JP2020076172A - Hygroscopic extra fine composite fiber and fiber structure - Google Patents

Hygroscopic extra fine composite fiber and fiber structure Download PDF

Info

Publication number
JP2020076172A
JP2020076172A JP2018210513A JP2018210513A JP2020076172A JP 2020076172 A JP2020076172 A JP 2020076172A JP 2018210513 A JP2018210513 A JP 2018210513A JP 2018210513 A JP2018210513 A JP 2018210513A JP 2020076172 A JP2020076172 A JP 2020076172A
Authority
JP
Japan
Prior art keywords
fiber
hygroscopic
component
polymer
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018210513A
Other languages
Japanese (ja)
Inventor
中川 順一
Junichi Nakagawa
順一 中川
慎也 中道
Shinya Nakamichi
慎也 中道
優志 長尾
Masashi Nagao
優志 長尾
望月 克彦
Katsuhiko Mochizuki
克彦 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018210513A priority Critical patent/JP2020076172A/en
Publication of JP2020076172A publication Critical patent/JP2020076172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

To provide a hygroscopic extra fine composite fiber in which high hygroscopicity and wear resistance are consistent, and also, feeling when being made into a fiber structure is satisfactory.SOLUTION: A hygroscopic extra fine composite fiber has the characteristics of the following (1) to (5) that: (1) a polymer having hygroscopicity is perfectly covered with a polyester polymer; (2) the polymer having hygroscopicity is a copolyester polymer; (3) a moisture absorptivity difference (▵MR) after hot water treatment is 2.0 to 10.0%; (4) single fiber fineness is 0.50 to 1.50 dtex; and (5) outermost layer thickness is 2.5 to 4.5 μm, where the outermost thickness denotes a difference between the radius of the fiber and the radius of a circumcircle obtained by connecting the points most distant from a fiber center in an island(core) component arranged at the outermost circumference, and being the thickness of a sea (sheath) component.SELECTED DRAWING: Figure 1

Description

本発明は、高吸湿性と耐摩耗性を両立しかつ風合いが良好な吸湿性極細複合繊維に関するものである。   TECHNICAL FIELD The present invention relates to a hygroscopic ultrafine composite fiber having both high hygroscopicity and abrasion resistance and good texture.

極細ポリエステル繊維は、安価でかつ機械的特性やドライ感に優れていることに加え、繊維構造体にした時、柔らかな風合いが得られるため、衣料用途をはじめ幅広い用途において用いられている。しかし、吸湿性に乏しいため、夏場の高湿時には蒸れ感の発生、冬場の低湿時には静電気の発生など、着用快適性の観点において解決すべき課題を有している。   The ultrafine polyester fiber is inexpensive and excellent in mechanical properties and dry feeling, and when it is formed into a fiber structure, a soft texture can be obtained. Therefore, it is used in a wide range of applications including clothing. However, since it has poor hygroscopicity, it has problems to be solved from the viewpoint of wearing comfort, such as generation of a stuffy feeling when the humidity is high in the summer and generation of static electricity when the humidity is low in the winter.

上記の欠点を改善するため、ポリエステル繊維へ吸湿性を付与する方法について、これまでに種々の提案がなされている。吸湿性を付与するための一般的な方法として、ポリエステルへの親水性化合物の共重合や親水性化合物の添加などが挙げられ、親水性化合物の一例としてポリエチレングリコールが挙げられる。   In order to improve the above-mentioned drawbacks, various proposals have been made so far regarding methods of imparting hygroscopicity to polyester fibers. As a general method for imparting hygroscopicity, copolymerization of a hydrophilic compound with polyester, addition of a hydrophilic compound and the like can be mentioned, and polyethylene glycol can be mentioned as an example of the hydrophilic compound.

例えば、特許文献1では、芯にポリエチレングリコールとポリエステルをブレンドしたポリマー、鞘にポリエチレンテレフタレートを配置した海島型複合繊維が提案されている。この提案では、島に吸湿性ポリマーを配置することにより、ポリエステル繊維へ吸湿性を付与している。   For example, Patent Document 1 proposes a polymer in which polyethylene glycol and polyester are blended in a core and a sea-island type composite fiber in which polyethylene terephthalate is disposed in a sheath. In this proposal, a hygroscopic polymer is arranged on the island to impart hygroscopicity to the polyester fiber.

特許文献2では、芯に非反応性イオン成分を含有したポリエチレングリコール共重合ポリエステル、鞘にポリエチレンテレフタレートを配置した単糸繊度が1.5dtex以下の芯鞘型複合繊維が提案されている。この提案では、芯に吸湿性ポリマーを配置することにより、ポリエステル繊維へ吸湿性を付与し、かつ単糸繊度を1.5dtex以下にすることで布帛にした時の風合いを柔らかくしている。   Patent Document 2 proposes a core-sheath type composite fiber having a single yarn fineness of 1.5 dtex or less in which a polyethylene glycol copolymerized polyester containing a non-reactive ionic component is arranged in the core and polyethylene terephthalate is arranged in the sheath. In this proposal, a hygroscopic polymer is arranged in the core to impart hygroscopicity to the polyester fiber, and the single yarn fineness is set to 1.5 dtex or less to soften the texture of the cloth.

特許文献3では、島に架橋剤を含有したポリエチレングリコール共重合ポリエステル、海にポリエチレンテレフタレートを配置した海島型複合繊維が提案されている。この提案では、島に架橋剤を含有した吸湿性ポリマーを配置することにより、ポリエステル繊維へ吸湿性を付与しかつ経時変化を抑制している。   Patent Document 3 proposes a polyethylene glycol copolyester containing a cross-linking agent in the island and a sea-island type composite fiber in which polyethylene terephthalate is arranged in the sea. In this proposal, a hygroscopic polymer containing a cross-linking agent is arranged on the islands to impart hygroscopicity to the polyester fibers and suppress the change over time.

特開2004−277911号公報JP, 2004-277911, A 特開2010−7191号公報JP, 2010-7191, A 特開平8−198954号公報Japanese Patent Laid-Open No. 8-198954

しかしながら、特許文献1記載の方法では、染色等の熱水処理時に吸湿性を担う芯成分のポリエチレングリコールが処理液へ溶出し、熱水処理後に吸湿性が低下するという課題があった。   However, the method described in Patent Document 1 has a problem that polyethylene glycol, which is a core component responsible for hygroscopicity during hot water treatment such as dyeing, elutes into the treatment liquid, and hygroscopicity decreases after hot water treatment.

特許文献2記載の方法では、染色等の熱水処理時に芯成分の吸湿性ポリマーが体積膨潤することに伴い、芯成分と鞘成分の界面に応力が集中した結果、鞘成分の割れが生じ、この割れた部分を起点として芯成分の吸湿性ポリマーが溶出し、熱水処理後に吸湿性が低下するという課題があった。さらに、吸湿性を付与するために芯比率を多くしていることから、最外層の鞘成分の厚みが小さく、摩耗により白化するという課題があった。   In the method described in Patent Document 2, as the hygroscopic polymer of the core component swells in volume during hot water treatment such as dyeing, stress concentrates at the interface between the core component and the sheath component, resulting in cracking of the sheath component, There is a problem that the hygroscopic polymer as the core component is eluted from the cracked portion as a starting point and the hygroscopicity is lowered after the hot water treatment. Further, since the core ratio is increased in order to impart hygroscopicity, there is a problem that the outermost layer has a small thickness of the sheath component and is whitened by abrasion.

特許文献3記載の方法では、吸湿性ポリマーに架橋剤を含有していることから細繊度化が難しく、繊維構造体にしたときの風合いが硬いという課題があった。   The method described in Patent Document 3 has a problem that it is difficult to reduce the fineness because the hygroscopic polymer contains a cross-linking agent, and the texture of the fiber structure is hard.

本発明の目的は、上記従来技術の問題点を解決し、染色等の熱水処理後においても高吸湿性であるとともに耐摩耗性に優れ、さらには、繊維構造体にしたときの風合いが良好であることから、衣料用途に好適に採用できる吸湿性極細複合繊維を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, and is excellent in abrasion resistance as well as having high hygroscopicity even after hot water treatment such as dyeing, and further, the texture when formed into a fiber structure is good. Therefore, it is an object of the present invention to provide a hygroscopic ultrafine composite fiber that can be suitably used for clothing.

上記課題は、下記(1)〜(5)の特徴を有する吸湿性極細複合繊維によって解決できる。
(1)吸湿性を有するポリマーをポリエステル系ポリマーが完全に覆っている
(2)吸湿性を有するポリマーが共重合ポリエステル系ポリマーである
(3)熱水処理後の吸湿率差(△MR)が2.0〜10.0%
(4)単繊維繊度が0.50〜1.50dtex
(5)最外層厚みが2.5〜4.5μm
なお、最外層厚みとは、繊維の半径と最外周に配置された島(芯)成分において繊維中心から最も距離のある地点を結んだ外接円の半径との差であり、最外層に存在する海(鞘)成分の厚みを表す。
The above problems can be solved by a hygroscopic ultrafine composite fiber having the following characteristics (1) to (5).
(1) The polyester polymer completely covers the hygroscopic polymer. (2) The hygroscopic polymer is a copolyester polymer. (3) The moisture absorption difference (ΔMR) after hot water treatment is 2.0-10.0%
(4) Single fiber fineness of 0.50 to 1.50 dtex
(5) Outermost layer thickness is 2.5 to 4.5 μm
The outermost layer thickness is the difference between the radius of the fiber and the radius of the circumscribed circle connecting the points with the longest distance from the fiber center in the island (core) component arranged on the outermost periphery, and is present in the outermost layer. Indicates the thickness of the sea (sheath) component.

本発明で得られる吸湿性極細複合繊維は、染色等の熱水処理後においても高吸湿性かつ耐摩耗性に優れ、さらには、繊維構造体にしたときの風合いが良好であることから、特に衣料用途において好適に用いることができる。   The hygroscopic ultrafine composite fiber obtained in the present invention is excellent in high hygroscopicity and abrasion resistance even after hot water treatment such as dyeing, and moreover, since it has a good texture when formed into a fiber structure, It can be suitably used in clothing applications.

図1(a)〜(j)は、本発明の複合繊維の断面形状の一例を示す図である。1 (a) to 1 (j) are views showing an example of the cross-sectional shape of the conjugate fiber of the present invention. 図2(a)は、界面に空気層を有し吸湿性を有するポリマーがポリエステル系ポリマーに密着していない複合繊維の断面形状の一例、図2(b)は、吸湿性を有するポリマーが繊維表面に露出している複合繊維の断面形状の一例を示す図で、いずれも本発明の実施形態とは異なるものである。FIG. 2 (a) is an example of a cross-sectional shape of a composite fiber in which a hygroscopic polymer having an air layer at the interface is not adhered to a polyester-based polymer, and FIG. 2 (b) shows a hygroscopic polymer as a fiber. It is a figure which shows an example of the cross-sectional shape of the conjugate fiber exposed on the surface, and is different from the embodiment of the present invention.

本発明における吸湿率差(△MR)とは、軽い運動後の衣服内温湿度を想定した温度30℃、湿度90%RHにおける吸湿率と、外気温湿度として温度20℃、湿度65%RHにおける吸湿率の差であり、実施例の欄に記載の方法で測定される値を表す。本明細書において吸湿性を有するとは△MRが2.0%以上のことであり、△MRの値が高いほど吸湿性が高く着用快適性が向上する。   The moisture absorption difference (ΔMR) in the present invention means the moisture absorption rate at a temperature of 30 ° C. and a humidity of 90% RH assuming the temperature and humidity inside clothes after light exercise, and the outside temperature humidity at a temperature of 20 ° C. and a humidity of 65% RH. It is the difference in moisture absorption rate, and represents the value measured by the method described in the Example section. In the present specification, having hygroscopicity means that the ΔMR is 2.0% or more, and the higher the value of ΔMR, the higher the hygroscopicity and the better the wearing comfort.

本発明における単繊維繊度とは、単繊維10000m当たりの重量(g)のことであり、マルチフィラメント10000m当たりの重量(総繊度)をフィラメント数で除した値を表す。単繊維繊度が小さいほど単繊維の繊維径が小さく比表面積が大きくなり、繊維構造体にしたときの風合いが柔らかくなる。   The single fiber fineness in the present invention means the weight (g) per 10,000 m of the single fiber, and represents the value obtained by dividing the weight (total fineness) per 10,000 m of the multifilament by the number of filaments. The smaller the single fiber fineness, the smaller the fiber diameter of the single fiber and the larger the specific surface area, and the softer the texture of the fiber structure.

本発明における最外層厚みとは、繊維の半径と、最外周に配置された島(芯)成分において繊維中心から最も距離のある地点を結んだ外接円の半径との差であり、最外層に存在する海(鞘)成分の厚みを表す。   The outermost layer thickness in the present invention is the difference between the radius of the fiber and the radius of the circumscribed circle connecting the points with the longest distance from the fiber center in the island (core) component arranged at the outermost periphery, It represents the thickness of the existing sea (sheath) component.

本発明におけるタフネスとは、JIS L1013:2010(化学繊維フィラメント糸試験方法)8.5.1に準じて算出した強度(cN/dtex)と伸度(%)を用いて下記式(I)によって算出した値であり、実施例の欄に記載の方法で測定される値を表す。本明細書においてタフネスが良好であるとはタフネスが16.5以上のことであり、タフネスが高いほど工程通過性がよく、また繊維構造体にしたときの耐久性が良好となる。
タフネス=強度×(伸度)1/2 ・・・(I) 。
The toughness in the present invention refers to the strength (cN / dtex) and the elongation (%) calculated according to JIS L1013: 2010 (Chemical fiber filament yarn test method) 8.5.1. The calculated value represents the value measured by the method described in the section of Examples. In the present specification, good toughness means that the toughness is 16.5 or more. The higher the toughness, the better the process passability, and the better the durability when formed into a fiber structure.
Toughness = strength × (elongation) 1/2 (I).

本発明の吸湿性極細複合繊維は、吸湿性を有するポリマーをポリエステル系ポリマーが完全に覆っている。吸湿性を有するポリマーをポリエステル系ポリマーが完全に覆うことで外力による界面剥離が抑制され耐摩耗性が良好となる。吸湿性を有するポリマーをポリエステル系ポリマーが完全に覆う複合形態としては、芯鞘型複合繊維、海島型複合繊維などが挙げられるが、これらに限定されない。中でも、海島型複合繊維は、吸湿時や吸水時の吸湿性ポリマーの体積膨潤に伴う海成分の割れが抑制されるため、染め斑や毛羽の発生による品位の低下、染色等の熱水処理時に吸湿性ポリマーが熱水へ溶出することによる吸湿性の低下が抑制されるため好ましい。   In the hygroscopic ultrafine composite fiber of the present invention, the hygroscopic polymer is completely covered with the polyester polymer. By completely covering the hygroscopic polymer with the polyester-based polymer, interfacial peeling due to external force is suppressed and wear resistance is improved. Examples of the composite form in which the polyester polymer completely covers the hygroscopic polymer include core-sheath type composite fibers and sea-island type composite fibers, but are not limited thereto. Among them, the sea-island type composite fiber suppresses the cracking of the sea component due to the volume swelling of the hygroscopic polymer at the time of absorbing moisture or absorbing water, so that the quality is lowered due to the occurrence of spots and fluff, and during hot water treatment such as dyeing. It is preferable because the hygroscopic polymer is suppressed from being deteriorated due to elution into hot water.

本発明の吸湿性極細複合繊維の吸湿性を有するポリマーとは、親水性高分子とポリエステルの共重合体からなる共重合ポリエステル系ポリマーであり、吸湿率差(△MR)が2.0%以上である。共重合によって共有結合を形成することで、染色等の熱水処理時に吸湿性ポリマーの熱水への溶出が抑制され、熱水処理後においても高い吸湿性を発現する。また、ポリエステルと共重合することによって機械的特性が良好となる。   The hygroscopic polymer of the hygroscopic ultrafine composite fiber of the present invention is a copolymerized polyester-based polymer composed of a copolymer of a hydrophilic polymer and a polyester, and has a moisture absorption difference (ΔMR) of 2.0% or more. Is. By forming a covalent bond by copolymerization, elution of the hygroscopic polymer into hot water during hot water treatment such as dyeing is suppressed, and high hygroscopicity is exhibited even after hot water treatment. Further, the copolymerization with polyester improves the mechanical properties.

本発明の吸湿性極細複合繊維の吸湿性を有するポリマーの好ましい態様については製造方法の説明部分で詳細に記載するが、中でも、共重合ポリブチレンテレフタレートであることが好ましい。共重合ポリブチレンテレフタレートであれば、結晶性が高いため機械的特性が向上し、また、熱水流動しにくいため、染色等の熱水処理時に吸湿性ポリマーの熱水への溶出が抑制され、熱水処理後においても高い吸湿性を発現する。ポリエチレングリコールおよび/またはその誘導体を共重合したポリブチレンテレフタレートであれば、得られる吸湿性極細複合繊維の色調が良好になるためより好ましい。   A preferred embodiment of the hygroscopic polymer having hygroscopic properties of the hygroscopic ultrafine composite fiber of the present invention will be described in detail in the description of the production method, and among them, copolymerized polybutylene terephthalate is preferred. If it is a copolymerized polybutylene terephthalate, mechanical properties are improved due to its high crystallinity, and since it is difficult for hot water to flow, elution of the hygroscopic polymer into hot water during hot water treatment such as dyeing is suppressed, High hygroscopicity is exhibited even after hot water treatment. Polybutylene terephthalate obtained by copolymerizing polyethylene glycol and / or its derivative is more preferable because the resulting hygroscopic ultrafine composite fiber has a good color tone.

本発明の吸湿性極細複合繊維の熱水処理後の吸湿率差(△MR)は、2.0〜10.0%である。熱水処理後の吸湿率差(△MR)が2.0%以上であれば、吸湿性に優れ衣服内の蒸れ感が抑制される。一方、熱水処理後の吸湿率差(△MR)が10.0%以下であれば、吸湿性ポリマーの体積膨潤による海(鞘)成分の割れが抑制され、品位を維持できる。吸湿性と品位の観点から熱水処理後の吸湿率差(△MR)は3.0〜8.0%であることが好ましい。   The moisture absorption difference (ΔMR) of the hygroscopic ultrafine composite fiber of the present invention after hot water treatment is 2.0 to 10.0%. When the difference in moisture absorption rate (ΔMR) after hot water treatment is 2.0% or more, the hygroscopicity is excellent and the stuffy feeling in clothes is suppressed. On the other hand, when the difference in moisture absorption rate (ΔMR) after hot water treatment is 10.0% or less, cracking of the sea (sheath) component due to volume swelling of the hygroscopic polymer is suppressed, and the quality can be maintained. From the viewpoint of hygroscopicity and quality, the difference in moisture absorption rate (ΔMR) after hot water treatment is preferably 3.0 to 8.0%.

本発明の吸湿性極細複合繊維の最外層厚みは、2.5〜4.5μmである。最外層厚みが2.5μm以上であれば、耐摩耗性が良好となり摩耗による白化が抑制される。一方、最外層厚みが4.5μm以下であれば、吸湿性ポリマーの体積膨潤が損なわれず、吸湿性に優れ衣服内の蒸れ感が抑制される。耐摩耗性と吸湿性の観点から、最外層厚みは3.0〜4.0μmであることが好ましい。   The outermost layer thickness of the hygroscopic ultrafine composite fiber of the present invention is 2.5 to 4.5 μm. When the thickness of the outermost layer is 2.5 μm or more, the abrasion resistance is good and the whitening due to abrasion is suppressed. On the other hand, when the thickness of the outermost layer is 4.5 μm or less, the volume swelling of the hygroscopic polymer is not impaired, the hygroscopicity is excellent, and the stuffy feeling in clothes is suppressed. From the viewpoint of wear resistance and hygroscopicity, the outermost layer thickness is preferably 3.0 to 4.0 μm.

本発明の吸湿性極細複合繊維の海(鞘)成分//島(芯)成分の複合比率(重量比)は、70//30〜97//3であることが好ましい。海(鞘)成分の複合比率が70重量%以上であれば、最外層厚みを2.5μm以上確保することができ、また、海(鞘)成分によるハリ、コシ感やドライな感触が得られるため好ましい。一方、海(鞘)成分の複合比率が97重量%以下、すなわち島(芯)成分の複合比率が3重量%以上であれば、吸湿性に優れ、衣服内の蒸れ感が抑制されるため好ましい。   The composite ratio (weight ratio) of the sea (sheath) component // island (core) component of the hygroscopic ultrafine composite fiber of the present invention is preferably 70 // 30 to 97 // 3. If the composite ratio of the sea (sheath) component is 70% by weight or more, the outermost layer thickness of 2.5 μm or more can be secured, and the firmness, elasticity and dry feel of the sea (sheath) component can be obtained. Therefore, it is preferable. On the other hand, when the composite ratio of the sea (sheath) component is 97% by weight or less, that is, when the composite ratio of the island (core) component is 3% by weight or more, the hygroscopicity is excellent and the stuffy feeling in the clothes is suppressed, which is preferable. ..

本発明の吸湿性極細複合繊維のマルチフィラメントとしての繊度(総繊度)は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、10〜500dtexであることが好ましい。総繊度が10dtex以上であれば、糸切れが少なく、工程通過性が良好であることに加え、使用時に毛羽の発生が少なく、耐久性に優れるため好ましい。一方、総繊度が500dtex以下であれば、繊維構造体にしたときの柔軟性を損なうことがないため好ましい。   The fineness (total fineness) of the hygroscopic ultrafine composite fiber of the present invention as a multifilament is not particularly limited and can be appropriately selected depending on the application and required characteristics, but is preferably 10 to 500 dtex. When the total fineness is 10 dtex or more, the yarn breakage is small, the process passability is good, and in addition, the occurrence of fluff is small and the durability is excellent, which is preferable. On the other hand, if the total fineness is 500 dtex or less, the flexibility of the fiber structure is not impaired, which is preferable.

本発明の吸湿性極細複合繊維の単繊維繊度は、0.50〜1.50dtexである。単繊維繊度が0.50dtex以上であれば、機械的特性が良好となり品位を維持できる。一方、単繊維繊度が1.50dtex以下であれば、繊維構造体にした時に柔らかな風合いが得られる。機械的特性と風合いの観点から単繊維繊度は、0.80〜1.20dtexであることが好ましい。   The single fiber fineness of the hygroscopic ultrafine composite fiber of the present invention is 0.50 to 1.50 dtex. When the single fiber fineness is 0.50 dtex or more, the mechanical properties become good and the quality can be maintained. On the other hand, when the single fiber fineness is 1.50 dtex or less, a soft texture can be obtained when the fiber structure is formed. From the viewpoint of mechanical properties and texture, the single fiber fineness is preferably 0.80 to 1.20 dtex.

本発明の吸湿性極細複合繊維の強度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、2.5〜5.0cN/dtexであることが好ましい。複合繊維の強度が2.5cN/dtex以上であれば、使用時に毛羽の発生が少なく、耐久性に優れる。一方、複合繊維の強度が5.0cN/dtex以下であれば、繊維構造体にした時に柔らかな風合いが得られる。耐久性と風合いの観点から2.8〜4.5cN/dtexであることがより好ましい。   The strength of the hygroscopic ultrafine composite fiber of the present invention is not particularly limited and may be appropriately selected depending on the application and required characteristics, but is preferably 2.5 to 5.0 cN / dtex. When the strength of the composite fiber is 2.5 cN / dtex or more, less fluff is generated during use and the durability is excellent. On the other hand, when the strength of the composite fiber is 5.0 cN / dtex or less, a soft texture is obtained when the fiber structure is formed. From the viewpoint of durability and texture, it is more preferably 2.8 to 4.5 cN / dtex.

本発明の吸湿性極細複合繊維の伸度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、耐久性の観点から10〜60%であることが好ましい。複合繊維の伸度が10%以上であれば、繊維ならびに繊維構造体の耐摩耗性が良好となり、使用時に毛羽の発生が少なく、耐久性が良好となるため好ましい。一方、複合繊維の伸度が60%以下であれば、繊維ならびに繊維構造体の寸法安定性が良好となるため好ましい。   The elongation of the hygroscopic ultrafine composite fiber of the present invention is not particularly limited and can be appropriately selected depending on the application and required characteristics, but is preferably 10 to 60% from the viewpoint of durability. When the elongation of the composite fiber is 10% or more, the abrasion resistance of the fiber and the fiber structure is good, less fluff is generated during use, and the durability is good, which is preferable. On the other hand, when the elongation of the composite fiber is 60% or less, the dimensional stability of the fiber and the fiber structure becomes good, which is preferable.

本発明の吸湿性極細複合繊維のタフネスは、16.5以上であることが好ましい。タフネスが16.5以上であれば、工程通過性が良好で、また繊維構造体にした後の繰り返し着用・洗濯後の耐久性に優れるため好ましい。工程通過性、耐久性の観点からタフネスが18.0以上であることがより好ましい。   The toughness of the hygroscopic ultrafine composite fiber of the present invention is preferably 16.5 or more. When the toughness is 16.5 or more, the process passability is good, and the durability after repeated wearing / washing after forming the fiber structure is excellent, which is preferable. From the viewpoint of process passability and durability, toughness is more preferably 18.0 or more.

本発明の吸湿性極細複合繊維は、繊維横断面における島(芯)成分の形状に関して特に制限がなく、真円状の円形断面であってもよく、非円形断面であってもよい。非円形断面の具体例として、多葉形、多角形、扁平形、楕円形などが挙げられるが、これらに限定されない。   The hygroscopic ultrafine conjugate fiber of the present invention is not particularly limited with respect to the shape of the island (core) component in the fiber cross section, and may have a perfect circular cross section or a non-circular cross section. Specific examples of the non-circular cross section include, but are not limited to, a multilobal shape, a polygonal shape, a flat shape, and an elliptical shape.

本発明の吸湿性極細複合繊維は、繊維の断面形状に関して特に制限がなく、用途や要求特性に応じて適宜選択することができ、真円状の円形断面であってもよく、非円形断面であってもよい。非円形断面の具体例として、多葉形、多角形、扁平形、楕円形などが挙げられるが、これらに限定されない。   The hygroscopic ultrafine composite fiber of the present invention is not particularly limited with respect to the cross-sectional shape of the fiber, can be appropriately selected according to the application and required characteristics, may be a perfect circular circular cross section, a non-circular cross section. It may be. Specific examples of the non-circular cross section include, but are not limited to, a multilobal shape, a polygonal shape, a flat shape, and an elliptical shape.

次に本発明の吸湿性極細複合繊維の製造方法について述べる。   Next, a method for producing the hygroscopic ultrafine composite fiber of the present invention will be described.

本発明の吸湿性極細複合繊維は、吸湿性を有するポリマーを島(芯)成分に、ポリエステル系ポリマーを海(鞘)成分にして公知の溶融紡糸方法、延伸方法、仮撚などの捲縮加工方法を用いて得ることができる。   The hygroscopic ultrafine composite fiber of the present invention comprises a polymer having a hygroscopic property as an island (core) component and a polyester polymer as a sea (sheath) component, and a known melt spinning method, drawing method, crimping process such as false twisting. Can be obtained using the method.

本発明の吸湿性極細複合繊維の製造で用いられる海(鞘)成分は、ポリエステル系ポリマーである。具体的には、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどの芳香族ポリエステル、ポリ乳酸、ポリグリコール酸などの脂肪族ポリエステルなどが挙げられるが、これらに限定されない。中でも、芳香族ポリエステルは、機械的特性や耐久性に優れるため好ましく、ポリエチレンテレフタレートはポリエステル繊維特有のハリ、コシ感が得られるためより好ましく、カチオン可染性ポリエチレンテレフタレートは鮮明な発色性を示すとともにポリウレタン繊維との混用において染料汚染を防止できるため特に好ましい。カチオン可染性ポリエチレンテレフタレートとは、カチオン染料との相互作用可能な成分を共重合したポリエチレンテレフタレートのことである。カチオン染料との相互作用可能な共重合成分の具体例として、5−スルホイソフタル酸金属塩があり、リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩などが挙げられるが、これらに限定されない。なかでも、リチウム塩、ナトリウム塩が好適に採用できる。   The sea (sheath) component used in the production of the hygroscopic ultrafine composite fiber of the present invention is a polyester polymer. Specific examples thereof include, but are not limited to, aromatic polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate, and aliphatic polyesters such as polylactic acid and polyglycolic acid. Among them, the aromatic polyester is preferable because it is excellent in mechanical properties and durability, polyethylene terephthalate is more preferable because it gives the firmness and elasticity of the polyester fiber, and the cationic dyeable polyethylene terephthalate shows a clear color forming property. It is particularly preferable because it can prevent dye contamination when mixed with polyurethane fibers. Cationic dyeable polyethylene terephthalate is polyethylene terephthalate obtained by copolymerizing a component capable of interacting with a cationic dye. Specific examples of the copolymerizable component capable of interacting with the cationic dye include 5-sulfoisophthalic acid metal salt, which includes, but is not limited to, lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt and the like. .. Among them, lithium salt and sodium salt can be preferably used.

本発明の吸湿性極細複合繊維の製造で用いられる島(芯)成分は、ポリエステルと親水性高分子との共重合体からなる吸湿性を有するポリマーである。具体的には、ポリエーテルエステル、5−スルホイソフタル酸金属塩共重合ポリエステルなどのポリマーが挙げられるが、これらに限定されない。中でもポリエーテルエステルは吸湿性に優れるため好ましい。機械的特性の観点からはポリエーテル共重合ポリエステルがより好ましく、結晶性が高く熱水流動しにくくする観点からポリエーテル共重合ポリブチレンテレフタレートがさらに好ましく、耐熱性の観点からはポリエチレングリコールおよび/またはその誘導体を共重合したポリブチレンテレフタレートが特に好ましい。   The island (core) component used in the production of the hygroscopic ultrafine composite fiber of the present invention is a hygroscopic polymer made of a copolymer of polyester and a hydrophilic polymer. Specific examples thereof include polymers such as polyether ester and 5-sulfoisophthalic acid metal salt copolyester, but are not limited thereto. Among them, polyether ester is preferable because it has excellent hygroscopicity. Polyether copolymerized polyester is more preferable from the viewpoint of mechanical properties, polyether copolymerized polybutylene terephthalate is further preferable from the viewpoint of high crystallinity and resistance to hot water flow, and polyethylene glycol and / or from the viewpoint of heat resistance. Polybutylene terephthalate obtained by copolymerizing the derivative is particularly preferable.

ポリエステルと親水性高分子との共重合体からなる吸湿性を有するポリマーとしては、吸湿性、耐熱性および機械的特性の観点から、芳香族ジカルボン酸および/またはそのエステル形成性誘導体と脂肪族ジオールを主たる構成成分とし、ポリエチレングリコールおよび/またはその誘導体を共重合成分とするポリエーテルエステルが好ましい。芳香族ジカルボン酸の具体例として、テレフタル酸、イソフタル酸、フタル酸、5−ナトリウムスルホイソフタル酸、5−リチウムスルホイソフタル酸、5−(テトラアルキル)ホスホニウムスルホイソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸などが挙げられるが、これらに限定されない。また、脂肪族ジオールの具体例として、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ヘキサンジオール、シクロヘキサンジオール、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコールなどが挙げられるが、これらに限定されない。なかでも、エチレングリコール、プロピレングリコール、1,4−ブタンジオールは、製造時ならびに使用時の取り扱い性が良好であるため好ましく、結晶性が高く熱水流動しにくくする観点においては1,4−ブタンジオールが好適に採用できる。   As a polymer having a hygroscopic property composed of a copolymer of polyester and a hydrophilic polymer, an aromatic dicarboxylic acid and / or its ester-forming derivative and an aliphatic diol can be used from the viewpoint of hygroscopicity, heat resistance and mechanical properties. Is preferred, and a polyether ester having polyethylene glycol and / or its derivative as a copolymerization component is preferred. Specific examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 5-sodium sulfoisophthalic acid, 5-lithium sulfoisophthalic acid, 5- (tetraalkyl) phosphonium sulfoisophthalic acid, 4,4′-diphenyldicarboxylic acid. Acid, 2,6-naphthalenedicarboxylic acid and the like, but are not limited thereto. Specific examples of the aliphatic diol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, hexanediol, cyclohexanediol, diethylene glycol, hexamethylene glycol, neopentyl glycol, and the like. Not limited. Among them, ethylene glycol, propylene glycol, and 1,4-butanediol are preferable because they are easy to handle during production and use, and 1,4-butane is preferable in terms of high crystallinity and difficulty in flowing hot water. A diol can be preferably used.

芳香族ジカルボン酸および/またはそのエステル形成性誘導体と脂肪族ジオールを主たる構成成分とし、ポリエチレングリコールおよび/またはその誘導体を共重合成分とするポリエーテルエステルにおいて、共重合成分であるポリエチレングリコールおよび/またはその誘導体の数平均分子量は、2000〜30000g/molであることが好ましい。ポリエチレングリコールおよび/またはその誘導体の数平均分子量が2000g/mol以上であれば、吸湿性に優れるため好ましい。一方、ポリエチレングリコールおよび/またはその誘導体の数平均分子量が30000g/mol以下であれば、重縮合反応性が高く、未反応のポリエチレングリコールおよび/またはその誘導体を低減することができ、染色等の熱水処理時に吸湿性ポリマーの熱水への溶出が抑制され、熱水処理後においても吸湿性が維持できるため好ましい。   In a polyether ester having an aromatic dicarboxylic acid and / or its ester-forming derivative and an aliphatic diol as main constituents and polyethylene glycol and / or its derivative as a copolymerization component, polyethylene glycol and / or a copolymerization component The number average molecular weight of the derivative is preferably 2000 to 30,000 g / mol. When the number average molecular weight of polyethylene glycol and / or its derivative is 2000 g / mol or more, hygroscopicity is excellent, which is preferable. On the other hand, when the number average molecular weight of polyethylene glycol and / or its derivative is 30,000 g / mol or less, polycondensation reactivity is high, unreacted polyethylene glycol and / or its derivative can be reduced, and heat of dyeing or the like can be reduced. Elution of the hygroscopic polymer into hot water during water treatment is suppressed, and hygroscopicity can be maintained even after hot water treatment, which is preferable.

また、共重合成分であるポリエチレングリコールおよび/またはその誘導体の共重合率は、35〜65重量%であることが好ましい。ポリエチレングリコールおよび/またはその誘導体の共重合率が35重量%以上であれば吸湿性が高く、島(芯)成分として用いた場合に吸湿性に優れた複合繊維が得られるため好ましい。一方、ポリエチレングリコールおよび/またはその誘導体の共重合率が65重量%以下であれば、未反応のポリエチレングリコールおよびその誘導体を低減することができ、染色等の熱水処理時に吸湿性ポリマーの熱水への溶出が抑制され、熱水処理後においても吸湿性が維持できるため好ましい。   The copolymerization rate of polyethylene glycol and / or its derivative, which is a copolymerization component, is preferably 35 to 65% by weight. When the copolymerization rate of polyethylene glycol and / or its derivative is 35% by weight or more, the hygroscopicity is high, and when it is used as an island (core) component, a composite fiber excellent in hygroscopicity can be obtained, which is preferable. On the other hand, when the copolymerization rate of polyethylene glycol and / or its derivative is 65% by weight or less, unreacted polyethylene glycol and its derivative can be reduced, and the hot water of the hygroscopic polymer can be reduced during hot water treatment such as dyeing. It is preferable because the elution into the water is suppressed and the hygroscopicity can be maintained even after the hot water treatment.

本発明の吸湿性極細複合繊維の製造で島(芯)成分として好ましく用いられる芳香族ジカルボン酸および/またはそのエステル形成性誘導体と脂肪族ジオールを主たる構成成分とし、ポリエチレングリコールおよび/またはその誘導体を共重合成分とするポリエーテルエステルの製造方法は、通常、次のいずれかのプロセスである。すなわち、(A)ジメチルテレフタレートと脂肪族ジオールを原料とし、エステル交換反応によって低重合体を得、更にその後の重縮合反応によって高分子量ポリマーを得るプロセス、(B)テレフタル酸と脂肪族ジオールを原料とし、直接エステル化反応によって低重合体を得、更にその後の重縮合反応によって高分子量ポリマーを得るプロセスである。ポリエチレングリコールおよび/またはその誘導体の添加方法は特に制限はない。ポリエチレングリコールおよび/またはその誘導体の添加時期は、ポリエチレングリコールおよび/またはその誘導体とポリエステルとの重縮合反応性を高め未反応のポリエチレングリコール/またはその誘導体の量を少なくする観点から、エステル交換反応、またはエステル化反応後、重縮合反応が開始するまでに添加する。   Aromatic dicarboxylic acid and / or its ester-forming derivative and an aliphatic diol, which are preferably used as the island (core) component in the production of the hygroscopic ultrafine composite fiber of the present invention, are the main components, and polyethylene glycol and / or its derivative are The method for producing the polyether ester as the copolymerization component is usually one of the following processes. That is, (A) a process in which dimethyl terephthalate and an aliphatic diol are used as raw materials, a low polymer is obtained by a transesterification reaction, and then a high molecular weight polymer is obtained by a polycondensation reaction, and (B) terephthalic acid and an aliphatic diol are used as raw materials. And a low polymer is obtained by a direct esterification reaction, and then a high molecular weight polymer is obtained by a subsequent polycondensation reaction. The method of adding polyethylene glycol and / or its derivative is not particularly limited. From the viewpoint of increasing the polycondensation reactivity of the polyethylene glycol and / or its derivative with the polyester and decreasing the amount of unreacted polyethylene glycol / or its derivative, the time of addition of the polyethylene glycol and / or its derivative is the transesterification reaction, Alternatively, it is added after the esterification reaction and before the polycondensation reaction starts.

本発明の吸湿性極細複合繊維の製造で用いられる海(鞘)成分および/または島(芯)成分は、本発明の効果を損ねない範囲内で副次的添加物を加えて種々の改質が行われてもよい。副次的添加剤の具体例として、酸化防止剤、相溶化剤、可塑剤、紫外線吸収剤、赤外線吸収剤、蛍光増白剤、抗菌剤、核形成剤、熱安定剤、帯電防止剤、着色防止剤、調整剤、艶消し剤、消泡剤、防腐剤、ラテックス、フィラー、インク、着色料、染料、顔料、香料などが挙げられるが、これらに限定されない。これらの副次的添加物は単独で使用してもよく、複数を併用してもよい。   The sea (sheath) component and / or the island (core) component used in the production of the hygroscopic ultrafine composite fiber of the present invention are variously modified by adding secondary additives within a range not impairing the effects of the present invention. May be performed. Specific examples of the secondary additives include antioxidants, compatibilizers, plasticizers, ultraviolet absorbers, infrared absorbers, optical brighteners, antibacterial agents, nucleating agents, heat stabilizers, antistatic agents, colorings. Examples include, but are not limited to, inhibitors, modifiers, matting agents, defoamers, preservatives, latexes, fillers, inks, colorants, dyes, pigments and fragrances. These secondary additives may be used alone or in combination of two or more.

本発明の吸湿性極細複合繊維の製造では、溶融紡糸を行う前に、それぞれの成分のポリマー(チップ)を乾燥させ、含水率を300ppm以下としておくことが好ましい。含水率が300ppm以下であれば、溶融紡糸の際に加水分解による分子量低下や水分による発泡が抑制され、安定して紡糸を行うことができるため好ましい。   In the production of the hygroscopic ultrafine composite fiber of the present invention, it is preferable that the polymer (chip) of each component be dried to have a water content of 300 ppm or less before performing melt spinning. When the water content is 300 ppm or less, the decrease in molecular weight due to hydrolysis and foaming due to water during melt spinning are suppressed, and stable spinning can be performed, which is preferable.

本発明の吸湿性極細複合繊維の製造では、事前に乾燥したチップをエクストルーダー型やプレッシャーメルター型などの溶融紡糸機へ供給して、各成分を別々に溶融し、計量ポンプで計量する。その後、紡糸ブロックにおいて加温した紡糸パックへ導入して、紡糸パック内で溶融ポリマーを濾過し、複合口金で合流後、吐出して繊維糸条とする。複合口金の具体例として、公知の芯鞘複合口金や、特開2007−100243号公報に開示されているパイプ群が配置された海島複合口金、特開2011−174215号公報に記載の海島複合口金などが挙げられるが、これらに限定されない。   In the production of the hygroscopic ultrafine composite fiber of the present invention, the chips dried in advance are supplied to a melt spinning machine such as an extruder type or a pressure melter type, and each component is melted separately and weighed by a metering pump. Then, it is introduced into a heated spinning pack in a spinning block, the molten polymer is filtered in the spinning pack, merged with a composite spinneret, and then discharged to form a fiber yarn. As a specific example of the composite base, a publicly known core-sheath composite base, a sea-island composite base in which a pipe group disclosed in JP2007-100243A is arranged, and a sea-island composite base described in JP2011-174215A. However, the present invention is not limited to these.

本発明の吸湿性極細複合繊維の製造において、複合口金から吐出された繊維糸条は、冷却装置によって冷却固化され、第1ゴデットローラーで引き取られ、第2ゴデットローラーを介してワインダーで巻き取られ、巻取糸となる。なお、紡糸操業性、生産性、繊維の機械的特性を向上させるために、必要に応じて複合口金下部に2〜20cmの長さの加熱筒や保温筒を設置してもよい。また、給油装置を用いて繊維糸条へ給油してもよく、交絡装置を用いて繊維糸条へ交絡を付与してもよい。   In the production of the hygroscopic ultrafine composite fiber of the present invention, the fiber yarn discharged from the composite spinneret is cooled and solidified by a cooling device, taken up by a first godet roller, and wound by a winder through a second godet roller. It is taken up and becomes a winding thread. In addition, in order to improve spinning operability, productivity, and mechanical properties of the fiber, a heating cylinder or a heat insulating cylinder having a length of 2 to 20 cm may be installed below the composite spinneret if necessary. Further, the fiber yarn may be lubricated using an oil supply device, and the fiber yarn may be entangled using an entanglement device.

本発明の吸湿性極細複合繊維の製造における溶融紡糸の紡糸温度は、各成分の融点や耐熱性などに応じて適宜選択することができるが、240〜320℃であることが好ましい。紡糸温度が240℃以上であれば、複合口金より吐出された繊維糸条の伸長粘度が十分に低下するため吐出が安定し、さらには、紡糸張力が過度に高くならず、糸切れを抑制することができるため好ましい。一方、紡糸温度が320℃以下であれば、紡糸時の熱分解を抑制することができ、繊維の機械的特性の低下や着色を抑制できるため好ましい。   The spinning temperature of the melt spinning in the production of the hygroscopic ultrafine composite fiber of the present invention can be appropriately selected depending on the melting point and heat resistance of each component, but is preferably 240 to 320 ° C. If the spinning temperature is 240 ° C. or higher, the elongation viscosity of the fiber yarn discharged from the composite spinneret is sufficiently lowered, and the discharge is stable, and further, the spinning tension does not become excessively high and the yarn breakage is suppressed. It is preferable because it is possible. On the other hand, if the spinning temperature is 320 ° C. or lower, thermal decomposition during spinning can be suppressed, and deterioration of mechanical properties and coloring of the fiber can be suppressed, which is preferable.

本発明の吸湿性極細複合繊維の製造における溶融紡糸の紡糸速度は、各成分のポリマー組成、紡糸温度などに応じて適宜選択することができる。一旦溶融紡糸を行って巻き取った後、別途、延伸または仮撚を行う二工程法の場合の紡糸速度は、500〜6000m/分であることが好ましい。紡糸速度が500m/分以上であれば、走行糸条が安定し、糸切れを抑制することができるため好ましく、一方、紡糸速度が6000m/分以下であれば、紡糸張力の抑制により糸切れなく、安定した紡糸を行うことができるため好ましい。また、一旦巻き取ることなく紡糸と延伸を同時に行う一工程法の場合の紡糸速度は、低速ローラーを500〜5000m/分、高速ローラーを2500〜6000m/分とすることが好ましい。低速ローラーおよび高速ローラーが上記の範囲内であれば、走行糸条が安定するとともに、糸切れを抑制することができ、安定した紡糸を行うことができるため好ましい。   The spinning speed of melt spinning in the production of the hygroscopic ultrafine composite fiber of the present invention can be appropriately selected according to the polymer composition of each component, the spinning temperature, and the like. In the case of a two-step method in which melt spinning is once performed and wound, and then, drawing or false twisting is separately performed, the spinning speed is preferably 500 to 6000 m / min. When the spinning speed is 500 m / min or more, the running yarn is stable and the yarn breakage can be suppressed, which is preferable. On the other hand, when the spinning speed is 6000 m / min or less, the yarn tension does not break due to the suppression of the spinning tension. It is preferable because stable spinning can be performed. In the case of a one-step method in which spinning and drawing are simultaneously performed without once winding, the spinning speed is preferably 500 to 5000 m / min for the low speed roller and 2500 to 6000 m / min for the high speed roller. When the low speed roller and the high speed roller are within the above ranges, the traveling yarn is stable, yarn breakage can be suppressed, and stable spinning can be performed, which is preferable.

本発明の吸湿性極細複合繊維の製造において、一工程法または二工程法により延伸を行う場合には、一段延伸法または二段以上の多段延伸法のいずれの方法によってもよい。延伸における加熱方法としては、走行糸条を直接的あるいは間接的に加熱できる装置であれば、特に限定されない。加熱方法の具体例として、加熱ローラー、熱ピン、熱板、温水、熱水などの液体浴、熱空、スチームなどの気体浴、レーザーなどが挙げられるが、これらに限定されない。これらの加熱方法は単独で使用してもよく、複数を併用してもよい。加熱方法としては、加熱温度の制御、走行糸条への均一な加熱、装置が複雑にならない観点から、加熱ローラーとの接触、熱ピンとの接触、熱板との接触、液体浴への浸漬を好適に採用できる。   In the production of the hygroscopic ultrafine composite fiber of the present invention, when the drawing is carried out by a one-step method or a two-step method, either one-step drawing method or multi-step drawing method of two or more steps may be used. The heating method in drawing is not particularly limited as long as it is a device that can directly or indirectly heat the running yarn. Specific examples of the heating method include, but are not limited to, a heating roller, a hot pin, a hot plate, a liquid bath such as hot water and hot water, a hot air, a gas bath such as steam, and a laser. These heating methods may be used alone or in combination. As the heating method, control of the heating temperature, uniform heating of the running yarn, contact with the heating roller, contact with the heat pin, contact with the hot plate, and immersion in the liquid bath are taken from the viewpoint of not complicating the device. It can be suitably adopted.

本発明の吸湿性極細複合繊維の製造において、延伸を行う場合の延伸温度は、延伸後の繊維の強度、伸度などに応じて適宜選択することができるが、50〜150℃であることが好ましい。延伸温度が50℃以上であれば、延伸に供給される糸条の予熱が充分に行われ、延伸時の熱変形が均一となり、繊度斑の発生を抑制でき、染め斑や毛羽が少なく、品位が良好となるため好ましい。一方、延伸温度が150℃以下であれば、加熱ローラーとの接触に伴う繊維同士の融着や熱分解を抑制することができ、工程通過性や品位が良好であるため好ましい。また、必要に応じて60〜150℃の熱セットを行ってもよい。   In the production of the hygroscopic ultrafine composite fiber of the present invention, the drawing temperature in the case of carrying out drawing can be appropriately selected depending on the strength and elongation of the fiber after drawing, but it is preferably 50 to 150 ° C. preferable. When the drawing temperature is 50 ° C. or higher, the yarn supplied to the drawing is sufficiently preheated, the thermal deformation during drawing is uniform, the occurrence of fineness unevenness can be suppressed, and the number of dyeing unevenness and fluff is reduced, and the quality is improved. Is preferable, which is preferable. On the other hand, when the stretching temperature is 150 ° C. or lower, fusion of fibers with each other and thermal decomposition due to contact with the heating roller can be suppressed, and process passability and quality are good, which is preferable. Moreover, you may heat-set at 60-150 degreeC as needed.

また、延伸を行う場合の延伸倍率は、延伸前の繊維の伸度や、延伸後の繊維の強度や伸度などに応じて適宜選択することができるが、1.02〜7.0倍であることが好ましい。延伸倍率が1.02倍以上であれば、延伸によって繊維の強度や伸度などの機械的特性を向上させることができるため好ましい。一方、延伸倍率が7.0倍以下であれば、延伸時の糸切れが抑制され、安定した延伸を行うことができるため好ましい。   The draw ratio in the case of carrying out drawing can be appropriately selected according to the elongation of the fiber before drawing, the strength and the elongation of the fiber after drawing, etc., but is 1.02 to 7.0 times. Preferably. A draw ratio of 1.02 times or more is preferable because mechanical properties such as strength and elongation of the fiber can be improved by drawing. On the other hand, when the draw ratio is 7.0 times or less, yarn breakage during drawing is suppressed, and stable drawing can be performed, which is preferable.

さらに、延伸を行う場合の延伸速度は、延伸方法が一工程法または二工程法のいずれであるかなどに応じて適宜選択することができる。一工程法の場合には、上記紡糸速度の高速ローラーの速度が延伸速度に相当する。二工程法により延伸を行う場合の延伸速度は、30〜1000m/分であることが好ましい。延伸速度が30m/分以上であれば、走行糸条が安定し、糸切れが抑制できるため好ましい。一方、延伸速度が1000m/分以下であれば、延伸時の糸切れが抑制され、安定した延伸を行うことができるため好ましい。   Further, the stretching speed in the case of stretching can be appropriately selected depending on whether the stretching method is a one-step method or a two-step method. In the case of the one-step method, the speed of the high-speed roller having the above spinning speed corresponds to the drawing speed. When the two-step method is used for stretching, the stretching speed is preferably 30 to 1000 m / min. When the drawing speed is 30 m / min or more, the running yarn is stable and yarn breakage can be suppressed, which is preferable. On the other hand, when the drawing speed is 1000 m / min or less, yarn breakage during drawing is suppressed and stable drawing can be performed, which is preferable.

本発明の吸湿性極細複合繊維の製造において、仮撚加工を行う場合には、1段ヒーターのみ使用する、いわゆるウーリー加工以外に、1段ヒーターと2段ヒーターの両方を使用する、いわゆるブレリア加工を適宜選択することができる。ヒーターの加熱方法は、接触式、非接触式のいずれであってもよい。仮撚加工機の具体例として、フリクションディスク式、ベルトニップ式、ピン式などが挙げられるが、これらに限定されない。   In the production of the hygroscopic ultrafine composite fiber of the present invention, when false twisting is performed, only one-stage heater is used, so-called Woolly process, both one-stage heater and two-stage heater are used, so-called buleria process. Can be appropriately selected. The heating method of the heater may be either a contact type or a non-contact type. Specific examples of the false twisting machine include, but are not limited to, a friction disk type, a belt nip type, and a pin type.

本発明の吸湿性極細複合繊維の製造において、仮撚加工を行う場合のヒーター温度は、120〜210℃であることが好ましい。ヒーター温度が120℃以上であれば、仮撚加工に供給される糸条の予熱が充分に行われ、延伸に伴う熱変形が均一となり、繊度斑の発生を抑制でき、染め斑や毛羽が少なく、品位が良好となるため好ましい。一方、ヒーター温度が210℃以下であれば、加熱ヒーターとの接触に伴う繊維同士の融着や熱分解が抑制されるため、糸切れや加熱ヒーター等の汚れが少なく、工程通過性や品位が良好であるため好ましい。   In the production of the hygroscopic ultrafine composite fiber of the present invention, the heater temperature when performing false twisting is preferably 120 to 210 ° C. If the heater temperature is 120 ° C or higher, the yarn supplied to the false twisting process is sufficiently preheated, the thermal deformation due to the drawing is uniform, the unevenness of fineness can be suppressed, and the uneven dyeing and the fluff are reduced. It is preferable because the quality becomes good. On the other hand, if the heater temperature is 210 ° C. or lower, fusion of fibers with each other due to contact with the heating heater and thermal decomposition are suppressed, so that thread breakage and stains on the heating heater are small, and process passability and quality are low. It is preferable because it is good.

また、仮撚加工を行う場合の延伸倍率は、仮撚加工前の繊維の伸度や、仮撚加工後の繊維の強度や伸度などに応じて適宜選択することができるが、1.01〜2.5倍であることが好ましい。延伸倍率が1.01倍以上であれば、延伸によって繊維の強度や伸度などの機械的特性を向上させることができるため好ましい。一方、延伸倍率が2.5倍以下であれば、仮撚加工時の糸切れが抑制され、安定した仮撚加工を行うことができるため好ましい。   The draw ratio in the case of performing false twisting can be appropriately selected depending on the elongation of the fiber before false twisting, the strength and the elongation of the fiber after false twisting, and the like. It is preferably about 2.5 times. A draw ratio of 1.01 times or more is preferable because mechanical properties such as strength and elongation of the fiber can be improved by drawing. On the other hand, when the draw ratio is 2.5 times or less, yarn breakage during false twisting is suppressed, and stable false twisting can be performed, which is preferable.

さらに、仮撚加工を行う場合の加工速度は、適宜選択することができるが、200〜1000m/分であることが好ましい。加工速度が200m/分以上であれば、走行糸条が安定し、糸切れが抑制できるため好ましい。一方、加工速度が1000m/分以下であれば、仮撚加工時の糸切れが抑制され、安定した仮撚加工を行うことができるため好ましい。   Further, the processing speed when performing false twisting can be appropriately selected, but is preferably 200 to 1000 m / min. When the processing speed is 200 m / min or more, the traveling yarn is stable and yarn breakage can be suppressed, which is preferable. On the other hand, when the processing speed is 1000 m / min or less, yarn breakage during false twisting is suppressed, and stable false twisting can be performed, which is preferable.

本発明の吸湿性極細複合繊維の製造で採用する繊維の形態に関しては特に制限がなく、モノフィラメント、マルチフィラメント、ステープルなどのいずれの形態であってもよい。また、一般の繊維と同様に撚糸などの加工が可能であり、製織や製編についても一般の繊維と同様に扱うことができる。   The form of the fiber employed in the production of the hygroscopic ultrafine composite fiber of the present invention is not particularly limited, and may be any form such as monofilament, multifilament and staple. In addition, it is possible to process twisted yarns like ordinary fibers, and weaving and knitting can be handled in the same manner as ordinary fibers.

本発明の吸湿性極細複合繊維を用いた繊維構造体の形態は、特に制限がなく、公知の方法に従い、織物、編物、パイル布帛、不織布や紡績糸、詰め綿などにすることができる。織物や編物の場合は、いかなる織組織または編組織であってもよく、平織、綾織、朱子織あるいはこれらの変化織や、経編、緯編、丸編、レース編あるいはこれらの変化編などが好適に採用できる。   The form of the fibrous structure using the hygroscopic ultrafine composite fiber of the present invention is not particularly limited, and may be a woven fabric, a knitted fabric, a pile fabric, a non-woven fabric, a spun yarn, a stuffed cotton, or the like according to a known method. In the case of a woven or knitted fabric, any woven or knitted structure may be used, such as plain weave, twill weave, satin weave or their modified weaves, warp knitting, weft knitting, circular knitting, lace knitting or their modified knitting. It can be suitably adopted.

本発明の吸湿性極細複合繊維は、繊維構造体にする際に交織や交編などによって他の繊維と組み合わせてもよく、他の繊維との混繊糸とした後に繊維構造体としてもよい。   The hygroscopic ultrafine composite fibers of the present invention may be combined with other fibers by interwoven or interwoven when forming a fibrous structure, or may be formed into a fibrous structure after being mixed with other fibers.

本発明の吸湿性極細複合繊維は、繊維または繊維構造体のいずれの状態において染色してもよい。また染色方法は、特に制限がなく、公知の方法に従い、チーズ染色機、液流染色機、ドラム染色機、ビーム染色機、ジッガー、高圧ジッガーなどを好適に採用することができる。染料濃度や染色温度に関して特に制限がなく、公知の方法を好適に採用できる。また、必要に応じて、染色加工前に精練を行ってもよく、染色加工後に還元洗浄やソーピング処理を行ってもよい。   The hygroscopic ultrafine composite fiber of the present invention may be dyed in any state of fiber or fiber structure. The dyeing method is not particularly limited, and a cheese dyeing machine, a jet dyeing machine, a drum dyeing machine, a beam dyeing machine, a jigger, a high pressure jigger and the like can be suitably adopted according to a known method. There is no particular limitation on the dye concentration and the dyeing temperature, and a known method can be preferably used. If necessary, scouring may be performed before the dyeing process, and reduction cleaning or soaping treatment may be performed after the dyeing process.

以下、実施例により本発明をより詳細に説明する。なお、実施例・比較例の各特性値は、以下の方法で求めた。   Hereinafter, the present invention will be described in more detail with reference to examples. The characteristic values of Examples and Comparative Examples were obtained by the following methods.

A.ポリエチレングリコールまたはその誘導体の数平均分子量
使用するポリエチレングリコールまたはその誘導体500mgを0.1M塩化ナトリウム水溶液5mLに溶かし、0.45μmのセルロース製フィルターで濾過して得られた濾液をGPC測定用試料とした。この試料を用いて、以下の条件にてGPC装置(Waters製Alliance2690)で測定を行い、数平均分子量を算出した。
検出器:Waters製2410示差屈折率検出器、感度 128x
カラム:東ソー製TSKgelG3000PWXLI
溶媒:0.1M 塩化ナトリウム水溶液
注入量:200μL
カラム温度:40℃
標準物質:ポリエチレングリコール(エーエムアル株式会社製 Mw106〜10100) 。
A. Number average molecular weight of polyethylene glycol or its derivative 500 mg of polyethylene glycol or its derivative used was dissolved in 5 mL of 0.1 M sodium chloride aqueous solution, and the filtrate obtained by filtering with a 0.45 μm cellulose filter was used as a sample for GPC measurement. .. Using this sample, the number average molecular weight was calculated by a GPC device (Alliance 2690 manufactured by Waters) under the following conditions.
Detector: Waters 2410 differential refractive index detector, sensitivity 128x
Column: Tosoh TSKgel G3000PWXLI
Solvent: 0.1M Sodium chloride aqueous solution Injection volume: 200 μL
Column temperature: 40 ° C
Standard substance: polyethylene glycol (Mw 106-10100 manufactured by Amal Co., Ltd.).

B.海(鞘)//島(芯)複合比率(重量比)
得られた繊維をエポキシ樹脂で包埋し、Reichert製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert−Nissei ultracut N(ウルトラミクロトーム)で切削した。その後、切削面すなわち繊維横断面を日立製走査型電子顕微鏡(SEM)S−4000型を用いて単繊維の全体像が観察できる最も高い倍率で観察した。得られた写真において繊維横断面積に対する芯成分および鞘成分の面積比率を算出し、複合繊維の原料として用いた海(鞘)成分の密度と島(芯)成分の密度から、海(鞘)//島(芯)複合比率(重量比)を算出した。
B. Sea (sheath) // island (core) composite ratio (weight ratio)
The obtained fiber was embedded with an epoxy resin, frozen with a FC-4E cryosectioning system manufactured by Reichert, and cut with a Reichert-Nissei ultracut N (ultramicrotome) equipped with a diamond knife. After that, the cut surface, that is, the cross-section of the fiber was observed with a scanning electron microscope (SEM) S-4000 manufactured by Hitachi, at the highest magnification at which the whole image of the single fiber can be observed. In the obtained photograph, the area ratio of the core component and the sheath component to the fiber cross-sectional area was calculated, and from the density of the sea (sheath) component and the island (core) component used as the raw material of the composite fiber, the sea (sheath) / / Island (core) composite ratio (weight ratio) was calculated.

C.総繊度、単繊維繊度
温度20℃、湿度65%RHの環境下において、INTEC製電動検尺機を用いて、実施例・比較例によって得られた繊維100mをかせ取りした。得られたかせの重量を測定し、下記式(II)を用いて総繊度(dtex)を、下記式(III)を用いて単繊維繊度(dtex)を算出した。なお、測定は1試料につき5回行い、その平均値を採用とした。
総繊度(dtex)=繊維100mの重量(g)×100 ・・・(II) 。
単繊維繊度(dtex)=総繊度(dtex)/フィラメント数 ・・・(III) 。
C. Total fineness, single fiber fineness In an environment of a temperature of 20 ° C. and a humidity of 65% RH, 100 m of the fibers obtained in Examples and Comparative Examples were skeined using an INTEC electric scale measuring machine. The weight of the obtained skein was measured, and the total fineness (dtex) was calculated using the following formula (II), and the single fiber fineness (dtex) was calculated using the following formula (III). The measurement was performed 5 times for each sample, and the average value was adopted.
Total fineness (dtex) = weight of fiber 100 m (g) × 100 (II).
Single fiber fineness (dtex) = total fineness (dtex) / number of filaments (III).

D.強度、伸度
得られた繊維を試料とし、JIS L1013:2010(化学繊維フィラメント糸試験方法)8.5.1に準じて算出した。温度20℃、湿度65%RHの環境下において、オリエンテック製テンシロンUTM−III−100型を用いて、初期試料長20cm、引張速度20cm/分の条件で引張試験を行った。最大荷重を示す点の応力(cN)を総繊度(dtex)で除して強度(cN/dtex)を算出し、最大荷重を示す点の伸び(L1)と初期試料長(L0)を用いて下記式(IV)によって伸度(%)を算出した。なお、測定は1試料につき10回行い、その平均値を強度および伸度とした。強度が2.5(cN/dtex)以上であれば良好と判断し、2.8(cN/dtex)以上であればより良好とした。
伸度(%)={(L1−L0)/L0}×100 ・・・(IV) 。
D. Strength, Elongation The obtained fiber was used as a sample and calculated according to JIS L1013: 2010 (Chemical fiber filament yarn test method) 8.5.1. A tensile test was conducted under the conditions of an initial sample length of 20 cm and a tensile speed of 20 cm / min using an Orientec Tensilon UTM-III-100 type under an environment of a temperature of 20 ° C. and a humidity of 65% RH. The stress (cN) at the point showing the maximum load is divided by the total fineness (dtex) to calculate the strength (cN / dtex), and the elongation (L1) at the point showing the maximum load and the initial sample length (L0) are used. The elongation (%) was calculated by the following formula (IV). The measurement was performed 10 times for each sample, and the average value was taken as the strength and the elongation. A strength of 2.5 (cN / dtex) or higher was judged to be good, and a strength of 2.8 (cN / dtex) or higher was judged to be better.
Elongation (%) = {(L1−L0) / L0} × 100 (IV).

E.タフネス
上記Dで算出した強度(cN/dtex)と伸度(%)を用いて下記式(V)によりタフネスを算出した。タフネスが16.5以上であれば良好と判断し、18.0以上であればより良好とした。
タフネス=強度×(伸度)1/2 ・・・(V) 。
E. Toughness Toughness was calculated by the following formula (V) using the strength (cN / dtex) and the elongation (%) calculated in the above D. A toughness of 16.5 or more was judged to be good, and a toughness of 18.0 or more was considered to be better.
Toughness = strength × (elongation) 1/2 ... (V).

F.最外層厚み
得られた繊維をエポキシ樹脂で包埋し、Reichert製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert−Nissei ultracut N(ウルトラミクロトーム)で切削した。その後、切削面すなわち繊維横断面を観察し、単繊維の全体像が観察できる最も高い倍率で顕微鏡写真を撮影した。得られた写真において、画像処理ソフト(三谷商事製WINROOF)を用いて、単繊維の半径を繊維の半径として求め、さらに外周に配置された島(芯)成分において繊維中心から最も距離のある地点と接するように外接する真円(外接円)の半径を求めた。得られた写真から無作為に単繊維10本を抽出し、繊維の半径および外接円の半径を同様に求め、それぞれの単繊維において繊維の半径と外接円の半径の差を算出し、その平均値を最外層厚みとした。なお、繊維横断面は必ずしも真円とは限らないため、真円ではない場合には、繊維横断面の断面積より円相当半径を算出し繊維の半径として採用した。
F. Outermost layer thickness The obtained fiber was embedded with an epoxy resin, frozen with a Reichert FC-4E cryosectioning system, and cut with a Reichert-Nissei ultracut N (ultramicrotome) equipped with a diamond knife. After that, the cut surface, that is, the cross-section of the fiber was observed, and a micrograph was taken at the highest magnification at which the whole image of the single fiber can be observed. In the obtained photograph, the radius of the single fiber was obtained as the radius of the fiber using image processing software (WINROOF manufactured by Mitani Shoji Co., Ltd.), and the point with the longest distance from the fiber center in the island (core) component arranged on the outer periphery The radius of a perfect circle (circumscribing circle) circumscribing so as to contact with was calculated. Randomly extract 10 monofilaments from the obtained photographs, calculate the radius of the fiber and the radius of the circumscribed circle in the same manner, calculate the difference between the radius of the fiber and the radius of the circumscribed circle for each monofilament, and calculate the average. The value was taken as the outermost layer thickness. Since the fiber cross section is not necessarily a perfect circle, when it is not a perfect circle, a circle equivalent radius was calculated from the cross sectional area of the fiber cross section and adopted as the radius of the fiber.

G.精練後、熱水処理後の吸湿率差(△MR)
得られた繊維を原料とし、英光産業製丸編機NCR−BL(釜径3インチ半(8.9cm)、27ゲージ)を用いて筒編み約2gを作製した後、炭酸ナトリウムを2g/L、明成化学工業製界面活性剤グランアップUS−20を含む水溶液に投入し、80℃で20分間精練後、60℃の熱風乾燥機内で60分間乾燥し、精練後の筒編みとした。また、精練後の筒編みを浴比1:100、処理温度130℃、処理時間60分の条件で熱水処理した後、60℃の熱風乾燥機内で60分間乾燥し、熱水処理後の筒編みとした。
G. Moisture absorption difference after scouring and hot water treatment (△ MR)
Using the obtained fiber as a raw material, a circular knitting machine NCR-BL manufactured by Eiko Sangyo Co., Ltd. (3 inch and a half (8.9 cm) in the kettle diameter, 27 gauge) to make about 2 g of a cylinder knit, and then 2 g / L of sodium carbonate Was poured into an aqueous solution containing a surfactant Granup US-20 manufactured by Meisei Chemical Co., Ltd., scoured at 80 ° C. for 20 minutes, and then dried in a hot air dryer at 60 ° C. for 60 minutes to give a scoured tubular knit. Further, the tube knitted after scouring is subjected to hot water treatment under the conditions of a bath ratio of 1: 100, a treatment temperature of 130 ° C. and a treatment time of 60 minutes, and then dried in a hot air dryer at 60 ° C. for 60 minutes to obtain a tube after the hot water treatment. Knitted

吸湿率(%)は、精練後および熱水処理後の筒編みを試料とし、JIS L1096:2010(織物及び編物の生地試験方法)8.10の水分率に準じて算出した。始めに、筒編みを60℃で30分熱風乾燥した後、温度20℃、湿度65%RHに調湿されたエスペック製恒温恒湿機LHU−123内に筒編みを24時間静置し、筒編みの重量(W1)を測定後、温度30℃、湿度90%RHに調湿された恒温恒湿機内に筒編みを24時間静置し、筒編みの重量(W2)を測定した。その後、筒編みを105℃で2時間熱風乾燥し、絶乾後の筒編みの重量(W3)を測定した。筒編みの重量W1、W3を用いて下記式(VI)により絶乾状態から温度20℃、湿度65%RH雰囲気下に24時間静置したときの吸湿率MR1(%)を算出し、筒編みの重量W2、W3を用いて下記式(VII)により絶乾状態から温度30℃、湿度90%RH雰囲気下に24時間静置したときの吸湿率MR2(%)を算出した後、下記式(VIII)によって吸湿率差(△MR)を算出した。なお、測定は1試料につき5回行い、その平均値を吸湿率差(△MR)とした。△MRが2.0%以上であれば吸湿性を有すると判断し、3.0%以上であればより良好とした。
MR1(%)={(W1−W3)/W3}×100 ・・・(VI)
MR2(%)={(W2−W3)/W3}×100 ・・・(VII)
吸湿率差(△MR)(%)=MR2−MR1 ・・・(VIII) 。
The moisture absorption rate (%) was calculated according to the water content of JIS L1096: 2010 (Test method for woven and knitted fabrics) 8.10 using cylindrical knitting after scouring and hot water treatment as a sample. First, after drying the tube knitting with hot air at 60 ° C. for 30 minutes, the tube knitting is allowed to stand still for 24 hours in the ESPEC constant temperature and humidity machine LHU-123 whose temperature is adjusted to 20 ° C. and humidity 65% RH. After measuring the weight (W1) of the knitting, the tube knitting was allowed to stand for 24 hours in a thermo-hygrostat adjusted to a temperature of 30 ° C. and a humidity of 90% RH, and the weight (W2) of the tube knitting was measured. Then, the tube knit was dried with hot air at 105 ° C. for 2 hours, and the weight (W3) of the tube knit after drying was measured. Using the weights W1 and W3 of the cylinder knitting, the moisture absorption rate MR1 (%) is calculated according to the following formula (VI) when the product is allowed to stand for 24 hours in an atmosphere of absolute dryness at a temperature of 20 ° C. and a humidity of 65% RH. Using the weights W2 and W3 of the above, the moisture absorption rate MR2 (%) when left standing for 24 hours in a temperature of 30 ° C. and a humidity of 90% RH was calculated by the following formula (VII), and then the following formula (VII) The moisture absorption difference (ΔMR) was calculated according to VIII). The measurement was performed 5 times for each sample, and the average value was used as the moisture absorption rate difference (ΔMR). When ΔMR was 2.0% or more, it was judged to have hygroscopicity, and when 3.0% or more, it was considered better.
MR1 (%) = {(W1-W3) / W3} × 100 (VI)
MR2 (%) = {(W2-W3) / W3} × 100 (VII)
Moisture absorption difference (ΔMR) (%) = MR2-MR1 (VIII).

H.海(鞘)成分の割れ
上記Gで作製した熱水処理後の筒編みを白金−パラジウム合金で蒸着し、日立製走査型電子顕微鏡(SEM)S−4000型を用いて1000倍で観察し、無作為に10視野の顕微鏡写真を撮影した。得られた10枚の写真において、海成分が割れている箇所の合計を海(鞘)成分の割れ(箇所)とし、9個以下であれば海(鞘)成分の割れが抑制されていると判断し、5個以下であればより良好とし、3個以下であればさらに良好とした。
H. Cracking of sea (sheath) component The hot-water treated tubular knitting produced in G above was vapor-deposited with a platinum-palladium alloy, and observed at 1,000 times using a Hitachi scanning electron microscope (SEM) S-4000 type. Photographs of 10 fields of view were taken at random. In the 10 photographs obtained, the total of the locations where the sea component is cracked is defined as the crack (location) of the sea (sheath) component, and if the number is 9 or less, the cracking of the sea (sheath) component is suppressed. Judgment was made: if 5 or less, it was better, and if 3 or less, it was even better.

I.均染性
得られた繊維を原料とし、英光産業製丸編機NCR−BL(釜径3インチ半(8.9cm)、27ゲージ)を用いて筒編み約10gを作製した後、炭酸ナトリウムの濃度が2g/L、明成化学工業製界面活性剤グランアップUS−20の濃度が1g/Lの水溶液に浴比1:40となるように投入し、80℃で20分間精練後、60℃の熱風乾燥機内で60分間乾燥した。180℃で3分間熱セットした後、日本化薬製塩基性染料Nichilon Blackの濃度が5.0重量%でpHを5.0に調整した染色液に浴比1:30となるように投入し、120℃で30分間染色した。染色した試料を、明成化学工業製ソーピング剤ラッコールISFの濃度が0.5g/Lの水溶液に浴比1:30となるように投入し、60℃で20分間ソーピング処理後、60℃の熱風乾燥機内で60分間乾燥した。最後に160℃で3分間熱セットした。
I. Level dyeing Using the obtained fiber as a raw material, a circular knitting machine NCR-BL manufactured by Eiko Sangyo Co., Ltd. (3 inch and a half (8.9 cm) in the kettle diameter, 27 gauge) to make about 10 g of tubular knitting, The solution was added to an aqueous solution having a concentration of 2 g / L and a surfactant, Granup US-20, manufactured by Meisei Chemical Industry Co., Ltd., at a concentration of 1 g / L so that the bath ratio was 1:40, and the mixture was scoured at 80 ° C. for 20 minutes and then at 60 ° C. It was dried in a hot air dryer for 60 minutes. After heat setting at 180 ° C. for 3 minutes, it was added to a dyeing solution in which the concentration of the basic dye Nichilon Black manufactured by Nippon Kayaku was 5.0 wt% and the pH was adjusted to 5.0 so that the bath ratio was 1:30. Staining was performed at 120 ° C for 30 minutes. The dyed sample was put into an aqueous solution having a concentration of 0.5 g / L of Laccol ISF, a soaping agent manufactured by Meisei Chemical Industry Co., Ltd., at a bath ratio of 1:30, soaped at 60 ° C for 20 minutes, and then dried with hot air at 60 ° C. It was dried in the machine for 60 minutes. Finally, it was heat set at 160 ° C. for 3 minutes.

得られた筒編みについて、5年以上の品位判定の経験を有する検査員5名の多数決によって、「非常に均一に染色されており、全く染め斑が認められない」をS、「ほぼ均一に染色されており、ほとんど染め斑が認められない」をA、「均一に染色されており、うっすらとしか染め斑が認められない」をB、「均一に染色されておらず、はっきりと染め斑が認められる」をCとし、B、A、Sを合格とした。なお、同数票だった場合、2階級に選択肢を絞り、再度多数決により判定した。   Regarding the obtained tubular knitting, by a majority vote of 5 inspectors who have 5 years or more of quality judgment experience, "very uniformly dyed and no spots are observed at all" is S, "almost uniformly "It is dyed and almost no stain spots are observed" A, "It is dyed uniformly and only a few stain spots are seen" B, "Not dyed uniformly and it is clearly spotted Is recognized "as C, and B, A, and S are accepted. If there were the same number of votes, we narrowed down the choices to two classes and decided again by majority vote.

J.品位
上記Gで作製した熱水処理後の筒編みについて、5年以上の品位判定の経験を有する検査員5名の多数決によって、「毛羽が全くなく、品位に極めて優れる」をS、「毛羽がほとんどなく、品位に優れる」をA、「毛羽が少しあるものの、品位は良好である」をB、「毛羽が多数あり、品位に極めて劣る」をCとし、B、A、Sを合格とした。なお、同数票だった場合、2階級に選択肢を絞り、再度多数決により判定した。
J. Quality With regard to the tubular knitting after the hot water treatment produced in the above G, by the majority vote of 5 inspectors who have 5 years or more of quality judgment experience, "no fluff and extremely excellent quality" are given as S and "fluff "There is almost no, excellent quality" is A, "There is some fluff, but good quality" is B, "There are many fluff and it is extremely inferior" is C, and B, A, and S are passed. .. If there were the same number of votes, we narrowed down the choices to two classes and decided again by majority vote.

K.摩耗後の変退色
上記Iで作製した染色後の筒編みを試料とし、直径10cmおよび17.5cmとなるように試料を採取して、試験片を大栄科学精器製作所製アピアランス・リテンションテスター(ART形試験機)の上下ホルダーにセットした。上部試験片を蒸留水で湿潤させたガーゼで完全に湿らせた後、押圧7.36Nで10分間摩耗した。摩耗後、上部の試験片を標準状態で4時間放置したのち、変色の程度を変退色グレースケールで等級判定した。3級以上であれば耐摩耗性良好と判断し、4級以上であればより良好とした。
K. Discoloration and fading after abrasion As a sample, the dyed tubular knitting prepared in the above I was sampled to have diameters of 10 cm and 17.5 cm, and the test piece was taken as an appearance retention tester (ART, manufactured by Daiei Kagaku Seiki Seisakusho Ltd.). Shape tester). The upper test piece was thoroughly moistened with gauze moistened with distilled water and then abraded for 10 minutes at a pressure of 7.36N. After the abrasion, the upper test piece was left in a standard state for 4 hours, and the degree of discoloration was graded by a discolored gray scale. If the grade was 3 or higher, the abrasion resistance was judged to be good, and if the grade was 4 or higher, the wear resistance was considered better.

L.風合い
上記Gで作製した熱水処理後の筒編みについて、5年以上の品位判定の経験を有する検査員5名の多数決によって、「非常に柔らかい」をS、「柔らかい」をA、「硬い」をB、「非常に硬い」をCとし、A、Sを合格とした。なお、同数票だった場合、2階級に選択肢を絞り、再度多数決により判定した。
L. Feeling Regarding the tubular knitting after hot water treatment produced in G above, "very soft" is S, "soft" is A, and "hard" by a majority vote of 5 inspectors who have 5 years or more of quality judgment experience. Was B, "very hard" was C, and A and S were acceptable. If there were the same number of votes, we narrowed down the choices to two classes and decided again by majority vote.

M.蒸れ感改善
上記Gで作製した熱水処理後の筒編みについて、5年以上の品位判定の経験を有する検査員5名の多数決によって、「蒸れ感が全くない」をS、「蒸れ感がほとんどない」をA、「蒸れ感を感じる」をB、「蒸れ感が極めて強い」をCとし、A、Sを合格とした。なお、同数票だった場合、2階級に選択肢を絞り、再度多数決により判定した。
M. Improving stuffiness Regarding the tubular knitting after the hot water treatment produced in G above, by the majority vote of 5 inspectors who have 5 years or more of quality judgment experience, "no stuffiness" was given as S, "most stuffiness was found""No" was A, "feeling stuffy" was B, "extremely stuffy" was C, and A and S were passed. If there were the same number of votes, we narrowed down the choices to two classes and decided again by majority vote.

N.耐久性
上記Gで作製した熱水処理後の筒編みをJIS L0217:2010(繊維製品の取扱いに関する表示記号およびその表示方法)に規定する付表1 103法に準じて洗濯処理を100回行った試料について、5年以上の品位判定の経験を有する検査員5名の多数決によって、「亀裂や目ずれが全くない」をS、「亀裂や目ずれがほとんどない」をA、「亀裂や目ずれがある」をB、「亀裂や目ずれが多数ある」をCとし、A、Sを合格とした。なお、同数票だった場合、2階級に選択肢を絞り、再度多数決により判定した。
N. Durability A sample in which the tubular knitting after the hot water treatment prepared in the above G was subjected to 100 times of washing treatment according to the method shown in Appendix Table 103, which is specified in JIS L0217: 2010 (display symbols and handling methods for handling textile products). About the majority of 5 inspectors who have 5 years or more of quality judgment experience, "No crack or misalignment" is S, "There is almost no crack or misalignment" is A, "Crack or misalignment is There is B, "there are many cracks and misalignments" is C, and A and S are acceptable. If there were the same number of votes, we narrowed down the choices to two classes and decided again by majority vote.

(製造例1)共重合ポリブチレンテレフタレート組成物
1,4−ブタンジオール(東京化成製)1.0kgを100℃に加熱後、テトラ−n−ブトキシチタネート(東京化成製)を250g混合して触媒溶液を得た。
(Production Example 1) Copolymerized polybutylene terephthalate composition 1.0 kg of 1,4-butanediol (manufactured by Tokyo Kasei) is heated to 100 ° C., and then 250 g of tetra-n-butoxy titanate (manufactured by Tokyo Kasei) is mixed to prepare a catalyst. A solution was obtained.

ジカルボン酸成分としてテレフタル酸(東京化成製)45.3kg、ジオール成分として1,4−ブタンジオール44.2kg、エステル化反応触媒として上記方法により得られた触媒溶液135gを、精留塔の付いたエステル化反応槽に仕込んだ。温度160℃、圧力93kPaの減圧下にてエステル化反応を開始した後、徐々に昇温し、最終的に温度235℃の条件下でエステル化反応を270分間行った。   45.3 kg of terephthalic acid (manufactured by Tokyo Kasei) as a dicarboxylic acid component, 44.2 kg of 1,4-butanediol as a diol component, and 135 g of the catalyst solution obtained by the above method as an esterification reaction catalyst were attached to a rectification column. It was charged in the esterification reaction tank. After the esterification reaction was started at a temperature of 160 ° C. under a reduced pressure of 93 kPa, the temperature was gradually raised, and finally the esterification reaction was performed for 270 minutes under the condition of a temperature of 235 ° C.

数平均分子量10000g/molのポリエチレングリコール(三洋化成工業製PEG10000)を60.0kg、ペンタエリスリトール−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)プロピオネート)(BASF製、IRGANOX1010)を180g、重合槽に投入し、重合槽温度が180℃以上となったときに、エステル化反応槽で得られた反応物を移行した。重合槽温度が250℃到達後、重縮合反応触媒として、上記方法により得られた触媒溶液300gを添加し、温度250℃、圧力100Paの条件で重縮合反応を行い、所定の攪拌トルクとなった時点で反応系を窒素パージして常圧に戻して重縮合反応を停止させ、口金からストランド状に押出して水槽冷却、カッティングして、ポリエチレングリコールを50重量%共重合したポリブチレンテレフタレートのペレットを得た。   60.0 kg of polyethylene glycol having a number average molecular weight of 10,000 g / mol (PEG10000 manufactured by Sanyo Chemical Industries), pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) (manufactured by BASF, 180 g of IRGANOX 1010) was charged into the polymerization tank, and when the temperature of the polymerization tank reached 180 ° C. or higher, the reaction product obtained in the esterification reaction tank was transferred. After the temperature of the polymerization tank reached 250 ° C., 300 g of the catalyst solution obtained by the above method was added as a polycondensation reaction catalyst, and the polycondensation reaction was performed under the conditions of a temperature of 250 ° C. and a pressure of 100 Pa, and a predetermined stirring torque was obtained. At this point, the reaction system was purged with nitrogen to return to normal pressure to stop the polycondensation reaction, extruded in a strand form from a die, cooled in a water tank, and cut to obtain polybutylene terephthalate pellets obtained by copolymerizing 50% by weight of polyethylene glycol. Obtained.

この共重合ポリブチレンテレフタレートポリマーに対して、2,2’−ジメチル−2,2’−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン−3,9−ジイル)ジプロパン−1,1’ ジイル=ビス[3−(3−t−ブチル−4−ヒドロキシ5−メチルフェニル)プロパノアート](ADEKA製、アデカスタブAO−80)を6.0重量%、1,1’−ビフェニル−4,4’−ジイルビス[亜ホスホン酸ビス(2,4−ジ−t−ブチルフェニル)](クラリアントケミカルズ製、HOSTANOX P−EPQ)2.3重量%を配合し、L/D=45(Lはスクリュー長、Dはスクリュー直径を表す)のベント部を一箇所有するベント式二軸押出機を用い、シリンダー温度250℃、回転数200rpm、圧力10kPaの条件にて溶融混練を3分間実施し、共重合ポリブチレンテレフタレート組成物を得た。   2,2′-dimethyl-2,2 ′-(2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl) dipropane-based on this copolymerized polybutylene terephthalate polymer 6.0 wt% of 1,1 ′ diyl bis [3- (3-t-butyl-4-hydroxy5-methylphenyl) propanoate] (made by ADEKA, Adeka Stab AO-80), 1,1′-biphenyl- 2.3% by weight of 4,4′-diylbis [bis (2,4-di-t-butylphenyl) phosphonous acid] (HOSTANOX P-EPQ, manufactured by Clariant Chemicals) was added, and L / D = 45 (L Is a screw length, D is a screw diameter), and a melt-kneading is performed for 3 minutes under the conditions of a cylinder temperature of 250 ° C., a rotation speed of 200 rpm, and a pressure of 10 kPa using a vent type twin-screw extruder having one vent portion. A copolymerized polybutylene terephthalate composition was obtained.

(製造例2)共重合ポリエチレンテレフタレート組成物
予めビス(ヒドロキシエチル)テレフタレート100kgが仕込まれ、温度250℃に保持されたエステル化反応槽に高純度テレフタル酸(三井化学製)51.9kgとエチレングリコール(日本触媒製)23.3kgのスラリーを4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行った。
(Production Example 2) Copolymerized polyethylene terephthalate composition 51.9 kg of high-purity terephthalic acid (manufactured by Mitsui Chemicals) and ethylene glycol were placed in an esterification reaction tank in which 100 kg of bis (hydroxyethyl) terephthalate was charged in advance and the temperature was kept at 250 ° C. 23.3 kg of slurry (manufactured by Nippon Shokubai Co., Ltd.) was sequentially supplied over 4 hours, and the esterification reaction was carried out for 1 hour after the completion of the supply.

数平均分子量10000g/molのポリエチレングリコール(三洋化成工業製PEG10000)60.0kg、ペンタエリスリトール−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)プロピオネート)(BASF製、IRGANOX1010)を180g、重合槽に投入し、重合槽温度が180℃以上となったときに、エステル化反応槽で得られた反応物63.9kgを重縮合槽に移送した。重合槽温度が250℃到達後、重縮合反応触媒として、リン酸トリメチル30.0gを添加し、10分後に酢酸コバルト4水和物24.0g、三酸化アンチモン30.0g添加した。さらに5分後に酸化チタン粒子のエチレングリコールスラリーを、ポリマーに対して酸化チタン粒子換算で0.3重量%添加した。さらに5分後に、反応系を減圧して反応を開始した。反応器内を250℃から290℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度および最終圧力の到達までの時間は60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージして常圧に戻して重縮合反応を停止させ、口金からストランド状に押出して水槽冷却、カッティングして、ポリエチレングリコールを50重量%共重合した共重合ポリエチレンテレフタレートのペレットを得た。   60.0 kg of polyethylene glycol (PEG10000 manufactured by Sanyo Chemical Industries) having a number average molecular weight of 10,000 g / mol, pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) (BASF, IRGANOX1010). ) Was charged into the polymerization tank, and when the polymerization tank temperature reached 180 ° C. or higher, 63.9 kg of the reaction product obtained in the esterification reaction tank was transferred to the polycondensation tank. After the temperature of the polymerization tank reached 250 ° C., 30.0 g of trimethyl phosphate was added as a polycondensation reaction catalyst, and 10 minutes later, 24.0 g of cobalt acetate tetrahydrate and 30.0 g of antimony trioxide were added. After 5 minutes, an ethylene glycol slurry of titanium oxide particles was added to the polymer in an amount of 0.3% by weight in terms of titanium oxide particles. After a further 5 minutes, the reaction system was depressurized to start the reaction. The temperature inside the reactor was gradually raised from 250 ° C. to 290 ° C., and the pressure was lowered to 40 Pa. The time required to reach the final temperature and final pressure was 60 minutes. When the predetermined stirring torque is reached, the reaction system is purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, extruded in a strand form from the die, cooled in a water tank, and cut to copolymerize 50% by weight of polyethylene glycol. The pellets of the copolymerized polyethylene terephthalate were obtained.

この共重合ポリエチレンテレフタレートポリマーに対して、2,2’−ジメチル−2,2’−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン−3,9−ジイル)ジプロパン−1,1’ ジイル=ビス[3−(3−t−ブチル−4−ヒドロキシ5−メチルフェニル)プロパノアート](ADEKA製、アデカスタブAO−80)を6.0重量%、1,1’−ビフェニル−4,4’−ジイルビス[亜ホスホン酸ビス(2,4−ジ−t−ブチルフェニル)](クラリアントケミカルズ製、HOSTANOX P−EPQ)2.3重量%を配合し、L/D=45(Lはスクリュー長、Dはスクリュー直径を表す)のベント部を一箇所有するベント式二軸押出機を用い、シリンダー温度280℃、回転数200rpm、圧力10kPaの条件にて溶融混練を3分間実施し、共重合ポリエチレンテレフタレート組成物を得た。   Based on this copolymerized polyethylene terephthalate polymer, 2,2'-dimethyl-2,2 '-(2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl) dipropane-1 , 1'diyl-bis [3- (3-t-butyl-4-hydroxy5-methylphenyl) propanoate] (ADEKA, Adeka Stab AO-80), 6.0% by weight, 1,1'-biphenyl-4 , 4′-diylbis [bisphosphonous acid bis (2,4-di-t-butylphenyl)] (manufactured by Clariant Chemicals, HOSTANOX P-EPQ) was added in an amount of 2.3% by weight, and L / D = 45 (L is Using a vent type twin-screw extruder having one vent part (screw length, D represents the screw diameter), melt kneading was performed for 3 minutes under the conditions of a cylinder temperature of 280 ° C., a rotation speed of 200 rpm, and a pressure of 10 kPa. A polymerized polyethylene terephthalate composition was obtained.

(実施例1)
製造例1に従い作製した数平均分子量10000g/molのポリエチレングリコール(三洋化成工業製PEG10000)を50重量%共重合したポリブチレンテレフタレートを島成分とし、海成分を5−スルホイソフタル酸ナトリウム塩を1.5mol%および数平均分子量1000g/molのポリエチレングリコール(三洋化成工業製PEG1000)2.0重量%を共重合したポリエチレンテレフタレートとした。それぞれを150℃で12時間真空乾燥した後、島成分を10重量%、海成分を90重量%の配合比でエクストルーダー型複合紡糸機へ供給して別々に溶融させ、紡糸温度275℃において、吐出孔数が72の海島複合口金を組み込んだ紡糸パックに流入させ、吐出孔から複合ポリマー流を吐出量25g/分で吐出させて紡出糸条を得た。この紡出糸条を風温20℃、風速20m/分の冷却風で冷却し、給油装置で油剤を付与して収束させ、2700m/分で回転する第1ゴデットローラーで引き取り、第1ゴデットローラーと同じ速度で回転する第2ゴデットローラーを介して、ワインダーで巻き取って92dtex−72fの未延伸糸を得た。その後、延伸仮撚機(加撚部:フリクションディスク式、ヒーター部:接触式)を用いて、得られた未延伸糸をヒーター温度140℃、倍率1.4倍の条件で延伸仮撚し、66dtex−72f、単繊維繊度0.92dtexの仮撚糸を得た。断面形状は図1(a)のとおりである。
(Example 1)
Polybutylene terephthalate copolymerized with 50% by weight of polyethylene glycol having a number average molecular weight of 10000 g / mol (PEG10000 manufactured by Sanyo Kasei Co., Ltd.) prepared according to Production Example 1 was used as an island component and 5-sulfoisophthalic acid sodium salt as a sea component. Polyethylene terephthalate was obtained by copolymerizing 5 mol% and 2.0 wt% of polyethylene glycol having a number average molecular weight of 1000 g / mol (PEG1000 manufactured by Sanyo Chemical Industries). After vacuum-drying each at 150 ° C. for 12 hours, the island component and the sea component were supplied at a blending ratio of 10% by weight and 90% by weight to an extruder type composite spinning machine and melted separately, and at a spinning temperature of 275 ° C., A spun yarn was obtained by allowing the composite polymer stream to flow into a spinning pack incorporating a sea-island composite spinneret having 72 discharge holes, and discharging the composite polymer stream from the discharge holes at a discharge rate of 25 g / min. This spun yarn is cooled with a cooling air having a wind temperature of 20 ° C. and a wind speed of 20 m / min, an oil agent is applied and converged, and the spun yarn is taken up by a first godet roller rotating at 2700 m / min. The undrawn yarn of 92 dtex-72f was obtained by winding with a winder through a second godet roller that rotates at the same speed as the dead roller. Then, using a draw false twisting machine (twisting part: friction disk type, heater part: contact type), the obtained undrawn yarn is draw false twisted under the conditions of a heater temperature of 140 ° C. and a magnification of 1.4 times. A false twisted yarn having a 66 dtex-72f and a single fiber fineness of 0.92 dtex was obtained. The cross-sectional shape is as shown in FIG.

得られた繊維の繊維特性および布帛特性の評価結果を表1に示す。最外層厚みは3.0μmであり、熱水処理後の吸湿率差(△MR)は3.6%であった。強度は3.1cN/dtexと良好であり、タフネスは19.1と良好であった。また、海成分の割れは1箇所と割れが抑制されていた。摩耗後の変退色は4級と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 1 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The outermost layer had a thickness of 3.0 μm, and the difference in moisture absorption rate (ΔMR) after hot water treatment was 3.6%. The strength was as good as 3.1 cN / dtex, and the toughness was as good as 19.1. Also, there was one crack in the sea component, which was suppressed. The discoloration and fading after abrasion was grade 4, which was good, and the leveling properties, quality, texture, improvement of stuffiness, and durability were all acceptable levels.

(実施例2〜5)
製造例1においてポリエチレングリコールの数平均分子量および共重合率を変更して作製した共重合ポリブチレンテレフタレートを島成分とし、海島複合比率を変更することで、熱水処理後の吸湿率差(△MR)を変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Examples 2 to 5)
Copolymerization polybutylene terephthalate prepared by changing the number average molecular weight and copolymerization rate of polyethylene glycol in Production Example 1 was used as an island component, and the sea-island composite ratio was changed to obtain a difference in moisture absorption rate after hot water treatment (ΔMR A false-twisted yarn was produced in the same manner as in Example 1 except that (4) was changed.

得られた繊維の繊維特性および布帛特性の評価結果を表1に示す。いずれも、単繊維繊度0.92dtexであり、最外層厚みは2.5〜4.5μmであった。いずれも、強度は2.5cN/dtex以上、タフネスは16.5以上と良好であった。また、海成分の割れはいずれも5箇所以下と割れが抑制されていた。摩耗後の変退色はいずれも3級以上と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 1 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. In each case, the single fiber fineness was 0.92 dtex, and the outermost layer thickness was 2.5 to 4.5 μm. In all cases, the strength was 2.5 cN / dtex or more, and the toughness was 16.5 or more. In addition, the number of cracks in the sea component was 5 or less, and the cracks were suppressed. The discoloration and discoloration after abrasion were all grade 3 or better, and the leveling properties, quality, texture, stuffiness improvement, and durability were all acceptable levels.

(実施例6)
製造例1において数平均分子量が10000g/molのポリ(エチレングリコール)メチルエーテル(SIGMA−ALDRICH製)を用いて作製した共重合ポリブチレンテレフタレートを島成分とし、島成分5重量%、海成分を95重量%、フィラメント数を132に変更することで、単繊維繊度を0.50dtexにしたこと以外は、実施例1と同様に仮撚糸を作製した。
(Example 6)
Copolymerized polybutylene terephthalate prepared by using poly (ethylene glycol) methyl ether having a number average molecular weight of 10,000 g / mol (manufactured by SIGMA-ALDRICH) in Production Example 1 was used as an island component, and 5% by weight of the island component and 95% of the sea component were used. A false twisted yarn was produced in the same manner as in Example 1 except that the single fiber fineness was changed to 0.50 dtex by changing the weight% and the number of filaments to 132.

得られた繊維の繊維特性および布帛特性の評価結果を表1に示す。最外層厚みは2.6μmであり、熱水処理後の吸湿率差(△MR)は2.3%であった。強度は2.5cN/dtex、タフネスは16.6と良好であった。また、海成分の割れは4箇所と割れが抑制されていた。摩耗後の変退色は3級と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 1 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The outermost layer thickness was 2.6 μm, and the moisture absorption difference (ΔMR) after hot water treatment was 2.3%. The strength was 2.5 cN / dtex, and the toughness was 16.6, which was good. Also, the sea component was cracked at four locations, which were suppressed. The discoloration and fading after abrasion was as good as grade 3, and the leveling properties, quality, texture, improvement of stuffiness, and durability were all acceptable levels.

(実施例7〜9)
フィラメント数を変更することで、単繊維繊度を変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Examples 7 to 9)
A false twisted yarn was produced in the same manner as in Example 1 except that the single fiber fineness was changed by changing the number of filaments.

得られた繊維の繊維特性および布帛特性の評価結果を表2に示す。いずれも、最外層厚みは2.5〜4.5μmであり、熱水処理後の吸湿率差(△MR)はいずれも3.6%であった。いずれも、強度は2.5cN/dtex以上、タフネスは16.5以上と良好であった。また、海成分の割れはいずれも2箇所以下と割れが抑制されていた。摩耗後の変退色はいずれも3級以上と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 2 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. In each case, the outermost layer had a thickness of 2.5 to 4.5 μm, and the moisture absorption difference (ΔMR) after the hot water treatment was 3.6%. In all cases, the strength was 2.5 cN / dtex or more, and the toughness was 16.5 or more. Moreover, the cracks of the sea component were suppressed to two or less in all cases. The discoloration and discoloration after abrasion were all grade 3 or better, and the leveling properties, quality, texture, stuffiness improvement, and durability were all acceptable levels.

(実施例10)
島成分を19重量%、海成分を81重量%変更することで、最外層厚みを2.5μmに変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Example 10)
A false-twisted yarn was produced in the same manner as in Example 1 except that the outermost layer thickness was changed to 2.5 μm by changing the island component by 19% by weight and the sea component by 81% by weight.

得られた繊維の繊維特性および布帛特性の評価結果を表2に示す。単繊維繊度は0.92dtexであり、熱水処理後の吸湿率差(△MR)は8.5%であった。強度は2.5cN/dtex、タフネスは16.6と良好であった。また、海成分の割れは4箇所と割れが抑制されていた。摩耗後の変退色は3級と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 2 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The single fiber fineness was 0.92 dtex, and the moisture absorption difference (ΔMR) after hot water treatment was 8.5%. The strength was 2.5 cN / dtex, and the toughness was 16.6, which was good. Also, the sea component was cracked at four locations, which were suppressed. The discoloration and fading after abrasion was as good as grade 3, and the leveling properties, quality, texture, improvement of stuffiness, and durability were all acceptable levels.

(実施例11〜12)
製造例1において数平均分子量が10000g/molのポリ(エチレングリコール)メチルエーテル(SIGMA−ALDRICH製)を用いて作製した共重合ポリブチレンテレフタレートを島成分とし、フィラメント数を44にして、海島複合比率を変更することで、最外層厚みを変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Examples 11 to 12)
In Production Example 1, the copolymerized polybutylene terephthalate prepared by using poly (ethylene glycol) methyl ether having a number average molecular weight of 10,000 g / mol (manufactured by SIGMA-ALDRICH) was used as an island component, the number of filaments was set to 44, and the sea-island composite ratio was set. Was changed to prepare a false twisted yarn in the same manner as in Example 1 except that the outermost layer thickness was changed.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。いずれも、単繊維繊度は1.50dtexであり、熱水処理後の吸湿率差(△MR)は2.0〜10.0%であった。いずれも、強度は2.5cN/dtex以上、タフネスは16.5以上と良好であった。また、海成分の割れはいずれも0箇所と割れが抑制されていた。摩耗後の変退色はいずれも4級以上と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. In both cases, the single fiber fineness was 1.50 dtex, and the moisture absorption difference (ΔMR) after hot water treatment was 2.0 to 10.0%. In all cases, the strength was 2.5 cN / dtex or more, and the toughness was 16.5 or more. In addition, the number of cracks in the sea component was 0, which was suppressed. The discoloration and discoloration after abrasion were all 4 or higher, which was good, and the leveling properties, quality, texture, improvement of stuffiness, and durability were all acceptable levels.

(実施例13〜14)
複合口金種を変更し、実施例13では図1(b)、実施例14では図1(c)で示される繊維断面にしたこと以外は実施例1と同様に仮撚糸を作製した。
(Examples 13 to 14)
A false twisted yarn was produced in the same manner as in Example 1 except that the composite spinneret type was changed and the fiber cross section shown in Fig. 1 (b) in Example 13 and Fig. 1 (c) in Example 14 was used.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。いずれも、単繊維繊度は0.92dtexであり、最外層厚みは2.5〜4.5μm、熱水処理後の吸湿率差(△MR)はいずれも3.8%であった。いずれも、強度は2.5cN/dtex以上、タフネスは16.5以上と良好であった。また、摩耗後の変退色はいずれも4級と良好であり、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. In each case, the single fiber fineness was 0.92 dtex, the outermost layer thickness was 2.5 to 4.5 μm, and the moisture absorption difference (ΔMR) after hot water treatment was 3.8% in all cases. In all cases, the strength was 2.5 cN / dtex or more, and the toughness was 16.5 or more. In addition, discoloration and discoloration after abrasion were all grade 4, which was good, and the texture, improvement in stuffiness, and durability were all acceptable levels.

(実施例15)
製造例2において数平均分子量10000g/molのポリエチレングリコール(三洋化成工業製PEG10000)が50重量%共重合となるよう作製した共重合ポリエチレンテレフタレートを島成分としたこと以外は、実施例1と同様に仮撚糸を作製した。
(Example 15)
In the same manner as in Example 1 except that the copolymerized polyethylene terephthalate prepared in Production Example 2 so that polyethylene glycol having a number average molecular weight of 10000 g / mol (PEG10000 manufactured by Sanyo Kasei Co., Ltd.) was copolymerized at 50% by weight was used as the island component. A false twisted yarn was produced.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。単繊維繊度は0.92dtexであり、最外層厚みは3.0μm、熱水処理後の吸湿率差(△MR)は3.7%であった。タフネスは16.6と良好であった。また、海成分の割れは1箇所と割れが抑制されていた。摩耗後の変退色は4級と良好であり、均染性、品位、風合い、蒸れ感改善、耐久性については全て合格レベルであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The single fiber fineness was 0.92 dtex, the outermost layer thickness was 3.0 μm, and the moisture absorption difference (ΔMR) after hot water treatment was 3.7%. The toughness was as good as 16.6. Also, there was one crack in the sea component, which was suppressed. The discoloration and fading after abrasion was grade 4, which was good, and the leveling properties, quality, texture, improvement of stuffiness, and durability were all acceptable levels.

(実施例16)
製造例1において数平均分子量8300g/molのポリエチレングリコール(三洋化成工業製PEG10000)に変更し、30重量%共重合となるように作製した共重合ポリブチレンテレフタレートを島成分に用い、島成分を30重量%、海成分を70重量%、フィラメント数を44に変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Example 16)
Polyethylene glycol having a number average molecular weight of 8300 g / mol in Production Example 1 (PEG 10000 manufactured by Sanyo Kasei Co., Ltd.) was used, and the copolymerized polybutylene terephthalate prepared so as to be 30% by weight was used as the island component, and the island component was 30%. A false twisted yarn was produced in the same manner as in Example 1 except that the weight%, the sea component was 70% by weight, and the number of filaments was changed to 44.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。単繊維繊度は1.50dtexであり、最外層厚みは2.5μm、熱水処理後の吸湿率差(△MR)は3.1%であった。強度は2.7cN/dtexと良好であった。また、海成分の割れは1箇所と割れが抑制されていた。摩耗後の変退色は3級と良好であり、均染性、品位、風合い、蒸れ感改善については全て合格レベルであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The single fiber fineness was 1.50 dtex, the outermost layer thickness was 2.5 μm, and the moisture absorption difference (ΔMR) after hot water treatment was 3.1%. The strength was as good as 2.7 cN / dtex. Also, there was one crack in the sea component, which was suppressed. The discoloration and fading after abrasion was as good as grade 3, and the leveling properties, quality, texture and stuffiness improvement were all acceptable levels.

(実施例17)
5−スルホイソフタル酸ナトリウム塩を1.5mol%および数平均分子量1000g/molのポリエチレングリコール(三洋化成工業製PEG1000)2.0重量%を共重合したポリエチレンテレフタレートにエステル反応性シリコーン(JNC製サイラプレーンFM−4411)を5.0重量%添加したポリマーを海成分に用いたこと以外は実施例1と同様に仮撚糸を作製した。
(Example 17)
Ester-reactive silicone (polyethylene terephthalate copolymerized with 1.5 mol% of 5-sulfoisophthalic acid sodium salt and 2.0 wt% of polyethylene glycol having a number average molecular weight of 1000 g / mol (PEG1000 manufactured by Sanyo Chemical Industries)) A false-twisted yarn was produced in the same manner as in Example 1 except that a polymer containing 5.0% by weight of FM-4411) was used as the sea component.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。単繊維繊度は0.92dtexであり、最外層厚みは3.0μm、熱水処理後の吸湿率差(△MR)は2.4%であった。摩耗後の変退色は3級と良好であり、風合い、蒸れ感改善については全て合格レベルであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The single fiber fineness was 0.92 dtex, the outermost layer thickness was 3.0 μm, and the moisture absorption difference (ΔMR) after hot water treatment was 2.4%. The discoloration and fading after abrasion was as good as grade 3, and the texture and stuffiness improvement were all acceptable levels.

(実施例18)
数平均分子量10000g/molのポリエチレングリコール(三洋化成工業製PEG10000)とペンタエリスリトール−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェノール)プロピオネート)(BASF製、IRGANOX1010)を添加した後にトリメリット酸トリメチル(東京化成製)を1.6kg(3mol%)重合槽に投入したこと以外は製造例1と同様にして作製した数平均分子量10000g/molのポリエチレングリコールを50重量%共重合したポリブチレンテレフタレートを島成分と用いたこと以外は実施例1と同様に仮撚糸を作製した。
(Example 18)
Polyethylene glycol having a number average molecular weight of 10,000 g / mol (PEG10000 manufactured by Sanyo Chemical Industries) and pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) (BASF, IRGANOX1010) were added. After that, trimethyl trimellitate (manufactured by Tokyo Kasei) was added to the polymerization tank in an amount of 1.6 kg (3 mol%), and 50 wt% of polyethylene glycol having a number average molecular weight of 10000 g / mol was prepared in the same manner as in Production Example 1. A false twisted yarn was prepared in the same manner as in Example 1 except that polymerized polybutylene terephthalate was used as the island component.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。単繊維繊度は0.92dtexであり、最外層厚みは3.0μm、熱水処理後の吸湿率差(△MR)は3.6%であった。摩耗後の変退色は3級と良好であり、風合い、蒸れ感改善については全て合格レベルであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The single fiber fineness was 0.92 dtex, the outermost layer thickness was 3.0 μm, and the moisture absorption difference (ΔMR) after hot water treatment was 3.6%. The discoloration and fading after abrasion was as good as grade 3, and the texture and stuffiness improvement were all acceptable levels.

(比較例1)
製造例1において数平均分子量3400g/molのポリエチレングリコール(三洋化成工業製PEG4000S)に変更し、30重量%共重合となるように作製した共重合ポリブチレンテレフタレートを島成分に用い、島成分を15重量%、海成分を85重量%に変更し、熱水処理後の吸湿率差(△MR)を1.9%に変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative Example 1)
Polyethylene glycol having a number average molecular weight of 3400 g / mol (PEG4000S manufactured by Sanyo Kasei Co., Ltd.) in Production Example 1 was used, and the copolymerized polybutylene terephthalate prepared so as to be 30% by weight was used as the island component, and the island component was 15 A false-twisted yarn was produced in the same manner as in Example 1 except that the weight% and the sea component were changed to 85% by weight, and the moisture absorption difference (ΔMR) after hot water treatment was changed to 1.9%.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。精練後、熱水処理後ともに吸湿性が低く、蒸れ感を感じるものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. After the scouring and the hot water treatment, the hygroscopicity was low, and a stuffy feeling was felt.

(比較例2)
製造例1において数平均分子量20000g/molのポリエチレングリコール(三洋化成工業製PEG20000)に変更し、50重量%共重合となるように作製した共重合ポリブチレンテレフタレートを島成分に用い、島成分を19重量%、海成分を81重量%に変更し、熱水処理後の吸湿率差(△MR)を11.0%に変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative example 2)
Polyethylene glycol having a number average molecular weight of 20000 g / mol (PEG 20000 manufactured by Sanyo Kasei Co., Ltd.) in Production Example 1 was used, and the copolymerized polybutylene terephthalate prepared so that 50% by weight was copolymerized was used as the island component, and the island component was 19 A false-twisted yarn was produced in the same manner as in Example 1 except that the weight% and the sea component were changed to 81% by weight, and the moisture absorption difference (ΔMR) after hot water treatment was changed to 11.0%.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。島成分の吸湿性ポリマーの体積膨潤に伴う海成分の割れが極めて多く、海成分の割れに起因する染め斑(均染性)や毛羽が多数見られ、均染性、品位に極めて劣るものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The sea component is extremely cracked due to the volume swelling of the hygroscopic polymer of the island component, and many spots of dyeing (level dyeing property) and fluff caused by the cracking of the sea component are seen, and the level dyeing property and grade are extremely poor. there were.

(比較例3)
製造例1において数平均分子量が10000g/molのポリ(エチレングリコール)メチルエーテル(SIGMA−ALDRICH製)を用いて作製した共重合ポリブチレンテレフタレートを島成分とし、島成分4重量%、海成分を96重量%、フィラメント数を148に変更して、単繊維繊度を0.45dtexにしたこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative example 3)
Copolymerized polybutylene terephthalate prepared by using poly (ethylene glycol) methyl ether (manufactured by SIGMA-ALDRICH) having a number average molecular weight of 10,000 g / mol in Production Example 1 was used as an island component, and 4% by weight of the island component and 96 of the sea component were used. A false-twisted yarn was produced in the same manner as in Example 1 except that the weight% and the number of filaments were changed to 148 and the single fiber fineness was changed to 0.45 dtex.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。強度が1.3cN/dtexと機械的特性に劣るものであり、海成分の割れが多く、海成分の割れに起因する染め斑(均染性)や毛羽が多数見られ、均染性、品位に劣るものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. It has a strength of 1.3 cN / dtex, which is inferior in mechanical properties, many sea component cracks, and many spots of dyeing (level dyeing) and fluff caused by the cracks of sea components are seen. Was inferior to

(比較例4)
フィラメント数を36に変更し、単繊維繊度を1.83dtexにしたこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative example 4)
A false twisted yarn was produced in the same manner as in Example 1 except that the number of filaments was changed to 36 and the single fiber fineness was set to 1.83 dtex.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。布帛が硬く、風合いに劣るものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The cloth was hard and the texture was inferior.

(比較例5)
島成分を22重量%、海成分を78重量%に変更し、最外層厚みを2.3μmにしたこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative example 5)
A false-twisted yarn was produced in the same manner as in Example 1 except that the island component was changed to 22% by weight, the sea component was changed to 78% by weight, and the outermost layer thickness was changed to 2.3 μm.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。最外層厚みが小さいため摩耗後の変退色が2級と耐摩耗性に劣るものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. Since the thickness of the outermost layer was small, discoloration and discoloration after abrasion were grade 2, which was inferior in abrasion resistance.

(比較例6)
島成分を2重量%、海成分を98重量%変更し、フィラメント数44に変更し、最外層厚みを4.9μmにしたこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative example 6)
A false twisted yarn was produced in the same manner as in Example 1 except that the island component was changed to 2% by weight, the sea component was changed to 98% by weight, the number of filaments was changed to 44, and the outermost layer thickness was changed to 4.9 μm.

得られた繊維の繊維特性および布帛特性の評価結果を表3に示す。精練後、熱水処理後ともに吸湿性が低く、蒸れ感を感じるものであった。   Table 3 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. After the scouring and the hot water treatment, the hygroscopicity was low, and a stuffy feeling was felt.

(比較例7)
島成分をポリエーテルアミド(アルケマ製PEBAX MH1657)に変更したこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative Example 7)
A false twisted yarn was produced in the same manner as in Example 1 except that the island component was changed to polyetheramide (PEBAX MH1657 manufactured by Arkema).

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。摩耗後の変退色が2級と耐摩耗性に劣るものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The discoloration after abrasion was grade 2, which was inferior in abrasion resistance.

(比較例8)
製造例2に従い作製した数平均分子量4000g/molのポリエチレングリコール(SIGMA−ALDRICH製)を80重量%共重合したポリエチレンテレフタレートを島成分としたこと以外は、実施例1と同様に仮撚糸を作製した。このポリエステル組成物を島成分としたこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative Example 8)
A false twisted yarn was produced in the same manner as in Example 1 except that polyethylene terephthalate obtained by copolymerizing 80% by weight of polyethylene glycol (manufactured by SIGMA-ALDRICH) having a number average molecular weight of 4000 g / mol produced according to Production Example 2 was used as the island component. .. A false-twisted yarn was produced in the same manner as in Example 1 except that this polyester composition was used as the island component.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。熱水処理による吸湿性ポリマーの溶出が多く、熱水処理後に吸湿性が大きく低下し、吸湿性が低く蒸れ感を感じるものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The hygroscopic polymer was often eluted by the hot water treatment, and the hygroscopicity was significantly decreased after the hot water treatment, and the hygroscopicity was low and the stuffiness was felt.

(比較例9)
ポリブチレンテレフタレートペレットと数平均分子量10000g/molのポリエチレングリコール(三洋化成工業製PEG6000S)を50重量%と50重量%の比率で、L/D=45(Lはスクリュー長、Dはスクリュー直径を表す)のベント部を一箇所有するベント式二軸押出機を用い、シリンダー温度250℃、回転数110rpm、圧力10kPaの条件にて溶融混練を3分間実施し、ポリエチレングリコールを50重量%混練したポリブチレンテレフタレートのペレットを得た。このペレットを再溶融し、2,2’−ジメチル−2,2’−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン−3,9−ジイル)ジプロパン−1,1’ ジイル=ビス[3−(3−t−ブチル−4−ヒドロキシ5−メチルフェニル)プロパノアート](ADEKA製、アデカスタブAO−80)を6.0重量%、1,1’−ビフェニル−4,4’−ジイルビス[亜ホスホン酸ビス(2,4−ジ−t−ブチルフェニル)](クラリアントケミカルズ製、HOSTANOX P−EPQ)2.3重量%を配合し、シリンダー温度250℃、回転数200rpm、圧力10kPaの条件にて溶融混練を3分間実施しポリエステル組成物を得た。このようにして得たポリエステル組成物を島成分に用いたこと以外は、実施例1と同様に仮撚糸を作製した。
(Comparative Example 9)
Polybutylene terephthalate pellets and polyethylene glycol having a number average molecular weight of 10,000 g / mol (PEG6000S manufactured by Sanyo Chemical Industries) at a ratio of 50% by weight and 50% by weight, L / D = 45 (L is a screw length, D is a screw diameter. ), Using a vent type twin-screw extruder having one vent part, melt kneading is carried out for 3 minutes under the conditions of a cylinder temperature of 250 ° C., a rotation speed of 110 rpm, and a pressure of 10 kPa, and polybutylene is kneaded with 50% by weight of polyethylene glycol. Pellets of terephthalate were obtained. The pellets were remelted to give 2,2'-dimethyl-2,2 '-(2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl) dipropane-1,1'. Diyl = bis [3- (3-t-butyl-4-hydroxy5-methylphenyl) propanoate] (ADEKA, Adeka Stab AO-80) 6.0% by weight, 1,1′-biphenyl-4,4 ′ -Diyl bis [bis (2,4-di-t-butylphenyl phosphonite)] (manufactured by Clariant Chemicals, HOSTANOX P-EPQ) 2.3 wt% was compounded, cylinder temperature 250 ° C, rotation speed 200 rpm, pressure 10 kPa. Melt kneading was carried out for 3 minutes under the conditions described above to obtain a polyester composition. A false twisted yarn was produced in the same manner as in Example 1 except that the thus obtained polyester composition was used as the island component.

得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。熱水処理によりポリエチレングリコールの熱水への溶出が多く、熱水処理後に吸湿性が大きく低下し、吸湿性が低く蒸れ感を感じるものであった。   Table 4 shows the evaluation results of the fiber properties and the fabric properties of the obtained fibers. The hot water treatment caused a large amount of polyethylene glycol to be eluted into the hot water, and after the hot water treatment, the hygroscopicity was significantly reduced, and the hygroscopicity was low, and a stuffy feeling was felt.

(比較例10)
製造例2に従い作製した数平均分子量4000g/molポリエチレングリコール(SIGMA−ALDRICH製)30重量%共重合したポリエチレンテレフタレートとポリエチレンテレフタレートペレットを30重量%と70重量%の比率とし、このポリマーに対して、2,2’−ジメチル−2,2’−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン−3,9−ジイル)ジプロパン−1,1’ ジイル=ビス[3−(3−t−ブチル−4−ヒドロキシ5−メチルフェニル)プロパノアート](ADEKA製、アデカスタブAO−80)を6.0重量%、1,1’−ビフェニル−4,4’−ジイルビス[亜ホスホン酸ビス(2,4−ジ−t−ブチルフェニル)](クラリアントケミカルズ製、HOSTANOX P−EPQ)2.3重量%を配合してL/D=45(Lはスクリュー長、Dはスクリュー直径を表す)のベント部を一箇所有するベント式二軸押出機を用い、シリンダー温度280℃、回転数200rpm、圧力10kPaの条件にて溶融混練を3分間実施しポリエステル組成物を得た。このポリエステル組成物を島成分としたこと以外は、実施例1と同様に仮撚糸を作製した
得られた繊維の繊維特性および布帛特性の評価結果を表4に示す。熱水処理によりポリエチレングリコールの熱水への溶出が多く、熱水処理後に吸湿性が大きく低下し、吸湿性が低く蒸れ感を感じるものであった。
(Comparative Example 10)
Number average molecular weight 4000 g / mol polyethylene glycol (manufactured by SIGMA-ALDRICH) produced according to Production Example 2 30% by weight of copolymerized polyethylene terephthalate and polyethylene terephthalate pellets in a ratio of 30% by weight and 70% by weight, with respect to this polymer, 2,2'-Dimethyl-2,2 '-(2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl) dipropane-1,1' diyl = bis [3- ( 3-t-butyl-4-hydroxy5-methylphenyl) propanoate] (ADEKA, Adeka Stab AO-80), 6.0% by weight, 1,1′-biphenyl-4,4′-diylbis [bisphosphonous acid bisulfite (2,4-di-t-butylphenyl)] (CLARIANT CHEMICALS, HOSTANOX P-EPQ) 2.3% by weight is compounded and L / D = 45 (L is screw length, D is screw diameter). Using a vent type twin-screw extruder having one vent part, melt kneading was carried out for 3 minutes under conditions of a cylinder temperature of 280 ° C., a rotation speed of 200 rpm and a pressure of 10 kPa to obtain a polyester composition. Table 4 shows the evaluation results of the fiber properties and the fabric properties of the resulting fibers prepared by false-twisting yarns in the same manner as in Example 1 except that this polyester composition was used as the island component. The hot water treatment caused a large amount of polyethylene glycol to be eluted into the hot water, and after the hot water treatment, the hygroscopicity was significantly reduced, and the hygroscopicity was low, and a stuffy feeling was felt.

本発明で得られる吸湿性極細複合繊維は、染色等の熱水処理後においても高吸湿性かつ耐摩耗性に優れ、さらには、繊維構造体にしたときの風合いが良好であることから、快適性や品位が要求される用途において好適に用いることができる。具体的には、一般衣料用途、スポーツ衣料用途、寝具用途、インテリア用途、資材用途などが挙げられる。   The hygroscopic ultrafine composite fiber obtained in the present invention is excellent in high hygroscopicity and abrasion resistance even after hot water treatment such as dyeing, and moreover, because it has a good texture when formed into a fiber structure, it is comfortable. It can be suitably used in applications where properties and qualities are required. Specific examples include general clothing applications, sports clothing applications, bedding applications, interior applications, and material applications.

1.海(鞘)成分
2.島(芯)成分
3.繊維半径
4.最外周に配置された島(芯)成分において繊維中心から最も距離のある地点を結んだ外接円
5.最外周に配置された島(芯)成分において繊維中心から最も距離のある地点の頂点を結んだ外接円の半径
6.最外層厚み
7.空気層
1. Sea (sheath) component 2. Island (core) component 3. Fiber radius 4. 4. A circumscribed circle connecting the points with the longest distance from the fiber center in the island (core) component arranged on the outermost periphery. 5. The radius of the circumscribed circle that connects the vertices of the point with the longest distance from the fiber center in the island (core) component arranged on the outermost periphery. Outermost layer thickness 7. Air layer

Claims (5)

下記(1)〜(5)の特徴を有する吸湿性極細複合繊維。
(1)吸湿性を有するポリマーをポリエステル系ポリマーが完全に覆っている
(2)吸湿性を有するポリマーが共重合ポリエステル系ポリマーである
(3)熱水処理後の吸湿率差(△MR)が2.0〜10.0%
(4)単繊維繊度が0.50〜1.50dtex
(5)最外層厚みが2.5〜4.5μm
なお、最外層厚みとは、繊維の半径と最外周に配置された島(芯)成分において繊維中心から最も距離のある地点を結んだ外接円の半径との差であり、最外層に存在する海(鞘)成分の厚みを表す。
A hygroscopic ultrafine composite fiber having the following characteristics (1) to (5).
(1) The polyester polymer completely covers the hygroscopic polymer. (2) The hygroscopic polymer is a copolyester polymer. (3) The moisture absorption difference (ΔMR) after hot water treatment is 2.0-10.0%
(4) Single fiber fineness of 0.50 to 1.50 dtex
(5) Outermost layer thickness is 2.5 to 4.5 μm
The outermost layer thickness is the difference between the radius of the fiber and the radius of the circumscribed circle connecting the points with the longest distance from the fiber center in the island (core) component arranged on the outermost periphery, and is present in the outermost layer. Indicates the thickness of the sea (sheath) component.
複合形態が海島型であることを特徴とする請求項1に記載の吸湿性極細複合繊維。   The hygroscopic ultrafine composite fiber according to claim 1, wherein the composite form is a sea-island type. 吸湿性を有するポリマーが共重合ポリブチレンテレフタレートであることを特徴とする請求項1または2に記載の吸湿性極細複合繊維。   The hygroscopic ultrafine composite fiber according to claim 1 or 2, wherein the polymer having hygroscopicity is a copolymerized polybutylene terephthalate. タフネスが16.5以上であることを特徴とする請求項1〜3のいずれか一項に記載の吸湿性極細複合繊維。   The hygroscopic ultrafine composite fiber according to any one of claims 1 to 3, which has a toughness of 16.5 or more. 請求項1〜4のいずれか一項に記載の吸湿性極細複合繊維を少なくとも一部に用いることを特徴とする繊維構造体。
A fiber structure comprising the hygroscopic ultrafine composite fiber according to any one of claims 1 to 4 at least in part.
JP2018210513A 2018-11-08 2018-11-08 Hygroscopic extra fine composite fiber and fiber structure Pending JP2020076172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210513A JP2020076172A (en) 2018-11-08 2018-11-08 Hygroscopic extra fine composite fiber and fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210513A JP2020076172A (en) 2018-11-08 2018-11-08 Hygroscopic extra fine composite fiber and fiber structure

Publications (1)

Publication Number Publication Date
JP2020076172A true JP2020076172A (en) 2020-05-21

Family

ID=70723676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210513A Pending JP2020076172A (en) 2018-11-08 2018-11-08 Hygroscopic extra fine composite fiber and fiber structure

Country Status (1)

Country Link
JP (1) JP2020076172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089124A (en) * 2021-03-30 2021-07-09 上海华峰超纤科技股份有限公司 Anti-hair-falling figured sea-island fiber for PU (polyurethane) microfiber leather and preparation and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089124A (en) * 2021-03-30 2021-07-09 上海华峰超纤科技股份有限公司 Anti-hair-falling figured sea-island fiber for PU (polyurethane) microfiber leather and preparation and application thereof
CN113089124B (en) * 2021-03-30 2023-01-17 上海华峰超纤科技股份有限公司 Anti-hair-falling figured sea-island fiber for PU (polyurethane) microfiber leather and preparation and application thereof

Similar Documents

Publication Publication Date Title
JP6973079B2 (en) Sea-island type composite fiber, false plying and fiber structure with excellent hygroscopicity
JP2015045026A (en) Normal-pressure cation-dyeable polyester composition and fiber
EP2829643B1 (en) Polymethylpentene conjugate fiber and fiber structure comprising same
WO2017114313A1 (en) Core-sheath type composite fibre, false-twist yarns and fibrous structure
JP7056153B2 (en) Polymer alloy fibers and fiber structures made of them
JP6939102B2 (en) Core-sheath composite fiber, false plying and fiber structure with excellent hygroscopicity
JP2020076172A (en) Hygroscopic extra fine composite fiber and fiber structure
JP7268365B2 (en) Hygroscopic core-sheath composite fiber and fiber structure
JP2020020076A (en) Hygroscopic sea-island type composite fiber and fibrous structure
JP7338467B2 (en) Island-in-the-sea composite fiber, fiber structure and polyester composition with excellent hygroscopicity
JP2017043860A (en) Core-sheath-type composite fiber with core part having phase separation structure
JP2021179053A (en) Sea-island type composite fiber with excellent hygroscopicity and abrasion resistance
JP2023014998A (en) Sea-island type composite fiber excellent in antistatic properties and hygroscopic properties
JP2009084748A (en) Combined filament yarn using polymer alloy fiber and woven fabric formed of the same
JP2020084369A (en) Polymer alloy fiber and fiber structure made of the same
JP2021188175A (en) Polyester composite fiber
JP2020063536A (en) Splittable type core-sheath composite fiber
JP2019099986A (en) Composite fiber and fiber structure thereof
JP2008063671A (en) Dyeable polypropylene-based crimped fiber and fiber product
JPH04163332A (en) Covered elastic yarn and stretchable cloth
JPS6317925B2 (en)