JP2020077475A - Method of producing cathode active material for all solid lithium ion battery and method of manufacturing all solid lithium ion battery - Google Patents

Method of producing cathode active material for all solid lithium ion battery and method of manufacturing all solid lithium ion battery Download PDF

Info

Publication number
JP2020077475A
JP2020077475A JP2018208487A JP2018208487A JP2020077475A JP 2020077475 A JP2020077475 A JP 2020077475A JP 2018208487 A JP2018208487 A JP 2018208487A JP 2018208487 A JP2018208487 A JP 2018208487A JP 2020077475 A JP2020077475 A JP 2020077475A
Authority
JP
Japan
Prior art keywords
ion battery
active material
gallium
solid
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018208487A
Other languages
Japanese (ja)
Other versions
JP7292026B2 (en
Inventor
幸毅 ▲柳▼川
幸毅 ▲柳▼川
Yukitake Yanagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018208487A priority Critical patent/JP7292026B2/en
Publication of JP2020077475A publication Critical patent/JP2020077475A/en
Application granted granted Critical
Publication of JP7292026B2 publication Critical patent/JP7292026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a method of producing cathode active material for an all solid lithium ion battery having an excellent battery characteristic.SOLUTION: The method of producing cathode active material for an all solid lithium ion battery is provided that includes the steps of: preparing a transition-metal compound constituted by nickel, cobalt, and manganese; adding a gallium compound to the transition-metal compound thereby obtaining a transition-metal compound added with gallium compound expressed by a composition formula: NiCoMnGa(in the formula, 84<a<94, 5<b<7.5, 1≤c<7.5, and 0.33≤d≤0.65); mixing the transition-metal compound added with gallium compound and a lithium hydroxide thereby obtaining a mixture; and performing a heat treatment on the mixture.SELECTED DRAWING: None

Description

本発明は、全固体リチウムイオン電池用正極活物質の製造方法、及び、全固体リチウムイオン電池の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for an all-solid-state lithium-ion battery and a method for producing an all-solid-state lithium-ion battery.

現在、使用されているリチウムイオン電池は、正極活物質として層状化合物LiMeO2(Meは平均で+III価となるように選択されるカチオンであり、レドックスカチオンを必ず含む)、スピネル化合物LiMeQO4(Qは平均で+IV価となるように選択されるカチオン)、オリビン系化合物LiX1X2O4(X1は+II価となるように選択されるカチオンであり、レドックスカチオンを必ず含む、X2は+V価となるように選択されるカチオン)や蛍石型化合物Li5MeO4等を用いており、一方でその特性を生かすことができるよう、電解液その他構成要件が年々改善されてきている。 Currently used lithium ion batteries include a layered compound LiMeO 2 (Me is a cation selected so as to have an average + III valence and always includes a redox cation) as a positive electrode active material, and a spinel compound LiMeQO 4 (Q Is a cation selected to have an average + IV valence), and an olivine compound LiX1X2O 4 (X1 is a cation selected to have a + II valence, and must include a redox cation, and X2 has a + V valence). (Selected cations) and fluorite type compounds Li 5 MeO 4 and the like are used, and on the other hand, the electrolytic solution and other constituent requirements have been improved year by year so that the characteristics can be utilized.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池(以下、液系LIBとも称する)の代替候補として、電解質を固体とした全固体リチウムイオン電池(以下、全固体LIBとも称する)が近年注目を集めている(特許文献1等)。   However, in the case of a lithium-ion battery, most electrolytes are organic compounds, and it cannot be said that even if a flame-retardant compound is used, there is no danger of causing a fire. As an alternative candidate for such a liquid-type lithium-ion battery (hereinafter, also referred to as a liquid-type LIB), an all-solid-state lithium-ion battery having an electrolyte as a solid (hereinafter also referred to as an all-solid-state LIB) has been attracting attention in recent years (Patent Document 1). etc).

特許第5971109号公報Japanese Patent No. 5971109 特許第5246777号公報Japanese Patent No. 5246777

しかしながら、充放電中の発熱による電池性能の劣化抑制は全固体LIBにも共通の課題として、改善が求められている。   However, suppression of deterioration of battery performance due to heat generation during charging / discharging is a common problem for all solid-state LIBs, and improvement is required.

ここで、正極活物質を得るためには、特許文献2にも開示されている通り、前駆体とリチウム源とを混合、焼成し正極活物質を得るのが一般的であるが、このような製造方法では正極活物質合成中でのリチウムイオン拡散のために大きなエネルギーを必要とする。このため、従来技術では、実験例のスケールアップの際に想定性能が発揮できないことがあった。具体的には、上記のリチウムイオン拡散が不十分であることから、未反応分が残ってしまい、結果として残存した未反応原料の一部が充放電時に反応抵抗(リチウムイオン拡散抵抗)となってしまってジュール熱が発生し、出力特性やサイクル特性などにまで悪影響を及ぼしてしまうということがあった。   Here, in order to obtain the positive electrode active material, as disclosed in Patent Document 2, it is common to mix a precursor and a lithium source and fire the mixture to obtain a positive electrode active material. The manufacturing method requires a large amount of energy for diffusion of lithium ions during the synthesis of the positive electrode active material. For this reason, in the related art, the expected performance may not be exhibited when the experimental example is scaled up. Specifically, since the above lithium ion diffusion is insufficient, unreacted components remain, and as a result, some of the unreacted raw materials that remain become reaction resistance (lithium ion diffusion resistance) during charge and discharge. As a result, Joule heat is generated, which adversely affects output characteristics and cycle characteristics.

そこで、本発明の実施形態は、電池特性が良好な全固体リチウムイオン電池用正極活物質の製造方法を提供することを課題とする。   Therefore, it is an object of an embodiment of the present invention to provide a method for producing a positive electrode active material for an all-solid-state lithium-ion battery having good battery characteristics.

本発明は一実施形態において、ニッケル、コバルト及びマンガンで構成される遷移金属化合物を準備する工程と、前記遷移金属化合物にガリウム化合物を添加して、組成式:NiaCobMncGad(式中、84<a<94、5<b<7.5、1≦c<7.5、0.33≦d≦0.65である)で表されるガリウム添加遷移金属化合物を得る工程と、前記ガリウム添加遷移金属化合物と水酸化リチウムとを混合して混合体を得る工程と、前記混合体を熱処理する工程とを含む全固体リチウムイオン電池用正極活物質の製造方法である。 In one embodiment, the present invention provides a step of preparing a transition metal compound composed of nickel, cobalt, and manganese, and adding a gallium compound to the transition metal compound to obtain a composition formula: Ni a Co b M n c Ga d ( In the formula, 84 <a <94, 5 <b <7.5, 1 ≦ c <7.5, 0.33 ≦ d ≦ 0.65). A method for producing a positive electrode active material for an all-solid-state lithium-ion battery, comprising: a step of mixing the gallium-added transition metal compound and lithium hydroxide to obtain a mixture; and a step of heat-treating the mixture.

本発明の別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記ニッケル、コバルト及びマンガンで構成される遷移金属化合物が水酸化物である。   In the method for producing a positive electrode active material for an all-solid-state lithium-ion battery according to another embodiment of the present invention, the transition metal compound composed of nickel, cobalt and manganese is a hydroxide.

本発明の更に別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記遷移金属化合物に添加するガリウム化合物がクエン酸ガリウムである。   In the method for producing a positive electrode active material for an all-solid-state lithium ion battery according to yet another embodiment of the present invention, the gallium compound added to the transition metal compound is gallium citrate.

本発明の別の実施形態は、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法である。   Another embodiment of the present invention is to form a positive electrode layer using the all-solid-state lithium-ion battery positive electrode active material manufactured by the method for manufacturing an all-solid-state lithium-ion battery positive electrode active material according to the embodiment of the present invention, An all-solid-state lithium-ion battery is manufactured by using the positive electrode layer, the solid electrolyte layer, and the negative electrode layer.

本発明の実施形態によれば、電池特性が良好な全固体リチウムイオン電池用正極活物質の製造方法を提供することができる。   According to the embodiments of the present invention, it is possible to provide a method for producing a positive electrode active material for an all-solid-state lithium-ion battery having good battery characteristics.

(全固体リチウムイオン電池用正極活物質の製造方法)
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法としては、まず、ニッケル、コバルト及びマンガンで構成される遷移金属化合物を準備する。遷移金属化合物はニッケル源:コバルト源:マンガン源が、所定のモル比となるように調製されている。ニッケル源、コバルト源、マンガン源はそれぞれ硫酸塩、硝酸塩、酢酸塩等から選択される少なくとも1種の組み合わせであってもよい。また、当該遷移金属化合物は水酸化物、酸化物等であってもよい。
(Method for producing positive electrode active material for all-solid-state lithium-ion battery)
In the method for producing the positive electrode active material for an all-solid-state lithium ion battery according to the embodiment of the present invention, first, a transition metal compound composed of nickel, cobalt and manganese is prepared. The transition metal compound is prepared such that a nickel source: cobalt source: manganese source has a predetermined molar ratio. The nickel source, cobalt source, and manganese source may each be a combination of at least one selected from sulfates, nitrates, acetates, and the like. Further, the transition metal compound may be a hydroxide, an oxide or the like.

次に、ニッケル、コバルト及びマンガンで構成される遷移金属化合物にガリウム化合物を添加して、組成式:NiaCobMncGad(式中、84<a<94、5<b<7.5、1≦c<7.5、0.33≦d≦0.65である)で表されるガリウム添加遷移金属化合物を作製する。当該遷移金属化合物に添加するガリウム化合物は、クエン酸ガリウム、硝酸ガリウム等であってもよい。Gaの組成について、上記組成式においてdが0.33以下であると、ガリウム添加によるリチウムイオンの拡散抵抗低減効果が十分に得られないという問題が生じるおそれがあり、dが0.65以上であると電荷のキャリアであるリチウムイオンが本来存在する場所を奪い放電容量が低下するという問題が生じるおそれがある。 Next, a gallium compound is added to a transition metal compound composed of nickel, cobalt, and manganese, and a composition formula: Ni a Co b Mn c Ga d (wherein 84 <a <94, 5 <b <7. 5, 1 ≦ c <7.5, 0.33 ≦ d ≦ 0.65) is prepared. The gallium compound added to the transition metal compound may be gallium citrate, gallium nitrate, or the like. Regarding the composition of Ga, when d is 0.33 or less in the above composition formula, there is a possibility that the effect of reducing the diffusion resistance of lithium ions due to the addition of gallium may not be sufficiently obtained, and d is 0.65 or more. If so, there is a possibility that a problem may occur in which the place where the lithium ion, which is a carrier of electric charge, originally exists is deprived to lower the discharge capacity.

ニッケル、コバルト及びマンガンで構成される遷移金属化合物にガリウム化合物を添加してガリウム添加遷移金属化合物を作製する方法としては、特に限定されないが、例えば当該遷移金属化合物にロッキングミキサー等で所定のGa濃度のガリウム化合物の溶液を噴霧して撹拌することでガリウム添加遷移金属化合物を作製する方法等が挙げられる。   The method of adding a gallium compound to a transition metal compound composed of nickel, cobalt, and manganese to produce a gallium-added transition metal compound is not particularly limited, but, for example, the transition metal compound may have a predetermined Ga concentration by a rocking mixer or the like. And a method of producing a gallium-added transition metal compound by spraying and stirring a solution of the gallium compound.

次に、ガリウム添加遷移金属化合物と水酸化リチウムとを混合して混合体を得る。混合は特に限定されないが、例えばヘンシェルミキサー等を用いて行うことができる。   Next, a gallium-added transition metal compound and lithium hydroxide are mixed to obtain a mixture. The mixing is not particularly limited, but can be performed using, for example, a Henschel mixer.

次に、混合体を熱処理する。当該熱処理としては、好ましくは酸素雰囲気下で、700℃で12時間の焼成を行うことができる。焼成後、所定の降温速度で室温まで冷却し、必要であれば、ロールクラッシャーやパルベライザー等で解砕することで、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質が得られる。   Next, the mixture is heat-treated. As the heat treatment, firing can be performed at 700 ° C. for 12 hours, preferably in an oxygen atmosphere. After firing, the positive electrode active material for an all-solid-state lithium ion battery according to the embodiment of the present invention is obtained by cooling to room temperature at a predetermined temperature lowering rate and, if necessary, crushing with a roll crusher, a pulsarizer or the like.

上記の方法によれば、正極活物質前駆体にリチウムとイオン半径の近いガリウムを添加してガリウム添加遷移金属化合物を作製し、これをリチウム源と混合して焼成することで、焼成中および充放電中のリチウムの拡散をしやすくし、電池の抵抗を減少させ、抵抗ジュール熱起因の発熱を抑制し、結果として全固体リチウムイオン電池の電池特性を向上させる正極活物質が得られる。これは、添加されたガリウムによって、正極活物質前駆体の構造が周期的に変動し、結果としてリチウムイオンの吸着エネルギーも変動し、これにより、焼成中および充放電中のリチウムの拡散が容易になるためと考えられる。   According to the above method, gallium having a ionic radius close to that of lithium is added to the positive electrode active material precursor to prepare a gallium-added transition metal compound, which is mixed with a lithium source and then baked, so that during and after firing. A positive electrode active material that facilitates diffusion of lithium during discharge, reduces the resistance of the battery, suppresses heat generation due to resistance Joule heat, and consequently improves the battery characteristics of an all-solid-state lithium-ion battery is obtained. This is because the structure of the positive electrode active material precursor is periodically changed by the added gallium, and as a result, the adsorption energy of lithium ions is also changed, which facilitates the diffusion of lithium during firing and charging / discharging. It is thought to be because.

(全固体リチウムイオン電池の製造方法)
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、固体電解質層、当該正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(Method for manufacturing all-solid-state lithium-ion battery)
A positive electrode layer is formed using the positive electrode active material for all-solid-state lithium-ion batteries manufactured by the method for manufacturing a positive-electrode active material for all-solid-state lithium-ion batteries according to an embodiment of the present invention, and a solid electrolyte layer, the positive-electrode layer and the negative electrode. An all-solid-state lithium-ion battery with layers can be made.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples are provided below for better understanding of the present invention and its advantages, but the present invention is not limited to these examples.

(実施例1)
正極活物質前駆体であるニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物(モル比でNi:Co:Mn=89.9:6.89:2.89)に対し、室温にてロッキングミキサーを用いて、表1に示すGa添加条件にてGa濃度7.0質量%のクエン酸ガリウム溶液を噴霧し、15分間粉体撹拌を実施し、ガリウム添加遷移金属の水酸化物(ガリウム添加前駆体)Aを得た。ここで、該クエン酸ガリウム溶液の噴霧は、該遷移金属の水酸化物中のNi+Co+Mnの総モルに対する、噴霧したクエン酸ガリウム溶液中のGaのモル数の割合:Ga/(Ni+Co+Mn)が0.33mol%となるように行った。また、得られたガリウム添加前駆体の平均粒径D50は13μmであり、比表面積(BET)は25m2/gであった。
次に、該ガリウム添加前駆体Aと水酸化リチウムとをヘンシェルミキサーを用いて1500rpmで5分間混合した。混合して得られた粉体を0.1Mpa酸素雰囲気下、720℃で12時間焼成した。これを降温速度5℃/分で室温まで冷却し、ロールクラッシャーとACMパルベライザーで解砕して全固体リチウムイオン電池用正極活物質Aを得た。
(Example 1)
The positive electrode active material precursor is a transition metal hydroxide composed of nickel, cobalt and manganese (at a molar ratio of Ni: Co: Mn = 89.9: 6.89: 2.89) at room temperature. Using a rocking mixer, a gallium citrate solution having a Ga concentration of 7.0 mass% was sprayed under the Ga addition conditions shown in Table 1, and powder stirring was carried out for 15 minutes to obtain a hydroxide of gallium-added transition metal (gallium. Addition precursor) A was obtained. Here, in the spraying of the gallium citrate solution, the ratio of the number of moles of Ga in the sprayed gallium citrate solution to the total moles of Ni + Co + Mn in the hydroxide of the transition metal: Ga / (Ni + Co + Mn) was 0. It carried out so that it might be 33 mol%. The average particle diameter D50 of the obtained gallium-containing precursor was 13 μm, and the specific surface area (BET) was 25 m 2 / g.
Next, the gallium-added precursor A and lithium hydroxide were mixed with a Henschel mixer at 1500 rpm for 5 minutes. The powder obtained by mixing was fired at 720 ° C. for 12 hours in an oxygen atmosphere of 0.1 Mpa. This was cooled to room temperature at a temperature decrease rate of 5 ° C./min, and crushed with a roll crusher and an ACM pulsarizer to obtain a positive electrode active material A for all-solid-state lithium ion batteries.

(実施例2)
正極活物質前駆体であるニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物(モル比でNi:Co:Mn=84.8:7.34:7.34)に対し、室温にてロッキングミキサーを用いて、表1に示すGa添加条件にてGa濃度7.0質量%のクエン酸ガリウム溶液を噴霧し、15分間粉体撹拌を実施し、ガリウム添加遷移金属の水酸化物(ガリウム添加前駆体)Bを得た。ここで、該クエン酸ガリウム溶液の噴霧は、該遷移金属の水酸化物中のNi+Co+Mnの総モルに対する、噴霧したクエン酸ガリウム溶液中のGaのモル数の割合:Ga/(Ni+Co+Mn)が0.48mol%となるように行った。また、得られたガリウム添加前駆体の平均粒径D50は10μmであり、比表面積(BET)は40m2/gであった。
次に、該ガリウム添加前駆体Bと水酸化リチウムとをヘンシェルミキサーを用いて1500rpmで5分間混合した。混合して得られた粉体を0.1Mpa酸素雰囲気下、720℃で12時間焼成した。これを降温速度5℃/分で室温まで冷却し、ロールクラッシャーとACMパルベライザーで解砕して全固体リチウムイオン電池用正極活物質Bを得た。
(Example 2)
The positive electrode active material precursor is a transition metal hydroxide composed of nickel, cobalt and manganese (at a molar ratio of Ni: Co: Mn = 84.8: 7.34: 7.34) at room temperature. Using a rocking mixer, a gallium citrate solution having a Ga concentration of 7.0 mass% was sprayed under the Ga addition conditions shown in Table 1, and powder stirring was carried out for 15 minutes to obtain a hydroxide of gallium-added transition metal (gallium. Added precursor B was obtained. Here, in the spraying of the gallium citrate solution, the ratio of the number of moles of Ga in the sprayed gallium citrate solution to the total moles of Ni + Co + Mn in the hydroxide of the transition metal: Ga / (Ni + Co + Mn) was 0. It was carried out so as to be 48 mol%. The average particle diameter D50 of the obtained gallium-containing precursor was 10 μm, and the specific surface area (BET) was 40 m 2 / g.
Next, the gallium-added precursor B and lithium hydroxide were mixed for 5 minutes at 1500 rpm using a Henschel mixer. The powder obtained by mixing was fired at 720 ° C. for 12 hours in an oxygen atmosphere of 0.1 Mpa. This was cooled to room temperature at a temperature decrease rate of 5 ° C./min, and crushed with a roll crusher and an ACM pulsarizer to obtain a positive electrode active material B for all-solid-state lithium ion battery.

(実施例3)
正極活物質前駆体であるニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物(モル比でNi:Co:Mn=93.3:5.1:1)に対し、室温にてロッキングミキサーを用いて、表1に示すGa添加条件にてGa濃度7.0質量%のクエン酸ガリウム溶液を噴霧し、15分間粉体撹拌を実施し、ガリウム添加遷移金属の水酸化物(ガリウム添加前駆体)Cを得た。ここで、該クエン酸ガリウム溶液の噴霧は、該遷移金属の水酸化物中のNi+Co+Mnの総モルに対する、噴霧したクエン酸ガリウム溶液中のGaのモル数の割合:Ga/(Ni+Co+Mn)が0.65mol%となるように行った。また、得られたガリウム添加前駆体の平均粒径D50は8μmであり、比表面積(BET)は30m2/gであった。
次に、該ガリウム添加前駆体Cと水酸化リチウムとをヘンシェルミキサーを用いて1500rpmで5分間混合した。混合して得られた粉体を0.1Mpa酸素雰囲気下、720℃で12時間焼成した。これを降温速度5℃/分で室温まで冷却し、ロールクラッシャーとACMパルベライザーで解砕して全固体リチウムイオン電池用正極活物質Cを得た。
(Example 3)
Rocking mixer at room temperature for a hydroxide of a transition metal composed of nickel, cobalt and manganese (a molar ratio of Ni: Co: Mn = 93.3: 5.1: 1) which is a positive electrode active material precursor. By spraying a gallium citrate solution having a Ga concentration of 7.0% by mass under the Ga addition conditions shown in Table 1 and performing powder agitation for 15 minutes. Body C was obtained. Here, in the spraying of the gallium citrate solution, the ratio of the number of moles of Ga in the sprayed gallium citrate solution to the total moles of Ni + Co + Mn in the hydroxide of the transition metal: Ga / (Ni + Co + Mn) was 0. It carried out so that it might become 65 mol%. The average particle size D50 of the obtained gallium-containing precursor was 8 μm, and the specific surface area (BET) was 30 m 2 / g.
Next, the gallium-added precursor C and lithium hydroxide were mixed for 5 minutes at 1500 rpm using a Henschel mixer. The powder obtained by mixing was fired at 720 ° C. for 12 hours in an oxygen atmosphere of 0.1 Mpa. This was cooled to room temperature at a temperature decrease rate of 5 ° C./min, and crushed with a roll crusher and an ACM pulsarizer to obtain a positive electrode active material C for an all-solid-state lithium ion battery.

(比較例1)
正極活物質前駆体であるニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物(モル比でNi:Co:Mn=94:4.9:0.9)に対し、室温にてロッキングミキサーを用いて、表1に示すGa添加条件にてGa濃度7.0質量%のクエン酸ガリウム溶液を噴霧し、15分間粉体撹拌を実施し、ガリウム添加遷移金属の水酸化物(ガリウム添加前駆体)Dを得た。ここで、該クエン酸ガリウム溶液の噴霧は、該遷移金属の水酸化物中のNi+Co+Mnの総モルに対する、噴霧したクエン酸ガリウム溶液中のGaのモル数の割合:Ga/(Ni+Co+Mn)が0.16mol%となるように行った。また、得られたガリウム添加前駆体の平均粒径D50は8μmであり、比表面積(BET)は30m2/gであった。
次に、該ガリウム添加前駆体Dと水酸化リチウムとをヘンシェルミキサーを用いて1500rpmで5分間混合した。混合して得られた粉体を0.1Mpa酸素雰囲気下、720℃で12時間焼成した。これを降温速度5℃/分で室温まで冷却し、ロールクラッシャーとACMパルベライザーで解砕して全固体リチウムイオン電池用正極活物質Dを得た。
(Comparative Example 1)
Rocking mixer at room temperature for a transition metal hydroxide (Ni: Co: Mn = 94: 4.9: 0.9 in molar ratio) composed of nickel, cobalt, and manganese, which is a positive electrode active material precursor. By spraying a gallium citrate solution having a Ga concentration of 7.0 mass% under the Ga addition conditions shown in Table 1 and performing powder agitation for 15 minutes to prepare a gallium-added transition metal hydroxide (gallium-added precursor). Body) D was obtained. Here, in the spraying of the gallium citrate solution, the ratio of the number of moles of Ga in the sprayed gallium citrate solution to the total moles of Ni + Co + Mn in the hydroxide of the transition metal: Ga / (Ni + Co + Mn) was 0. It carried out so that it might be 16 mol%. The average particle size D50 of the obtained gallium-containing precursor was 8 μm, and the specific surface area (BET) was 30 m 2 / g.
Next, the gallium-added precursor D and lithium hydroxide were mixed at 1500 rpm for 5 minutes using a Henschel mixer. The powder obtained by mixing was fired at 720 ° C. for 12 hours in an oxygen atmosphere of 0.1 Mpa. This was cooled to room temperature at a temperature lowering rate of 5 ° C./min, and crushed with a roll crusher and an ACM pulsarizer to obtain a positive electrode active material D for all-solid-state lithium ion battery.

(比較例2)
正極活物質前駆体であるニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物(モル比でNi:Co:Mn=83.9:7.7:7.7)に対し、室温にてロッキングミキサーを用いて、表1に示すGa添加条件にてGa濃度7.0質量%のクエン酸ガリウム溶液を噴霧し、15分間粉体撹拌を実施し、ガリウム添加遷移金属の水酸化物(ガリウム添加前駆体)Eを得た。ここで、該クエン酸ガリウム溶液の噴霧は、該遷移金属の水酸化物中のNi+Co+Mnの総モルに対する、噴霧したクエン酸ガリウム溶液中のGaのモル数の割合:Ga/(Ni+Co+Mn)が0.75mol%となるように行った。また、得られたガリウム添加前駆体の平均粒径D50は10μmであり、比表面積(BET)は40m2/gであった。
次に、該ガリウム添加前駆体Eと水酸化リチウムとをヘンシェルミキサーを用いて1500rpmで5分間混合した。混合して得られた粉体を0.1Mpa酸素雰囲気下、720℃で12時間焼成した。これを降温速度5℃/分で室温まで冷却し、ロールクラッシャーとACMパルベライザーで解砕して全固体リチウムイオン電池用正極活物質Eを得た。
(Comparative example 2)
For a positive electrode active material precursor, a transition metal hydroxide composed of nickel, cobalt and manganese (Ni: Co: Mn = 83.9: 7.7: 7.7 in a molar ratio), at room temperature. Using a rocking mixer, a gallium citrate solution having a Ga concentration of 7.0 mass% was sprayed under the Ga addition conditions shown in Table 1, and powder stirring was carried out for 15 minutes to obtain a hydroxide of gallium-added transition metal (gallium. Addition precursor) E was obtained. Here, in the spraying of the gallium citrate solution, the ratio of the number of moles of Ga in the sprayed gallium citrate solution to the total moles of Ni + Co + Mn in the hydroxide of the transition metal: Ga / (Ni + Co + Mn) was 0. It was performed so as to be 75 mol%. The average particle diameter D50 of the obtained gallium-containing precursor was 10 μm, and the specific surface area (BET) was 40 m 2 / g.
Next, the gallium-added precursor E and lithium hydroxide were mixed with a Henschel mixer at 1500 rpm for 5 minutes. The powder obtained by mixing was fired at 720 ° C. for 12 hours in an oxygen atmosphere of 0.1 Mpa. This was cooled to room temperature at a temperature lowering rate of 5 ° C./min, and crushed with a roll crusher and an ACM pulsarizer to obtain a positive electrode active material E for all-solid-state lithium ion batteries.

−電池特性の評価(全固体リチウムイオン電池)−
得られた正極活物質A〜Eについて、それぞれLiI−Li2S−P25と、正極活物質の重量:LiI−Li2S−P25の重量=7:3の割合で秤量し、混合して正極合剤とした。内径10mmの金型中にLi−In合金、LiI−Li2S−P25、正極合剤、Al箔をこの順で充填し、500MPaでプレスした。このプレス後の成形体を、金属製治具を用いて100MPaで拘束することにより、全固体リチウムイオン電池を作製した。この電池について、充放電レート1Cで充放電を10回繰り返した(25℃、充電上限電圧:3.7V、放電下限電圧:2.5V)。充放電レート1Cでの1回目の放電で得られた容量を放電容量2とし、また、充放電レート1Cでの10回目の放電で得られた容量を放電容量3とし、(放電容量3)/(放電容量2)の比を百分率としてサイクル特性(%)とした。得られた結果を表1に示す。
-Evaluation of battery characteristics (all-solid-state lithium-ion battery)-
The obtained positive electrode active material A-E, respectively LiI-Li 2 S-P 2 S 5, the weight of the positive electrode active material: LiI-Li 2 S-P 2 S 5 Weight = 7: weighed at a ratio of 3 Then, they were mixed to obtain a positive electrode mixture. Li-an In alloy into a mold having an inner diameter of 10mm, LiI-Li 2 S- P 2 S 5, the positive electrode mixture, filling the Al foil in this order, and pressed at 500 MPa. The all-solid-state lithium-ion battery was manufactured by restraining the pressed body at 100 MPa using a metal jig. This battery was repeatedly charged and discharged 10 times at a charge and discharge rate of 1 C (25 ° C., charge upper limit voltage: 3.7 V, discharge lower limit voltage: 2.5 V). The capacity obtained by the first discharge at a charge / discharge rate of 1C is defined as a discharge capacity 2, and the capacity obtained by the 10th discharge at a charge / discharge rate of 1C is defined as a discharge capacity 3, (discharge capacity 3) / The ratio of (discharge capacity 2) was taken as a percentage and used as the cycle characteristic (%). The results obtained are shown in Table 1.

Figure 2020077475
Figure 2020077475

(評価結果)
実施例1〜3では電池特性が良好な全固体リチウムイオン電池用正極活物質が得られた。一方、比較例1、比較例2は遷水酸化リチウムと混合する遷移金属化合物にGaが添加されておらず、全固体リチウムイオン電池用正極活物質の電池特性は実施例1〜3に対して劣っていた。
(Evaluation results)
In Examples 1 to 3, positive electrode active materials for all-solid-state lithium ion batteries having good battery characteristics were obtained. On the other hand, in Comparative Example 1 and Comparative Example 2, Ga is not added to the transition metal compound mixed with lithium transition hydroxide, and the battery characteristics of the positive electrode active material for all-solid-state lithium-ion batteries are the same as those of Examples 1 to 3. It was inferior.

Claims (4)

ニッケル、コバルト及びマンガンで構成される遷移金属化合物を準備する工程と、
前記遷移金属化合物にガリウム化合物を添加して、組成式:NiaCobMncGad
(式中、84<a<94、5<b<7.5、1≦c<7.5、0.33≦d≦0.65である)
で表されるガリウム添加遷移金属化合物を得る工程と、
前記ガリウム添加遷移金属化合物と水酸化リチウムとを混合して混合体を得る工程と、
前記混合体を熱処理する工程と、
を含む全固体リチウムイオン電池用正極活物質の製造方法。
Providing a transition metal compound composed of nickel, cobalt and manganese,
A gallium compound is added to the transition metal compound to give a composition formula: Ni a Co b Mn c Ga d.
(In the formula, 84 <a <94, 5 <b <7.5, 1 ≦ c <7.5, 0.33 ≦ d ≦ 0.65)
A step of obtaining a gallium-doped transition metal compound represented by
Mixing the gallium-doped transition metal compound and lithium hydroxide to obtain a mixture,
Heat treating the mixture,
A method for producing a positive electrode active material for an all-solid-state lithium-ion battery, comprising:
前記ニッケル、コバルト及びマンガンで構成される遷移金属化合物が水酸化物である請求項1に記載の全固体リチウムイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for an all-solid-state lithium ion battery according to claim 1, wherein the transition metal compound composed of nickel, cobalt and manganese is a hydroxide. 前記遷移金属化合物に添加するガリウム化合物がクエン酸ガリウムである請求項1又は2に記載の全固体リチウムイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for an all-solid-state lithium-ion battery according to claim 1 or 2, wherein the gallium compound added to the transition metal compound is gallium citrate. 請求項1〜3のいずれか一項に記載の全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法。   A positive electrode layer is formed using the positive electrode active material for all solid lithium ion batteries manufactured by the manufacturing method of the positive electrode active material for all solid lithium ion batteries as described in any one of Claims 1-3, The said positive electrode layer A method for manufacturing an all-solid-state lithium-ion battery, which manufactures an all-solid-state lithium-ion battery using a solid electrolyte layer and a negative electrode layer.
JP2018208487A 2018-11-05 2018-11-05 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery Active JP7292026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208487A JP7292026B2 (en) 2018-11-05 2018-11-05 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208487A JP7292026B2 (en) 2018-11-05 2018-11-05 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2020077475A true JP2020077475A (en) 2020-05-21
JP7292026B2 JP7292026B2 (en) 2023-06-16

Family

ID=70724367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208487A Active JP7292026B2 (en) 2018-11-05 2018-11-05 Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP7292026B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321299A (en) * 1994-05-10 1996-12-03 Sumitomo Chem Co Ltd Lithium secondary battery
JP2012201539A (en) * 2011-03-24 2012-10-22 Agc Seimi Chemical Co Ltd Method for producing lithium-containing compound oxide
WO2014061399A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Positive active material for lithium secondary battery, and positive electrode obtained using same
JP2014146458A (en) * 2013-01-28 2014-08-14 Toyota Motor Corp All-solid-state battery and battery system
US20150228973A1 (en) * 2014-02-07 2015-08-13 Samsung Sdi Co., Ltd. Positive active material, positive electrode, lithium battery including the same, and method of manufacturing thereof
US20180183046A1 (en) * 2016-12-28 2018-06-28 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
US20180316005A1 (en) * 2017-04-28 2018-11-01 Samsung Electronics Co., Ltd. Positive active material, positive electrode and lithium secondary battery containing the material, and method of preparing the material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321299A (en) * 1994-05-10 1996-12-03 Sumitomo Chem Co Ltd Lithium secondary battery
JP2012201539A (en) * 2011-03-24 2012-10-22 Agc Seimi Chemical Co Ltd Method for producing lithium-containing compound oxide
WO2014061399A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Positive active material for lithium secondary battery, and positive electrode obtained using same
JP2014146458A (en) * 2013-01-28 2014-08-14 Toyota Motor Corp All-solid-state battery and battery system
US20150228973A1 (en) * 2014-02-07 2015-08-13 Samsung Sdi Co., Ltd. Positive active material, positive electrode, lithium battery including the same, and method of manufacturing thereof
US20180183046A1 (en) * 2016-12-28 2018-06-28 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
US20180316005A1 (en) * 2017-04-28 2018-11-01 Samsung Electronics Co., Ltd. Positive active material, positive electrode and lithium secondary battery containing the material, and method of preparing the material

Also Published As

Publication number Publication date
JP7292026B2 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6065874B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6164332B2 (en) Nickel-cobalt composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5923036B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN107275573A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP6631320B2 (en) Nickel composite hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN107078294B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
WO2018052038A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same and nonaqueous electrolyte secondary battery using said positive electrode active material
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6640434B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
JPWO2016133042A1 (en) Cathode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP6810120B2 (en) Positive electrode active material composition for lithium secondary battery and lithium secondary battery containing it
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP2018049685A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
KR20170026328A (en) Positive electrode active substance particle powder for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
JP6737930B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for producing positive-electrode active material for all-solid-state lithium-ion battery
CN107768639A (en) Anode material of lithium battery and preparation method thereof, the lithium battery using the positive electrode
US20210305568A1 (en) Cathode active material for lithium ion secondary battery and lithium ion secondary battery
JP7102973B2 (en) Positive electrode active material for lithium ion secondary battery and its manufacturing method, and thium ion secondary battery
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20230037673A1 (en) Positive electrode active material for all-solid-state lithium ion secondary battery, method for producing the same, and all-solid-state lithium ion secondary battery
JPWO2012111293A1 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230123

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230201

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230606

R151 Written notification of patent or utility model registration

Ref document number: 7292026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151