JP2020079728A - Led current consumption measurement method, led disconnection defect detection method and system using the same - Google Patents

Led current consumption measurement method, led disconnection defect detection method and system using the same Download PDF

Info

Publication number
JP2020079728A
JP2020079728A JP2018212319A JP2018212319A JP2020079728A JP 2020079728 A JP2020079728 A JP 2020079728A JP 2018212319 A JP2018212319 A JP 2018212319A JP 2018212319 A JP2018212319 A JP 2018212319A JP 2020079728 A JP2020079728 A JP 2020079728A
Authority
JP
Japan
Prior art keywords
current
leds
input
timing
color light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018212319A
Other languages
Japanese (ja)
Inventor
樋口 哲也
Tetsuya Higuchi
哲也 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankosha Co Ltd
Original Assignee
Sankosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankosha Co Ltd filed Critical Sankosha Co Ltd
Priority to JP2018212319A priority Critical patent/JP2020079728A/en
Publication of JP2020079728A publication Critical patent/JP2020079728A/en
Pending legal-status Critical Current

Links

Images

Abstract

To highly accurately measure LED current consumption of a color signal light traffic signal apparatus, and thus to enhance detection accuracy of LED disconnection defects.SOLUTION: An LED current consumption measurement method of the present invention, which is intended for a color signal light traffic signal apparatus 50 that includes a plurality of LEDs 52, a transformer 54 with a gap and a full-wave rectifier 56, is configured to: first calculate an excitation current of the transformer 54 with a gap on the basis of a current instantaneous value of an input AC current to the color signal light traffic signal apparatus 50 in a timing of a zero-crossing input voltage to the color signal light traffic signal apparatus 50, and a sine-wave waveform corresponding to a frequency of the input AC current of which phase is late at 90° from the timing of the zero-crossing input voltage; subtract the excitation current of the transformer 54 with a gap from the input AC current to the color signal light traffic signal apparatus 52; and calculate current consumption of the plurality of LEDs 52. Accordingly, the current consumption of the plurality of LEDs 52 of the color signal light traffic signal apparatus 50 can be highly accurately measured.SELECTED DRAWING: Figure 1

Description

本発明は、ギャップ付トランスと全波整流器と複数のLEDとを含む色灯信号機を対象とした、LEDの消費電流測定方法、これを利用したLEDの断線故障検出方法、及びLEDの断線故障検出システムに関するものである。   The present invention is directed to a method for measuring current consumption of an LED, a method for detecting an LED disconnection failure using the same, and an LED disconnection failure detection targeting a colored light traffic signal including a transformer with a gap, a full-wave rectifier, and a plurality of LEDs. It is about the system.

鉄道、自動車、飛行機、人等を対象とした信号機の滅灯は、避けなければならない事象であり、これは、LEDを用いた色灯信号機において、LEDの断線故障が発生した場合でも同様である。このため、複数のLEDを利用した実際の色灯信号機では、1つのLEDの断線故障が色灯信号機の滅灯を引き起こさないように、複数のLEDが、例えば図5に示す色灯信号機50の如く接続されている。すなわち、図5の色灯信号機50において、複数のLED52は、各列において直列接続された複数のLED52が、複数列にわたって並列に接続されたLED回路を構成している。このような構成により、1つのLED52が断線故障したとしても、このLED52に直列接続されているLED52が消灯するのみで、色灯信号機50が滅灯することはない。又、図5のような色灯信号機50では、LED52の断線故障を監視する必要があり、その方法は、従来から、色灯信号機50への入力電流を測定し、その電流値の低下の有無によって故障検出を行うものであった(例えば、特許文献1参照)。   Lighting of a traffic light targeting a railway, an automobile, an airplane, a person, etc. is an event that must be avoided, and this is the same even in the case of a color light traffic light using an LED, when a disconnection failure of the LED occurs. .. For this reason, in an actual color light traffic light using a plurality of LEDs, the plurality of LEDs are arranged, for example, in the color light traffic light 50 shown in FIG. 5 so that the disconnection failure of one LED does not cause the color light traffic light to be extinguished. It is connected like this. That is, in the color light traffic signal 50 of FIG. 5, the plurality of LEDs 52 constitutes an LED circuit in which the plurality of LEDs 52 connected in series in each column are connected in parallel over the plurality of columns. With such a configuration, even if one LED 52 has a disconnection failure, the LED 52 serially connected to the LED 52 is turned off, and the color light signal device 50 is not turned off. Further, in the color light traffic signal 50 as shown in FIG. 5, it is necessary to monitor the disconnection failure of the LED 52. The conventional method is to measure the input current to the color light traffic light 50 and determine whether or not the current value decreases. The failure detection is performed by the method (for example, refer to Patent Document 1).

特開2000−230959号公報JP-A-2000-230959

ここで、図5に示した色灯信号機50は、複数のLED52の他に、入力される交流電流を受けるギャップ付トランス54と、交流電流を直流電流に変換する全波整流器56と、LED回路の直列接続された列毎に設置された複数の抵抗58とを含んでいる。このため、図5に矢印で示すように、色灯信号機50への入力電流は、大略、複数のLED52により消費される電流と、ギャップ付トランス54の励磁電流とに分岐することになる。従って、一部のLED52が断線故障して、複数のLED52の消費電流が低下しても、図6のグラフに示すように、入力電流がそれに応じた値の低下を示すことはなく、相対的に僅かな電流低下が発生するのみである。参考に、図6には、複数のLED52のうち50%が断線した場合のグラフ位置を図示している。そのため、複数のLED52の消費電流そのものを把握するのではなく、色灯信号機50への入力電流を測定する、上述した従来の断線故障検出方法は、僅かな電流低下からLED52の断線故障を検出しなければならず、様々な環境に応じた電流の変化を考慮すると、有効な方法と言えるものではなかった。   Here, in addition to the plurality of LEDs 52, the color lamp traffic light 50 shown in FIG. 5 includes a transformer 54 with a gap that receives an input AC current, a full-wave rectifier 56 that converts the AC current into a DC current, and an LED circuit. And a plurality of resistors 58 installed for each series-connected column of. Therefore, as indicated by an arrow in FIG. 5, the input current to the color light signal device 50 is roughly branched into the current consumed by the plurality of LEDs 52 and the exciting current of the transformer with gap 54. Therefore, even if some of the LEDs 52 have a disconnection failure and the current consumption of the plurality of LEDs 52 decreases, the input current does not exhibit a corresponding decrease in value as shown in the graph of FIG. There is only a slight decrease in current. For reference, FIG. 6 shows the graph positions when 50% of the plurality of LEDs 52 are disconnected. Therefore, the conventional disconnection failure detection method described above, in which the current consumption of the LEDs 52 itself is not grasped, but the input current to the color light signal 50 is measured, detects the disconnection failure of the LEDs 52 from a slight current drop. It is necessary to consider the change of the electric current according to various environments, and it cannot be said to be an effective method.

本発明は上記課題に鑑みてなされたものであり、その目的とするところは、色灯信号機のLED消費電流を精度良く測定し、延いては、LEDの断線故障の検出精度を高めることにある。   The present invention has been made in view of the above problems, and an object of the present invention is to accurately measure the LED current consumption of a color light traffic signal, and further to improve the detection accuracy of an LED disconnection failure. ..

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the invention)
The following aspects of the invention exemplify the constitution of the present invention, and are explained separately for each item in order to facilitate understanding of various constitutions of the present invention. Each section does not limit the technical scope of the present invention, while referring to the best mode for carrying out the invention, a part of the constituent elements of each section is replaced, deleted, or further The addition of the constituent elements of (5) is also included in the technical scope of the present invention.

(1)ギャップ付トランスと、該ギャップ付トランスを介して入力される交流電流を直流電流に変換する全波整流器と、前記直流電流を受けて点灯する複数のLEDとを含み、該複数のLEDが、並列接続された複数列の各列において複数毎に直列接続された色灯信号機を対象として、前記複数のLEDの消費電流を測定する方法であって、前記色灯信号機への入力電圧がゼロクロスするタイミングにおける、前記色灯信号機への入力交流電流の電流瞬時値と、前記入力電圧がゼロクロスするタイミングから位相が90°遅れた、前記入力交流電流の周波数に対応した正弦波波形とに基づいて、前記ギャップ付トランスの励磁電流を算出し、前記色灯信号機への入力交流電流から、前記ギャップ付トランスの励磁電流を差し引くことで、前記複数のLEDの消費電流を算出するLEDの消費電流測定方法(請求項1)。   (1) A plurality of LEDs including a transformer with a gap, a full-wave rectifier that converts an alternating current input via the transformer with a gap into a direct current, and a plurality of LEDs that are turned on by receiving the direct current Is a method for measuring the current consumption of the plurality of LEDs for color light traffic signals connected in series for each of a plurality of rows connected in parallel, the input voltage to the color light traffic light is a method. Based on the instantaneous current value of the input AC current to the colored light traffic light at the timing of zero-crossing, and the sine wave waveform corresponding to the frequency of the input AC current, the phase of which is delayed by 90° from the timing of the zero-crossing of the input voltage. Then, the exciting current of the transformer with the gap is calculated, and the exciting current of the transformer with the gap is subtracted from the input AC current to the color light traffic signal to calculate the consumption current of the plurality of LEDs. Measuring method (claim 1).

本項に記載のLEDの消費電流測定方法は、ギャップ付トランスと、このギャップ付トランスを介して入力される交流電流を直流電流に変換する全波整流器と、変換後の直流電流を受けて点灯する複数のLEDとを含む、色灯信号機を対象とするものである。又、色灯信号機の複数のLEDは、一部のLEDの断線故障の影響で色灯信号機が滅灯しないように、並列接続された複数列の各列において、任意数の複数のLED毎に直列接続されている。このような構成の複数のLEDの消費電流を測定するために、本項に記載のLEDの消費電流測定方法は、色灯信号機への入力電流が、色灯信号機の内部において、複数のLEDにより消費される電流と、ギャップ付トランスの励磁電流とに分岐することに着目し、まず、ギャップ付トランスの励磁電流を算出する。   The LED current consumption measuring method described in this item is a transformer with a gap, a full-wave rectifier that converts an alternating current input through the transformer with a gap into a direct current, and a lamp that receives a converted direct current and lights up. The present invention is directed to a color light traffic signal including a plurality of LEDs that operate. In addition, in order to prevent the color light traffic lights from being extinguished due to the disconnection failure of some of the LEDs, the plurality of LEDs of the color light traffic lights are connected to each of a plurality of rows connected in parallel for each arbitrary number of plural LEDs. It is connected in series. In order to measure the current consumption of a plurality of LEDs having such a configuration, the LED current consumption measurement method described in this section is such that the input current to the color light traffic signal is Focusing on branching into the consumed current and the exciting current of the transformer with a gap, first, the exciting current of the transformer with a gap is calculated.

理想的なトランスの励磁電流は、一次側の電圧よりも位相が90°遅れることが知られており、これを色灯信号機のギャップ付トランスに当てはめると、ギャップ付トランスの励磁電流は、色灯信号機への入力電圧から位相が90°遅れると考えられる。又、ギャップ付トランスの励磁電流は、交流の入力電圧と同じ周期の正弦波を示すものとなる。更に、その正弦波の振幅(ピーク)は、ギャップ付トランスの二次側の電流が0となるタイミング(換言すれば、励磁電流のみが流れるタイミング)の、色灯信号機への入力電流の瞬時値から求められる。ギャップ付トランスの二次側にあるLEDには、一定以上の電圧がかかるまで電流が流れないことを勘案すると、ギャップ付トランスの二次側の電流が0となるタイミングは、色灯信号機への入力電圧がゼロクロスするタイミングであると考えられる。   It is known that the ideal exciting current of a transformer has a phase delay of 90° from the voltage on the primary side. When this is applied to a transformer with a gap of a color light signal, the exciting current of the transformer with a gap is It is considered that the phase is delayed by 90° from the input voltage to the traffic signal. The exciting current of the transformer with a gap exhibits a sine wave having the same cycle as the AC input voltage. Furthermore, the amplitude (peak) of the sine wave is the instantaneous value of the input current to the color light signal at the timing when the secondary side current of the transformer with a gap becomes 0 (in other words, the timing when only the exciting current flows). Required from. Considering that no current flows to the LED on the secondary side of the transformer with a gap until a certain voltage is applied, the timing at which the current on the secondary side of the transformer with a gap becomes 0 is set to the color light signal. It is considered to be the timing when the input voltage crosses zero.

そこで、本項に記載のLEDの消費電流測定方法は、色灯信号機への入力電圧がゼロクロスするタイミングにおける、色灯信号機への入力交流電流の電流瞬時値と、入力電圧がゼロクロスするタイミングから位相が90°遅れた、入力交流電流の周波数に対応した正弦波波形とに基づいて、ギャップ付トランスの励磁電流を算出する。更に、このように算出したギャップ付トランスの励磁電流を、色灯信号機への入力交流電流から差し引くことで、複数のLEDの消費電流を算出するものである。これにより、色灯信号機の複数のLEDによる消費電流が、精度良く測定されることとなる。なお、このように測定された複数のLEDの消費電流には、複数のLEDの一部に断線故障が発生した場合の、複数のLEDのうちの、断線故障の影響により点灯していないLEDの割合が、略そのまま減少率として反映されることになる。   Therefore, the LED current consumption measurement method described in this section is based on the current instantaneous value of the input AC current to the color light signal and the phase from the timing when the input voltage crosses zero at the timing when the input voltage to the color light signal crosses zero. Based on the sine wave waveform corresponding to the frequency of the input AC current with a delay of 90°, the exciting current of the transformer with a gap is calculated. Further, the exciting current of the transformer with a gap calculated in this way is subtracted from the input AC current to the color light traffic signal to calculate the current consumption of the plurality of LEDs. As a result, the current consumption by the plurality of LEDs of the color light traffic signal can be accurately measured. It should be noted that the current consumption of the plurality of LEDs measured in this way includes the LEDs that are not lit due to the disconnection failure among the plurality of LEDs when a disconnection failure occurs in some of the LEDs. The ratio will be reflected as it is as the reduction ratio.

(2)上記(1)項において、前記色灯信号機への入力電圧がゼロクロスするタイミングを検出するタイミング検出工程と、前記色灯信号機への入力交流電流の波形を取得し、デジタルデータへと変換するA/D変換工程と、前記タイミング検出工程における検出結果と、前記A/D変換工程における変換データとに基づいて、前記電流瞬時値を算出する瞬時値算出工程と、前記タイミング検出工程における検出結果と、予め設定する、前記入力交流電流の周波数に対応した正弦波波形のデジタルデータとに基づいて、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を算出する正弦波算出工程と、前記瞬時値算出工程における算出結果と、前記正弦波算出工程における算出結果とに基づいて、前記電流瞬時値をピークとする、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を、前記ギャップ付トランスの励磁電流波形として算出する励磁電流算出工程と、前記A/D変換工程における変換データと、前記励磁電流算出工程における算出結果とに基づいて、前記複数のLEDの消費電流を算出する消費電流算出工程と、を含むLEDの消費電流測定方法(請求項2)。   (2) In the above item (1), a timing detection step of detecting a timing at which the input voltage to the color light traffic signal crosses zero, and a waveform of an alternating current input to the color light traffic light signal are acquired and converted into digital data. A/D conversion step, a detection result in the timing detection step, and an instantaneous value calculation step of calculating the current instantaneous value based on the conversion data in the A/D conversion step, and detection in the timing detection step. A sine wave calculating step of calculating a sine wave waveform whose phase is delayed by 90° from the zero-cross timing of the input voltage, based on the result and digital data of a sine wave waveform corresponding to the frequency of the input AC current, which is set in advance. And a sine wave waveform whose phase is delayed by 90° from the zero-cross timing of the input voltage, which peaks at the current instantaneous value, based on the calculation result in the instantaneous value calculation step and the calculation result in the sine wave calculation step. Is calculated as an exciting current waveform of the transformer with a gap, based on the exciting current calculating step, the conversion data in the A/D converting step, and the calculating result in the exciting current calculating step, the current consumption of the plurality of LEDs A method of measuring current consumption of an LED, comprising:

本項に記載のLEDの消費電流測定方法は、上記(1)項に記載したようにLEDの消費電流を算出するための様々な工程、すなわち、タイミング検出工程、A/D変換工程、瞬時値算出工程、正弦波算出工程、励磁電流算出工程及び消費電流算出工程を含むものである。タイミング検出工程では、色灯信号機への入力電圧の波形を取得し、その波形から入力電圧がゼロクロスするタイミングを検出する。A/D変換工程では、色灯信号機へ入力される交流電流の波形を取得し、その波形をデジタルデータへと変換する。そして、瞬時値算出工程では、タイミング検出工程における検出結果と、A/D変換工程における変換データとに基づいて、色灯信号機への入力電圧がゼロクロスするタイミングにおける、色灯信号機への入力交流電流の電流瞬時値を算出する。   The LED current consumption measuring method described in this section includes various steps for calculating the LED current consumption as described in (1) above, that is, a timing detection step, an A/D conversion step, and an instantaneous value. The calculation process, the sine wave calculation process, the exciting current calculation process, and the consumed current calculation process are included. In the timing detection step, the waveform of the input voltage to the color light signal is acquired, and the timing at which the input voltage crosses zero is detected from the waveform. In the A/D conversion process, the waveform of the alternating current input to the color light traffic signal is acquired and the waveform is converted into digital data. Then, in the instantaneous value calculation step, based on the detection result in the timing detection step and the conversion data in the A/D conversion step, the input AC current to the color light signal at the timing when the input voltage to the color light signal crosses zero. Calculate the current instantaneous value of.

又、正弦波算出工程では、タイミング検出工程における検出結果と、予め設定する、色灯信号機への入力交流電流の周波数に対応した正弦波波形のデジタルデータとに基づいて、入力電圧のゼロクロスタイミングから位相が90°遅れた、入力交流電流と同じ周波数の正弦波波形をデジタルデータで算出する。更に、励磁電流算出工程では、瞬時値算出工程における算出結果と、正弦波算出工程における算出結果とに基づいて、ギャップ付トランスの励磁電流波形を算出する。すなわち、瞬時値算出工程で求めた電流瞬時値をピークとした振幅を有する、正弦波算出工程で求めた、入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形のデジタルデータを、ギャップ付トランスの励磁電流波形として算出する。   In the sine wave calculation step, based on the detection result in the timing detection step and the preset digital data of the sine wave waveform corresponding to the frequency of the input alternating current to the color light signal, the zero cross timing of the input voltage is calculated. A sine wave waveform having the same frequency as the input AC current with a phase delayed by 90° is calculated by digital data. Further, in the exciting current calculating step, the exciting current waveform of the transformer with a gap is calculated based on the calculation result in the instantaneous value calculating step and the calculation result in the sine wave calculating step. That is, digital data of a sine wave waveform, which has an amplitude with the current instantaneous value obtained in the instantaneous value calculation step as a peak and is 90° in phase from the zero-cross timing of the input voltage obtained in the sine wave calculation step, is added with a gap. Calculated as the excitation current waveform of the transformer.

そして、消費電流算出工程では、A/D変換工程における変換データと、励磁電流算出工程における算出結果とに基づいて、複数のLEDの消費電流を算出する。すなわち、A/D変換工程で求めた、色灯信号機へ入力される交流電流波形のデジタルデータから、励磁電流算出工程で求めた、ギャップ付トランスの励磁電流波形のデジタルデータを減算して、複数のLEDの消費電流を算出する。これにより、色灯信号機へ入力される交流電源の電圧波形及び電流波形のみが入力値として利用され、そこから複数のLEDの消費電流がデジタルデータにより算出されるため、複数のLEDの消費電流の測定が、容易かつ精度良く実現されるものとなる。   Then, in the consumption current calculation step, the consumption current of the plurality of LEDs is calculated based on the conversion data in the A/D conversion step and the calculation result in the excitation current calculation step. That is, from the digital data of the AC current waveform input to the color light traffic light obtained in the A/D conversion process, the digital data of the excitation current waveform of the transformer with a gap obtained in the excitation current calculation process is subtracted to obtain a plurality of data. The current consumption of the LED is calculated. As a result, only the voltage waveform and the current waveform of the AC power source input to the color light traffic signal are used as input values, and the consumption currents of the plurality of LEDs are calculated from them by digital data. The measurement can be easily and accurately realized.

(3)上記(1)(2)項記載のLEDの消費電流測定方法により測定した、前記複数のLEDの消費電流を利用して、前記複数のLEDの断線故障を検出するLEDの断線故障検出方法(請求項3)。
本項に記載のLEDの断線故障検出方法は、上記(1)(2)項記載のLEDの消費電流測定方法により測定した、複数のLEDの消費電流を利用して、複数のLEDの断線故障を検出するものである。すなわち、上記(1)に記載したように、複数のLEDの消費電流には、複数のLEDの一部に断線故障が発生した場合の、複数のLEDのうちの、断線故障の影響により点灯していないLEDの割合が、略そのまま減少率として反映されている。このようなLEDの消費電流を利用して、複数のLEDの断線故障を検出することにより、LEDの断線故障が高精度で検出されるものとなる。
(3) LED disconnection failure detection for detecting disconnection failure of the plurality of LEDs by using consumption currents of the plurality of LEDs measured by the LED current consumption measurement method according to the above (1) and (2). Method (claim 3).
The LED disconnection failure detection method described in this section uses a plurality of LED consumption currents measured by the LED consumption current measurement methods described in (1) and (2) above to disconnect the plurality of LEDs. Is to detect. That is, as described in (1) above, the current consumption of the plurality of LEDs is lit due to the influence of the disconnection failure among the plurality of LEDs when a disconnection failure occurs in a part of the plurality of LEDs. The ratio of the LEDs that are not reflected is reflected as it is as a reduction rate. By detecting the disconnection failure of a plurality of LEDs by utilizing the current consumption of such LEDs, the disconnection failure of the LED can be detected with high accuracy.

(4)ギャップ付トランスと、該ギャップ付トランスを介して入力される交流電流を直流電流に変換する全波整流器と、前記直流電流を受けて点灯する複数のLEDとを含み、該複数のLEDが、並列接続された複数列の各列において複数毎に直列接続された色灯信号機を対象として、前記複数のLEDの断線故障を検出するシステムであって、前記色灯信号機への入力電圧がゼロクロスするタイミングを検出するタイミング検出部と、前記色灯信号機への入力交流電流の波形を取得し、デジタルデータへと変換するA/D変換部と、前記タイミング検出部による検出結果と、前記A/D変換部による変換データとに基づいて、前記入力電圧がゼロクロスするタイミングにおける、前記色灯信号機への入力交流電流の電流瞬時値を算出する瞬時値算出部と、前記タイミング検出部による検出結果と、予め設定される、前記入力交流電流の周波数に対応した正弦波波形のデジタルデータとに基づいて、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を算出する正弦波算出部と、前記瞬時値算出部による算出結果と、前記正弦波算出部による算出結果とに基づいて、前記電流瞬時値をピークとする、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を、前記ギャップ付トランスの励磁電流波形として算出する励磁電流算出部と、前記A/D変換部による変換データと、前記励磁電流算出部による算出結果とに基づいて、前記複数のLEDの消費電流を算出する消費電流算出部と、該消費電流算出部による算出結果に基づいて、前記複数のLEDの断線故障を検出する断線故障検出部と、を含むLEDの断線故障検出システム(請求項4)。   (4) A plurality of LEDs including a transformer with a gap, a full-wave rectifier that converts an alternating current input via the transformer with a gap into a direct current, and a plurality of LEDs that light up by receiving the direct current. Is a system for detecting a disconnection failure of the plurality of LEDs for a plurality of serially connected color light traffic lights in each of a plurality of columns connected in parallel, wherein the input voltage to the color light traffic lights is A timing detection unit that detects the timing of zero-crossing, an A/D conversion unit that acquires the waveform of the input AC current to the color light signal and converts it into digital data, the detection result by the timing detection unit, and the A An instantaneous value calculation unit that calculates an instantaneous current value of the input AC current to the color light signal at a timing at which the input voltage crosses zero based on the conversion data by the /D conversion unit; and a detection result by the timing detection unit. And a sine wave calculation unit that calculates a sine wave waveform whose phase is delayed by 90° from the zero-cross timing of the input voltage, based on preset digital data of the sine wave waveform corresponding to the frequency of the input AC current. And a sine wave waveform having a phase delayed by 90° from the zero-cross timing of the input voltage, which peaks at the current instantaneous value, based on the calculation result by the instantaneous value calculation unit and the calculation result by the sine wave calculation unit. Is calculated as an excitation current waveform of the transformer with a gap, based on the conversion data by the A/D conversion unit and the calculation result by the excitation current calculation unit, the current consumption of the plurality of LEDs LED disconnection failure detection system including a consumption current calculation unit that calculates a disconnection failure detection unit that detects a disconnection failure of the plurality of LEDs based on a calculation result by the consumption current calculation unit (claim 4). ..

本項に記載のLEDの断線故障検出システムは、上記(2)項に記載のLEDの消費電流測定方法を利用した、上記(3)項に記載のLEDの断線故障検出方法を実行するためのものである。このため、上記(2)(3)項のLEDの消費電流測定方法及び断線故障検出方法に対応する同等の作用を奏するものとなる。   The LED disconnection failure detection system according to this section is for executing the LED disconnection failure detection method according to (3) above, which utilizes the LED current consumption measurement method according to (2) above. It is a thing. For this reason, the same actions as those of the LED current consumption measuring method and the disconnection failure detecting method of the above (2) and (3) can be obtained.

本発明は上記のような構成であるため、色灯信号機のLED消費電流を精度良く測定することができ、延いては、LEDの断線故障の検出精度を高めることが可能となる。   Since the present invention has the above-described configuration, it is possible to accurately measure the LED current consumption of the color light traffic signal, and it is possible to improve the detection accuracy of the disconnection failure of the LED.

本発明の実施の形態に係るLEDの断線故障検出システムと色灯信号機とを模式的に示す模式図である。It is a schematic diagram which shows typically the LED disconnection failure detection system and color light signal device which concern on embodiment of this invention. 図1に示した色灯信号機について、色灯信号機への入力電圧波形と、全てのLEDに電流が供給されない無負荷時の、ギャップ付トランスの励磁電流波形とを示している。For the color light signal shown in FIG. 1, there are shown an input voltage waveform to the color light signal and an excitation current waveform of the transformer with a gap when no current is supplied to all LEDs. 図1に示した色灯信号機について、色灯信号機への入力電圧波形と、ギャップ付トランスの二次側の電流波形とを示している。For the color light traffic light shown in FIG. 1, there are shown an input voltage waveform to the color light traffic light and a current waveform on the secondary side of the transformer with a gap. 図1に示した色灯信号機について、(a)が色灯信号機への入力電流波形、(b)がギャップ付トランスの励磁電流波形、(c)が複数のLEDの消費電流波形を示している。Regarding the color light signal shown in FIG. 1, (a) shows an input current waveform to the color light signal, (b) shows an exciting current waveform of the transformer with a gap, and (c) shows consumption current waveforms of a plurality of LEDs. .. 入力電流の概略的な流れを付加した色灯信号機の模式図である。It is a schematic diagram of the color light traffic light which added the rough flow of the input current. 色灯信号機への入力電流と、色灯信号機のLED回路の断線率との関係を示すグラフである。It is a graph which shows the relationship between the input current to a color light signal, and the disconnection rate of the LED circuit of a color light signal.

以下、本発明を実施するための形態を、添付図面に基づいて説明する。なお、図面の全体にわたって、同一部分又は対応する部分は同一符号で示している。又、従来技術と同一部分若しくは相当する部分については、詳しい説明を省略する。
図1には、本発明の実施の形態に係るLEDの消費電流測定方法、及び、本発明の実施の形態に係るLEDの断線故障検出方法を実行するための、本発明の実施の形態に係るLEDの断線故障検出システム10の構成の一例を、色灯信号機50と共に模式的に示している。なお、図中の破線矢印は、データの流れを示している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. Throughout the drawings, the same parts or corresponding parts are denoted by the same reference numerals. Further, detailed description of the same or corresponding portions as those of the conventional technique will be omitted.
FIG. 1 shows an embodiment of the present invention for executing an LED current consumption measuring method according to an embodiment of the present invention and an LED disconnection failure detecting method according to an embodiment of the present invention. An example of the configuration of the LED disconnection failure detection system 10 is schematically shown together with the color light signal device 50. The dashed arrows in the figure indicate the flow of data.

まず、色灯信号機50の構成について簡単に説明すると、色灯信号機50は、図5に示したものと同様に、入力される交流電流を受けるギャップ付トランス54と、交流電流を直流電流に変換する全波整流器56と、複数のLED52と、複数の抵抗58とを含んでいる。複数のLED52は、各列において直列接続された複数のLED52が、複数列にわたって並列に接続されたLED回路を構成している。又、複数の抵抗58は、LED回路の直列接続された列毎に接続されている。なお、全波整流器56は、1つの素子で構成されている必要はなく、全波整流回路として実装されたものであってもよい。   First, the configuration of the color light signal device 50 will be briefly described. The color light signal device 50 is similar to that shown in FIG. 5, in that the transformer 54 with a gap for receiving an input AC current and the AC current is converted into a DC current. It includes a full-wave rectifier 56, a plurality of LEDs 52, and a plurality of resistors 58. The plurality of LEDs 52 form an LED circuit in which a plurality of LEDs 52 connected in series in each column are connected in parallel over a plurality of columns. Further, the plurality of resistors 58 are connected for each series-connected column of LED circuits. The full-wave rectifier 56 does not have to be configured by one element, and may be implemented as a full-wave rectifier circuit.

次に、図1に示すように、本発明の実施の形態に係るLEDの断線故障検出システム10は、タイミング検出部12、A/D変換部14、瞬時値算出部16、正弦波算出部18、励磁電流算出部20、消費電流算出部22及び断線故障検出部24を含んでいる。タイミング検出部12は、色灯信号機50へ入力される交流電源のラインから、交流の入力電圧の波形を取得する。この入力電圧の波形は、例えば図2及び図3に示す電圧の波形のように、正負に交互に振動する周期的な正弦波波形をなしている。そして、タイミング検出部12は、取得した入力電圧の波形から、入力電圧の正負が切り替わるゼロクロスのタイミングを検出し(タイミング検出工程)、この検出結果を、瞬時値算出部16及び正弦波算出部18へ送信する。このようなタイミング検出部12は、例えばフォトカプラやA/D変換器等により実現される。   Next, as shown in FIG. 1, the LED disconnection failure detection system 10 according to the embodiment of the present invention includes a timing detection unit 12, an A/D conversion unit 14, an instantaneous value calculation unit 16, and a sine wave calculation unit 18. , An excitation current calculation unit 20, a consumption current calculation unit 22, and a disconnection failure detection unit 24. The timing detection unit 12 acquires the waveform of the AC input voltage from the line of the AC power source input to the color light signal device 50. The waveform of the input voltage is a periodic sine wave waveform that alternately oscillates in positive and negative directions, such as the voltage waveforms shown in FIGS. 2 and 3. Then, the timing detection unit 12 detects the zero-cross timing at which the positive/negative of the input voltage is switched from the acquired waveform of the input voltage (timing detection process), and the detection result is used as the instantaneous value calculation unit 16 and the sine wave calculation unit 18. Send to. The timing detection unit 12 as described above is realized by, for example, a photocoupler, an A/D converter, or the like.

A/D変換部14は、色灯信号機50へ入力される交流電源のラインから、CTセンサ(交流電流センサ)等を介して、交流の入力電流の波形を取得する。そして、取得した波形をデジタルデータへ変換して(A/D変換工程)、瞬時値算出部16及び消費電流算出部22へ出力する。A/D変換部14には、例えば種々のA/D変換器が利用される。
瞬時値算出部16は、タイミング検出部12から入力された、入力電圧がゼロクロスするタイミングと、A/D変換部14から入力された、入力電流波形のデジタルデータとを利用して、入力電圧のゼロクロスタイミングにおける、入力電流波形の電流瞬時値をデジタルデータで算出する(瞬時値算出工程)。そして、算出した値を記憶すると共に、励磁電流算出部20へ送信する。なお、既に記憶している電流瞬時値と新たに算出した電流瞬時値との間に、僅かな差分しかない場合は、既に記憶している電流瞬時値をそのまま使用し続けてもよい。
The A/D conversion unit 14 acquires a waveform of an AC input current from a line of an AC power source input to the color light traffic signal 50 via a CT sensor (AC current sensor) or the like. Then, the acquired waveform is converted into digital data (A/D conversion step) and output to the instantaneous value calculation unit 16 and the consumption current calculation unit 22. Various A/D converters are used for the A/D conversion unit 14, for example.
The instantaneous value calculation unit 16 uses the timing at which the input voltage is zero-crossed, which is input from the timing detection unit 12, and the digital data of the input current waveform, which is input from the A/D conversion unit 14, to determine the input voltage The current instantaneous value of the input current waveform at the zero-cross timing is calculated with digital data (instantaneous value calculation step). Then, the calculated value is stored and is transmitted to the exciting current calculating unit 20. When there is only a slight difference between the current instantaneous value already stored and the newly calculated current instantaneous value, the current instantaneous value already stored may be used as it is.

正弦波算出部18は、色灯信号機50へ入力される交流電流の周波数と同じ周波数の正弦波の波形を、デジタルデータとして予め記憶している。すなわち、この正弦波波形は、交流電流の周波数をf、時間をtとすると、「sin(2πft)」で表されるものである。そして、正弦波算出部18は、この正弦波波形のデジタルデータと、タイミング検出部12から入力された、入力電圧がゼロクロスするタイミングとを利用して、例えば図2の電流の波形に相当するような、入力電圧がゼロクロスするタイミングから位相が90°遅れた、正弦波波形のデジタルデータを算出する(正弦波算出工程)。算出した正弦波波形は、「sin(2πft−π/2)」で表されるものである。その後、正弦波算出部18は、算出した正弦波波形のデジタルデータを、励磁電流算出部20へ出力する。   The sine wave calculator 18 stores in advance, as digital data, a sine wave waveform having the same frequency as the frequency of the alternating current input to the color light signal device 50. That is, this sine wave waveform is represented by “sin(2πft)”, where f is the frequency of the alternating current and t is the time. Then, the sine wave calculation unit 18 uses the digital data of the sine wave waveform and the timing at which the input voltage is zero-crossed, which is input from the timing detection unit 12, so as to correspond to the waveform of the current in FIG. 2, for example. The digital data of the sine wave waveform whose phase is delayed by 90° from the timing of zero crossing of the input voltage is calculated (sine wave calculation step). The calculated sine wave waveform is represented by “sin(2πft−π/2)”. After that, the sine wave calculation unit 18 outputs the calculated digital data of the sine wave waveform to the excitation current calculation unit 20.

励磁電流算出部20は、瞬時値算出部16から入力された、入力電圧のゼロクロスタイミングにおける入力電流波形の電流瞬時値と、正弦波算出部18から入力された、正弦波波形のデジタルデータとを利用して、ギャップ付トランス54の励磁電流を算出する(励磁電流算出工程)。具体的には、上記の2つの入力値を乗算して、ゼロクロスタイミングの入力電流波形の電流瞬時値を振幅(ピーク)とする、ゼロクロスタイミングから位相が90°遅れた正弦波波形を、デジタルデータで算出する。すなわち、この正弦波波形は、入力電流波形の電流瞬時値をiとすると、「i・sin(2πft−π/2)」で表されるものである。そして、励磁電流算出部20は、算出した正弦波波形のデジタルデータを消費電流算出部22へ送信する。 The exciting current calculation unit 20 receives the instantaneous current value of the input current waveform at the zero-cross timing of the input voltage, which is input from the instantaneous value calculation unit 16, and the digital data of the sine wave waveform, which is input from the sine wave calculation unit 18. By utilizing this, the exciting current of the transformer 54 with a gap is calculated (exciting current calculating step). Specifically, a sine wave waveform whose phase is delayed by 90° from the zero-cross timing, in which the instantaneous current value of the input current waveform at the zero-cross timing is the amplitude (peak), is multiplied by the above two input values to obtain digital data. Calculate with. That is, the sinusoidal waveform when the current instantaneous value of the input current waveform and i m, is represented by "i m · sin (2πft-π / 2) ". Then, the excitation current calculation unit 20 transmits the calculated digital data of the sine wave waveform to the consumption current calculation unit 22.

消費電流算出部22は、A/D変換部14から入力された、色灯信号機50への入力電流波形のデジタルデータと、励磁電流算出部20から入力された、ギャップ付トランス54の励磁電流を示す正弦波波形のデジタルデータとを利用して、複数のLED52の消費電流を算出する(消費電流算出工程)。ここで、図4(a)〜(c)は、夫々、色灯信号機50への入力電流波形と、ギャップ付トランス54の励磁電流波形と、複数のLED52の消費電流波形とを示している。すなわち、色灯信号機50への入力電流波形は、ギャップ付トランス54の励磁電流波形と、複数のLED52の消費電流波形とを加算したものである。このため、消費電流算出部22は、色灯信号機50への入力電流波形を示すデジタルデータから、ギャップ付トランス54の励磁電流波形を示すデジタルデータを減算することで、複数のLED52の消費電流をデジタルデータで算出する。その後、消費電流算出部22は、算出した複数のLED52の消費電流を示すデジタルデータを、断線故障検出部24へ出力する。   The consumption current calculation unit 22 receives the digital data of the input current waveform to the color light signal 50, which is input from the A/D conversion unit 14, and the excitation current of the transformer 54 with a gap, which is input from the excitation current calculation unit 20. The consumption current of the plurality of LEDs 52 is calculated using the digital data of the sine wave waveform shown (consumption current calculation step). Here, FIGS. 4A to 4C respectively show an input current waveform to the color light signal device 50, an excitation current waveform of the transformer 54 with a gap, and a consumption current waveform of the plurality of LEDs 52. That is, the input current waveform to the color light signal device 50 is the sum of the excitation current waveform of the transformer 54 with a gap and the consumption current waveform of the plurality of LEDs 52. Therefore, the current consumption calculation unit 22 subtracts the digital data indicating the excitation current waveform of the transformer 54 with a gap from the digital data indicating the input current waveform to the color light traffic signal 50, thereby reducing the current consumption of the plurality of LEDs 52. Calculate with digital data. After that, the consumption current calculation unit 22 outputs digital data indicating the calculated consumption currents of the plurality of LEDs 52 to the disconnection failure detection unit 24.

断線故障検出部24は、消費電流算出部22から入力された、複数のLED52の消費電流を示すデジタルデータを利用して、複数のLED52の断線故障の有無を検出する。例えば、断線故障検出部24は、予め記憶している所定の閾値と、入力される複数のLED52の消費電流値とを比較することで、複数のLED52の断線故障を検出してもよく、或いは、入力される複数のLED52の消費電流値の時間的な変化から、複数のLED52の断線故障を検出してもよい。
なお、瞬時値算出部16、正弦波算出部18、励磁電流算出部20、消費電流算出部22及び断線故障検出部24は、何れもデジタルデータを取り扱うものであるため、実現可能であればそれらの全てを1つのデジタル部品で構成してもよく、或いは、複数のデジタル部品を用いた回路により構成してもよい。更に、入力されたアナログデータをデジタルデータに変換して使用可能なものであれば、タイミング検出部12やA/D変換部14を含めて、1つの部品で構成してもよい。
The disconnection failure detection unit 24 detects the presence/absence of a disconnection failure of the plurality of LEDs 52 by using the digital data input from the consumption current calculation unit 22 and indicating the current consumption of the plurality of LEDs 52. For example, the disconnection failure detection unit 24 may detect the disconnection failure of the plurality of LEDs 52 by comparing a predetermined threshold value stored in advance with the consumption current values of the plurality of input LEDs 52, or The disconnection failure of the plurality of LEDs 52 may be detected from the temporal change in the current consumption value of the plurality of LEDs 52 input.
The instantaneous value calculation unit 16, the sine wave calculation unit 18, the excitation current calculation unit 20, the consumption current calculation unit 22, and the disconnection failure detection unit 24 all handle digital data. All may be configured by one digital component, or may be configured by a circuit using a plurality of digital components. Further, as long as it can convert the input analog data into digital data and use it, the timing detection unit 12 and the A/D conversion unit 14 may be included in one component.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、本発明の実施の形態に係るLEDの消費電流測定方法は、図1に示すような、ギャップ付トランス54と、このギャップ付トランス54を介して入力される交流電流を直流電流に変換する全波整流器56と、変換後の直流電流を受けて点灯する複数のLED52とを含む、色灯信号機50を対象とするものである。又、この色灯信号機50の複数のLED52は、一部のLED52の断線故障の影響で色灯信号機50が滅灯しないように、並列接続された複数列の各列において、任意数の複数のLED52毎に直列接続されている。このような構成の複数のLED52の消費電流を測定するために、本発明の実施の形態に係るLEDの消費電流測定方法は、色灯信号機50への入力電流が、色灯信号機50の内部において、複数のLED52により消費される電流と、ギャップ付トランス54の励磁電流とに分岐すること(図4及び図5参照)に着目し、まず、ギャップ付トランス54の励磁電流を算出する。   By the way, according to the embodiment of the present invention having the above-mentioned configuration, the following operational effects can be obtained. That is, the LED current consumption measuring method according to the embodiment of the present invention converts a transformer 54 with a gap and an alternating current input through the transformer 54 with a gap into a direct current as shown in FIG. It is intended for a color light signal device 50 including a full-wave rectifier 56 and a plurality of LEDs 52 that are turned on by receiving a converted direct current. Further, the plurality of LEDs 52 of the color light traffic signal 50 are arranged in parallel in a plurality of rows so that the color light traffic light 50 does not go out due to the disconnection failure of some of the LEDs 52. The LEDs 52 are connected in series. In order to measure the current consumption of the plurality of LEDs 52 having such a configuration, in the LED current consumption measuring method according to the embodiment of the present invention, the input current to the color light traffic signal 50 is inside the color light traffic light 50. Focusing on branching into the current consumed by the plurality of LEDs 52 and the exciting current of the transformer 54 with gap (see FIGS. 4 and 5), first, the exciting current of the transformer 54 with gap is calculated.

理想的なトランスの励磁電流は、一次側の電圧よりも位相が90°遅れることが知られており、これを色灯信号機50のギャップ付トランス54に当てはめると、図2に示すように、ギャップ付トランス54の励磁電流は、色灯信号機50への入力電圧から位相が90°遅れると考えられる。又、ギャップ付トランス54の励磁電流は、交流の入力電圧と同じ周期の正弦波を示すものとなる。更に、その正弦波の振幅(ピーク)は、ギャップ付トランス54の二次側の電流が0となるタイミング(換言すれば、励磁電流のみが流れるタイミング)の、色灯信号機50への入力電流の瞬時値から求められる。ここで、図3には、色灯信号機50への入力電圧(ギャップ付トランス54の一次側の電圧)の波形と、ギャップ付トランス54の二次側の電流の波形とを示している。この図3で確認できるように、ギャップ付トランス54の二次側にあるLED52には、一定以上の電圧がかかるまで電流が流れないことを勘案すると、ギャップ付トランス54の二次側の電流が0となるタイミングは、色灯信号機50への入力電圧がゼロクロスするタイミングであると考えられる。   It is known that the ideal exciting current of the transformer has a phase delay of 90° with respect to the voltage on the primary side. When this is applied to the transformer 54 with a gap of the color light signal device 50, as shown in FIG. It is considered that the exciting current of the attached transformer 54 is delayed in phase by 90° from the input voltage to the color light signal device 50. The exciting current of the transformer 54 with a gap exhibits a sine wave having the same cycle as the AC input voltage. Further, the amplitude (peak) of the sine wave is the input current to the color light signal device 50 at the timing when the current on the secondary side of the transformer with gap 54 becomes 0 (in other words, the timing at which only the exciting current flows). Calculated from the instantaneous value. Here, FIG. 3 shows the waveform of the input voltage (voltage on the primary side of the transformer 54 with a gap) to the color light traffic signal 50 and the waveform of the current on the secondary side of the transformer 54 with a gap. As can be seen in FIG. 3, considering that the LED 52 on the secondary side of the transformer with gap 54 does not flow a current until a certain voltage or more is applied, the current on the secondary side of the transformer with gap 54 becomes smaller. It is considered that the timing when it becomes 0 is the timing when the input voltage to the color light signal device 50 crosses zero.

そこで、本発明の実施の形態に係るLEDの消費電流測定方法は、色灯信号機50への入力電圧がゼロクロスするタイミングにおける、色灯信号機50への入力交流電流の電流瞬時値(i)と、入力電圧がゼロクロスするタイミングから位相が90°遅れた、入力交流電流の周波数に対応した正弦波波形(sin(2πft−π/2))とに基づいて、ギャップ付トランス54の励磁電流(i・sin(2πft−π/2))を算出する。更に、このように算出したギャップ付トランス54の励磁電流を、色灯信号機50への入力交流電流から差し引くことで、複数のLED52の消費電流を算出するものである。これにより、色灯信号機50の複数のLED52による消費電流を、精度良く測定することが可能となる。 Therefore, LED current consumption measurement method according to an embodiment of the present invention, at the time when the input voltage to Iroto traffic 50 crosses zero, the current instantaneous value of the input AC current to the Iroto traffic 50 (i m) , Based on the sinusoidal waveform (sin(2πft−π/2)) corresponding to the frequency of the input AC current, the phase of which is delayed by 90° from the timing of the zero crossing of the input voltage, the exciting current (i m ·sin(2πft−π/2)) is calculated. Further, the current consumption of the plurality of LEDs 52 is calculated by subtracting the exciting current of the transformer 54 with gap calculated in this way from the input AC current to the color light signal device 50. This makes it possible to accurately measure the current consumption by the plurality of LEDs 52 of the color light signal device 50.

又、本発明の実施の形態に係るLEDの消費電流測定方法は、上述したようにLED52の消費電流を算出するための様々な工程、すなわち、タイミング検出工程、A/D変換工程、瞬時値算出工程、正弦波算出工程、励磁電流算出工程及び消費電流算出工程を含むものである。図1には、これらの各工程を実行する複数の機能部を備えた、本発明の実施の形態に係るLEDの断線故障検出システム10を図示している。タイミング検出部12により実行するタイミング検出工程では、色灯信号機50への入力電圧の波形を取得し、その波形から入力電圧がゼロクロスするタイミングを検出する。A/D変換部14により実行するA/D変換工程では、色灯信号機50へ入力される交流電流の波形を取得し、その波形をデジタルデータへと変換する。そして、瞬時値算出部16により実行する瞬時値算出工程では、タイミング検出部12による検出結果と、A/D変換部14による変換データとに基づいて、色灯信号機50への入力電圧がゼロクロスするタイミングにおける、色灯信号機50への入力交流電流の電流瞬時値(i)を算出する。 Further, the LED current consumption measuring method according to the embodiment of the present invention includes various steps for calculating the current consumption of the LED 52 as described above, that is, a timing detection step, an A/D conversion step, and an instantaneous value calculation. It includes a process, a sine wave calculating process, an exciting current calculating process, and a consumed current calculating process. FIG. 1 illustrates an LED disconnection failure detection system 10 according to an embodiment of the present invention, which is provided with a plurality of functional units that execute each of these steps. In the timing detection process executed by the timing detection unit 12, the waveform of the input voltage to the color light signal device 50 is acquired, and the timing at which the input voltage crosses zero is detected from the waveform. In the A/D conversion process executed by the A/D conversion unit 14, the waveform of the alternating current input to the color light signal device 50 is acquired and the waveform is converted into digital data. Then, in the instantaneous value calculation step executed by the instantaneous value calculation unit 16, the input voltage to the color light traffic signal 50 crosses zero based on the detection result by the timing detection unit 12 and the conversion data by the A/D conversion unit 14. in the timing, and calculates the current instantaneous value of the input AC current to the Iroto traffic 50 (i m).

又、正弦波算出部18により実行する正弦波算出工程では、タイミング検出部12による検出結果と、予め設定する、色灯信号機50への入力交流電流の周波数に対応した正弦波波形(sin(2πft))のデジタルデータとに基づいて、図2に示すような、入力電圧のゼロクロスタイミングから位相が90°遅れた、入力交流電流と同じ周波数の正弦波波形(sin(2πft−π/2))をデジタルデータで算出する。更に、励磁電流算出部20により実行する励磁電流算出工程では、瞬時値算出部16による算出結果と、正弦波算出部18による算出結果とに基づいて、ギャップ付トランス54の励磁電流波形を算出する。すなわち、瞬時値算出部16において求めた電流瞬時値をピークとした振幅を有する、正弦波算出部18において求めた、入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形のデジタルデータを、ギャップ付トランス54の励磁電流波形(i・sin(2πft−π/2))として算出する。 Further, in the sine wave calculation step executed by the sine wave calculation unit 18, the detection result by the timing detection unit 12 and a sine wave waveform (sin(2πft) corresponding to a preset frequency of the input AC current to the color light signal 50 are set. )) based on the digital data, a sine wave waveform (sin(2πft−π/2)) with the same frequency as the input AC current with a phase delay of 90° from the zero cross timing of the input voltage, as shown in FIG. Is calculated with digital data. Further, in the exciting current calculating step executed by the exciting current calculating unit 20, the exciting current waveform of the transformer 54 with a gap is calculated based on the calculation result by the instantaneous value calculating unit 16 and the calculation result by the sine wave calculating unit 18. .. That is, digital data of a sine wave waveform, which has an amplitude with the instantaneous current value obtained by the instantaneous value calculation unit 16 as a peak and is obtained by the sine wave calculation unit 18 and whose phase is delayed by 90° from the zero-cross timing of the input voltage, calculated as an excitation current waveform of the gapped transformer 54 (i m · sin (2πft -π / 2)).

そして、消費電流算出部22により実行する消費電流算出工程では、A/D変換部14による変換データと、励磁電流算出部20による算出結果とに基づいて、複数のLED52の消費電流を算出する。すなわち、A/D変換部14において求めた、色灯信号機50へ入力される交流電流波形のデジタルデータから、励磁電流算出部20において求めた、ギャップ付トランス54の励磁電流波形のデジタルデータを減算して、複数のLED52の消費電流を算出する。これにより、色灯信号機50へ入力される交流電源の電圧波形及び電流波形のみを入力値として利用し、そこから複数のLED52の消費電流をデジタルデータにより算出することができるため、複数のLED52の消費電流の測定を、容易かつ精度良く実現することが可能となる。   Then, in the current consumption calculation step executed by the current consumption calculation unit 22, the current consumption of the plurality of LEDs 52 is calculated based on the conversion data by the A/D conversion unit 14 and the calculation result by the excitation current calculation unit 20. That is, the digital data of the excitation current waveform of the transformer 54 with a gap, which is obtained by the excitation current calculation unit 20, is subtracted from the digital data of the AC current waveform that is input to the color light signal device 50 that is obtained by the A/D conversion unit 14. Then, the current consumption of the plurality of LEDs 52 is calculated. As a result, since only the voltage waveform and the current waveform of the AC power source input to the color light traffic signal 50 are used as the input values, the consumption currents of the plurality of LEDs 52 can be calculated from the digital values, and thus the plurality of LEDs 52 can be calculated. It becomes possible to easily and accurately measure the consumption current.

更に、本発明の実施の形態に係るLEDの断線故障検出方法は、上記のLEDの消費電流測定方法により測定した、複数のLED52の消費電流を利用して、例えば図1に示す断線故障検出部24により、複数のLED52の断線故障を検出するものである。すなわち、上述したように測定した複数のLED52の消費電流には、複数のLED52の一部に断線故障が発生した場合の、複数のLED52のうちの、断線故障の影響により点灯していないLED52の割合が、略そのまま減少率として反映される。このようなLED52の消費電流を利用して、複数のLED52の断線故障を検出することにより、LED52の断線故障を高精度で検出することが可能となる。   Furthermore, the LED disconnection failure detection method according to the embodiment of the present invention utilizes the consumption currents of the plurality of LEDs 52 measured by the above-described LED consumption current measurement method, for example, the disconnection failure detection unit shown in FIG. The disconnection failure of the plurality of LEDs 52 is detected by 24. That is, in the current consumption of the plurality of LEDs 52 measured as described above, when the disconnection failure occurs in a part of the plurality of LEDs 52, among the plurality of LEDs 52, the LED 52 that is not lit due to the influence of the disconnection failure. The ratio is reflected as it is as a reduction ratio. By detecting the disconnection failure of the plurality of LEDs 52 by utilizing the current consumption of the LED 52 as described above, it becomes possible to detect the disconnection failure of the LED 52 with high accuracy.

一方、本発明の実施の形態に係るLEDの断線故障検出システム10は、本発明の実施の形態に係るLEDの消費電流測定方法を利用した、本発明の実施の形態に係るLEDの断線故障検出方法を実行するためのものである。このため、本発明の実施の形態に係るLEDの消費電流測定方法及び断線故障検出方法に対応する同等の作用効果を奏することができる。
なお、本発明の実施の形態に係るLEDの消費電流測定方法及び断線故障検出方法は、色灯信号機50への入力電圧がゼロクロスするタイミングにおける、色灯信号機50への入力交流電流の電流瞬時値と、入力電圧がゼロクロスするタイミングから位相が90°遅れた、入力交流電流の周波数に対応した正弦波波形とに基づいて、ギャップ付トランス54の励磁電流を算出し、更に、この算出結果を、色灯信号機50への入力交流電流から差し引くことで、複数のLED52の消費電流を算出するものであれば、図1に示したLEDの断線故障検出システム10と異なる構成を用いて実行してもよい。
On the other hand, the LED disconnection failure detection system 10 according to the embodiment of the present invention uses the LED current consumption measurement method according to the embodiment of the present invention to detect the LED disconnection failure. It is for carrying out the method. Therefore, it is possible to achieve the same operational effect corresponding to the LED current consumption measuring method and the disconnection failure detecting method according to the embodiment of the present invention.
In the LED current consumption measuring method and the disconnection failure detecting method according to the embodiment of the present invention, the instantaneous current value of the input AC current to the color light traffic signal 50 at the timing when the input voltage to the color light traffic light 50 crosses zero. And a sine wave waveform corresponding to the frequency of the input AC current, which is delayed by 90° in phase from the timing at which the input voltage crosses zero, and the exciting current of the transformer 54 with a gap is calculated. If the current consumption of the plurality of LEDs 52 is calculated by subtracting it from the input AC current to the color light traffic signal 50, even if the configuration is different from that of the LED disconnection failure detection system 10 shown in FIG. Good.

10:LEDの断線故障検出システム、12:タイミング検出部、14:A/D変換部、16:瞬時値算出部、18:正弦波算出部、20:励磁電流算出部、22:消費電流算出部、24:断線故障検出部、50:色灯信号機、52:LED、54:ギャップ付トランス、56:全波整流器   10: LED disconnection failure detection system, 12: Timing detection unit, 14: A/D conversion unit, 16: Instantaneous value calculation unit, 18: Sine wave calculation unit, 20: Excitation current calculation unit, 22: Current consumption calculation unit , 24: disconnection failure detection unit, 50: color light signal, 52: LED, 54: transformer with gap, 56: full-wave rectifier

Claims (4)

ギャップ付トランスと、該ギャップ付トランスを介して入力される交流電流を直流電流に変換する全波整流器と、前記直流電流を受けて点灯する複数のLEDとを含み、該複数のLEDが、並列接続された複数列の各列において複数毎に直列接続された色灯信号機を対象として、前記複数のLEDの消費電流を測定する方法であって、
前記色灯信号機への入力電圧がゼロクロスするタイミングにおける、前記色灯信号機への入力交流電流の電流瞬時値と、前記入力電圧がゼロクロスするタイミングから位相が90°遅れた、前記入力交流電流の周波数に対応した正弦波波形とに基づいて、前記ギャップ付トランスの励磁電流を算出し、
前記色灯信号機への入力交流電流から、前記ギャップ付トランスの励磁電流を差し引くことで、前記複数のLEDの消費電流を算出することを特徴とするLEDの消費電流測定方法。
A transformer with a gap, a full-wave rectifier that converts an alternating current input via the transformer with a gap into a direct current, and a plurality of LEDs that are turned on by receiving the direct current, and the plurality of LEDs are connected in parallel. A method for measuring the current consumption of the plurality of LEDs for color light traffic signals connected in series for each of a plurality of connected rows, comprising:
The frequency of the input AC current, in which the phase is delayed by 90° from the current instantaneous value of the input AC current to the color light signal and the timing at which the input voltage crosses zero, at the timing when the input voltage to the color light signal crosses zero. Based on the sine wave waveform corresponding to, calculate the exciting current of the transformer with a gap,
A method of measuring current consumption of an LED, wherein current consumption of the plurality of LEDs is calculated by subtracting an exciting current of the transformer with a gap from an input AC current to the traffic light signal.
前記色灯信号機への入力電圧がゼロクロスするタイミングを検出するタイミング検出工程と、
前記色灯信号機への入力交流電流の波形を取得し、デジタルデータへと変換するA/D変換工程と、
前記タイミング検出工程における検出結果と、前記A/D変換工程における変換データとに基づいて、前記電流瞬時値を算出する瞬時値算出工程と、
前記タイミング検出工程における検出結果と、予め設定する、前記入力交流電流の周波数に対応した正弦波波形のデジタルデータとに基づいて、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を算出する正弦波算出工程と、
前記瞬時値算出工程における算出結果と、前記正弦波算出工程における算出結果とに基づいて、前記電流瞬時値をピークとする、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を、前記ギャップ付トランスの励磁電流波形として算出する励磁電流算出工程と、
前記A/D変換工程における変換データと、前記励磁電流算出工程における算出結果とに基づいて、前記複数のLEDの消費電流を算出する消費電流算出工程と、を含むことを特徴とする請求項1記載のLEDの消費電流測定方法。
A timing detection step of detecting the timing at which the input voltage to the color light signal crosses zero,
An A/D conversion step of acquiring the waveform of the input alternating current to the color light signal and converting it into digital data;
An instantaneous value calculation step of calculating the current instantaneous value based on the detection result of the timing detection step and the conversion data of the A/D conversion step;
Based on the detection result in the timing detection step and the preset digital data of the sine wave waveform corresponding to the frequency of the input AC current, a sine wave waveform whose phase is delayed by 90° from the zero cross timing of the input voltage is generated. A sine wave calculation step for calculating,
Based on the calculation result in the instantaneous value calculation step and the calculation result in the sine wave calculation step, a sine wave waveform whose phase is delayed by 90° from the zero-cross timing of the input voltage, which peaks at the current instantaneous value, An exciting current calculation step of calculating as an exciting current waveform of the transformer with a gap,
2. A current consumption calculation step of calculating current consumption of the plurality of LEDs based on conversion data in the A/D conversion step and a calculation result in the excitation current calculation step. A method for measuring current consumption of an LED as described.
請求項1又は2記載のLEDの消費電流測定方法により測定した、前記複数のLEDの消費電流を利用して、前記複数のLEDの断線故障を検出することを特徴とするLEDの断線故障検出方法。   A method for detecting a disconnection failure of an LED, wherein a disconnection failure of the plurality of LEDs is detected by utilizing the consumption currents of the plurality of LEDs measured by the method of measuring the consumption current of the LED according to claim 1. .. ギャップ付トランスと、該ギャップ付トランスを介して入力される交流電流を直流電流に変換する全波整流器と、前記直流電流を受けて点灯する複数のLEDとを含み、該複数のLEDが、並列接続された複数列の各列において複数毎に直列接続された色灯信号機を対象として、前記複数のLEDの断線故障を検出するシステムであって、
前記色灯信号機への入力電圧がゼロクロスするタイミングを検出するタイミング検出部と、
前記色灯信号機への入力交流電流の波形を取得し、デジタルデータへと変換するA/D変換部と、
前記タイミング検出部による検出結果と、前記A/D変換部による変換データとに基づいて、前記入力電圧がゼロクロスするタイミングにおける、前記色灯信号機への入力交流電流の電流瞬時値を算出する瞬時値算出部と、
前記タイミング検出部による検出結果と、予め設定される、前記入力交流電流の周波数に対応した正弦波波形のデジタルデータとに基づいて、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を算出する正弦波算出部と、
前記瞬時値算出部による算出結果と、前記正弦波算出部による算出結果とに基づいて、前記電流瞬時値をピークとする、前記入力電圧のゼロクロスタイミングから位相が90°遅れた正弦波波形を、前記ギャップ付トランスの励磁電流波形として算出する励磁電流算出部と、
前記A/D変換部による変換データと、前記励磁電流算出部による算出結果とに基づいて、前記複数のLEDの消費電流を算出する消費電流算出部と、
該消費電流算出部による算出結果に基づいて、前記複数のLEDの断線故障を検出する断線故障検出部と、を含むことを特徴とするLEDの断線故障検出システム。
A transformer with a gap, a full-wave rectifier that converts an alternating current input via the transformer with a gap into a direct current, and a plurality of LEDs that are turned on by receiving the direct current, and the plurality of LEDs are connected in parallel. A system for detecting a disconnection failure of the plurality of LEDs for a color light traffic signal connected in series for each of a plurality of connected rows,
A timing detection unit for detecting the timing at which the input voltage to the color light signal crosses zero,
An A/D conversion unit that acquires the waveform of the input AC current to the color light signal and converts it into digital data;
An instantaneous value for calculating the current instantaneous value of the input alternating current to the color light signal at the timing when the input voltage crosses zero based on the detection result by the timing detection unit and the conversion data by the A/D conversion unit. A calculator,
A sine wave waveform whose phase is delayed by 90° from the zero-cross timing of the input voltage based on the detection result by the timing detection unit and preset digital data of the sine wave waveform corresponding to the frequency of the input AC current. A sine wave calculation unit that calculates
Based on the calculation result by the instantaneous value calculation unit and the calculation result by the sine wave calculation unit, a sine wave waveform whose phase is delayed by 90° from the zero-cross timing of the input voltage, which peaks at the current instantaneous value, An exciting current calculation unit that calculates the exciting current waveform of the transformer with a gap,
A current consumption calculating unit that calculates current consumption of the plurality of LEDs based on the conversion data by the A/D conversion unit and the calculation result by the excitation current calculating unit;
A disconnection failure detection system for an LED, comprising: a disconnection failure detection section that detects a disconnection failure of the plurality of LEDs based on a calculation result by the consumption current calculation section.
JP2018212319A 2018-11-12 2018-11-12 Led current consumption measurement method, led disconnection defect detection method and system using the same Pending JP2020079728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212319A JP2020079728A (en) 2018-11-12 2018-11-12 Led current consumption measurement method, led disconnection defect detection method and system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212319A JP2020079728A (en) 2018-11-12 2018-11-12 Led current consumption measurement method, led disconnection defect detection method and system using the same

Publications (1)

Publication Number Publication Date
JP2020079728A true JP2020079728A (en) 2020-05-28

Family

ID=70801665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212319A Pending JP2020079728A (en) 2018-11-12 2018-11-12 Led current consumption measurement method, led disconnection defect detection method and system using the same

Country Status (1)

Country Link
JP (1) JP2020079728A (en)

Similar Documents

Publication Publication Date Title
JP5333874B2 (en) Detection apparatus and method, and program
US9198250B2 (en) LED light source
US20130158920A1 (en) Pulse width modulated voltage measuring circuit and method
US8199534B2 (en) Load current detection in electrical power converters
RU2014102875A (en) AC SYSTEM AND METHOD FOR AC VOLTAGE INPUT
JP5643951B2 (en) DC power supply
JP2011528121A5 (en)
TWI456382B (en) Power supply, power management device applied to a power supply, and method for brown-out protection and over-heated protection of a power management device
CA2912337A1 (en) System and method for detecting ground fault in a dc system
JP5305070B2 (en) Detection device
JP2020079728A (en) Led current consumption measurement method, led disconnection defect detection method and system using the same
EP2772766B1 (en) Power line frequency detector
KR101812915B1 (en) Circuit breaker
WO2018006517A1 (en) Method for detecting instantaneous current in intermediate dc link of ac-dc-ac circuit and locomotive
JP2006025550A (en) Frequency detection device and distributed power supply device
US20100127691A1 (en) Two Pole Circuit Breaker Voltage Monitoring Integration
JP6227918B2 (en) Inspection system
KR101351593B1 (en) Ac zero crossing detect circuit and power converter comprising the same circuit
BR112022012084A2 (en) CONSUMPTION OF SWITCHING ENERGY CONSUMPTION BY THE DETECTION OF A FUNDAMENTAL COMPONENT OF A CURRENT
JP5115048B2 (en) DC current detection method and apparatus for high frequency power supply device
JP2012122781A (en) Resistance measurement device
JP5985126B1 (en) Converter device
WO2022004539A1 (en) Abnormality detection device and laser oscillator provided with same
CN109581083B (en) Open-phase detection device of three-phase alternating current power supply and power electronic system
JP5309500B2 (en) Power supply device and method for determining phase loss thereof