4-PyP/Fe-Salen /CB[10]の合成は、Fe-Salenの粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160 μM)
2)Fe-Salenの160μM 水溶液。
3)CoTM-4-PyP/CB[10]の160μM水溶液。
そして、1)を(2000-X) μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のFe-Salenを添加した際の吸収スペクトル変化を追跡した。Xの値は0〜2000まで変化させた。従って、添加したFe-Salenの濃度は、0〜160μMであった。結果を図2に示す。
図2(a)に示す結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるFe-Salenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図2(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとFe-Salenが二核錯体を形成していることがわかる。
[Example 2]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Fe-Salen/CB[10]" of the present invention comprising CoTM-4-PyP/Fe-Salen/CB[10].
The synthesis is (1) CoTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Salen synthesis, (4) Metal introduction into Salen (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/Fe 2 -Salen/CB[10] were synthesized in 6 steps.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the target product.
(2) The synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the desired product.
(3) Salen was synthesized in the same manner as in Example 1 above to obtain the desired product.
(4) Synthesis of Fe-Salen (Fe introduction into Salen)
The above (3) (0.32 g, 1.2 mmol) was added to 50 ml of methanol, iron (II) chloride (manufactured by Kanto Chemical Co., Ltd.) (0.200 g, 1 mmol) was dissolved therein, and it was synthesized to pH 4 with hydrochloric acid, Stir for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried in a vacuum oven at 40° C. overnight to obtain 103 mg of the target product and 31.9% in yield. Confirmation of synthesis was performed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The target product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Fe-Salen/CB[10]
In the formula, M represents Co.
The synthesis of CoTM-4-PyP/Fe-Salen/CB[10] was performed by adding Fe-Salen powder to an aqueous solution of CoTM-4-PyP/CB[10] to obtain the desired product. In this example, the following aqueous solutions were synthesized in order to perform measurement using ultraviolet/visible absorption spectra as confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM aqueous solution of Fe-Salen.
3) 160 μM aqueous solution of CoTM-4-PyP/CB[10].
Then, 1) was added to (2000-X) μL, 2) to X μL, and 3) to 500 μL, and the total amount was kept constant at 2500 μL. By changing the value of X, the change in absorption spectrum when different concentrations of Fe-Salen were added was tracked. The value of X was changed from 0 to 2000. Therefore, the concentration of Fe-Salen added was 0 to 160 μM. The results are shown in Figure 2.
As is clear from the results shown in Fig. 2(a), the addition of Fe-Salen with different concentrations to CoTM-4-PyP/CB[10] with a constant concentration resulted in the maximum absorption of the Soret band and Q. A large change was observed in the belt. Also, as shown in Fig. 2(b), the plot at 441 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Fe-Salen form a binuclear complex inside CB[10]. Recognize.

〔実施例3〕
CoTM-4-PyP/Mo-Salen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Mo-Salen/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Salenの合成、(4)SalenへのMo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Mo-Salen/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Salenの合成は、上述の実施例1と同様にして行い、目的物を得た。
(4) SalenへのMo導入
THF 35 mlに上述の方法により合成したSalen (131.2 mg,0.0489 mmol)を加え、そこにヘキサカルボニルモリブデン(関東化学製) (125 mg,0.473 mmol)を加え22時間還流した。沈殿物を濾過し、クロロホルムで洗浄し、真空オーブン中で40℃で一晩乾燥させ目的物を収量150 mg、収率74.6%で得た。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Mo-Salen/CB[10]の合成
式中、MはCoを示す。
CoTM-4-PyP/CB[10](10μM)に異なる濃度のMo-Salen(0~20μM)を添加し、その際の吸収スペクトル変化を紫外・可視吸収スペクトルを用いた測定を行った。結果を図3(a)及び(b)に示す。
また、錯形成比を求めるために、job’s Plot法を用いた。20μMに合成したCoTM-4-PyP/CB[10]とMo-Salenの比を1:0~0:1まで変化させ、その際極大吸収スペクトル変化を追跡した。結果を図4(a)及び(b)に示す。
図3(a)に示す結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるMo-Salenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図3(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、図4(a)及び(b)に示すように、Job’s PlotからもCB[10]内部でCoTM-4-PyPとMo-Salenが二核錯体を形成していることがわかる。
[Example 3]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Mo-Salen/CB[10]" of the present invention comprising CoTM-4-PyP/Mo-Salen/CB[10].
(1) CoTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Salen synthesis, (4) Mo introduction into Salen (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/Mo-Salen/CB[10].
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Salen was synthesized in the same manner as in Example 1 above to obtain the desired product.
(4) Introduction of Mo to Salen
Salen (131.2 mg, 0.0489 mmol) synthesized by the above method was added to 35 ml of THF, and hexacarbonyl molybdenum (manufactured by Kanto Kagaku) (125 mg, 0.473 mmol) was added thereto, and the mixture was refluxed for 22 hours. The precipitate was filtered, washed with chloroform, and dried in a vacuum oven at 40° C. overnight to obtain 150 mg of the desired product in a yield of 74.6%. The synthesis was confirmed by 1 H-NMR measurement according to the previous report.
(5) Synthesis of CoTM-4-PyP/CB[10] The target product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Mo-Salen/CB[10]
In the formula, M represents Co.
Different concentrations of Mo-Salen (0 to 20 μM) were added to CoTM-4-PyP/CB[10] (10 μM), and the change in absorption spectrum at that time was measured using ultraviolet and visible absorption spectra. The results are shown in FIGS. 3(a) and 3(b).
The job's Plot method was used to obtain the complex formation ratio. The ratio of CoTM-4-PyP/CB[10] and Mo-Salen synthesized at 20 μM was changed from 1:0 to 0:1, and the change in the maximum absorption spectrum was traced. The results are shown in FIGS. 4(a) and 4(b).
As is clear from the results shown in Fig. 3(a), the addition of different concentrations of Mo-Salen to CoTM-4-PyP/CB[10] with a constant concentration resulted in the maximum absorption of the Soret band and Q. A large change was observed in the belt. Further, as shown in FIG. 3(b), the plot at 441 nm shows a 1:1 fitting curve, and as shown in FIGS. 4(a) and 4(b), Job's Plot also shows CoTM- inside the CB[10]. It can be seen that 4-PyP and Mo-Salen form a binuclear complex.

〔実施例4〕
CoTM-4-PyP/Co-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Co-Salen(OMe)/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3) Salen(OMe)の合成、(4)Salen(OMe)へのCo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Co-Salen(OMe)/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Salen(OMe)の合成
メタノール332.7 mlにエチレンジアミン(1.0 g, 0.017 mol)とo-バニリン(東京化成社製) (5.06 g,0.033 mol)を加え、室温で1日攪拌した。生成した沈殿物を濾過により回収し、真空オーブン中30℃で一晩乾燥した。目的物は収量5.46 g、収率80.8%であった。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(4) Salen(OMe)へのCo導入
メタノール50 mlに上述(3)(400 mg,1.2 mmol)を加え、そこに塩化コバルト六水和物(II)(0.238 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量253 mg、収率65.6%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Co-Salen(OMe)/CB[10]の合成
式中Mは、Coを示す。
CoTM-4-PyP/Co-Salen(OMe)/CB[10]の合成は、Co-Salen(OMe)の粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160μM)
2)Co- Salen(OMe)の160μM 溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のCo-Salen(OMe)を添加した際の吸収スペクトル変化を追跡した。Xの値は0〜2000まで変化させた。従って、添加したCo-Salen(OMe)の濃度は、0〜160μMであった。結果を図5に示す。
図5(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるCo-Salen(OMe)を添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図5(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとCo-Salen(OMe)が二核錯体を形成していることがわかる。
[Example 4]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Co-Salen(OMe)/CB[10]" of the present invention comprising CoTM-4-PyP/Co-Salen(OMe)/CB[10].
(1) CoTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Salen(OMe) synthesis, (4) Co introduction into Salen(OMe) (5) CoTM- It was carried out in 6 steps of 4-PyP/CB[10] synthesis and (6)Co™-4-PyP/Co-Salen(OMe)/CB[10] synthesis.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Synthesis of Salen(OMe) Ethylenediamine (1.0 g, 0.017 mol) and o-vanillin (manufactured by Tokyo Kasei) (5.06 g, 0.033 mol) were added to 332.7 ml of methanol, and the mixture was stirred at room temperature for 1 day. The resulting precipitate was collected by filtration and dried in a vacuum oven at 30°C overnight. The amount of the target product was 5.46 g, and the yield was 80.8%. The synthesis was confirmed by 1 H-NMR measurement according to the previous report.
(4) Introduction of Co to Salen(OMe) The above (3) (400 mg, 1.2 mmol) was added to 50 ml of methanol, and cobalt chloride hexahydrate (II) (0.238 g, 1 mmol) was dissolved therein, Synthesized to pH 4 using hydrochloric acid, and stirred for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried in a vacuum oven at 40° C. overnight to obtain the target product in an amount of 253 mg and 65.6%. Confirmation of synthesis was performed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The target product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Co-Salen(OMe)/CB[10]
In the formula, M represents Co.
CoTM-4-PyP/Co-Salen(OMe)/CB[10] is synthesized by adding Co-Salen(OMe) powder to CoTM-4-PyP/CB[10] aqueous solution. I got a thing. In this example, the following aqueous solutions were synthesized in order to perform measurement using ultraviolet/visible absorption spectra as confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM Co- Salen(OMe) solution
3) 160 μM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) (2000-X) μL, 2) X μL, and 3) 500 μL were added, and the total amount was kept constant at 2500 μL. By changing the value of X, the change in absorption spectrum when different concentrations of Co-Salen(OMe) were added was tracked. The value of X was changed from 0 to 2000. Therefore, the concentration of Co-Salen(OMe) added was 0 to 160 μM. Results are shown in FIG.
As is clear from the results as shown in Fig. 5(a), Co-Salen(OMe) with different concentrations was added to CoTM-4-PyP/CB[10] with a constant concentration. A large change was observed in a certain Soret zone and Q zone. As shown in Fig. 5(b), the plot at 441 nm shows a 1:1 fitting curve, and CoTM-4-PyP and Co-Salen(OMe) form a binuclear complex inside CB[10]. I understand that

〔実施例5〕
CoTM-4-PyP/Fe-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Fe-Salen(OMe)/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3) Salen(OMe)の合成、(4)Salen(OMe)へのFe導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Fe- Salen(OMe)/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Salen(OMe)の合成は上述の実施例4と同様にして行い、目的物を得た。
(4) メタノール50 mlに上述(3)(400 mg,1.2 mmol)を加え、そこに塩化鉄(II)(関東化学製) (0.200 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量258 mg、収率67.5%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Fe- Salen(OMe)/CB[10]の合成
式中MはCoを示す。
CoTM-4-PyP/Fe-Salen(OMe)/CB[10]の合成は、Fe-Salen(OMe)の粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160μM)
2)Fe-Salen(OMe)の160μM 水溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のFe-Salen(OMe)を添加した際の吸収スペクトル変化を追跡した。Xの値は0〜2000まで変化させた。従って、添加したFe-Salen(OMe)の濃度は、0〜160μMであった。結果を図6に示す。
図6(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるFe-Salen(OMe)を添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図6(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとFe-Salen(OMe)が二核錯体を形成していることがわかる。
[Example 5]
Synthesis of multi-electron redox catalyst "CoTM-4-PyP/Fe-Salen(OMe)/CB[10]" of the present invention comprising CoTM-4-PyP/Fe-Salen(OMe)/CB[10].
(1) CoTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Salen(OMe) synthesis, (4) Fe introduction into Salen(OMe) (5) CoTM- It was carried out in 6 steps of 4-PyP/CB[10] synthesis and (6)Co™-4-PyP/Fe-Salen(OMe)/CB[10] synthesis.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Salen(OMe) was synthesized in the same manner as in Example 4 above to obtain the desired product.
(4) The above (3) (400 mg, 1.2 mmol) was added to 50 ml of methanol, and iron (II) chloride (Kanto Chemical Co., Inc.) (0.200 g, 1 mmol) was dissolved therein, and the pH was adjusted to 4 with hydrochloric acid. Synthesized and stirred for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried in a vacuum oven at 40° C. overnight to obtain 258 mg of the desired product and 67.5% yield. Confirmation of synthesis was performed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The target product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Fe- Salen(OMe)/CB[10]
In the formula, M represents Co.
CoTM-4-PyP/Fe-Salen(OMe)/CB[10] is synthesized by adding Fe-Salen(OMe) powder to CoTM-4-PyP/CB[10] aqueous solution. I got a thing. In this example, the following aqueous solutions were synthesized in order to perform measurement using ultraviolet/visible absorption spectra as confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM aqueous solution of Fe-Salen(OMe)
3) 160 μM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) (2000-X) μL, 2) X μL, and 3) 500 μL were added, and the total amount was kept constant at 2500 μL. By changing the value of X, the change in the absorption spectrum when different concentrations of Fe-Salen(OMe) were added was tracked. The value of X was changed from 0 to 2000. Therefore, the concentration of Fe-Salen(OMe) added was 0 to 160 μM. Results are shown in FIG.
As is clear from the results as shown in Fig. 6(a), as a result of adding Fe-Salen(OMe) with different concentrations to CoTM-4-PyP/CB[10] with a constant concentration, the maximum absorption was observed. A large change was observed in a certain Soret zone and Q zone. As shown in Fig. 6(b), the plot at 441 nm shows a 1:1 fitting curve, and CoTM-4-PyP and Fe-Salen(OMe) form a binuclear complex inside CB[10]. I understand that

〔実施例6〕
CoTM-4-PyP/Co-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/ Co-Pyalen /CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3) 1.3-〔Bis(Pyridine-2-Imino)〕Propane(以下Pyalen)の合成、(4)PyalenへのCo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Co-Pyalen/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Pyalenの合成
ディーンスターク装置を組み立て、そこにトルエン50 mlに1.3ジアミノプロパン(東京化成社製) (0.74 g,0.01 mol)を溶かし、さらにピリジン-2-カルボキシアルデヒド(東京化成社製) (2.14 g,0.02 mol)を加えた。ディーンスターク管に水が出てこなくなるまで反応させた。反応液をエバポレートにより溶媒を飛ばし、目的物を得た。収量は1.8 g、収率は71.4%であった。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(4) メタノール50 mlに上述(3)(300 mg,1.2 mmol)を加え、そこに塩化コバルト六水和物(II)(0.238 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量300 mg、収率95.0%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/ Co-Pyalen/CB[10]の合成
式中MはCoを示す。
CoTM-4-PyP/ Co-Pyalen /CB[10]の合成は、Co-Pyalenの粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)水
2)Co-Pyalenの160μM 水溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のCo-Pyalenを添加した際の吸収スペクトル変化を追跡した。Xの値は0〜2000まで変化させた。従って、添加したCo-Pyalenの濃度は、0〜160μMであった。結果を図7に示す。
図7(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるCo-Pyalenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図7(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとCo-Pyalenが二核錯体を形成していることがわかる。
[Example 6]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Co-Pyalen/CB[10]" of the present invention comprising CoTM-4-PyP/Co-Pyalen/CB[10].
(1) CoTM-4-PyP, (2) CB[10], (3) 1.3-[Bis(Pyridine-2-Imino)] Propane (hereinafter Pyalen), (4) Introduction of Co into Pyalen (5) Synthesis of CoTM-4-PyP/CB[10] and (6) Synthesis of CoTM-4-PyP/Co-Pyalen/CB[10] were performed in 6 steps.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Synthesis of Pyalen Assemble a Dean-Stark apparatus, dissolve 1.3 diaminopropane (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.74 g, 0.01 mol) in 50 ml of toluene, and further pyridine-2-carboxaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.). (2.14 g, 0.02 mol) was added. It was made to react until water did not come out to the Dean Stark tube. The reaction solution was evaporated to remove the solvent to obtain the desired product. The yield was 1.8 g, and the yield was 71.4%. The synthesis was confirmed by 1 H-NMR measurement according to the previous report.
(4) The above (3) (300 mg, 1.2 mmol) was added to 50 ml of methanol, cobalt chloride hexahydrate (II) (0.238 g, 1 mmol) was dissolved therein, and it was synthesized to pH 4 with hydrochloric acid. And stirred for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried in a vacuum oven at 40° C. overnight to obtain 300 mg of the desired product and a yield of 95.0%. Confirmation of synthesis was performed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The target product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/ Co-Pyalen/CB[10]
In the formula, M represents Co.
CoTM-4-PyP/Co-Pyalen/CB[10] was synthesized by adding Co-Pyalen powder to an aqueous solution of CoTM-4-PyP/CB[10] to obtain the desired product. In this example, the following aqueous solutions were synthesized in order to perform measurement using ultraviolet/visible absorption spectra as confirmation of synthesis.
1) water
2) 160 μM aqueous solution of Co-Pyalen
3) 160 μM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) (2000-X) μL, 2) X μL, and 3) 500 μL were added, and the total amount was kept constant at 2500 μL. By changing the value of X, the change in absorption spectrum when different concentrations of Co-Pyalen were added was tracked. The value of X was changed from 0 to 2000. Therefore, the concentration of Co-Pyalen added was 0 to 160 μM. The results are shown in Fig. 7.
As shown in Fig. 7(a), as is clear from the results, CoTM-PyaP/CB[10] with a constant concentration was added with different concentrations of Co-Pyalen. And a big change was observed in the Q band. As shown in Fig. 7(b), the plot at 441 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Co-Pyalen form a binuclear complex inside CB[10]. Recognize.

〔実施例7〕
CoTM-4-PyP/Fe-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/ Fe-Pyalen /CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Pyalenの合成、(4)PyalenへのFe導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Fe-Pyalen /CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Pyalenの合成
上述の実施例6と同様にして行い、目的物を得た。
(4) PyalenへのFe導入
メタノール50 mlに上述(3)(300 mg,1.2 mmol)を加え、そこに塩化鉄(II)(関東化学製) (0.200 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量307 mg、収率99.0%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/ Fe-Pyalen /CB[10]の合成
式中MはCoを示す。
CoTM-4-PyP/ Fe-Pyalen/CB[10]の合成は、Fe-Pyaleeの粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160 μM)
2)Fe-Pyalenの160μM 水溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のFe-Pyalenを添加した際の吸収スペクトル変化を追跡した。Xの値は0〜2000まで変化させた。従って、添加したFe-Pyalenの濃度は、0〜160μMであった。結果を図8に示す。
図8(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるFe-Pyalenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図8(b)に示すように、435 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとFe-Pyalenが二核錯体を形成していることがわかる。
Example 7
Synthesis of multi-electron redox catalyst "CoTM-4-PyP/Fe-Pyalen/CB[10]" of the present invention comprising CoTM-4-PyP/Fe-Pyalen/CB[10].
The synthesis is as follows: (1) CoTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Pyalen synthesis, (4) Fe introduction into Pyalen (5) CoTM-4-PyP/CB[ [10] and (6)Co™-4-PyP/Fe-Pyalen/CB[10] were synthesized in 6 steps.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Synthesis of Pyalen The desired product was obtained in the same manner as in Example 6 above.
(4) Fe introduction to Pyalen
The above (3) (300 mg, 1.2 mmol) was added to 50 ml of methanol, and iron (II) chloride (manufactured by Kanto Chemical Co., Ltd.) (0.200 g, 1 mmol) was dissolved therein, and synthesized to pH 4 with hydrochloric acid, Stir for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried in a vacuum oven at 40° C. overnight to obtain the target product in an amount of 307 mg and a yield of 99.0%. Confirmation of synthesis was performed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The target product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Fe-Pyalen/CB[10]
In the formula, M represents Co.
The synthesis of CoTM-4-PyP/Fe-Pyalen/CB[10] was carried out by adding Fe-Pyalee powder to the CoTM-4-PyP/CB[10] aqueous solution to obtain the desired product. In this example, the following aqueous solutions were synthesized in order to perform measurement using ultraviolet/visible absorption spectra as confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM aqueous solution of Fe-Pyalen
3) 160 μM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) (2000-X) μL, 2) X μL, and 3) 500 μL were added, and the total amount was kept constant at 2500 μL. By changing the value of X, the change in the absorption spectrum when different concentrations of Fe-Pyalen were added was tracked. The value of X was changed from 0 to 2000. Therefore, the concentration of Fe-Pyalen added was 0 to 160 μM. The results are shown in Fig. 8.
As is clear from the results as shown in FIG. 8(a), as a result of adding different concentrations of Fe-Pyalen to CoTM-4-PyP/CB[10] with a constant concentration, the maximum absorption of the Soret band And a big change was observed in the Q band. As shown in Fig. 8(b), the plot at 435 nm shows a 1:1 fitting curve, and CoTM-4-PyP and Fe-Pyalen form a binuclear complex inside CB[10]. I understand.

〔実施例8〕
FeTM-4-PyP/Co-Salen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Co-Salen/CB[10]」の合成。
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Co-Salenの合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Co-Salen/CB[10]の合成の5ステップで行った。
(1) FeTM-4-PyPの合成
出発原料として、5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン(Aldrich社製)、p-トルエンスルホン酸メチル(東京化成社製)、塩化鉄(II)四水和物(関東化学製)を用いた。
(a) 5,10,15,20-テトラ(4-メチルピリジニウム)-21H,23H-ポルフィン(H2TM-4-PyP)の合成
実施例1記載の合成法と同様にして目的物H2TM-4-PyPを得た。収量は45.2 mg、収率は68.2%であった。合成の確認は、先行報告に従い1H-NMRにより行った。
[Example 8]
Synthesis of multi-electron redox catalyst "FeTM-4-PyP/Co-Salen/CB[10]" of the present invention comprising FeTM-4-PyP/Co-Salen/CB[10].
Synthesis of (1) FeTM-4-PyP, (2) CB[10], (3) Co-Salen, (4) FeTM-4-PyP/CB[10], 5) FeTM-4-PyP/Co-Salen/CB[10] was synthesized in 5 steps.
(1) FeTM-4-PyP synthesis starting material, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (manufactured by Aldrich), methyl p-toluenesulfonate (Tokyo Kasei) Manufactured by Kanto Chemical Co., Ltd.) was used.
(a) Synthesis of 5,10,15,20-tetra(4-methylpyridinium)-21H,23H-porphine (H2TM-4-PyP) In the same manner as in the synthesis method described in Example 1, the target compound H2TM-4- Got PyP. The yield was 45.2 mg, and the yield was 68.2%. The synthesis was confirmed by 1H-NMR according to the previous report.

(b) Fe(III)-5,10,15,20-テトラ(4-メチルピリジニウム)-21H,23H-ポルフィン(FeTM-4-PyP)の合成
H2TM-4-PyP(50 mg, 0.061 mmol)と塩化鉄(II)(77 mg, 0.61 mmol)を20 mLの水に溶解させ、塩酸を用いてpH 4に合成し、窒素雰囲気下100℃で加熱還流した。反応進行はシリカTLC(アセトニトリル/水/KNO3aq)=(8/2/1)により確認した。
反応後、析出した赤褐色沈殿をろ過により除去し、ろ液にヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し、紫色固体を得た。紫色固体をアセトンに溶解させ、テトラブチルアンモニウムクロリド添加により生じた紫色固体をろ過により回収し、目的物FeTM-4-PyPを得た。収量は44.3 mg、収率は80%であった。
(2) CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Co-Salenの合成は、上述の実施例1と同様にして行い、目的物を得た。
(4) FeTM-4-PyP/CB[10]の合成
FeTM-4-PyP 1.0mgを5mLの水に溶解させた。溶液にCB[10] 2.6mgを添加し、室温で10分間超音波処理した。未反応のCB[10]をフィルター濾過により除去し、FeTM-4-PyP /CB[10]を水溶液として得た。FeTM-4-PyP/CB[10]形成は定量的に進行した。合成の確認は、UV/visスペクトルにより行った。
(6)FeTM-4-PyP/Co-Salen/CB[10]の合成
FeTM-4-PyP/Co-Salen/CB[10]の合成は、Co-Salenの粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。
合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図9に示す。
図9に示す結果から明らかなように、600 nm付近にあるFeTM-4-PyP/CB[10]の吸収帯(Q band)が短波長シフトした。また、424 nmのFeTM-4-PyP/CB[10]由来の吸収帯(Soret band)の吸光度が低下した。このような吸収スペクトル変化は、芳香環同士の相互作用により観られる。従って、FeTM-4-PyP/CB[10]内部へのCo-Salenの包接、即ちFeTM-4-PyP/Co-Salen/CB[10]が形成されていることがわかる。
(b) Synthesis of Fe(III)-5,10,15,20-tetra(4-methylpyridinium)-21H,23H-porphine (FeTM-4-PyP)
H2TM-4-PyP (50 mg, 0.061 mmol) and iron(II) chloride (77 mg, 0.61 mmol) were dissolved in 20 mL of water, pH was adjusted to 4 with hydrochloric acid, and the mixture was heated at 100°C under nitrogen atmosphere. Heated to reflux. The progress of the reaction was confirmed by silica TLC (acetonitrile/water/KNO3aq)=(8/2/1).
After the reaction, the reddish brown precipitate that had precipitated was removed by filtration, and ammonium hexafluorophosphate (NH4PF6) was added to the filtrate to obtain a purple solid. The purple solid was dissolved in acetone, and the purple solid generated by the addition of tetrabutylammonium chloride was collected by filtration to obtain the desired product FeTM-4-PyP. The yield was 44.3 mg, and the yield was 80%.
(2) The synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the desired product.
(3) Co-Salen was synthesized in the same manner as in Example 1 above to obtain the target product.
(4) Synthesis of FeTM-4-PyP/CB[10]
FeTM-4-PyP 1.0 mg was dissolved in 5 mL of water. 2.6 mg of CB[10] was added to the solution and sonicated at room temperature for 10 minutes. Unreacted CB[10] was removed by filter filtration to obtain FeTM-4-PyP/CB[10] as an aqueous solution. FeTM-4-PyP/CB[10] formation proceeded quantitatively. Confirmation of the synthesis was performed by UV/vis spectrum.
(6) Synthesis of FeTM-4-PyP/Co-Salen/CB[10]
The synthesis of FeTM-4-PyP/Co-Salen/CB[10] was performed by adding Co-Salen powder to the FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.
The compound obtained by the synthesis was confirmed by measuring the UV-visible absorption spectrum. The results are shown in Fig. 9.
As is clear from the results shown in FIG. 9, the absorption band (Q band) of FeTM-4-PyP/CB[10] near 600 nm was shifted by a short wavelength. In addition, the absorbance of the absorption band (Soret band) derived from FeTM-4-PyP/CB[10] at 424 nm decreased. Such an absorption spectrum change is observed due to the interaction between aromatic rings. Therefore, it can be seen that inclusion of Co-Salen inside FeTM-4-PyP/CB[10], that is, FeTM-4-PyP/Co-Salen/CB[10] is formed.

〔実施例9〕
FeTM-4-PyP/Co-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Co-Salen(OMe)/CB[10] 」の合成。
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Co-Salen(OMe)の合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Co-Salen(OMe)/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Co-Salen(OMe)の合成は、上述の実施例4と同様にして行い、目的物を得た。
(4) FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/ Co-Salen(OMe)/CB[10]の合成
FeTM-4-PyP/Co-Salen(OMe )/CB[10]の合成は、Co-Salen(OMe )の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

合成により得られた化合物の確認は紫外可視吸収スペクトル測定により行った、結果を図10に示す。
図10において、青線は FeTM-4-PyP/CB[10]の吸収スペクトルを、赤線は FeTM-4-PyP/Co-Salen(OMe)/CB[10]の吸収スペクトルを示す。差スペクトルによる評価の結果、400 nmに新たな吸収帯が観測された。これはCB[10]内部での、FeTM-4-PyP及びCo-Salen(OMe)間のπ-π電荷移動相互作用に由来すると考えられる。従って、FeTM-4-PyP/Co-Salen(OMe)/CB[10]が形成されていることがわかる。
[Example 9]
Synthesis of multi-electron redox catalyst "FeTM-4-PyP/Co-Salen(OMe)/CB[10]" of the present invention comprising FeTM-4-PyP/Co-Salen(OMe)/CB[10].
Synthesis of (1) FeTM-4-PyP, (2) CB[10], (3) Co-Salen(OMe), (4) FeTM-4-PyP/CB[10] The synthesis was performed in 5 steps of (5) FeTM-4-PyP/Co-Salen(OMe)/CB[10].
(1) FeTM-4-PyP was synthesized in the same manner as in Example 8 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Synthesis of Co-Salen(OMe) was carried out in the same manner as in Example 4 above to obtain the desired product.
(4) FeTM-4-PyP/CB[10] was synthesized in the same manner as in Example 8 above to obtain the target product.
(5) Synthesis of FeTM-4-PyP/Co-Salen(OMe)/CB[10]
FeTM-4-PyP/Co-Salen(OMe )/CB[10] was synthesized by adding Co-Salen(OMe) powder to FeTM-4-PyP/CB[10] aqueous solution. I got a thing.

The compound obtained by the synthesis was confirmed by measuring the UV-visible absorption spectrum. The results are shown in FIG.
In FIG. 10, the blue line shows the absorption spectrum of FeTM-4-PyP/CB[10], and the red line shows the absorption spectrum of FeTM-4-PyP/Co-Salen(OMe)/CB[10]. As a result of evaluation by the difference spectrum, a new absorption band was observed at 400 nm. It is considered that this is due to the π-π charge transfer interaction between FeTM-4-PyP and Co-Salen(OMe) inside CB[10]. Therefore, it can be seen that FeTM-4-PyP/Co-Salen(OMe)/CB[10] is formed.

〔実施例10〕
FeTM-4-PyP/Fe-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Fe-Salen(OMe)/CB[10]の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Fe-Salen(OMe)の合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Fe-Salen(OMe)/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Fe-Salen(OMe)の合成は、上述の実施例5と同様にして行い、目的物を得た。
(4)FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/Fe-Salen(OMe)/CB[10]の合成
FeTM-4-PyP/ Fe-Salen(OMe)/CB[10]の合成は、Fe-Salen(OMe)の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。


合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図11に示す。
図11において、 青線は FeTM-4-PyP/CB[10]の、 赤線は FeTM-4-PyP/Fe-Salen(OMe)/CB[10]の吸収スペクトルである。 Fe-Salen(OMe)の粉末を添加し、超音波処理することでFeTM-4-PyP骨格由来の吸光度の減少が観られた。これはFe-Salen(OMe)の包接により、FeTM-4-PyP周りの環境が疎水的になったためであると考えられる。また、600 nm付近のFeTM-4-PyP/CB[10] 由来の吸収が短波長シフトした。これは、FeTM-4-PyPとFe-Salen(OMe)との会合によるものであると考えられる。従って、FeTM-4-PyP/Fe-Salen(OMe)/CB[10]が形成されていることがわかる。
[Example 10]
The synthetic synthesis of the multi-electron redox catalyst "FeTM-4-PyP/Fe-Salen(OMe)/CB[10] of the present invention consisting of FeTM-4-PyP/Fe-Salen(OMe)/CB[10] is (1) FeTM-4-PyP synthesis, (2) CB[10] synthesis, (3) Fe-Salen(OMe) synthesis, (4) FeTM-4-PyP/CB[10] synthesis, ( 5) FeTM-4-PyP/Fe-Salen(OMe)/CB[10] was synthesized in 5 steps.
(1) FeTM-4-PyP was synthesized in the same manner as in Example 8 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) The synthesis of Fe-Salen(OMe) was performed in the same manner as in Example 5 above to obtain the desired product.
(4) FeTM-4-PyP/CB[10] was synthesized in the same manner as in Example 8 above to obtain the target product.
(5) Synthesis of FeTM-4-PyP/Fe-Salen(OMe)/CB[10]
The synthesis of FeTM-4-PyP/Fe-Salen(OMe)/CB[10] is carried out by adding Fe-Salen(OMe) powder to FeTM-4-PyP/CB[10] aqueous solution. I got a thing.


The compound obtained by the synthesis was confirmed by measuring the UV-visible absorption spectrum. The results are shown in Fig. 11.
In FIG. 11, the blue line is the absorption spectrum of FeTM-4-PyP/CB[10], and the red line is the absorption spectrum of FeTM-4-PyP/Fe-Salen(OMe)/CB[10]. A decrease in the absorbance derived from the FeTM-4-PyP skeleton was observed by adding Fe-Salen(OMe) powder and sonicating. This is considered to be because the environment around FeTM-4-PyP became hydrophobic due to inclusion of Fe-Salen(OMe). In addition, the absorption derived from FeTM-4-PyP/CB[10] near 600 nm was shifted by a short wavelength. It is considered that this is due to the association between FeTM-4-PyP and Fe-Salen(OMe). Therefore, it can be seen that FeTM-4-PyP/Fe-Salen(OMe)/CB[10] is formed.

〔実施例11〕
FeTM-4-PyP/Fe-Salen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Fe-Salen/CB[10]」の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Fe-Salen(OMe)の合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Fe-Salen/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Fe-Salenの合成は、上述の実施例2と同様にして行い、目的物を得た。
(4) FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/ Fe-Salen/CB[10]の合成
FeTM-4-PyP/ Fe-Salen/CB[10]の合成は、Fe-Salenの粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図12に示す。
図12において、青線は FeTM-4-PyP/CB[10]の、 赤線: FeTM-4-PyP/Fe-Salen]CB[10]の吸収スペクトルである。Fe-Salenの粉末を添加し、超音波処理することでFeTM-4-PyP骨格由来の吸光度の減少が観られた。これは、Fe-Salenの包接によりFeTM-4-PyP周りの環境が疎水的になったためであると考えられる。また、600 nm付近のFeTM-4-PyP/CB[10] 由来の吸収が短波長シフトした。これは、FeTM-4-PyPとFe-Salenとの会合によるものであると考えられる。従って、FeTM-4-PyP/Fe-Salen/CB[10]が形成されていることがわかる。
[Example 11]
The synthetic synthesis of the multi-electron redox catalyst "FeTM-4-PyP/Fe-Salen/CB[10]" of the present invention consisting of FeTM-4-PyP/Fe-Salen/CB[10] is (1) FeTM- 4-PyP synthesis, (2)CB[10] synthesis, (3)Fe-Salen(OMe) synthesis, (4)FeTM-4-PyP/CB[10] synthesis, (5)FeTM-4 It was performed in 5 steps of the synthesis of -PyP/Fe-Salen/CB[10].
(1) FeTM-4-PyP was synthesized in the same manner as in Example 8 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Fe-Salen was synthesized in the same manner as in Example 2 described above to obtain the desired product.
(4) FeTM-4-PyP/CB[10] was synthesized in the same manner as in Example 8 above to obtain the target product.
(5) Synthesis of FeTM-4-PyP/Fe-Salen/CB[10]
The synthesis of FeTM-4-PyP/Fe-Salen/CB[10] was carried out by adding Fe-Salen powder to the FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.

The compound obtained by the synthesis was confirmed by measuring the UV-visible absorption spectrum. Results are shown in FIG.
In FIG. 12, the blue line is the absorption spectrum of FeTM-4-PyP/CB[10], and the red line is the absorption spectrum of FeTM-4-PyP/Fe-Salen]CB[10]. A decrease in the absorbance derived from the FeTM-4-PyP skeleton was observed by adding Fe-Salen powder and sonicating. This is probably because the environment around FeTM-4-PyP became hydrophobic due to inclusion of Fe-Salen. In addition, the absorption derived from FeTM-4-PyP/CB[10] near 600 nm was shifted by a short wavelength. It is considered that this is due to the association between FeTM-4-PyP and Fe-Salen. Therefore, it is understood that FeTM-4-PyP/Fe-Salen/CB[10] is formed.

〔実施例12〕
FeTM-4-PyP/Fe-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Fe-Pyalen/CB[10]の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Fe-Pyalenの合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Fe-Pyalen/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Fe-Pyalenの合成は、上述の実施例7と同様にして行い、目的物を得た。
(4)FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/ Fe-Pyalen /CB[10]の合成
FeTM-4-PyP/ Fe-Pyalen /CB[10]の合成は、Fe-Pyalen の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。
合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図13に示す。
図13に示すように、濃度一定のFeTM-4-PyP/CB[10]に対し、異なる濃度のFe-Pyalenを逐次添加した結果、FeTM等吸収点を維持しながら有意な吸収スペクトル変化が観測された。また、FeTM-4-PyP/CB[10]由来のSoret帯の吸光度の減少及びQ帯の短波長シフトが観測された。これらは、CB[10]内部におけるFeTM-4-PyPとFe-Pyalenとの相互作用に由来する。従って、FeTM-4-PyP/Fe-Pyalen/CB[10]が形成されていることがわかる。
[Example 12]
The multi-electron redox catalyst of the present invention consisting of FeTM-4-PyP/Fe-Pyalen/CB[10], "FeTM-4-PyP/Fe-Pyalen/CB[10], was synthesized by (1) FeTM-4 -Synthesis of PyP, (2)CB[10], (3)Fe-Pyalen, (4)FeTM-4-PyP/CB[10], (5)FeTM-4-PyP/Fe -Performed in 5 steps of Pyalen/CB[10] synthesis.
(1) FeTM-4-PyP was synthesized in the same manner as in Example 8 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Fe-Pyalen was synthesized in the same manner as in Example 7 to obtain the target product.
(4) FeTM-4-PyP/CB[10] was synthesized in the same manner as in Example 8 above to obtain the target product.
(5) Synthesis of FeTM-4-PyP/Fe-Pyalen/CB[10]
The synthesis of FeTM-4-PyP/Fe-Pyalen/CB[10] was carried out by adding Fe-Pyalen powder to the FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.
The compound obtained by the synthesis was confirmed by measuring the UV-visible absorption spectrum. The results are shown in Fig. 13.
As shown in Fig. 13, as a result of sequentially adding different concentrations of Fe-Pyalen to FeTM-4-PyP/CB[10] with a constant concentration, significant absorption spectrum changes were observed while maintaining the absorption points such as FeTM. Was done. In addition, a decrease in absorbance in the Soret band and a short wavelength shift in the Q band derived from FeTM-4-PyP/CB[10] were observed. These result from the interaction between FeTM-4-PyP and Fe-Pyalen inside CB[10]. Therefore, it can be seen that FeTM-4-PyP/Fe-Pyalen/CB[10] is formed.

〔実施例13〕
FeTM-4-PyP/Co-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Co-Pyalen/CB[10]の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Co-Pyalenの合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Co-Pyalen/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Co-Pyalenの合成は、上述の実施例6と同様にして行い、目的物を得た。
(4)FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/Co-Pyalen/CB[10]の合成
FeTM-4-PyP/ Co -Pyalen /CB[10]の合成は、Co -Pyalen の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図14に示す。
図14に示すように、濃度一定のFeTM-4-PyP/CB[10]に対して、異なる濃度のCo-Pyalenを逐次添加した結果、450 nm〜500 nm付近における吸光度の増大及びQ帯の長波長シフトが観測された。これは、CB[10]内部におけるFeTM-4-PyPとCo-Pyalenとの電子的相互作用に由来する。従って、FeTM-4-PyP/Co-Pyalen/CB[10]が形成されていることがわかる。
[Example 13]
Synthesis of the multi-electron redox catalyst of the present invention "FeTM-4-PyP/Co-Pyalen/CB[10] consisting of FeTM-4-PyP/Co-Pyalen/CB[10] The synthesis is (1) FeTM-4 -PyP synthesis, (2)CB[10] synthesis, (3)Co-Pyalen synthesis, (4)FeTM-4-PyP/CB[10] synthesis, (5)FeTM-4-PyP/Co -Performed in 5 steps of Pyalen/CB[10] synthesis.
(1) FeTM-4-PyP was synthesized in the same manner as in Example 8 above to obtain the target product.
(2) Synthesis of CB[10] was performed in the same manner as in Example 1 above to obtain the target product.
(3) Synthesis of Co-Pyalen was performed in the same manner as in Example 6 above to obtain the target product.
(4) FeTM-4-PyP/CB[10] was synthesized in the same manner as in Example 8 above to obtain the target product.
(5) Synthesis of FeTM-4-PyP/Co-Pyalen/CB[10]
The synthesis of FeTM-4-PyP/Co-Pyalen/CB[10] was carried out by adding Co-Pyalen powder to the FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.

The compound obtained by the synthesis was confirmed by measuring the UV-visible absorption spectrum. The results are shown in Fig. 14.
As shown in FIG. 14, as a result of successively adding different concentrations of Co-Pyalen to FeTM-4-PyP/CB[10] having a constant concentration, the increase in absorbance and the Q band of 450 nm to 500 nm were observed. A long wavelength shift was observed. This is due to the electronic interaction between FeTM-4-PyP and Co-Pyalen inside CB[10]. Therefore, it can be seen that FeTM-4-PyP/Co-Pyalen/CB[10] is formed.

[実施例14]
(trans-CoM4Py2P)2/CB[10]からなる多電子酸化還元触媒「(trans-CoM4Py2P)2/CB[10]」の合成
合成は、(1)trans-H2M4Py2Pの合成、(2)trans-CoM4Py2Pの合成、(3)(trans-CoM4Py2P)2/CB[10]の合成の3ステップで行った。
(1)trans-H2M4Py2Pの合成
出発原料として、ピロール(東京化成)、パラホルムアルデヒド(Aldrich)、4-ピリジンカルボアルデヒド(関東化学)、コバルト(III)アセチルアセトナートを用いた。
(a)ジピロメタンの合成
ピロール200 mL(2.88mol)とパラホルムアルデヒド0.75g(25mmol)を混合し、窒素脱気した。60℃で加熱攪拌し、パラホルムアルデヒドを溶解させた。室温まで放冷し、トリフルオロ酢酸(TFA)を数滴加え一時間室温で攪拌した。次いで、水酸化ナトリウム0.75g(19mmol)を加え、室温でさらに40分攪拌した。攪拌後、反応溶液をエバポレートし、得られた粘性液体はクロロホルムを展開溶媒として用いたシリカゲルカラムクロマトグラフィーにより分離した。収量は1.8g、収率は49 %であった。合成の確認は、先行報告に従い1H NMRにより行った。
(b) trans-H24Py2Pの合成
ジピロメタン1.8g (12mmol)をプロピオン酸24 mLに溶解させた。4-ピリジンカルボキシアルデヒド1.2mL (12mmol)を24mLのプロピオン酸に溶解させた。70℃に加熱したプロピオン酸30mLに上記二つのプロピオン酸溶液を徐々に添加し、得られた溶液を70℃で18時間攪拌した。反応後、プロピオン酸をエバポレートし、得られた黒色固体を塩基性アルミナ(クロロホルム/メタノール=20/1 )で分離しオリゴマーを除去した。次いで、シリカゲルクロマトグラフィー(クロロホルム/メタノール=95/5)で分離し、2番目に抽出された化合物を回収した。得られた化合物を高速液体クロマトグラフィー(HPLC)によりさらに分離し、trans-H24Py2P 51 mgを得た。収率は1.8%であった。合成の確認は先行報告に従い1H NMR測定により行った。
(b)trans-H2M4Py2Pの合成
trans-H24Py2P 51 mg (0.11mmol)をクロロホルム:N,N-ジメチルホルムアミド(DMF)混合溶媒(4:1, 64 mL: 16 mL)に溶解させた。ヨードメタン3.3 mL (53mmol)を加え、室温で17時間攪拌した。反応後、溶液をエバポレートし、得られた固体を5 mLのDMFに溶解させ、80 mLのジエチルエーテルに滴下した。析出した紫色沈殿物をろ過により回収し、trans-H2M4Py2Pを得た。収率は定量的であった。合成の確認は、先行報告に従い1H NMR測定により行った。
(2)trans-CoM4Py2Pの合成
trans-H2M4Py2P 14 mg(0.019 mmol)とコバルトアセチルアセトナート(Co(acac)3) 13,5mg(0.038mmol)をメタノール10 mLで加熱還流した。シリカゲルTLC (CH3CN/H2O/KNO3sat=8/2/1)によりtrans-H2M4Py2P 由来の蛍光が消失するまで反応を継続した。反応終了後、溶媒をエバポレートしクロロホルムで洗浄し、ろ過することで未反応Co(acac)3を除去した。ろ過により得られた固体を水に溶解させ、キレート樹脂(ダイヤイオンCR20)、イオン交換樹脂(アンバーライトIRA-400J Cl)で処理した。水をエバポレートすることでtrans-CoM4Py2Pを得た。収率は定量的であった。合成の確認は元素分析により行った。trans-CoM4Py2P・CH3Cl・3.7H2O (C33H33Cl6CoN6O4), Anal: C: 46.67, H: 3.92, N: 9.90. Found: C: 46.96, H: 3.83, N: 9.95.
(3)(trans-CoM4Py2P)2/CB[10]の合成
trans-CoM4Py2P 1.0 mg (0.0015 mmol)を1.0 mLの水に溶解させた。粉末CB[10] 3.0 mg (0.0018 mmol)を加え、室温条件下で10分間超音波処理を行った。10分後、溶液をフィルターろ過し、(trans-CoM4Py2P)2/CB[10]を水溶液として得た。反応は定量的に進行した。(trans-CoM4Py2P)2/CB[10]形成により観測されるスペクトル変化を図15に示す。
図15における青線はtrans-CoM4Py2P単体の、赤線は(trans-CoM4Py2P)2/CB[10]の吸収スペクトルを示す。trans-CoM4Py2PをCB[10]に包接することにより、吸光度の減少及びブロード化が観測された。これは、ポルフィリン錯体の会合により観られる典型的なスペクトル変化である。このことから、CB[10]内部においてtrans-CoM4Py2Pが会合した構造、即ち(trans-CoM4Py2P)2/CB[10]が形成されていることがわかる。
[Example 14]
Synthesis of (trans-CoM4Py 2 P) 2 / CB consisting [10] multi-electron redox catalyst "(trans-CoM4Py 2 P) 2 / CB [10]" is, (1) trans-H 2 M4Py 2 P Was carried out in three steps: (2) trans-CoM4Py 2 P, and (3) (trans-CoM4Py 2 P) 2 /CB[10].
(1) Synthesis of trans-H 2 M4Py 2 P Pyrrole (Tokyo Kasei), paraformaldehyde (Aldrich), 4-pyridinecarbaldehyde (Kanto Kagaku), and cobalt(III) acetylacetonate were used as starting materials.
(A) Synthesis of dipyrromethane
Pyrrole (200 mL, 2.88 mol) and paraformaldehyde (0.75 g, 25 mmol) were mixed and degassed with nitrogen. The mixture was heated and stirred at 60°C to dissolve paraformaldehyde. The mixture was allowed to cool to room temperature, several drops of trifluoroacetic acid (TFA) were added, and the mixture was stirred at room temperature for 1 hour. Then, 0.75 g (19 mmol) of sodium hydroxide was added, and the mixture was further stirred at room temperature for 40 minutes. After stirring, the reaction solution was evaporated and the resulting viscous liquid was separated by silica gel column chromatography using chloroform as a developing solvent. The yield was 1.8 g, and the yield was 49%. The synthesis was confirmed by 1 H NMR according to the previous report.
(b) Synthesis of trans-H 2 4Py 2 P
1.8 g (12 mmol) of dipyrromethane was dissolved in 24 mL of propionic acid. 1.2 mL (12 mmol) of 4-pyridinecarboxaldehyde was dissolved in 24 mL of propionic acid. The above two propionic acid solutions were gradually added to 30 mL of propionic acid heated to 70° C., and the resulting solution was stirred at 70° C. for 18 hours. After the reaction, propionic acid was evaporated, and the obtained black solid was separated with basic alumina (chloroform/methanol=20/1) to remove the oligomer. Then, it was separated by silica gel chromatography (chloroform/methanol=95/5), and the second extracted compound was recovered. The obtained compound was further separated by high performance liquid chromatography (HPLC) to obtain 51 mg of trans-H 2 4Py 2 P. The yield was 1.8%. The synthesis was confirmed by 1H NMR measurement according to the previous report.
(B) Synthesis of trans-H 2 M4Py 2 P
51 mg (0.11 mmol) of trans-H 2 4Py 2 P was dissolved in a mixed solvent of chloroform:N,N-dimethylformamide (DMF) (4:1, 64 mL: 16 mL). 3.3 mL (53 mmol) of iodomethane was added, and the mixture was stirred at room temperature for 17 hours. After the reaction, the solution was evaporated, the obtained solid was dissolved in 5 mL of DMF, and the solution was added dropwise to 80 mL of diethyl ether. The purple precipitate thus deposited was collected by filtration to obtain trans-H 2 M4Py 2 P. The yield was quantitative. The synthesis was confirmed by 1H NMR measurement according to the previous report.
(2) Synthesis of trans-CoM4Py 2 P
14 mg (0.019 mmol) of trans-H 2 M4Py 2 P and 13,5 mg (0.038 mmol) of cobalt acetylacetonate (Co(acac) 3 ) were heated under reflux with 10 mL of methanol. The reaction was continued until the fluorescence derived from trans-H 2 M4Py 2 P disappeared by silica gel TLC (CH 3 CN/H 2 O/KNO 3 sat=8/2/1). After completion of the reaction, the solvent was evaporated, washed with chloroform, and filtered to remove unreacted Co(acac) 3 . The solid obtained by filtration was dissolved in water and treated with a chelate resin (Diaion CR20) and an ion exchange resin (Amberlite IRA-400J Cl). Evaporation of water gave trans-CoM4Py 2 P. The yield was quantitative. The synthesis was confirmed by elemental analysis. trans-CoM4Py 2 P・CH 3 Cl・3.7H 2 O (C 33 H 33 Cl 6 CoN 6 O 4 ), Anal: C: 46.67, H: 3.92, N: 9.90.Found: C: 46.96, H: 3.83 , N: 9.95.
(3) Synthesis of (trans-CoM4Py 2 P) 2 /CB[10]
1.0 mg (0.0015 mmol) of trans-CoM4Py 2 P was dissolved in 1.0 mL of water. 3.0 mg (0.0018 mmol) of powder CB[10] was added, and sonication was performed for 10 minutes at room temperature. After 10 minutes, the solution was filtered to obtain (trans-CoM4Py 2 P) 2 /CB[10] as an aqueous solution. The reaction proceeded quantitatively. The spectral change observed by the formation of (trans-CoM4Py 2 P) 2 /CB[10] is shown in FIG.
The blue line in FIG. 15 shows the absorption spectrum of trans-CoM4Py 2 P alone, and the red line shows the absorption spectrum of (trans-CoM4Py 2 P) 2 /CB[10]. By including trans-CoM4Py 2 P in CB[10], decrease in absorbance and broadening were observed. This is a typical spectral change seen by association of porphyrin complexes. From this, it is found that a structure in which trans-CoM4Py 2 P is associated, that is, (trans-CoM4Py 2 P) 2 /CB[10] is formed inside CB[10].

[実施例15]
(trans-ZnM4Py2P)2/CB[10]からなる多電子酸化還元触媒「(trans-ZnM4Py2P)2/CB[10]」の合成。
合成は(1) trans-H2M4Py2Pの合成、(2) trans-ZnM4Py2Pの合成、(3) (trans-ZnM4Py2P)2/CB[10]の合成の3ステップで行った。
(1) trans-H2M4Py4Pは、先述した実施例14と同様にして行い、目的物を得た。
(2) trans-ZnM4Py2Pの合成
trans-H2M4Py2P 17 mg (0.023 mmol)と塩化亜鉛(ZnCl2) 25 mg (0.183 mmol)を10 mLの水に溶解させ室温で17時間攪拌した。紫外可視吸収スペクトルを測定することで反応進行を追跡した。反応後、反応液をキレート樹脂(ダイヤイオンCR20)、イオン交換樹脂(アンバーライトIRA-400J Cl)で処理、エバポレートし目的物であるtrans-ZnM4Py2Pを得た。反応は定量的に進行した。合成の確認は、紫外可視吸収スペクトル測定により行った。
(3) (trans-ZnM4Py2P)2/CB[10]の合成
trans-ZnM4Py2P 1.0 mg (0.0016 mmol)を1.0 mLの水に溶解させた。粉末CB[10] 4.5 mg (0.0027 mmol)を加え、室温条件下で10分間超音波処理を行った。10分後、溶液をフィルターろ過し、(trans-ZnM4Py2P)2/CB[10]を水溶液として得た。反応は定量的に進行した。(trans-ZnM4Py2P)2/CB[10]形成により観測されるスペクトル変化を図16に示す。
図16において青線は trans-ZnM4Py2P単体の、赤線は (trans-ZnM4Py2P)2/CB[10]の吸収スペクトルを示す。 trans-ZnM4Py2PをCB[10]に包接することにより、吸光度の減少及びブロード化が観測された。これは、ポルフィリン錯体の会合により観られる典型的なスペクトル変化である。このことから、CB[10]内部においてtrans-ZnM4Py2Pが会合した構造、即ち(trans-ZnM4Py2P)2/CB[10]が形成されていることが確認された。
[Example 15]
Synthesis of (trans-ZnM4Py 2 P) 2 / CB consisting [10] multi-electron redox catalyst "(trans-ZnM4Py 2 P) 2 / CB [10]".
The synthesis was performed in 3 steps: (1) synthesis of trans-H 2 M4Py 2 P, (2) synthesis of trans-ZnM4Py 2 P, and (3) synthesis of (trans-ZnM4Py 2 P) 2 /CB[10]. ..
(1) trans-H 2 M4Py 4 P was obtained in the same manner as in Example 14 described above to obtain the desired product.
(2) Synthesis of trans-ZnM4Py 2 P
17 mg (0.023 mmol) of trans-H 2 M4Py 2 P and 25 mg (0.183 mmol) of zinc chloride (ZnCl 2) were dissolved in 10 mL of water and stirred at room temperature for 17 hours. The reaction progress was followed by measuring the UV-visible absorption spectrum. After the reaction, the reaction solution was treated with a chelate resin (Diaion CR20) and an ion exchange resin (Amberlite IRA-400J Cl) and evaporated to obtain the target product trans-ZnM4Py 2 P. The reaction proceeded quantitatively. The synthesis was confirmed by measuring the UV-visible absorption spectrum.
(3) Synthesis of (trans-ZnM4Py 2 P) 2 /CB[10]
1.0 mg (0.0016 mmol) of trans-ZnM4Py 2 P was dissolved in 1.0 mL of water. 4.5 mg (0.0027 mmol) of powder CB[10] was added, and sonication was performed for 10 minutes at room temperature. After 10 minutes, the solution was filtered to obtain (trans-ZnM4Py 2 P) 2 /CB[10] as an aqueous solution. The reaction proceeded quantitatively. FIG. 16 shows the spectral change observed by the formation of (trans-ZnM4Py 2 P) 2 /CB[10].
In FIG. 16, the blue line shows the absorption spectrum of trans-ZnM4Py 2 P alone and the red line shows the absorption spectrum of (trans-ZnM4Py 2 P) 2 /CB[10]. By including trans-ZnM4Py 2 P in CB[10], decrease in absorbance and broadening were observed. This is a typical spectral change seen by association of porphyrin complexes. From this, it was confirmed that the structure in which CB[10] was associated with trans-ZnM4Py 2 P, that is, (trans-ZnM4Py 2 P) 2 /CB[10] was formed.

[実施例16]
(trans-FeM4Py2P)2/CB[10]からなる多電子酸化還元触媒「(trans-FeM4Py2P)2/CB[10]」の合成
合成は、(1) trans-H2M4Py2Pの合成、(2) trans-FeM4Py2Pの合成、(3) (trans-FeM4Py2P)2/CB[10]の合成の3ステップで行った。
(1) trans-H2M4Py2Pの合成は、先述した実施例14と同様にして行い、目的物を得た。
(2) trans-FeM4Py2Pの合成
trans-H2M4Py2P 35.0 mg (0.047 mmol)と塩化鉄(II)四水和物(FeCl2・4H2O) 123.0 mg (0.619 mmol)を10 mLの水に溶かし、塩酸を用いてpH 2.0に合成し、60℃で22時間攪拌した。シリカゲルTLC (CH3CN/H2O/KNO3sat=8/2/1)によりtrans-H2M4Py2P由来の蛍光が消失するまで反応を継続した。反応後、溶媒をエバポレートし、固体を水に溶解させ、キレート樹脂(ダイヤイオンCR20)、イオン交換樹脂(アンバーライトIRA-400J Cl)で処理した。水をエバポレートすることでtrans-FeM4Py2Pを得た。反応は定量的に進行した。合成の確認は、紫外可視吸収スペクトル測定により行った。
(3) (trans-FeM4Py2P)2/CB[10]の合成
trans-FeM4Py2P 1.0 mg (0.0015 mmol)を1.0 mLの水に溶解させた。粉末CB[10] 4.5 mg (0.0027 mmol)を加え、室温条件下で10分間超音波処理を行った。10分後、溶液をフィルターろ過し、(trans-FeM4Py2P)2/CB[10]を水溶液として得た。反応は定量的に進行した。(trans-FeM4Py2P)2/CB[10]形成により観測されるスペクトル変化を図17に示す。
図17において青線は trans-FeM4Py2P単体の、赤線は (trans-FeM4Py2P)2/CB[10]の吸収スペクトルを示す。trans-FeM4Py2PをCB[10]に包接することにより、吸光度の減少及びブロード化が観測された。これは、ポルフィリン錯体の会合により観られる典型的なスペクトル変化である。このことから、CB[10]内部においてtrans-FeM4Py2Pが会合した構造、即ち(trans-FeM4Py2P)2/CB[10]が形成されていることが確認された。
[Example 16]
Synthesis of (trans-FeM4Py 2 P) 2 / CB consisting [10] multi-electron redox catalyst "(trans-FeM4Py 2 P) 2 / CB [10]" is, (1) trans-H 2 M4Py 2 P Of (2), trans-FeM4Py 2 P, and (3) (trans-FeM4Py 2 P) 2 /CB[10].
(1) trans-H 2 M4Py 2 P was synthesized in the same manner as in Example 14 described above to obtain the target product.
(2) Synthesis of trans-FeM4Py 2 P
trans-H 2 M4Py dissolved 2 P 35.0 mg (0.047 mmol) and iron (II) chloride tetrahydrate (FeCl 2 · 4H 2 O) 123.0 mg of (0.619 mmol) in 10 mL of water, pH using hydrochloric acid Synthesized to 2.0 and stirred at 60° C. for 22 hours. The reaction was continued until the fluorescence derived from trans-H 2 M4Py 2 P disappeared by silica gel TLC (CH 3 CN/H 2 O/KNO 3 sat=8/2/1). After the reaction, the solvent was evaporated, the solid was dissolved in water, and treated with a chelate resin (Diaion CR20) and an ion exchange resin (Amberlite IRA-400J Cl). Evaporation of water gave trans-FeM4Py 2 P. The reaction proceeded quantitatively. The synthesis was confirmed by measuring the UV-visible absorption spectrum.
(3) Synthesis of (trans-FeM4Py 2 P) 2 /CB[10]
1.0 mg (0.0015 mmol) of trans-FeM4Py 2 P was dissolved in 1.0 mL of water. 4.5 mg (0.0027 mmol) of powder CB[10] was added, and sonication was performed for 10 minutes at room temperature. After 10 minutes, the solution was filtered to obtain (trans-FeM4Py 2 P) 2 /CB[10] as an aqueous solution. The reaction proceeded quantitatively. FIG. 17 shows the spectral change observed by the formation of (trans-FeM4Py 2 P) 2 /CB[10].
In FIG. 17, the blue line shows the absorption spectrum of trans-FeM4Py 2 P alone and the red line shows the absorption spectrum of (trans-FeM4Py 2 P) 2 /CB[10]. By including trans-FeM4Py 2 P in CB[10], decrease in absorbance and broadening were observed. This is a typical spectral change seen by association of porphyrin complexes. From this, it was confirmed that a structure in which trans-FeM4Py 2 P was associated, that is, (trans-FeM4Py 2 P) 2 /CB[10] was formed inside CB[10].

[実施例17]
触媒反応の例として、(trans-CoM4Py2P)2/CB[10]の電気化学的水素生成反応について検討した。0.3mM (trans-CoM4Py2P)2/CB[10](Coイオン換算)を、50mM NaClを支持電解質として含む各種緩衝液に溶解させ、アルゴンバブリングを30分行い溶存酸素を除去した。グラッシーカーボン電極を作用電極、銀-塩化銀電極を参照電極、白金電極をカウンター電極としてそれぞれ用い、-1.5〜0 V (vs Ag/AgCl)においてサイクリックボルタンメトリー測定を行った。結果を図18に示す。
図18に示すように、50mM 酢酸緩衝液 (pH 4.6)中では還元電流が観測された。一方、還元電流はより塩基性の条件(pH 7.0及びpH 11.1)では観測されなかった。このことから、還元電流はプロトン還元、即ち水素生成に由来することがわかる。従って、本発明の(trans-CoM4Py2P)2/CB[10]は、水中において電気化学的に水素を生成する有用な多電子酸化還元触媒であることがわかる。
[Example 17]
As an example of the catalytic reaction, the electrochemical hydrogen generation reaction of (trans-CoM4Py 2 P) 2 /CB[10] was examined. 0.3 mM (trans-CoM4Py 2 P) 2 /CB[10] (Co ion conversion) was dissolved in various buffer solutions containing 50 mM NaCl as a supporting electrolyte, and argon bubbling was performed for 30 minutes to remove dissolved oxygen. Cyclic voltammetry measurement was performed at -1.5 to 0 V (vs Ag/AgCl) using a glassy carbon electrode as a working electrode, a silver-silver chloride electrode as a reference electrode, and a platinum electrode as a counter electrode. The results are shown in Fig. 18.
As shown in FIG. 18, a reduction current was observed in the 50 mM acetate buffer (pH 4.6). On the other hand, no reduction current was observed under more basic conditions (pH 7.0 and pH 11.1). From this, it is understood that the reduction current is derived from proton reduction, that is, hydrogen generation. Therefore, it is understood that the (trans-CoM4Py 2 P) 2 /CB[10] of the present invention is a useful multi-electron redox catalyst that electrochemically produces hydrogen in water.

[実施例18]
触媒反応の例として、(trans-CoM4Py2P)2/CB[10]のグルコース改質による水素生成について検討した。 グルコース270 mg (1.5 mmol)と(trans-CoM4Py2P)2/CB[10] 4.5 mg (0.0015 mmol)を 2.0 mL の50 mM 酢酸緩衝液(pH 4,6)に溶解させ、98℃で14時間加熱還流を行った。反応後に発生した気体をガスビュレット系で捕集し、ガスクロマトグラフィーにより発生ガスを特定した。結果を図19(a)および(b)に示す。
図19(a)および(b)に示すように、グルコース改質反応後の混合ガスから水素及び二酸化炭素が検出された。発生した水素及び二酸化炭素を検量線を用いて定量した結果、13μmolの水素及び19μmolの二酸化炭素が発生していることがわかる。以上より、本発明の(trans-CoM4Py2P)2/CB[10]多電子酸化還元触媒は、グルコース改質反応により水素を生成する有用な触媒であることがわかる。
[Example 18]
As an example of the catalytic reaction, hydrogen production by glucose reforming of (trans-CoM4Py 2 P) 2 /CB[10] was examined. Glucose 270 mg (1.5 mmol) and (trans-CoM4Py 2 P) 2 /CB[10] 4.5 mg (0.0015 mmol) were dissolved in 2.0 mL of 50 mM acetate buffer (pH 4,6) and the solution was mixed at 98°C for 14 The mixture was heated under reflux for an hour. The gas generated after the reaction was collected by a gas buret system, and the generated gas was identified by gas chromatography. The results are shown in FIGS. 19(a) and 19(b).
As shown in FIGS. 19A and 19B, hydrogen and carbon dioxide were detected in the mixed gas after the glucose reforming reaction. As a result of quantifying the generated hydrogen and carbon dioxide using a calibration curve, it can be seen that 13 μmol of hydrogen and 19 μmol of carbon dioxide are generated. From the above, it is understood that the (trans-CoM4Py 2 P) 2 /CB[10] multi-electron redox catalyst of the present invention is a useful catalyst that produces hydrogen by a glucose reforming reaction.

[実施例19]
触媒反応の例として、「CoTM-4-PyP/Mo-Salen/CB[10]」の電気化学的窒素還元反応を検討した。50 mM 塩化ナトリウム(NaCl)を支持電解質として含んだ50 mM リン酸緩衝液(pH 7.4)にCoTM-4-PyP/Mo-Salen/CB[10]を溶解させた。得られた溶液をヘリウムあるいは窒素で30分以上バブリングした。ヘリウムバブリング存在下及び窒素存在下における還元電流を比較することで、CoTM-4-PyP/Mo-Salen/CB[10]の窒素還元反応を検討した。結果を図20に示す。
図20(a)及び(b)の比較より、-1.5〜-1.0V(vs Ag/AgCl)において、窒素雰囲気下における還元電流の増大が観測された。これは、ヘリウム存在下ではプロトン還元(水素生成)が起こっていたが、窒素雰囲気下ではプロトン及び窒素の還元反応が起こっていることを示している。即ち、本発明のCoTM-4-PyP/Mo-Salen/CB[10]は、電気化学的に窒素を還元する有用な触媒であることがわかる。


[Example 19]
As an example of the catalytic reaction, the electrochemical nitrogen reduction reaction of "CoTM-4-PyP/Mo-Salen/CB[10]" was examined. CoTM-4-PyP/Mo-Salen/CB[10] was dissolved in 50 mM phosphate buffer (pH 7.4) containing 50 mM sodium chloride (NaCl) as a supporting electrolyte. The resulting solution was bubbled with helium or nitrogen for 30 minutes or longer. The nitrogen reduction reaction of CoTM-4-PyP/Mo-Salen/CB[10] was investigated by comparing the reduction currents in the presence of helium bubbling and in the presence of nitrogen. The results are shown in Fig. 20.
From the comparison between FIGS. 20(a) and 20(b), an increase in reduction current was observed in a nitrogen atmosphere at -1.5 to -1.0 V (vs Ag/AgCl). This indicates that the proton reduction (hydrogen generation) occurred in the presence of helium, but the reduction reaction of the proton and nitrogen occurred in the nitrogen atmosphere. That is, it is understood that the CoTM-4-PyP/Mo-Salen/CB[10] of the present invention is a useful catalyst for electrochemically reducing nitrogen.


Claims (1)

7〜14員環のククルビット構造を有する環状化合物と、
該環状化合物中に包摂される嵩高化合物とからなる触媒であって、
該嵩高化合物は、下記化学式(I)で表される金属ポルフィリン化合物と、下記化学式(I)で表される金属ポルフィリン化合物、下記化学式(II)で表される該金属ピアレン又は下記化学式(III)で表される金属サレンとの2分子であることを特徴とする多電子酸化還元触媒。

上記各式中、M1およびM2は、それぞれ同一または異なる原子であって、遷移金属元素又は卑金属元素を示す。
R5〜R8は、それぞれ同一または異なる基であって、水素原子、アルキル基、アルコキシ基を示す。


A cyclic compound having a 7 to 14-membered cucurbit structure,
A catalyst comprising a bulky compound included in the cyclic compound,
The bulky compound includes a metalloporphyrin compound represented by the following chemical formula (I), a metalloporphyrin compound represented by the following chemical formula (I), the metal pierlen represented by the following chemical formula (II) or the following chemical formula (III). A multi-electron redox catalyst characterized by being two molecules with a metal salen represented by:

In the above formulas, M1 and M2 are the same or different atoms and represent a transition metal element or a base metal element.
R5 to R8 are the same or different groups and represent a hydrogen atom, an alkyl group or an alkoxy group.


JP2018223005A 2018-11-29 2018-11-29 Multi-electron redox catalyst Active JP7236722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223005A JP7236722B2 (en) 2018-11-29 2018-11-29 Multi-electron redox catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223005A JP7236722B2 (en) 2018-11-29 2018-11-29 Multi-electron redox catalyst

Publications (2)

Publication Number Publication Date
JP2020082002A true JP2020082002A (en) 2020-06-04
JP7236722B2 JP7236722B2 (en) 2023-03-10

Family

ID=70905369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223005A Active JP7236722B2 (en) 2018-11-29 2018-11-29 Multi-electron redox catalyst

Country Status (1)

Country Link
JP (1) JP7236722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038552A (en) * 2020-09-29 2020-12-04 荣晓晓 Bacterial cellulose composite lithium-sulfur battery diaphragm
CN112038545A (en) * 2020-09-29 2020-12-04 荣晓晓 Lithium-sulfur battery composite diaphragm and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254890A1 (en) * 2009-04-06 2010-10-07 Nanyang Technological University Method of forming a particulate porous metal oxide or metalloid oxide
US20180050331A1 (en) * 2016-08-22 2018-02-22 Florida State University Research Foundation, Inc. Homogeneous Catalysts That Are Recoverable By Host Guest Interactions
JP2018034152A (en) * 2016-08-23 2018-03-08 公立大学法人首都大学東京 Multi-electron oxidation-reduction catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254890A1 (en) * 2009-04-06 2010-10-07 Nanyang Technological University Method of forming a particulate porous metal oxide or metalloid oxide
US20180050331A1 (en) * 2016-08-22 2018-02-22 Florida State University Research Foundation, Inc. Homogeneous Catalysts That Are Recoverable By Host Guest Interactions
JP2018034152A (en) * 2016-08-23 2018-03-08 公立大学法人首都大学東京 Multi-electron oxidation-reduction catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038552A (en) * 2020-09-29 2020-12-04 荣晓晓 Bacterial cellulose composite lithium-sulfur battery diaphragm
CN112038545A (en) * 2020-09-29 2020-12-04 荣晓晓 Lithium-sulfur battery composite diaphragm and preparation method thereof
CN112038545B (en) * 2020-09-29 2023-05-02 河北中科莱特储能科技有限公司 Lithium-sulfur battery composite diaphragm and preparation method thereof
CN112038552B (en) * 2020-09-29 2023-08-01 深圳市泰能新材料有限公司 Bacterial cellulose composite lithium sulfur battery diaphragm

Also Published As

Publication number Publication date
JP7236722B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
Kianfar et al. Synthesis, spectroscopy, electrochemistry and thermal study of Ni (II) and Cu (II) unsymmetrical N2O2 Schiff base complexes
Kimura et al. New series of multifunctionalized nickel (II)-cyclam (cyclam= 1, 4, 8, 11-tetraazacyclotetradecane) complexes. Application to the photoreduction of carbon dioxide
Han et al. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis
Farràs et al. Synthesis, Characterization, and Reactivity of Dyad Ruthenium‐Based Molecules for Light‐Driven Oxidation Catalysis
Giereth et al. Remarkably long-lived excited states of copper photosensitizers containing an extended π-system based on an anthracene moiety
Qiu et al. A rhenium catalyst with bifunctional pyrene groups boosts natural light-driven CO 2 reduction
Giannoudis et al. Photosensitizers for H2 evolution based on charged or neutral Zn and Sn porphyrins
Niu et al. Halogen substituted A2B type Co (III) triarylcorroles: Synthesis, electronic structure and two step modulation of electrocatalyzed hydrogen evolution reactions
Cook et al. Coordination and electronic characteristics of a nitrogen heterocycle pincer ligand
Le Lagadec et al. Cyclometalated N, N-dimethylbenzylamine ruthenium (II) complexes [Ru (C6HR1R2R3-o-CH2NMe2)(bpy)(RCN) 2] PF6 for bioapplications: synthesis, characterization, crystal structures, redox properties, and reactivity toward PQQ-dependent glucose dehydrogenase
Luo et al. Heteroleptic copper (I) photosensitizers of dibenzo [b, j]-1, 10-phenanthroline derivatives driven hydrogen generation from water reduction
Murata et al. Syntheses, photophysical properties, and reactivities of novel bichromophoric Pd complexes composed of Ru (II)–polypyridyl and naphthyl moieties
JP7236722B2 (en) Multi-electron redox catalyst
JP2018034152A (en) Multi-electron oxidation-reduction catalyst
Moreira et al. Revisiting oxo-centered carbonyl-triruthenium clusters: investigating CO photorelease and some spectroscopic and electrochemical correlations
Case et al. [Re (CO) 3 (5-PAN) Cl], a rhenium (i) naphthalimide complex for the visible light photocatalytic reduction of CO 2
Mchiri et al. Insights into the new cadmium (II) metalloporphyrin: Synthesis, X-ray crystal structure, Hirshfeld surface analysis, photophysical and cyclic voltammetry characterization of the (morpholine){(meso-tetra (para-chloro-phenyl) porphyrinato} cadmium (II)
Wan et al. Electrocatalytic hydrogen evolution of manganese corrole
Şahin et al. Electrochemical and in-situ spectroelectrochemical properties of novel (5-(tert-butyl)-2-((3, 4-dicyanophenoxy) methyl) phenyl) methanolate substituted mononuclear metal phthalocyanines
Mikata et al. Structure and electrochemical properties of (μ-O) 2 Mn 2 (iii, iii) and (μ-O) 2 Mn 2 (iii, iv) complexes supported by pyridine-, quinoline-, isoquinoline-and quinoxaline-based tetranitrogen ligands
Liu et al. Synthesis, characterization and some properties of amide-linked porphyrin–ruthenium (II) tris (bipyridine) complexes
Li et al. Half‐sandwich Ir (III) and Rh (III) complexes as catalysts for water oxidation with double‐site
Song et al. Novel reactions of homodinuclear Ni 2 complexes [Ni (RN Py S 4)] 2 with Fe 3 (CO) 12 to give heterotrinuclear NiFe 2 and mononuclear Fe complexes relevant to [NiFe]-and [Fe]-hydrogenases
Wolpher et al. Synthesis of a Ru (bpy) 3-type complex linked to a free terpyridine ligand and its use for preparation of polynuclear bimetallic complexes
US20180229227A1 (en) Catalytic system for the production carbon monoxide from carbon dioxide including iridium (ir) photosensitizer and tio2/re(i) complex catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7236722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150