JP2020076082A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP2020076082A
JP2020076082A JP2019195662A JP2019195662A JP2020076082A JP 2020076082 A JP2020076082 A JP 2020076082A JP 2019195662 A JP2019195662 A JP 2019195662A JP 2019195662 A JP2019195662 A JP 2019195662A JP 2020076082 A JP2020076082 A JP 2020076082A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
resin composition
molecular weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019195662A
Other languages
Japanese (ja)
Other versions
JP7570052B2 (en
Inventor
直弥 福島
Naoya Fukushima
直弥 福島
中島 啓造
Keizo Nakajima
啓造 中島
章浩 野末
Akihiro Nozue
章浩 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2020076082A publication Critical patent/JP2020076082A/en
Application granted granted Critical
Publication of JP7570052B2 publication Critical patent/JP7570052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a resin composition that makes it possible to obtain a molding having both rigidity and a good appearance.SOLUTION: This resin composition contains a first thermoplastic resin, a second thermoplastic resin, and cellulose fibers. The weight average molecular weight of the second thermoplastic resin is lower than the weight average molecular weight of the first thermoplastic resin.SELECTED DRAWING: None

Description

本開示は、一般に樹脂組成物に関し、より詳細にはセルロース繊維を含有する樹脂組成物に関する。   The present disclosure relates generally to resin compositions, and more particularly to resin compositions containing cellulose fibers.

特許文献1は、複合樹脂成型体を開示する。この複合樹脂成型体は、主剤樹脂、有機繊維状フィラー及び分散剤を含有する溶融混練物からなる。ここで、有機繊維状フィラーは、セルロースが含まれたセルロース類である。そして、複合樹脂成型体中には炭化した有機繊維状フィラーが特定の割合で存在している。   Patent Document 1 discloses a composite resin molded body. This composite resin molded product is composed of a melt-kneaded product containing a main resin, an organic fibrous filler and a dispersant. Here, the organic fibrous filler is cellulose containing cellulose. The carbonized organic fibrous filler is present in the composite resin molded body in a specific ratio.

特開2017−210595号公報(段落[0012]及び[0040])JP, 2017-210595, A (paragraphs [0012] and [0040]).

特許文献1の複合樹脂成型体では、分散剤として、無水マレイン酸変性ポリオレフィン又は不飽和炭化水素系シランカップリング剤などが使用されている。このような分散剤が使用された複合樹脂成型体では、剛性及び外観については更なる改良の余地がある。   In the composite resin molded body of Patent Document 1, a maleic anhydride modified polyolefin, an unsaturated hydrocarbon silane coupling agent, or the like is used as a dispersant. The composite resin molded body using such a dispersant has room for further improvement in rigidity and appearance.

本開示の目的は、剛性及び良好な外観を兼備する成形品を得ることができる樹脂組成物を提供することにある。   An object of the present disclosure is to provide a resin composition capable of obtaining a molded product having both rigidity and a good appearance.

本開示の一態様に係る樹脂組成物は、第1熱可塑性樹脂と、第2熱可塑性樹脂と、セルロース繊維と、を含有する。前記第1熱可塑性樹脂の重量平均分子量よりも、前記第2熱可塑性樹脂の重量平均分子量が小さい。   A resin composition according to an aspect of the present disclosure contains a first thermoplastic resin, a second thermoplastic resin, and a cellulose fiber. The weight average molecular weight of the second thermoplastic resin is smaller than the weight average molecular weight of the first thermoplastic resin.

本開示によれば、剛性及び良好な外観を兼備する成形品を得ることができる。   According to the present disclosure, it is possible to obtain a molded product having both rigidity and a good appearance.

(1)概要
本実施形態に係る樹脂組成物は、第1熱可塑性樹脂と、第2熱可塑性樹脂と、セルロース繊維と、を含有する。第1熱可塑性樹脂の重量平均分子量よりも、第2熱可塑性樹脂の重量平均分子量が小さい。この樹脂組成物を成形材料として、射出成形等の成形方法を使用することにより成形品が得られる。この成形品は、剛性及び良好な外観を兼備する。すなわち、低分子量の第2熱可塑性樹脂によって、高分子量の第1熱可塑性樹脂中におけるセルロース繊維を均一に分散させることができる。セルロース繊維が均一に分散することで、成形品に剛性及び良好な外観を付与することができる。
(1) Outline The resin composition according to the present embodiment contains a first thermoplastic resin, a second thermoplastic resin, and a cellulose fiber. The weight average molecular weight of the second thermoplastic resin is smaller than the weight average molecular weight of the first thermoplastic resin. A molded article can be obtained by using a molding method such as injection molding using this resin composition as a molding material. This molded product has both rigidity and a good appearance. That is, the low-molecular-weight second thermoplastic resin can uniformly disperse the cellulose fibers in the high-molecular-weight first thermoplastic resin. By uniformly dispersing the cellulose fibers, it is possible to impart rigidity and a good appearance to the molded product.

このように、本実施形態に係る樹脂組成物によれば、剛性及び良好な外観を兼備する成形品を得ることができる。   As described above, according to the resin composition of the present embodiment, it is possible to obtain a molded product having both rigidity and a good appearance.

(2)詳細
(2.0)樹脂組成物
本実施形態に係る樹脂組成物は、セルロース繊維複合樹脂である。すなわち、樹脂組成物は、第1熱可塑性樹脂と、第2熱可塑性樹脂と、セルロース繊維と、を含有する。第1熱可塑性樹脂及び第2熱可塑性樹脂の重量平均分子量(Mw)には大小関係がある。具体的には、第1熱可塑性樹脂の重量平均分子量よりも、第2熱可塑性樹脂の重量平均分子量が小さい。第1熱可塑性樹脂及び第2熱可塑性樹脂の重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により得られるポリスチレン換算の相対値である。樹脂組成物は、分散剤を更に含有してもよい。樹脂組成物は、エラストマーを更に含有してもよい。樹脂組成物の常温での形態は、例えば、球形、円柱形又は角柱形のペレットである。以下、第1熱可塑性樹脂、第2熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーについて順に説明する。
(2) Details (2.0) Resin composition The resin composition according to the present embodiment is a cellulose fiber composite resin. That is, the resin composition contains the first thermoplastic resin, the second thermoplastic resin, and the cellulose fiber. There is a magnitude relationship between the weight average molecular weights (Mw) of the first thermoplastic resin and the second thermoplastic resin. Specifically, the weight average molecular weight of the second thermoplastic resin is smaller than the weight average molecular weight of the first thermoplastic resin. The weight average molecular weights of the first thermoplastic resin and the second thermoplastic resin are relative values in terms of polystyrene obtained by gel permeation chromatography analysis (GPC). The resin composition may further contain a dispersant. The resin composition may further contain an elastomer. The form of the resin composition at room temperature is, for example, spherical, cylindrical or prismatic pellets. Hereinafter, the first thermoplastic resin, the second thermoplastic resin, the cellulose fiber, the dispersant, and the elastomer will be described in order.

(2.1)第1熱可塑性樹脂
第1熱可塑性樹脂は、樹脂組成物における母材(主要材料)となり得る。第1熱可塑性樹脂は特に限定されない。第1熱可塑性樹脂の具体例として、ポリオレフィン(環状ポリオレフィンも含む)、ABS樹脂、ポリ塩化ビニル、ポリスチレン、ポリエステル、ナイロン、ポリビニルエーテル、ポリビニルアルコール、ポリアミド、ポリカーボネート及びポリサルフォンが挙げられる。
(2.1) First Thermoplastic Resin The first thermoplastic resin can be a base material (main material) in the resin composition. The first thermoplastic resin is not particularly limited. Specific examples of the first thermoplastic resin include polyolefin (including cyclic polyolefin), ABS resin, polyvinyl chloride, polystyrene, polyester, nylon, polyvinyl ether, polyvinyl alcohol, polyamide, polycarbonate, and polysulfone.

上記に列挙した中でも、特にポリオレフィンが低比重である点で好ましい。すなわち、ポリプロピレン(PP)及びポリエチレン(PE)などのポリオレフィンは比重が小さいため、セルロース繊維との複合化で、軽量かつ高剛性の成形品を成形可能な樹脂組成物を容易に得ることができる。   Among the enumerated above, polyolefin is particularly preferable because it has a low specific gravity. That is, since polyolefins such as polypropylene (PP) and polyethylene (PE) have a small specific gravity, it is possible to easily obtain a resin composition that can be molded into a lightweight and highly rigid molded product by combining with a cellulose fiber.

なお、ポリプロピレン(PP)の概念には、ホモポリマー、ランダムコポリマー及びブロックコポリマーが含まれる。ホモポリマーは、プロピレンの単独重合体である。ランダムコポリマー及びブロックコポリマーは、プロピレンと、エチレンなどのモノマーとの共重合体である。   The concept of polypropylene (PP) includes homopolymers, random copolymers and block copolymers. Homopolymer is a homopolymer of propylene. Random and block copolymers are copolymers of propylene and monomers such as ethylene.

第1熱可塑性樹脂の重量平均分子量は、好ましくは45000以上1000000以下の範囲内であり、より好ましくは45000以上300000以下の範囲内である。第1熱可塑性樹脂の重量平均分子量が45000以上であることで、成形品の剛性の低下を抑制することができる。第1熱可塑性樹脂の重量平均分子量が1000000以下であることで、成形時における流動性が高くなり過ぎず、成形品が得られやすくなる。   The weight average molecular weight of the first thermoplastic resin is preferably 45,000 or more and 1,000,000 or less, and more preferably 45,000 or more and 300,000 or less. When the weight average molecular weight of the first thermoplastic resin is 45,000 or more, it is possible to suppress the decrease in rigidity of the molded product. When the weight average molecular weight of the first thermoplastic resin is 1,000,000 or less, the fluidity at the time of molding does not become too high, and a molded product is easily obtained.

好ましくは、第1熱可塑性樹脂の含有量は、樹脂組成物の全質量に対して30質量%以上95質量%以下の範囲内である。第1熱可塑性樹脂の含有量が30質量%以上であることで、成形品の軽量化を実現し得る。この場合、第1熱可塑性樹脂は、低比重素材であるポリオレフィンを含むことがより好ましい。第1熱可塑性樹脂の含有量が95質量%以下であることで、成形品の剛性の低下を抑制することができる。なお、剛性は、例えば曲げ剛性を意味する。   Preferably, the content of the first thermoplastic resin is in the range of 30% by mass or more and 95% by mass or less based on the total mass of the resin composition. When the content of the first thermoplastic resin is 30% by mass or more, the weight of the molded product can be reduced. In this case, the first thermoplastic resin more preferably contains polyolefin, which is a low specific gravity material. When the content of the first thermoplastic resin is 95% by mass or less, the decrease in rigidity of the molded product can be suppressed. The rigidity means bending rigidity, for example.

(2.2)第2熱可塑性樹脂
第2熱可塑性樹脂は、分散剤と同様の機能を有し得る。このように、第2熱可塑性樹脂は、分散剤の代替物となり得る。したがって、第2熱可塑性樹脂を使用すれば、分散剤を使用する必要性は特にない。ただし、第2熱可塑性樹脂と分散剤との併用を排除する趣旨ではない。
(2.2) Second thermoplastic resin The second thermoplastic resin may have the same function as the dispersant. Thus, the second thermoplastic resin can be a substitute for the dispersant. Therefore, if the second thermoplastic resin is used, there is no particular need to use the dispersant. However, this does not mean that the combined use of the second thermoplastic resin and the dispersant is excluded.

第2熱可塑性樹脂は特に限定されない。第2熱可塑性樹脂の具体例として、ポリオレフィン(環状ポリオレフィンも含む)、ABS樹脂、ポリ塩化ビニル、ポリスチレン、ポリエステル、ナイロン、ポリビニルエーテル、ポリビニルアルコール、ポリアミド、ポリカーボネート及びポリサルフォンが挙げられる。   The second thermoplastic resin is not particularly limited. Specific examples of the second thermoplastic resin include polyolefin (including cyclic polyolefin), ABS resin, polyvinyl chloride, polystyrene, polyester, nylon, polyvinyl ether, polyvinyl alcohol, polyamide, polycarbonate, and polysulfone.

上記に列挙した中でも、特にポリオレフィンが低比重である点で好ましい。すなわち、ポリプロピレン(PP)及びポリエチレン(PE)などのポリオレフィンは比重が小さいため、セルロース繊維との複合化で、軽量かつ高剛性の成形品を成形可能な樹脂組成物を容易に得ることができる。   Among the enumerated above, polyolefin is particularly preferable because it has a low specific gravity. That is, since polyolefins such as polypropylene (PP) and polyethylene (PE) have a small specific gravity, it is possible to easily obtain a resin composition that can be molded into a lightweight and highly rigid molded product by combining with a cellulose fiber.

第2熱可塑性樹脂の重量平均分子量は、第1熱可塑性樹脂の重量平均分子量よりも小さい。低分子量の第2熱可塑性樹脂によって、高分子量の第1熱可塑性樹脂中におけるセルロース繊維を均一に分散させることができる。これにより、成形品に剛性及び良好な外観を付与することができる。   The weight average molecular weight of the second thermoplastic resin is smaller than the weight average molecular weight of the first thermoplastic resin. The second thermoplastic resin having a low molecular weight can uniformly disperse the cellulose fibers in the first thermoplastic resin having a high molecular weight. Thereby, rigidity and a good appearance can be imparted to the molded product.

より詳細には、成形品の剛性が向上する理由の1つは、低分子量の第2熱可塑性樹脂によって、樹脂組成物の結晶性が高くなるためである、と推測される。また成形品の外観が良好になる理由の1つは、低分子量の第2熱可塑性樹脂によって、セルロース繊維の解繊度が向上し、光の乱反射が起こりにくくなるためである、と推測される。なお、良好な外観とは、成形品を見たときにセルロース繊維を目視で認識しにくいことを意味する。より具体的には「実施例」の項に記載の外観評価の基準で、S評価及びA評価を意味する。   More specifically, it is speculated that one of the reasons why the rigidity of the molded product is improved is that the crystallinity of the resin composition is increased by the low-molecular-weight second thermoplastic resin. Moreover, one of the reasons why the appearance of the molded product is improved is presumed that the low-molecular-weight second thermoplastic resin improves the defibration degree of the cellulose fiber and makes it difficult for diffuse reflection of light to occur. A good appearance means that it is difficult to visually recognize the cellulose fibers when looking at the molded product. More specifically, it means S evaluation and A evaluation, which are the criteria of appearance evaluation described in the section “Example”.

第2熱可塑性樹脂の重量平均分子量は、好ましくは80000以下であり、より好ましくは60000以下であり、さらに好ましくは43000以下であり、さらにより好ましくは30000以下であり、特に好ましくは20000以下であり、最も好ましくは13000以下である。このような分子サイズの第2熱可塑性樹脂であれば、セルロース繊維の分散性を更に向上させることができる。なお、第2熱可塑性樹脂の重量平均分子量の下限値は特に限定されないが、例えば3000以上である。   The weight average molecular weight of the second thermoplastic resin is preferably 80,000 or less, more preferably 60,000 or less, further preferably 43,000 or less, even more preferably 30,000 or less, and particularly preferably 20,000 or less. , And most preferably 13,000 or less. With the second thermoplastic resin having such a molecular size, the dispersibility of the cellulose fibers can be further improved. The lower limit of the weight average molecular weight of the second thermoplastic resin is not particularly limited, but is, for example, 3000 or more.

第2熱可塑性樹脂の含有量は、樹脂組成物の全質量に対して、好ましくは0.1質量%以上30質量%以下の範囲内であり、より好ましくは1質量%以上30質量%以下の範囲内である。第2熱可塑性樹脂の含有量が0.1質量%以上であることで、成形品の軽量化を実現し得る。この場合、第2熱可塑性樹脂は、低比重素材であるポリオレフィンを含むことがより好ましい。第2熱可塑性樹脂の含有量が1質量%以上であることで、成形品の外観がより良好になる。第2熱可塑性樹脂の含有量が30質量%以下であることで、成形品の剛性の低下を抑制することができる。   The content of the second thermoplastic resin is preferably in the range of 0.1% by mass or more and 30% by mass or less, more preferably 1% by mass or more and 30% by mass or less, based on the total mass of the resin composition. It is within the range. When the content of the second thermoplastic resin is 0.1% by mass or more, the weight of the molded product can be reduced. In this case, the second thermoplastic resin more preferably contains polyolefin, which is a low specific gravity material. When the content of the second thermoplastic resin is 1% by mass or more, the appearance of the molded product becomes better. When the content of the second thermoplastic resin is 30% by mass or less, the decrease in rigidity of the molded product can be suppressed.

好ましくは、第1熱可塑性樹脂と第2熱可塑性樹脂とは同種の樹脂である。一般に熱可塑性樹脂の分子は、基本単位であるモノマーが多数連結した鎖状の構造を有している。したがって、第1熱可塑性樹脂と第2熱可塑性樹脂とが同種の樹脂であるとは、基本単位のモノマーの種類(化学構造)が同じであることを意味する。例えば、第1熱可塑性樹脂がポリプロピレンであれば、第2熱可塑性樹脂もポリプロピレンであることが好ましい。このように、第1熱可塑性樹脂と第2熱可塑性樹脂とが同種の樹脂であることで、相分離を抑制することができる。   Preferably, the first thermoplastic resin and the second thermoplastic resin are the same type of resin. Generally, a molecule of a thermoplastic resin has a chain structure in which a large number of monomers, which are basic units, are linked. Therefore, the fact that the first thermoplastic resin and the second thermoplastic resin are the same type of resin means that the types (chemical structures) of the basic unit monomers are the same. For example, if the first thermoplastic resin is polypropylene, the second thermoplastic resin is also preferably polypropylene. As described above, the first thermoplastic resin and the second thermoplastic resin are resins of the same kind, so that phase separation can be suppressed.

好ましくは、第1熱可塑性樹脂及び第2熱可塑性樹脂の両方がポリオレフィンである。両者が同種の樹脂であることで、相分離を抑制することができる。さらには同種の樹脂がポリオレフィンであることで、第1熱可塑性樹脂又は第2熱可塑性樹脂のいずれかのみがポリオレフィンである場合に比べて、成形品の更なる軽量化を実現することができる。   Preferably, both the first thermoplastic resin and the second thermoplastic resin are polyolefins. Phase separation can be suppressed by using the same type of resin. Furthermore, since the resin of the same type is polyolefin, it is possible to realize a further reduction in the weight of the molded product, as compared with the case where only either the first thermoplastic resin or the second thermoplastic resin is polyolefin.

(2.3)セルロース繊維
セルロース繊維は、成形品に剛性を付与し得る。セルロース繊維は、木材及び植物等から得られる。より具体的には、セルロース繊維は、木材類、パルプ類、紙類、植物茎・葉類及び植物殻類から選ばれる1種又は2種以上のセルロース含有原料を粉砕機で処理して得ることができる。具体的には、セルロース含有原料を、必要により、シュレッダー等の裁断機を利用して粗粉砕を行ってから、衝撃式の粉砕機又は押出機による処理を行ったり、乾燥処理を行ったりする。その後、媒体式の粉砕機を用いて攪拌することで、微細化されたセルロース繊維を得ることができる。
(2.3) Cellulose Fiber Cellulose fiber can impart rigidity to a molded article. Cellulose fibers are obtained from wood, plants and the like. More specifically, the cellulose fiber is obtained by treating one or more cellulose-containing raw materials selected from woods, pulps, papers, plant stems / leaves and plant shells with a pulverizer. You can Specifically, if necessary, the cellulose-containing raw material is roughly crushed by using a cutting machine such as a shredder, and then processed by an impact-type crusher or an extruder or dried. Thereafter, the medium-type pulverizer is used to stir to obtain finely divided cellulose fibers.

好ましくは、セルロース繊維の平均繊維長は、0.001mm以上0.1mm以下の範囲内である。平均繊維長が0.001mm以上であることで、成形品の剛性を向上させることができる。平均繊維長が0.1mm以下であることで、セルロース繊維の分散性の低下を抑制することができる。なお、セルロース繊維の平均繊維長は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(50%累積粒径:d50)を意味する。   Preferably, the average fiber length of the cellulose fibers is in the range of 0.001 mm or more and 0.1 mm or less. When the average fiber length is 0.001 mm or more, the rigidity of the molded product can be improved. When the average fiber length is 0.1 mm or less, a decrease in dispersibility of cellulose fibers can be suppressed. The average fiber length of the cellulose fibers means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method (50% cumulative particle size: d50).

好ましくは、セルロース繊維の含有量は、樹脂組成物の全質量に対して1質量%以上40質量%以下の範囲内である。セルロース繊維の含有量が1質量%以上であることで、成形品の剛性を向上させることができる。セルロース繊維の含有量が40質量%以下であることで、成形品の耐衝撃性の低下を抑制することができる。   Preferably, the content of cellulose fibers is in the range of 1% by mass or more and 40% by mass or less based on the total mass of the resin composition. When the content of the cellulose fibers is 1% by mass or more, the rigidity of the molded product can be improved. When the content of the cellulose fibers is 40% by mass or less, it is possible to suppress the decrease in impact resistance of the molded product.

(2.4)分散剤
上述のように、樹脂組成物は、分散剤を更に含有してもよい。分散剤は、疎水性の第1熱可塑性樹脂と、親水性のセルロース繊維とを均一に分散させる機能を有する。このような機能を有するものであれば、分散剤は、特に限定されない。樹脂組成物が分散剤を更に含有することで、セルロース繊維の分散性を更に向上させることができる。
(2.4) Dispersant As described above, the resin composition may further contain a dispersant. The dispersant has a function of uniformly dispersing the hydrophobic first thermoplastic resin and the hydrophilic cellulose fiber. The dispersant is not particularly limited as long as it has such a function. When the resin composition further contains a dispersant, the dispersibility of the cellulose fibers can be further improved.

好ましくは、分散剤は、無水マレイン酸変性ポリオレフィンである。無水マレイン酸変性ポリオレフィンの好適例として、三洋化成工業株式会社製「ユーメックスシリーズ」及びBYK社製「PRIEXシリーズ」及び「SCONAシリーズ」が挙げられる。   Preferably, the dispersant is a maleic anhydride modified polyolefin. Preferable examples of the maleic anhydride-modified polyolefin include "Yumex series" manufactured by Sanyo Kasei Co., Ltd. and "PRIEX series" and "SCONA series" manufactured by BYK.

無水マレイン酸変性ポリオレフィンは、疎水性のポリオレフィンセグメントと、親水性の無水マレイン酸セグメントとを有する。ポリオレフィンセグメントは、第1熱可塑性樹脂(特にポリオレフィン)との親和性があり、無水マレイン酸セグメントは、セルロース繊維との親和性がある。したがって、無水マレイン酸変性ポリオレフィンを第1熱可塑性樹脂に添加することによって、セルロース繊維の分散性を向上させることができる。このように、第1熱可塑性樹脂中におけるセルロース繊維同士の相互作用による凝集が、無水マレイン酸変性ポリオレフィンによって抑制されることで、成形品の剛性が向上する。さらに無水マレイン酸変性ポリオレフィンによって、第1熱可塑性樹脂とセルロース繊維との密着性も向上すると考えられる。そして、この密着性の向上が、成形品の剛性向上に寄与していると推測される。   The maleic anhydride-modified polyolefin has a hydrophobic polyolefin segment and a hydrophilic maleic anhydride segment. The polyolefin segment has an affinity with the first thermoplastic resin (particularly polyolefin), and the maleic anhydride segment has an affinity with the cellulose fiber. Therefore, the dispersibility of the cellulose fibers can be improved by adding the maleic anhydride-modified polyolefin to the first thermoplastic resin. As described above, the aggregation due to the interaction between the cellulose fibers in the first thermoplastic resin is suppressed by the maleic anhydride-modified polyolefin, whereby the rigidity of the molded product is improved. Further, it is considered that the maleic anhydride-modified polyolefin also improves the adhesion between the first thermoplastic resin and the cellulose fiber. It is presumed that this improvement in adhesion contributes to the improvement in rigidity of the molded product.

無水マレイン酸変性ポリオレフィンの重量平均分子量は、好ましくは45000以下、より好ましくは20000以下である。このことにより、セルロース繊維の分散性を更に向上させることができる。無水マレイン酸変性ポリオレフィンは低分子量であるほど、セルロース繊維の分散性を向上させることができる。その理由は、高分子量の無水マレイン酸変性ポリオレフィンと比較して、低分子量の無水マレイン酸変性ポリオレフィンは、分子サイズが小さく、流動性が高いことにより、効率的にセルロース繊維の極性基(ヒドロキシ基など)と反応するからである、と推定される。無水マレイン酸変性ポリオレフィンの重量平均分子量の下限値は、特に限定されないが、5000である。なお、無水マレイン酸変性ポリオレフィンの重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により得られるポリスチレン換算の相対値である。   The weight average molecular weight of the maleic anhydride modified polyolefin is preferably 45,000 or less, more preferably 20,000 or less. Thereby, the dispersibility of the cellulose fiber can be further improved. The lower the molecular weight of the maleic anhydride-modified polyolefin, the more the dispersibility of the cellulose fibers can be improved. The reason for this is that compared to high molecular weight maleic anhydride-modified polyolefin, low molecular weight maleic anhydride-modified polyolefin has a small molecular size and high fluidity, so polar groups (hydroxy groups) of cellulose fiber can be efficiently used. It is presumed that it is because it reacts with () etc. The lower limit of the weight average molecular weight of the maleic anhydride-modified polyolefin is not particularly limited and is 5,000. The weight average molecular weight of the maleic anhydride-modified polyolefin is a polystyrene-converted relative value obtained by gel permeation chromatography analysis (GPC).

好ましくは、分散剤の含有量は、樹脂組成物の全質量に対して1質量%以上10質量%以下の範囲内である。分散剤の含有量が1質量%以上であることで、第1熱可塑性樹脂とセルロース繊維との相容性を向上させることができ、成形品の剛性を向上させることができる。分散剤の含有量が10質量%以下であることで、成形品の剛性の低下を抑制することができる。   Preferably, the content of the dispersant is in the range of 1% by mass or more and 10% by mass or less based on the total mass of the resin composition. When the content of the dispersant is 1% by mass or more, the compatibility between the first thermoplastic resin and the cellulose fiber can be improved, and the rigidity of the molded product can be improved. When the content of the dispersant is 10% by mass or less, it is possible to suppress the decrease in rigidity of the molded product.

(2.5)エラストマー
エラストマーは、成形品に耐衝撃性を付与し得る。エラストマーは、熱硬化性エラストマーと熱可塑性エラストマーとに大別されるが、好ましくは熱可塑性エラストマーである。
(2.5) Elastomer An elastomer can give impact resistance to a molded product. Elastomers are roughly classified into thermosetting elastomers and thermoplastic elastomers, and preferably thermoplastic elastomers.

熱可塑性エラストマーは、加熱すると軟化して流動性を示し、冷却するとゴム状に戻る性質を持つエラストマーである。熱可塑性エラストマーの具体例として、スチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩化ビニル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー(TPU)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)及びブタジエン系熱可塑性エラストマーが挙げられる。   The thermoplastic elastomer is an elastomer that softens and fluidizes when heated and returns to rubber when cooled. Specific examples of the thermoplastic elastomer include styrene-based thermoplastic elastomer (TPS), olefin-based thermoplastic elastomer (TPO), vinyl chloride-based thermoplastic elastomer, urethane-based thermoplastic elastomer (TPU), ester-based thermoplastic elastomer (TPC). , Amide-based thermoplastic elastomer (TPA) and butadiene-based thermoplastic elastomer.

熱可塑性エラストマーの中でも、低温物性に優れている点で、スチレン系熱可塑性エラストマーが好ましい。スチレン系熱可塑性エラストマーは、スチレン成分及びブタジエン成分を有するブロックコポリマーである。このスチレン系熱可塑性エラストマーは、第1熱可塑性樹脂との相容性に優れているので、成形品の耐衝撃性の改良に効果がある。   Among the thermoplastic elastomers, the styrene-based thermoplastic elastomer is preferable because it has excellent low-temperature physical properties. The styrene-based thermoplastic elastomer is a block copolymer having a styrene component and a butadiene component. Since this styrene-based thermoplastic elastomer has excellent compatibility with the first thermoplastic resin, it is effective in improving the impact resistance of the molded product.

さらにスチレン系熱可塑性エラストマーの中でも、水添スチレン系熱可塑性エラストマーがより好ましい。水添スチレン系熱可塑性エラストマーは、スチレン及びブタジエンからなるブロックコポリマーを水素添加したポリマーである。この水添スチレン系熱可塑性エラストマーの好適例として、旭化成株式会社製「タフテックHシリーズ」及び「タフテックPシリーズ」が挙げられる。これらのエラストマーは、幅広い温度領域でゴム弾性を示す。したがって、このエラストマーが樹脂組成物に含有されていると、仮に第1熱可塑性樹脂が低温で脆いものであったとしても、その第1熱可塑性樹脂の脆化温度を低下させることで、成形品の耐衝撃性の低下を抑制することができる。特にポリプロピレンの改質に有効である。   Further, among the styrene-based thermoplastic elastomers, hydrogenated styrene-based thermoplastic elastomers are more preferable. The hydrogenated styrene thermoplastic elastomer is a polymer obtained by hydrogenating a block copolymer composed of styrene and butadiene. Preferable examples of this hydrogenated styrene-based thermoplastic elastomer include "Tuftec H series" and "Tuftec P series" manufactured by Asahi Kasei Corporation. These elastomers exhibit rubber elasticity in a wide temperature range. Therefore, when this elastomer is contained in the resin composition, even if the first thermoplastic resin is brittle at a low temperature, the embrittlement temperature of the first thermoplastic resin is lowered to form a molded article. It is possible to suppress a decrease in impact resistance. It is particularly effective for modifying polypropylene.

好ましくは、エラストマーの含有量は、樹脂組成物の全質量に対して3質量%以上15質量%以下の範囲内である。エラストマーの含有量が3質量%以上であることで、成形品の耐衝撃性を向上させることができる。エラストマーの含有量が15質量%以下であることで、成形品の剛性の低下を抑制することができる。   Preferably, the content of the elastomer is in the range of 3% by mass or more and 15% by mass or less with respect to the total mass of the resin composition. When the content of the elastomer is 3% by mass or more, the impact resistance of the molded product can be improved. When the content of the elastomer is 15% by mass or less, it is possible to suppress the decrease in rigidity of the molded product.

(2.6)樹脂組成物の製造方法
樹脂組成物(ペレット)は、次のように乾式法により製造することができる。すなわち、第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を2軸混練押出機等の混練押出機内に投入する。投入前にセルロース繊維は、変性処理(疎水化処理)されていなくてもよい。必要に応じて分散剤及びエラストマーも混練押出機内に投入する。混練押出機内で第1熱可塑性樹脂及び第2熱可塑性樹脂が溶融し、低分子量の第2熱可塑性樹脂によって、高分子量の第1熱可塑性樹脂内にセルロース繊維が分散する。さらに混練押出機内でセルロース繊維が剪断作用を受けて凝集塊の解繊が促進され、セルロース繊維が第1熱可塑性樹脂中に更に均一に分散される。混練押出機から押し出された溶融混練物は、例えば水冷され、ペレットとなる。ペレットの寸法は特に限定されない。
(2.6) Method for producing resin composition The resin composition (pellets) can be produced by the dry method as follows. That is, the first thermoplastic resin, the second thermoplastic resin and the cellulose fiber are put into a kneading extruder such as a biaxial kneading extruder. The cellulose fibers may not be modified (hydrophobized) before being added. If necessary, a dispersant and an elastomer are also charged into the kneading extruder. The first thermoplastic resin and the second thermoplastic resin are melted in the kneading extruder, and the low molecular weight second thermoplastic resin disperses the cellulose fibers in the high molecular weight first thermoplastic resin. Further, the cellulose fibers are subjected to the shearing action in the kneading extruder to promote the defibration of the agglomerates, and the cellulose fibers are more uniformly dispersed in the first thermoplastic resin. The melt-kneaded product extruded from the kneading extruder is cooled with water to form pellets. The size of the pellet is not particularly limited.

(2.7)成形品の製造方法
樹脂組成物(ペレット)を成形材料として、射出成形、押出成形及び注型成形等の公知の成形方法を使用することにより、各種の成形品を製造することができる。樹脂組成物は、第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を含有しているので、得られた成形品は、剛性及び良好な外観を兼備している。したがって、成形品は、例えば家電構造材への適用が可能である。すなわち、成形品は、ハンディタイプの家電製品の部品(例えば掃除機本体)などとして好適である。
(2.7) Method for producing molded article A variety of molded articles are produced by using a known molding method such as injection molding, extrusion molding and cast molding using a resin composition (pellet) as a molding material. You can Since the resin composition contains the first thermoplastic resin, the second thermoplastic resin and the cellulose fiber, the obtained molded article has both rigidity and a good appearance. Therefore, the molded product can be applied to, for example, a home electric appliance structural material. That is, the molded product is suitable as a part of a handy-type home electric appliance (for example, a cleaner body).

(3)まとめ
上記実施形態から明らかなように、本開示は、下記の態様を含む。
(3) Summary As is clear from the above embodiment, the present disclosure includes the following aspects.

第1の態様に係る樹脂組成物は、第1熱可塑性樹脂と、第2熱可塑性樹脂と、セルロース繊維と、を含有する。前記第1熱可塑性樹脂の重量平均分子量よりも、前記第2熱可塑性樹脂の重量平均分子量が小さい。   The resin composition according to the first aspect contains a first thermoplastic resin, a second thermoplastic resin, and a cellulose fiber. The weight average molecular weight of the second thermoplastic resin is smaller than the weight average molecular weight of the first thermoplastic resin.

この態様によれば、剛性及び良好な外観を兼備する成形品を得ることができる。   According to this aspect, it is possible to obtain a molded product having both rigidity and a good appearance.

第2の態様に係る樹脂組成物は、第1の態様において、前記第2熱可塑性樹脂の重量平均分子量が80000以下である。   In the resin composition according to the second aspect, in the first aspect, the weight average molecular weight of the second thermoplastic resin is 80,000 or less.

この態様によれば、セルロース繊維の分散性を更に向上させることができる。   According to this aspect, the dispersibility of the cellulose fibers can be further improved.

第3の態様に係る樹脂組成物は、第1又は2の態様において、前記第1熱可塑性樹脂と前記第2熱可塑性樹脂とは同種の樹脂である。   In the resin composition according to the third aspect, in the first or second aspect, the first thermoplastic resin and the second thermoplastic resin are the same type of resin.

この態様によれば、第1熱可塑性樹脂と第2熱可塑性樹脂との相分離を抑制することができる。   According to this aspect, it is possible to suppress phase separation between the first thermoplastic resin and the second thermoplastic resin.

第4の態様に係る樹脂組成物は、第1〜3のいずれかの態様において、前記第1熱可塑性樹脂及び前記第2熱可塑性樹脂がポリオレフィンである。   In the resin composition according to the fourth aspect, in any one of the first to third aspects, the first thermoplastic resin and the second thermoplastic resin are polyolefins.

この態様によれば、両者が同種の樹脂であることで、相分離を抑制することができる。さらには同種の樹脂がポリオレフィンであることで、成形品の更なる軽量化を実現することができる。   According to this aspect, since both are the same type of resin, phase separation can be suppressed. Furthermore, since the resin of the same type is polyolefin, it is possible to realize further weight reduction of the molded product.

第5の態様に係る樹脂組成物は、第1〜4のいずれかの態様において、前記セルロース繊維の平均繊維長が、0.001mm以上0.1mm以下の範囲内である。   In the resin composition according to the fifth aspect, in any one of the first to fourth aspects, the average fiber length of the cellulose fibers is in the range of 0.001 mm or more and 0.1 mm or less.

この態様によれば、成形品の剛性を向上させることができる。さらにセルロース繊維の分散性の低下を抑制することができる。   According to this aspect, the rigidity of the molded product can be improved. Further, it is possible to suppress a decrease in dispersibility of the cellulose fibers.

第6の態様に係る樹脂組成物は、第1〜5のいずれかの態様において、分散剤を更に含有する。   The resin composition according to the sixth aspect further includes a dispersant in any one of the first to fifth aspects.

この態様によれば、セルロース繊維の分散性を更に向上させることができる。   According to this aspect, the dispersibility of the cellulose fibers can be further improved.

第7の態様に係る樹脂組成物は、第6の態様において、前記分散剤が、無水マレイン酸変性ポリオレフィンである。   In the resin composition according to the seventh aspect, in the sixth aspect, the dispersant is a maleic anhydride modified polyolefin.

この態様によれば、セルロース繊維の分散性を更に向上させることができる。   According to this aspect, the dispersibility of the cellulose fibers can be further improved.

第8の態様に係る樹脂組成物は、第7の態様において、前記無水マレイン酸変性ポリオレフィンの重量平均分子量が、45000以下である。   A resin composition according to an eighth aspect is the resin composition according to the seventh aspect, wherein the maleic anhydride-modified polyolefin has a weight average molecular weight of 45,000 or less.

この態様によれば、セルロース繊維の分散性を更に向上させることができる。   According to this aspect, the dispersibility of the cellulose fibers can be further improved.

以下、本開示を実施例によって具体的に説明するが、本開示は、以下の実施例に限定されない。   Hereinafter, the present disclosure will be specifically described by way of examples, but the present disclosure is not limited to the following examples.

(実施例1〜10)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いてペレットを製造した。具体的には、上記の原料を表1に示す比率(質量%)となるように秤量し、ドライブレンドした。次に、2軸混練押出機(株式会社テクノベル製、型式:KZW15TW)にて、混練温度を200℃、排出量を2kg/時間として溶融混練分散した後、水冷して、ペレットを製造した。
(Examples 1 to 10)
Pellets were produced using the following first thermoplastic resin, second thermoplastic resin and cellulose fiber as raw materials. Specifically, the above raw materials were weighed so that the ratio (% by mass) shown in Table 1 was obtained, and dry blended. Next, using a twin-screw kneading extruder (manufactured by Techno Bell Co., Ltd., model: KZW15TW), the mixture was melt-kneaded and dispersed at a kneading temperature of 200 ° C. and a discharge rate of 2 kg / hour, followed by cooling with water to produce pellets.

第1熱可塑性樹脂:BC03B(日本ポリプロ株式会社製、ポリプロピレン、重量平均分子量200000)
第2熱可塑性樹脂:ビスコール660−P(三洋化成工業株式会社、ポリプロピレン、重量平均分子量10000)
セルロース繊維:NBKP Celgar(三菱製紙株式会社製、綿状針葉樹パルプ、平均繊維長0.05mm)。
First thermoplastic resin: BC03B (manufactured by Japan Polypro Co., Ltd., polypropylene, weight average molecular weight 200,000)
Second thermoplastic resin: Viscole 660-P (Sanyo Chemical Co., Ltd., polypropylene, weight average molecular weight 10,000)
Cellulose fiber: NBKP Celgar (manufactured by Mitsubishi Paper Mills, cotton-like softwood pulp, average fiber length 0.05 mm).

(実施例11)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Example 11)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:ビスコール550−P(三洋化成工業株式会社、ポリプロピレン、重量平均分子量13500)
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1-10 Second thermoplastic resin: Viscole 550-P (Sanyo Chemical Co., Ltd., polypropylene, weight average molecular weight 13500)
Cellulose fiber: same as in Examples 1-10.

(実施例12)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Example 12)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:ビスコール440−P(三洋化成工業株式会社、ポリプロピレン、重量平均分子量25200)
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1-10 Second thermoplastic resin: Viscole 440-P (Sanyo Chemical Co., Ltd., polypropylene, weight average molecular weight 25200)
Cellulose fiber: same as in Examples 1-10.

(実施例13)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Example 13)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:ビスコール330−P(三洋化成工業株式会社、ポリプロピレン、重量平均分子量40000)
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1-10 Second thermoplastic resin: Viscole 330-P (Sanyo Chemical Co., Ltd., polypropylene, weight average molecular weight 40,000)
Cellulose fiber: same as in Examples 1-10.

(実施例14〜15)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂、セルロース繊維及び分散剤を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Examples 14 to 15)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin, cellulose fiber and dispersant were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:実施例1〜10と同じ
セルロース繊維:実施例1〜10と同じ
分散剤:ユーメックス1001(三洋化成工業株式会社製、重量平均分子量45000)。
First thermoplastic resin: same as in Examples 1 to 10 Second thermoplastic resin: same as in Examples 1 to 10 Cellulose fiber: same as in Examples 1 to 10 Dispersant: Umex 1001 (manufactured by Sanyo Kasei Co., Ltd., weight) Average molecular weight 45,000).

(実施例16)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Example 16)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:エルモーデュS400(出光興産株式会社、ポリプロピレン、重量平均分子量45000)
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1 to 10 Second thermoplastic resin: Elmodu S400 (Idemitsu Kosan Co., Ltd., polypropylene, weight average molecular weight 45,000)
Cellulose fiber: same as in Examples 1-10.

(実施例17)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Example 17)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:エルモーデュS600(出光興産株式会社、ポリプロピレン、重量平均分子量75000)
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1-10 Second thermoplastic resin: Elmodu S600 (Idemitsu Kosan Co., Ltd., polypropylene, weight average molecular weight 75000)
Cellulose fiber: same as in Examples 1-10.

(実施例18)
以下に示す第1熱可塑性樹脂、第2熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Example 18)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, second thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
第2熱可塑性樹脂:エルモーデュS901(出光興産株式会社、ポリプロピレン、重量平均分子量130000)
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1 to 10 Second thermoplastic resin: Elmodu S901 (Idemitsu Kosan Co., Ltd., polypropylene, weight average molecular weight 130000)
Cellulose fiber: same as in Examples 1-10.

(比較例1)
以下に示す第1熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Comparative Example 1)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1 to 10 Cellulose fiber: same as in Examples 1 to 10.

(比較例2)
以下に示す第1熱可塑性樹脂、セルロース繊維及び分散剤を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Comparative example 2)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin, cellulose fiber and dispersant were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
セルロース繊維:実施例1〜10と同じ
分散剤:実施例14〜15と同じ。
First thermoplastic resin: same as Examples 1 to 10 Cellulose fiber: same as Examples 1 to 10 Dispersant: same as Examples 14 to 15.

(比較例3)
以下に示す第1熱可塑性樹脂及びセルロース繊維を原料として用いるようにした以外は、実施例1〜10と同様にしてペレットを製造した。
(Comparative example 3)
Pellets were produced in the same manner as in Examples 1 to 10 except that the following first thermoplastic resin and cellulose fiber were used as raw materials.

第1熱可塑性樹脂:実施例1〜10と同じ
セルロース繊維:実施例1〜10と同じ。
First thermoplastic resin: same as in Examples 1 to 10 Cellulose fiber: same as in Examples 1 to 10.

(曲げ弾性率)
各実施例及び比較例のペレットを用いてISO178に規定の試験片を作製した。各試験片について、JIS K 7171に規定の曲げ試験を行った。曲げ弾性率の測定結果を表1に示す。
(Flexural modulus)
Using the pellets of each Example and Comparative Example, a test piece specified in ISO178 was prepared. For each test piece, a bending test prescribed in JIS K 7171 was performed. Table 1 shows the measurement results of the flexural modulus.

(外観)
各実施例及び比較例のペレットを1gずつ秤量し、熱プレス機を用いて、直径150mm、厚さ約0.1mmの円形の試験片を作製した。各試験片について、デジタルマイクロスコープ(株式会社キーエンス製、VHX−6000)を用いて、長径300μm以上のセルロース繊維の凝集体の個数を数え、以下の基準で外観の良否を評価した。外観の評価結果を表1に示す。
(appearance)
1 g of each of the pellets of each Example and Comparative Example was weighed, and a circular test piece having a diameter of 150 mm and a thickness of about 0.1 mm was produced using a hot press machine. For each test piece, the number of aggregates of cellulose fibers having a major axis of 300 μm or more was counted using a digital microscope (VHX-6000 manufactured by Keyence Corporation), and the quality of the appearance was evaluated according to the following criteria. Table 1 shows the appearance evaluation results.

S:凝集体が10個以下
A:凝集体が10個超15個以下
B:凝集体が15個超20個以下
C:凝集体が20個超。
S: 10 or less aggregates A: more than 10 aggregates and 15 or less B: more than 15 aggregates and 20 or less C: more than 20 aggregates

Figure 2020076082
Figure 2020076082

Claims (8)

第1熱可塑性樹脂と、第2熱可塑性樹脂と、セルロース繊維と、を含有し、
前記第1熱可塑性樹脂の重量平均分子量よりも、前記第2熱可塑性樹脂の重量平均分子量が小さい、
樹脂組成物。
Contains a first thermoplastic resin, a second thermoplastic resin, and a cellulose fiber,
The weight average molecular weight of the second thermoplastic resin is smaller than the weight average molecular weight of the first thermoplastic resin,
Resin composition.
前記第2熱可塑性樹脂の重量平均分子量が80000以下である、
請求項1に記載の樹脂組成物。
The weight average molecular weight of the second thermoplastic resin is 80,000 or less,
The resin composition according to claim 1.
前記第1熱可塑性樹脂と前記第2熱可塑性樹脂とは同種の樹脂である、
請求項1又は2に記載の樹脂組成物。
The first thermoplastic resin and the second thermoplastic resin are the same type of resin,
The resin composition according to claim 1.
前記第1熱可塑性樹脂及び前記第2熱可塑性樹脂がポリオレフィンである、
請求項1〜3のいずれか1項に記載の樹脂組成物。
The first thermoplastic resin and the second thermoplastic resin are polyolefins,
The resin composition according to claim 1.
前記セルロース繊維の平均繊維長が0.001mm以上0.1mm以下の範囲内である、
請求項1〜4のいずれか1項に記載の樹脂組成物。
The average fiber length of the cellulose fibers is in the range of 0.001 mm or more and 0.1 mm or less,
The resin composition according to any one of claims 1 to 4.
分散剤を更に含有する、
請求項1〜5のいずれか1項に記載の樹脂組成物。
Further containing a dispersant,
The resin composition according to any one of claims 1 to 5.
前記分散剤が、無水マレイン酸変性ポリオレフィンである、
請求項6のいずれか1項に記載の樹脂組成物。
The dispersant is a maleic anhydride modified polyolefin,
The resin composition according to claim 6.
前記無水マレイン酸変性ポリオレフィンの重量平均分子量が45000以下である、
請求項7に記載の樹脂組成物。
The weight average molecular weight of the maleic anhydride modified polyolefin is 45,000 or less,
The resin composition according to claim 7.
JP2019195662A 2018-11-07 2019-10-28 Resin composition Active JP7570052B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018210046 2018-11-07
JP2018210046 2018-11-07

Publications (2)

Publication Number Publication Date
JP2020076082A true JP2020076082A (en) 2020-05-21
JP7570052B2 JP7570052B2 (en) 2024-10-21

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264881A1 (en) 2021-06-16 2022-12-22 三井化学株式会社 Resin composition
WO2023243281A1 (en) * 2022-06-14 2023-12-21 パナソニックIpマネジメント株式会社 Composite resin composition and composite resin molded body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056176A (en) * 2005-08-26 2007-03-08 Daicel Polymer Ltd Fiber reinforced foamable resin composition and foamed molding therefrom
JP2010265357A (en) * 2009-05-13 2010-11-25 Konica Minolta Holdings Inc Method for producing cellulose fiber-containing resin material
JP2012236906A (en) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd Resin composition
JP2016094540A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic resin composition
JP2016216605A (en) * 2015-05-20 2016-12-22 星光Pmc株式会社 Modified cellulose fiber-containing resin composition, molding material and molded body
JP2018154671A (en) * 2017-03-15 2018-10-04 東洋インキScホールディングス株式会社 Resin composition and molding
JP2019151692A (en) * 2018-03-01 2019-09-12 株式会社豊田中央研究所 Organic fiber-reinforced resin composition and method for producing the same
JP2019183022A (en) * 2018-04-12 2019-10-24 東洋インキScホールディングス株式会社 Resin composition and molded body
WO2020095512A1 (en) * 2018-11-07 2020-05-14 パナソニックIpマネジメント株式会社 Resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056176A (en) * 2005-08-26 2007-03-08 Daicel Polymer Ltd Fiber reinforced foamable resin composition and foamed molding therefrom
JP2010265357A (en) * 2009-05-13 2010-11-25 Konica Minolta Holdings Inc Method for producing cellulose fiber-containing resin material
JP2012236906A (en) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd Resin composition
JP2016094540A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic resin composition
JP2016216605A (en) * 2015-05-20 2016-12-22 星光Pmc株式会社 Modified cellulose fiber-containing resin composition, molding material and molded body
JP2018154671A (en) * 2017-03-15 2018-10-04 東洋インキScホールディングス株式会社 Resin composition and molding
JP2019151692A (en) * 2018-03-01 2019-09-12 株式会社豊田中央研究所 Organic fiber-reinforced resin composition and method for producing the same
JP2019183022A (en) * 2018-04-12 2019-10-24 東洋インキScホールディングス株式会社 Resin composition and molded body
WO2020095512A1 (en) * 2018-11-07 2020-05-14 パナソニックIpマネジメント株式会社 Resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264881A1 (en) 2021-06-16 2022-12-22 三井化学株式会社 Resin composition
WO2023243281A1 (en) * 2022-06-14 2023-12-21 パナソニックIpマネジメント株式会社 Composite resin composition and composite resin molded body

Also Published As

Publication number Publication date
WO2020095512A1 (en) 2020-05-14
CN112996859A (en) 2021-06-18

Similar Documents

Publication Publication Date Title
Taşdemır et al. Preparation and characterization of LDPE and PP—wood fiber composites
Ashori et al. Bio-based composites from waste agricultural residues
CA2924867C (en) Hybrid sustainable composites and methods of making and using thereof
Ayrilmis et al. Water absorption and mechanical properties of PP/HIPS hybrid composites filled with wood flour
CN105199416A (en) Reinforced and strengthened polyolefin wood-plastic composite and preparation method thereof
Yao et al. Rice straw fiber reinforced high density polyethylene composite: Effect of coupled compatibilizating and toughening treatment
CN103436012B (en) Ultrahigh-molecular weight polyethylene modified nylon 66 and preparation method thereof
CN101747556A (en) Resin composition and molded article comprising the same
Mubarak Tensile and impact properties of microcrystalline cellulose nanoclay polypropylene composites
Kuram Rheological, mechanical and morphological properties of hybrid hazelnut (Corylus avellana L.)/walnut (Juglans regia L.) shell flour-filled acrylonitrile butadiene styrene composite
Mengeloğlu et al. Preparation of thermoplastic polyurethane-based biocomposites through injection molding: Effect of the filler type and content
WO2020095512A1 (en) Resin composition
Cai et al. Effects of toughening agents on the behaviors of bamboo plastic composites
CN112119127B (en) Resin composition
JP7213459B2 (en) resin composition
JP7570052B2 (en) Resin composition
JP2004231873A (en) Method for recycling a polyolefin resin
JP2020012050A (en) Resin composition
Tasdemir Mechanical properties of pslypropylene biocomposites with sea weeds
WO2009157265A1 (en) Thermoplastic resin composition, method for producing same, and moldings
JP2020012049A (en) Resin composition
JP2021130774A (en) Method for producing cellulose fiber-containing resin composition, and method for manufacturing molded article
Mustapa et al. Preliminary study on the mechanical properties of polypropylene rice husk composites
JP5169530B2 (en) Thermoplastic resin composition, method for producing the same, and method for producing a molded article
Ragunathan et al. Effect of maleic anhydride‐grafted polypropylene on polypropylene/recycled acrylonitrile butadiene rubber/empty fruit bunch composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240603

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240927