JP2020074781A - 乳生産量を改善するための雌牛の育種方法 - Google Patents

乳生産量を改善するための雌牛の育種方法 Download PDF

Info

Publication number
JP2020074781A
JP2020074781A JP2020004043A JP2020004043A JP2020074781A JP 2020074781 A JP2020074781 A JP 2020074781A JP 2020004043 A JP2020004043 A JP 2020004043A JP 2020004043 A JP2020004043 A JP 2020004043A JP 2020074781 A JP2020074781 A JP 2020074781A
Authority
JP
Japan
Prior art keywords
animals
animal
item
breeding
mastitis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020004043A
Other languages
English (en)
Inventor
ダッティーロ,カトリーナ
Dattilo Katrina
ザレ,ヤルダ
Zare Yalda
ベッツ,ガブリエラ カロリーナ マルケス
Carolina Marquez Betz Gabriela
ベッツ,ガブリエラ カロリーナ マルケス
ステファン,カリーナ
Stephan Kaleena
スターケンバーグ,ライアン
Starkenburg Ryan
ベルガラ,クリスティアン
Vergara Cristian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genus PLC
Original Assignee
Genus PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genus PLC filed Critical Genus PLC
Publication of JP2020074781A publication Critical patent/JP2020074781A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/02Breeding vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D19/00Instruments or methods for reproduction or fertilisation
    • A61D19/04Instruments or methods for reproduction or fertilisation for embryo transplantation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/40Population genetics; Linkage disequilibrium
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/101Bovine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Physiology (AREA)
  • Transplantation (AREA)
  • Wood Science & Technology (AREA)
  • Reproductive Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Feed For Specific Animals (AREA)
  • Housing For Livestock And Birds (AREA)

Abstract

【課題】乳生産量を改善するための雌牛の育種方法の提供。【解決手段】乳生産形質が改善された子孫集団を作るためにウシ亜科の動物を育種する方法であって、a)ウシ亜科の被験体に由来する試料において、ウシ亜科の被験体又はその子孫の健康全般の指標となる少なくとも1つの形質と関連した少なくとも1つの遺伝マーカーの有無を検出し;b)前記少なくとも1つの遺伝マーカーの有無に基づいて推定育種価を割り当てて;c)工程a)から好ましい推定育種価を有するウシ亜科の動物を選抜し、ここで選抜されたウシ亜科の動物は第1のウシ亜科の親動物として使用され;及びd)第1のウシ亜科の親動物を第2のウシ亜科の親動物と交配して子孫集団を作ることを含み、ここで子孫集団のウシ亜科の雌動物は、第1のウシ亜科の親動物が同様に選抜されなかった子孫集団のウシ亜科の雌動物に比べて、乳生産及び移行期の健康の改善を示す、方法。【選択図】図1

Description

関連出願に対する相互参照
本出願は、2015年7月29日に出願された米国特許仮出願第62/198,455号、および2016年6月16日に出願された米国特許仮出願第62/350,813号についての優先権を米国特許法第119条の下で主張するものであり、これらの全ては引用によって本願に組み込まれる。
発明の分野
本発明は、選抜および育種方法、ならびに結果的に生じる、乳分泌への移行に加え、乳生産量および乳組成を含む、乳生産形質が改善した畜牛の子孫および集団に関する。
世界中で酪農業者はそれぞれ、妊娠から出産までの一連の泌乳過程に入り最終的には利益を生むのに十分な乳生産を効率よく行うように個別の雌を移行させる課題に取り組んでいる。1年間に農業従事者は、出産後の2か月間で健康問題に起因してその群の10%までを失い得る。実に乳牛の75%の疾患が泌乳開始後の最初の60日間で発生し、生産量の高い雌牛では50%もの個体が罹患する。雌牛の健康的移行を保証する意義には、移行期病治療のための経済的支出が関係する。泌乳期当たり疾患当たりにかかる費用は、各疾患発症につき$200から$400の間である。子宮炎単独による年間経済損失額全体は、1,000頭の乳牛群で平均疾患発症率15%の場合で$53,000までに上り得て、大きな経済的負担となる。
妊娠中の雌牛の身体における第一の最優先事項は、雌牛自身の健康を犠牲にし得る程度に乳生産であるため、移行期は重要である。雌牛は雌牛自身のエネルギー貯蔵を使うことで、雌牛の短期的および長期的健康に負の影響を与え得る負のエネルギーバランスに陥る。これは、妊娠に起因する雌牛の免疫系の抑制によって悪化する。この動態により、また従来の論理とは逆に、順調に移行しない雌牛はしばしばそれでも良好な乳生産を行うため、乳生産量が低いことはこの期間中に健康問題を発生しているまたは起こしやすいという指標には必ずしもならない。
農業従事者は、利用できるツールを用いて、乳牛移行期中に発生する健康問題に対し最善を尽くして予防および対応を行ってきた。新しい管理、動物健康および栄養ツールが導入されると、農業従事者は、各雌牛の生涯においてこの移行期に関連した健康問題の負の影響を最小化することを期待し、熱心にそれらに投資してきた。残念ながら効果は概して一時的であり、雌牛がこの期間に入る度にツールに再投資しなければならない。したがって、移行期間に雌牛が起こしやすい負の健康問題を減らす際に、畜産家が追加の予防および対応措置を行う必要性を効果的に最小化する必要性が当技術分野に残っている。本発明によれば、畜産家はこれから彼らの対策法を変更し、乳房炎、子宮炎およびケトン症などの移行期の雌牛の健康問題に対する追加の予防および対応措置の必要性を効果的に最小化できることが実証されている遺伝学を、彼らの家畜群に対して選択し始めることができる。遺伝的選抜は現在利用されている繰り返しの予防と治療に依存する必要性がなくなるように家畜群に永続的な変化を与える累積的で費用対効果のよい方法である。
従来の育種手法は、さらなる交配を導くために、雄親の子孫の調査および乳生産の等級(育種価、または遺伝的メリット)の評価を含む。この標準的手法では、各雄牛の後代検定により真の遺伝価を評価するのに数年を要する。多数の雌牛が交配させられて仔を出産しなくてはならない。雌は、その表現型形質を評価するために育て、交配し、出産させて、最終的に一定期間泌乳させなければならない。
さらに、表現型の特徴に純粋に基づく選抜では、複雑な遺伝子作用および相互作用によって引き起こされる遺伝的バリエーション、ならびに環境および発生上のバリアントの影響は効果的には考慮されない。したがって、望ましい表現型上のおよび遺伝的な形質を示す動物を畜産家がより正確に選抜できるように、畜牛を遺伝的に評価する方法が必要である。
ゲノム選抜法では、若い雄牛の子孫について誕生直後にまたは誕生前でさえもマーカーの有/無を評価することができ、遺伝子検査により望ましくないマーカーを持つと決定された若い雄牛については後代検定が行われないため、雄親を改善するために現在使用されている後代検定の高いコストを低減することができる。従来の考え方では、ゲノムワイドマーカーは、動物の健康および状態全般に関する最良の予測指標である。異なる染色体などゲノム上の離れた領域にある複数の遺伝子座には、少なくとも100個の、少なくとも500個の、少なくとも1,000個の、少なくとも5,000個の、またはそれ以上の異なる遺伝子座が含まれる。
選抜および育種に利用可能な数千種類の形質、バリエーションおよび遺伝マーカーから、乳生産への首尾良い移行に高度に相関した重要な形質を同定することが本発明の1つの目的である。
他の目的は以下の本発明の明細書から明らかとなる。
Meuwissen, T.H.E., Hayes B.J., Goddard, M.E., Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps, Genetics (2001) vol. 157 no. 4 1819-1829 Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. and Thompson, R. ASReml User Guide Release 4.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, (2014) UK www.vsni.co.uk VanRaden PM: Efficient methods to compute genomic predictions. J Dairy Sci. 2008, 91: 4414-4423. 10.3168/jds.2007-0980. Aguilar, I. et al. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science , Volume 93 , Issue 2 , 743 - 752 Fernando, R. L., J.C.M. Dekkers and D. J. Garrick. A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. (2014) Genet. Sel and Evol. 46:50 doi:10.1186/1297-9686-46-50 Henderson, C.R. (1975). "Best linear unbiased estimation and prediction under a selection model". Biometrics 31 (2): 423-447. doi:10.2307/2529430. JSTOR 2529430. PMID 1174616
歴史的に、乳、脂肪およびタンパク質生産量などの生産形質は、乳牛育種における選抜の重点であった。より近年では、乳牛選抜に使用される遺伝指数全体の中で生殖能形質と寿命形質が注目を集めてきた。乳牛育種では、泌乳期早期の感染症や代謝性疾患の組み合わせは、ほとんど注目されていなかった。本発明は、3種類の移行期疾患:移行期の乳牛の健康に過大な影響を与える乳房炎、子宮炎およびケトン症に関する動物の遺伝的メリットを評価する方法を提供する。結果的にもたらされるこれらの形質の評価は、遺伝的に優れた動物を選抜するための遺伝指数にまとめることができる。これらの形質の一部の評価は利用可能であるが、移行期の健康に注目してこれらの形質を考慮する他の遺伝指数は利用可能でない。
乳牛の移行期とは、分娩2〜3週間前から分娩2か月後まである。この時期は、互いに相互作用する数多くの複雑な生理的、代謝的および栄養的変化によって特徴づけられる。それは、雌牛の生産周期においてある泌乳期から次の泌乳期への転換点に当たる。これらの変化が起きる様式とこれらの変化がどのように管理されるかは、収益性に大きく影響し得る泌乳能力、顕性および不顕性の分娩後疾患ならびに生殖能力に密接に結び付いているため、非常に重要である。例を挙げると、例えば胃転移、低カルシウム血症、胎盤遺残、跛行、パラ結核、乳房炎、子宮炎およびケトン症を含むある種の疾患の発症傾向は移行期の間上昇する。例えば胃転移、低カルシウム血症、胎盤遺残、跛行およびパラ結核などの数種類の疾患関連形質を評価する実行可能性が検証されたが、これらの形質は生産者への経済的影響に対して限定的な予測性しかもたないと結論された。重要なことに、乳房炎、子宮炎およびケトン症について動物を遺伝的に評価することは実行可能であり、関連性があることが見出された。これらの疾患の発症率の低い雌牛を所有することの経済的影響は農業従事者にとって大きく、その上雌牛の健康のすべての局面で生涯に渡る影響がある。
出願人らは、遺伝学、選抜および交配の使用を通じて、移行期における雌牛の複数の代謝障害を高い予測性および高い確度で予防する方法を開発した。本発明によれば、動物、特に雄親を同定する新しい選抜ツールが開示され、前記動物、特に雄親の雌の仔は移行期を通じてより健康的である遺伝的な傾向を有するだろう。本発明は、選抜および育種、並びに、同様に選抜されていない集団に比べて乳生産と移行期の健康が改善した動物集団および子孫集団にこれらのツールを使用する方法を含む。
出願人らは、3種類の重要な表現型の/遺伝的な指標が移行期の健康に高度に相関していて、前記指標は、選抜および交配手順において、および/または従来の育種方法と組み合わせて使用することで、移行期の健康の予測性を改善することができることを同定した。本発明によれば、乳房炎、ケトン症および子宮炎の遺伝的な評価により、移行期の健康全般が高度に予測されることが見出された。これらの評価はまた雌の分娩および生殖能形質に関する従来の産業評価と組み合わせられてもよい。遺伝的評価は、乳房炎、ケトン症および子宮炎の臨床症例を直接測定し、祖先および子孫から収集したデータを選抜に使用することによって得られる。出願人の選抜基準は、乳牛の移行期の疾患発症率を減らすことで畜産家の集団に速やかに影響し得る。
一実施形態においては、本発明は、ウシ亜科の動物(bovine animal;ウシ動物)、細胞、卵細胞、精子または胚の分類を行う方法であって、乳房炎、子宮炎およびケトン症の発症傾向を予測する等級を割り当てるために、遺伝マーカー評価と組み合わせて家族系統内のウシ亜科の動物の乳房炎、子宮炎およびケトン症の臨床症例数を決定することを含む前記方法を提供する。評価対象の3種類の疾患の遺伝値は、選抜指数方法論を用いて統合され、各形質に与えられる重み係数を決定する。重み係数は疾患の経済的コスト、および各形質において達成される選抜への応答(すなわち、疾患形質の遺伝値が1ポイント変化した場合に疾患発症率にどの程度の変化が見られるか)に依存する。どの等級を割り当てるかは、現実世界のデータの数千個の記録を見直して、親、祖父母、兄妹または子孫の特性を検討することにより決定してもよい。
さらなる実施形態では、本発明は、畜牛の後代検定の方法を提供し、前記方法は上述のデータを収集して特定の子孫動物を分析することを含む。
別の態様では、本発明は、交配する目的でウシ亜科の動物の被験体および/またはその子孫を選抜するための方法に関係し、前記方法は、本発明の方法によってある動物の系統内の乳房炎、子宮炎およびケトン症発症率を網羅的に調べて前記動物が移行期に対して好ましく反応する傾向を判定し、次に前記決定された育種価に基づいて前記ウシ亜科の動物の被験体を交配に選抜するかまたは選抜しないことを含む。
またさらなる実施形態では、本発明は、親を同様に選抜しなかった集団に比べて移行期の健康と乳生産が改善した動物子孫集団を作るために、乳房炎、子宮炎およびケトン症のための基準に基づいて動物を選抜し、それらの動物を交配することを含む。
その上さらに提供される方法は、多排卵胚移植法(MOET法)を使用して畜牛を選抜育種するための方法であり、前記方法は、上述の基準により選抜された雌動物を過剰排卵させ、前記過剰排卵させた雌から卵細胞を回収し、上述の基準により選抜された好適な雄動物に由来する前記卵細胞を体外受精し、他の選抜された雌に前記受精卵を移植して胚発生させることを含む。好ましい実施形態では、子宮炎、乳房炎およびケトン症の特徴について好ましい雄牛を選抜すること、およびその精液を選抜された雌動物を受精させるために使用することを含めて、乳牛を選抜育種するために前記方法が使用される。
図1は、子宮炎、乳房炎およびケトン症に関する推定育種価の継時的な動向を示すグラフである。 図2は、乳房炎、子宮炎およびケトン症の疾患発症率の上位10%と下位10%の雄親の間の差を示すグラフである。 図3は、子宮炎に関する雄親の育種価を示すプロットである。 図4は、乳房炎に関する雄親の育種価を示すプロットである。 図5は、ケトン症に関する雄親の育種価を示すプロットである。
以下の明細書と実施例では多数の用語が使用される。そのような用語に与えられる範囲を含めて、明細書と請求項の明確で一貫した理解を提供するために、明細書と請求項で使用される用語に以下の定義が提供される。本明細書において別に定義されない限り、すべての技術用語および科学用語は本発明が属する技術分野の当業者により一般的に理解されるのと同じ意味を有する。
選抜および選抜基準:集団において遺伝物質を次世代に寄与する個体を選ぶための過程、モデル、系またはアルゴリズム。特に、そのような過程、モデル、系またはアルゴリズムはいずれも、自然界のもしくは人工的な現象または手続き手順に基づくことができる。選抜基準は、例えば、以下に限定されるわけではないが、遺伝子、遺伝子発現、遺伝マーカー、遺伝子の組み合わせ、量的形質遺伝子座、形質または形質の組み合わせの存在または存在の程度などの表現型上のまたはゲノムの特徴に基づくことができる。
育種価:育種計画における個体などの継承単位の遺伝的メリット。遺伝的メリットは、興味対象の少なくとも1個の表現型形質を改善することを目的とした育種計画において、ある個体の1個もしくは複数個の遺伝子または(遺伝子)座による、興味対象の少なくとも1個の表現型形質への寄与によって決定される。
推定育種価:個体の育種価の推定値で、特に、その個体の子孫の平均性能と、無作為に交配した集団のすべての子孫の平均性能の間で推定される差に基づくもの。前記無作為に交配した集団のすべての子孫の平均性能では、家族間すなわち家系間では通常交配しないことを考慮に入れてもよい。
ゲノムワイドな推定育種価:ゲノムワイドな情報、すなわち例えば異なる染色体上の座などの、ゲノム上の異なるまたは遠く離れた(遺伝子)座に由来する情報に基づく推定育種価。特に、ゲノムワイドな推定育種価は、興味対象の少なくとも1個の表現型形質を改善することを目的とした育種計画において、個体のゲノムワイドな遺伝子もしくはゲノムワイドな(遺伝子)座またはゲノムワイドなハプロタイプまたはゲノムワイドな分子マーカースコアによる、興味対象の少なくとも1個の表現型形質への寄与によって決定される、個体のゲノムワイドな遺伝的メリットの推定値である。
ゲノムワイドな選抜:例えばゲノムワイドな推定育種価が最も高い親の交配に基づく選抜方法。
子孫:本明細書で使用される用語「子孫」は、交雑により得られた最初またはさらに後の世代を指す。
表現型:以下に限定されることはないが、形態的な、物理的な、生化学的な、発生上のまたは行動上の特徴または形質などの個体の特徴または形質、特に観察可能な特徴または形質の複合体。個体の表現型は、環境要因および遺伝子の発現により、並びに遺伝子発現と環境要因の間の相互作用により形成され得る。興味対象の表現型形質:特定の測定単位で定量することができる植物または動物種の遺伝性の特徴。興味対象の量的表現型形質の例としては(以下に限定されることはないが):乳生産量、乳タンパク質含有量、枝肉重量、飼料要求率、体脂肪組成、および腹仔数、毛色および病害抵抗性が挙げられる。興味対象の量的表現型形質が増加または減少し、その集団における特徴の平均値の増加または減少によってその集団、品種または子孫の経済的価値が親世代またはそれより前の世代に比べて改善され得ることが望まれ得る。
遺伝子型:本明細書で使用される用語「遺伝子型」は、通常は検討中で興味対象の特定の特徴または表現型形質に関連して、細胞、生命体または個体の遺伝的構成(すなわち、その個体に特異な対立遺伝子の構成)を指す。しかし、外観および行動は環境および発生条件によって修飾されるため、同じ遺伝子型を有するすべての生命体が必ずしも同じ外観を呈したり振る舞いをするわけではない。同様に、似たような外観のすべての生命体が同一の遺伝子型を有するわけではない。
遺伝子型判定:本明細書で使用される「遺伝子型判定」または「遺伝子型の決定」という用語は、種の中で個体間の遺伝的バリエーションを判定する過程を指す。1塩基多型(SNPs)は、遺伝子型判定に使用され、特定の遺伝子座にあり集団の1%以上に見られる1塩基の違いと定義される、最も一般的なタイプの遺伝的なバリエーションである。SNPsはゲノム上のコーディング領域およびノンコーディング領域の両方に見られ、興味対象の量的表現型形質などの、興味対象の表現型形質に関連し得る。したがって、SNPsは興味対象の量的表現型形質のマーカーとして使用され得る。遺伝子型判定に使用される別の一般的なタイプの遺伝的バリエーションは「InDels」、すなわち様々な長さの塩基の挿入および欠失である。SNPとInDelの両方の遺伝子型判定には、個体間で遺伝子型を判定する多くの方法が存在する。どの方法を選ぶかは一般的に必要とされるスループットに依存し、前記スループットは遺伝子型判定を実施する個体数および1個体ごとに試験される遺伝子型の数によって決まる。どの方法を選ぶのかはまた、各個体または各試料から得られる試料物質の量にも依存する。例えば、SNPsなどのマーカーの有無を決定するのにはシーケンシングを使用すればよく、シーケンシングには例えばサンガーシーケンシングおよびハイスループットシーケンシング技術(High Throughput Sequencing technologies)(HTS)などの例が挙げられる。サンガーシーケンシングでは(キャピラリー)電気泳動を通じた検出によるシーケンシングを含んでもよく、前記電気泳動では384本までのキャピラリーが1回の泳動で配列分析されてもよい。ハイスループットシーケンシングでは、数千または数百万またはそれ以上の配列を一度に並行してシーケンシングすることを含む。HTSは次世代シーケンシング、すなわち固相ピロシーケンシングに基づく技術として、または1塩基リアルタイムシーケンシング(SMRT)に基づく第3世代シーケンシングとして定義することができる。HTS技術はRoche、IlluminaおよびApplied Biosystems(Life Technologies)から提供されるものなどが利用可能である。さらなるハイスループットシーケンシング技術はHelicos、Pacific Biosciences、Complete Genomics、Ion Torrent Systems、Oxford Nanopore Technologies、Nabsys、ZS Genetics、GnuBioによって説明され、および/またはそこから入手可能である。これらのシーケンシング技術はそれぞれ、実際のシーケンシングステップ前に独自の試料調製法を有する。これらのステップはハイスループットシーケンシングの方法に含まれてもよい。ある場合には、効率上のまたは経済的な理由により、シーケンシングステップに特有のステップを、実際のシーケンシングステップ前の試料調製手順に統合してもよい。例えば、断片にライゲーションされたアダプターは、その後のシーケンシングステップで使用可能な部分を含んでもよい(いわゆるシーケンシングアダプター)。シーケンシングの前に一部の断片を増幅するために使用されるプライマーは、例えばその後のシーケンシングステップで使用可能なアンプリコン中のシーケンシングアダプターまたは捕捉部分を増幅ステップ中に導入することによって、シーケンシングステップで後に使用可能な部分を導入する部分をプライマー配列中に含んでいてもよい。使用されるシーケンシング技術にも依存して、増幅ステップは省略されてもよい。
遺伝子型/表現型関係モデル:集団中の個体について遺伝子型を表現型に関連させる(相関させる)ことができるモデル。そのようなモデルを作るためには、一般的に集団中の個体の表現型を決定し、同じ個体の遺伝子型を決定する必要がある。特に、遺伝子型判定は、複数遺伝子座におけるSNPの有無に関するデータなどの高密度マーカーのデータに基づくことができる。同様に、表現型解析は、例えば個体ごとに興味対象の量的表現型形質の値を測定することによって、高精度で行うことができる。遺伝子型/表現型関係モデルは次に遺伝子型データと表現型データの間の相関を計算することで作ることができる。例えば、SNPマップなどの高密度マーカーのマップを用いて、一部のマーカーは興味対象の特定の量的表現型形質に対する正または負の影響と相関し得る。このようにして、興味対象の量的表現型形質への寄与についてマーカーの有無に原因を求めることができる。前記寄与は、興味対象の量的表現型形質(例えば果実の大きさ、乳生産量など)に使用される測定単位に依存して、例えばkg、m、Lで表してもよい。そのようなモデルを構築するために当該技術分野では様々な方法が利用できる(Meuwissen et al., 2001)。
遺伝子座:本明細書で使用される用語「遺伝子座(単数形)」または「遺伝子座(複数形)」はゲノム上の特定の部位(場所)または複数の部位を指す。例えば、「遺伝子座」は、ゲノム上で(2倍体の生物において)その遺伝子座の2つの対立遺伝子が存在するゲノム中の部位を指す。量的形質遺伝子座(QTLs)は、(遺伝子型/表現型関係モデルに基づいて)量的形質に関連した対立遺伝子を含むゲノム上の部位である。
対立遺伝子:用語「対立遺伝子」は、特定の遺伝子座の片方の位置に存在する核酸配列のバリアントを指す。2倍体の個体では、1つの対立遺伝子は1遺伝子座当たり2つの位置にあり、1つの位置は2本の相同染色体のどちらか一方にある。特定の遺伝子座における各位置には、集団中で候補となる1個以上の核酸配列のバリアントが存在し得る、すなわち、集団中では各位置において異なる候補対立遺伝子が存在してもよい。しかし、各個体は、遺伝子座の各位置に候補対立遺伝子のうちたった1種類だけを持つことができる。代わりになり得る核酸配列のバリアント、すなわち異なる候補対立遺伝子は、少なくともわずかに核酸配列が異なっていて、典型的には少なくとも1個のSNPまたはInDelの有無に基づいて区別することができる。本明細書で「対立遺伝子の状態」と言う場合は、特定の遺伝子座中の1つの位置における対立遺伝子の有無を指し、前記対立遺伝子の有無はその特定の遺伝子座における各マーカー(例えばSNPまたはInDel)の有無によって表すことができる。遺伝子座の対立遺伝子ドーズ量:所与の遺伝子座における所与の対立遺伝子のゲノム中で存在するコピー数。対立遺伝子ドーズ量の範囲は0(コピーが存在しない場合)からゲノムの(同質)倍数体数までの間である;すなわち、2倍体の種では、所与の対立遺伝子の対立遺伝子ドーズ量は0、1または2のいずれかである。多倍数性のゲノムでは対立遺伝子ドーズ量の最大値は、相同染色体のコピー数に相当する。
対立遺伝子置換に起因する効果:この用語は、所与の遺伝的および/または環境的背景の中で、所与の遺伝子座で一方の対立遺伝子(例えば、特定のSNPの存在によって判定されるもの)が他方の対立遺伝子(例えば、前記SNPの非存在によって判定されるもの)に置換される場合に推定される、形質に対する量的影響を指す。例えば、果実収穫高が植物集団における興味対象の量的表現型形質であるならば、その形質に対する量的影響はkgで表現してもよい。遺伝子型/表現型関係モデルに基づいて、所与の遺伝子座上の特定の対立遺伝子(例えば、特定のSNPの存在によって判定されるもの)について、対立遺伝子置換による影響が例えば0.0001kgであると求めることができ、その意味するところは、前記特定の対立遺伝子が他方の候補対立遺伝子に置換された場合(例えば、特定のSNPの非存在によって判定されるもの)にその形質すなわち果実収穫高への量的影響が0.0001kgと推定される、ということである。
組換確率について補正された対立遺伝子置換に起因する効果:対立遺伝子置換に起因する効果は、組換確率で補正することができる。2つの遺伝子座が互いから遠いほど、その2つの遺伝子座の間で組換(交差)が起きやすくなる。遺伝子座の間の距離は組換確率を尺度として測定され、cM(センチモルガン;1cMは2つのマーカー間の減数分裂期組換確率が1%である)で表される。正と負に寄与する対立遺伝子が両方ある場合に、それらが子孫に伝えられる確率を知りたくなるため、これは関連性がある。正の対立遺伝子置換に起因する効果は、(別の個体に交配した後に)その対立遺伝子が子孫のゲノムに伝えられる確率を考慮に入れて組換確率について補正することができる。負の対立遺伝子置換に起因する効果は、(別の個体に交配した後に)その対立遺伝子が子孫のゲノムに伝えられない確率を考慮に入れて組換確率について補正することができる。
ヘテロ接合体とホモ接合体:本明細書で使用される用語「ヘテロ接合体」は、例えば対立遺伝子A/Bを有する遺伝子座があり、ここでAとBが2本の相同染色体のうちの一方にそれぞれ位置する場合のように、2つの異なる対立遺伝子が特定の遺伝子座にある場合に存在する遺伝的な状況を指す。反対に、本明細書で使用される用語「ホモ接合体」は、例えば対立遺伝子A/Aを有する遺伝子座があり、2本の相同染色体のうち一方にそれぞれ存在する場合のように、2つの同一の対立遺伝子が特定の遺伝子座に存在する遺伝的な状況を指す。
分子マーカー技術:本明細書で使用される用語「分子マーカー技術」は、個体(例えば(農作物)植物または畜牛)における興味対象のマーカー対立遺伝子の有無を(直接的または間接的に)決定する(DNAに基づく)分析法を指す。好ましくは、それは、例えばシーケンシングによって、どんな個体においても特定の対立遺伝子が遺伝子座における位置の一つに存在するかまたは存在しないかを決定することを可能にする。
動物をスクリーニングする方法
個々の雌牛の生産性は、その雌牛が生産する乳の価値、その雌牛の子孫の価値、およびその雌牛が群を去るときの雌牛の個々の市場価値の合計である。多数の要因が個々の雌牛の生産性に影響し、その生産性はまた寿命およびその雌牛が一生のうちで乳生産するのに費やす割合に基づく。非生産期間は、誕生から初産までの期間と、次の出産までの乾乳期を含む。乳生産量は泌乳期の段階に関係する。乳生産量は出産後に速やかに増加し、出産後40日〜60日は安定状態に達し、それから月に5%〜10%の率で減少する。減少率は、より高齢な雌牛に比べて初産の動物では低い。質の高い繁殖管理により、雌牛の全生涯生産量の最大部分が、後期のより生産量のより低い時期ではなく、早期の泌乳生産量の高い段階に当てられることが保証される。乳生産量は約6回目の泌乳期まで年齢および出産経験とともに増加し;約6回目の泌乳期の雌牛は、最初の泌乳期の雌牛に比べて最大25%多い乳量を生産し得る。寿命を減少する健康障害または他の管理上の問題は生産性に負の影響をもたらす。
移行期は酪農牛の生産周期の中で最も重要な時期の1つである。生理的には、移行期の動物は、出産および泌乳並びにその雌牛が対応しなくてはならないすべての要求に対してまず準備し、次に経験していく。ホルモンの変化およびエネルギーと栄養の要求量が大きく増加することによって、雌牛は例えば乳生産などの目的に見合うように身体の貯えを使用しなくてはならない。妊娠後期から泌乳の非常に速い時期にかけての管理は、雌牛の健康と福祉に対する有害な影響無しにこれらの要求に雌牛が対応する能力に対して、大きな影響を有する。本発明者らは疾患に罹ることなく、または高価な治療の必要無しに移行期をより生き延びやすい雌牛を選抜するのに使用される遺伝的および表現型上の評価の組み合わせを同定した。
移行期に発生する複数の代謝上の、表現型上のおよび他の変化のすべての中で、出願人らは、鍵となる形質である子宮炎、ケトン症および乳房炎の発症率に由来するデータが、雌牛が移行期を健康に生きる能力を判定する際に最も予測性が高いことを見出した。これらの形質は遺伝性が低い(すなわち、形質のバリエーションの多くが、遺伝ではなく環境要因によって説明される)ために、これらの形質が多くの遺伝解析および表現型またはマーカーを利用した育種により伝統的に見捨てられてきたために、このことは驚きである。これに関わらず、出願人は、これらの形質についての選抜がこの時期を通じた全体的な成功と生産性全般について高度に予測的であることを示した。出願人は家畜群からデータを収集し、世界中の群れに由来する18,000頭以上の雄親の雌の仔から子宮炎、ケトン症および乳房炎の数百万個の記録をまとめた。出願人は各形質それぞれについて数百万個の記録を蓄積した。例えば雌の仔の出産に関する形質、体細胞スコア、雌の仔の妊娠率および雌牛の受胎率などの、移行期に影響を与えるかまたは移行期によって影響されることが知られる他の形質もまたさらなる実施形態に使用してもよい。
これらのデータに基づき、データベース中で信頼性の高いすべての雄親から計算した等級が動物に与えられ、前記等級では10%の雄親が星5個、20%の雄親が星4個、40%の雄親が星3個、20%の雄親が星2個、10%の雄親が星1個を与えられる。この等級尺度は次に酪農雄親集団全体に適用され、最も質の高い雄親には星5個が割り当てられ、最も質の低い雄親には星1個が割り当てられる。データベース上の全部で18,000頭以上の雄親に実施する場合、雄親約1,800頭に星1個、約3,600頭に星2個、約7,200頭に星3個、約3,600頭に星4個、約1,800頭に星5個が与えられる。
雌の仔を持たない雄親は、雄親の親についての子宮炎、乳房炎およびケトン症に関する育種価を平均して、または雄親のSNPsに基づいてゲノムの評価を行うことにより等級を与えられる。他の実施形態では、これに他の形質に関する他のゲノムの評価を組み合わせてもよい。経済的な尺度では、効率上経済的利益をもたらす最上級の雄親から、収益性を下げる雄親までの幅がある。星1個と星5個の雄親の差は、家畜群の雌の仔一頭につき、1回の泌乳期当たり約$200に等しい。
図2に見られる通り、これらの3種類の形質では、選抜する際の遺伝的なバリエーションが大きい。例えば、少なくとも200頭の雌の仔を持つ雄親のうち、上位10%ではその雌の仔における子宮炎の平均発症率が6%であり、下位10%の雄親ではその雌の仔における子宮炎の平均発症率が14%であった。似たようなパターンがその他の2つの形質でも見られる。これらの形質の遺伝率(h2)は低く、それはこれらの形質に見られるバリエーションの多くが非遺伝要因によって説明されるということを意味するが、雄親の雌の仔の間に真の差が存在するということがとても重要である。雄親間のこのバリエーションが、我々がその集団を後の世代で変化させていくことを可能にするものである。
本発明によれば、これらの形質の推定育種価は、雌牛の正味の価値、生産寿命、雌の仔の妊娠率に高く相関する(実施例参照)。したがって、これらの疾患の発症率の遺伝率が高くないとしても、これらの形質は移行期全般の雌牛の健康について高度に予測的であり、重要なことには雄親の集団には選抜すべき遺伝的なバリエーションが存在する。
一実施形態においては、本発明は、乳房炎、子宮炎およびケトン症に罹りやすい傾向を予測する等級を割り当てるために、遺伝マーカー評価と組み合わせて家系内でウシ亜科の動物の乳房炎、子宮炎およびケトン症の臨床例の数を決定することを含む、ウシ亜科の動物、細胞、卵細胞、精子または胚を分類する方法を提供する。等級が何であるかは、現実世界のデータの数千個の記録を見直すことを通じて、親、祖父母または兄妹の特性を調べることにより決定してもよい。好ましい一実施形態では、このデータは他のマーカーデータおよび/または推定育種価に基づく選抜基準と組み合わせられる。
さらなる一実施形態では、本発明は、畜牛の後代検定のための方法であって、特定の子孫動物について上述のデータを収集し、好ましい乳生産形質を示す可能性、正味の価値、生産寿命および雌の仔の妊娠率を特定することを含む、前記方法を提供する。
別の態様では、本発明は、育種目的のためにウシ亜科の動物の被験体および/またはその子孫を選抜する方法であって、本発明の方法によって動物の系統における乳房炎、子宮炎およびケトン症の発症率を網羅的に調査することにより前記動物が移行期に対して好ましく反応する傾向を判定し、次に前記決定された育種価に基づいて育種目的のために前記ウシ亜科の動物の被験体を選抜するかまたは選抜しないことを含む前記方法に関する。
またさらなる実施形態では、本発明は、乳房炎、子宮炎およびケトン症についての基準に基づいて動物を選抜し、これらの動物を育種して、親が同様に選抜されなかった集団に比べて移行期の健康と乳生産が改善した動物の育種集団または子孫集団を作ることを含む。
その上さらに、多排卵胚移植法(MOET法)を使用して畜牛を選抜育種する方法であって、上記基準により選抜された雌動物を過剰排卵させ、前記過剰排卵させた雌から卵細胞を回収し、上記基準によって選抜された好適な雄動物に由来する前記卵細胞を体外受精し、前記受精卵を他の選抜された雌に移植して胚発生させることを含む前記方法が提供される。好ましい実施形態では、その方法は、子宮炎、乳房炎およびケトン症の特徴について好ましい雄牛を選抜し、選抜された雌動物を受精させるためにその精液を使用することを含めて、乳牛を選抜育種するために使用される。
育種価を推定する方法
本発明はまた推定育種価の決定にも関する。推定育種価(EBV)は、動物が子孫に伝達する遺伝的メリットの推定値である。遺伝指数(I)は、しばしばEBVの組み合わせから構築される。EBVおよび指数は、可能な限りすべての親類に由来する表現型と遺伝子型の数値情報に基づいて推定される。EBVを推定するために混合モデルが使用され、指数の構築には多重線形回帰が使用される。親類と子孫の数が大きくなるほど、推定の質が高まる。
ある態様では、本発明は、ウシ亜科の動物の被験体における健康全般と組み合わせられた移行期の健康に関する育種価を推定する方法に関し、前記方法は、前記ウシ亜科の動物の被験体に由来する試料において、前記ウシ亜科の動物の被験体および/またはその子孫の健康全般の指標となる少なくとも1つの形質と関連した少なくとも1つの遺伝マーカーの有無を検出することを含み、ここで前記少なくとも1つの遺伝マーカーは前記少なくとも1つの形質と相関する。
一例では育種価は混合モデルを使用して決定され、例えば次の行列形態のモデル式で一般的に記述される:
ここで、yは上で説明される異なる形質の観測値に関するベクトルである。ベクトルaは動物に関係する相加的遺伝効果(前記EBV)を含む一方で、ベクトルbは例えば初産年齢および誕生の群-年-季節などの固定効果に関する。行列XおよびZaは、それぞれ固定効果と相加的遺伝効果に関する接続行列である。ベクトルeは分析される形質の残差を含む。共分散成分はASRem1(Gilmour et al., 2014)を使用して推定された。
一実施形態では、育種価は最良線形不偏予測(Best Linear Unbiased Predition)(BLUP、Henderson、1975)またはゲノム最良線形不偏予測(Genomic Best Linear Unbiased Prediction)(GBLUP、VanRaden、2008)を使用して計算される。別法としては、例えばシングルステップ(Aguilar et al., 2010)またはハイブリッドモデル(Fernando et al., 2014)などの他の方法を使用してもよい。これらの方法は、育種価を推定するために、表現型または表現型および遺伝子型の組み合わせを使用して混合モデル方法論を適用する。育種価の推定に遺伝子型情報を取り込むと、より正確な推定値がもたらされるため有利である。特定の疾患抵抗性形質、遺伝マーカーおよびマーカー対立遺伝子、試料、ウシ亜科の動物の被験体、検出方法等は当業者に知られており、本明細書に開示される子宮炎、乳房炎およびケトン症の等級法と組み合わされる。乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコア(乳房炎の指標)を含めた生産形質の遺伝的評価は計算されて酪農牧畜協議会(Council on Dairy Cattle Breeding)により年3回一般に公開されている。個々の雄牛の遺伝的評価は酪農牧畜協議会から取得してもよい。
乳房炎、子宮炎およびケトン症に関するEBVが得られた後は、これらの形質は経済的選抜指数に統合された。他の健康および適応度形質に加えて、これらの疾患形質の生産者に対する経済的価値が推定された。集団に存在する遺伝的バリエーションの推定値に加えこれらの経済的価値を使用して、指数中の形質の重み係数を決定するために選抜指数方法論が使用された。この重み係数は、経済的価値が更新される度に定期的に変化するだろう。本発明の新規性は、当業界で利用可能な他の遺伝指数にはこれらの3種類の疾患形質の組み合わせが含まれていないことにある。
選抜育種
ある態様では、本発明はウシ亜科の動物の被験体の選抜育種の方法を提供する。本発明の方法は、選抜育種に好適なウシ亜科の動物の被験体の同定を可能にする。
一実施形態ではこれらの方法は(a)ウシ亜科の動物の被験体を提供し、(b)前記被験体から生体試料を得て、(c)その試料中に有用形質の指標となる遺伝マーカーが少なくとも1個存在することを判定し、(d)ゲノム中に前記少なくとも1個の遺伝マーカーを有するウシ亜科の動物の被験体を選抜し、(e)前記マーカーデータを乳房炎、子宮炎およびケトン症の発症率および等級と組み合わせて好ましい被験体を同定し、且つ(f)前記ウシ亜科の動物の被験体を育種に使用するステップを含む。
生体試料は遺伝物質を含み、好ましくは容易に得られる好適ないかなる試料でもよい。試料タイプは本明細書の別の場所でさらに説明される。ウシ亜科の動物は好ましくは雄の被験体、すなわち雄牛である。例えば、ウシ亜科の動物の被験体が雄牛である場合、ウシ亜科の動物の被験体を育種に使用するということは、前記雄牛から精液を回収し、前記精液を1頭以上の未経産牛または雌牛の人工授精に使用することを通常含む。しかし、関連する1個または複数個の遺伝マーカーの存在はまた、本発明の方法に従って雌牛または未経産牛においても判定されてもよい。
別の好ましい一実施形態では、前記個体の集団は畜牛(Bos taurus、Bos indicus)、水牛(Bubalus bubalis)、馬(Equus caballus)、羊(Ovis aries)、山羊(Capra hircus)、豚(Sus scrofa)、ラット(Rattus novergicus)、マウス(Mus musculus)、猫(Felis catus)、犬(Canis familiaris)、ウサギ(Oryctolagus cuniculus)およびモルモット(Cavia porcellus)から成る群より選択される種のものである。
本明細書で先に説明されたように、本発明の方法は、子孫すなわち次世代が得られるように、選択された組み合わせの形質を有する個体を交雑(または交配)することを(可能にすることを)含んでもよいこともまた想像される。その上、結果としてもたらされた子孫が交雑されることもまた想像される。
多排卵胚移植法(MOET法)を使用した畜牛の選抜育種の方法であって、雌動物を過剰排卵させ、前記過剰排卵させた雌から卵細胞を回収し、選抜された好適な雄動物に由来する前記卵細胞を体外受精し、前記受精卵を他の雌に移植して胚発生させることを含む、前記方法がさらに提供される。
好ましい一実施形態では、その方法は乳牛を選抜育種するために使用され、本明細書で説明される乳生産形質および任意の他の遺伝マーカーに関して好ましい雄牛を選抜し、雌動物を受精するためにその精液を使用することを含む。より好ましくは、雌動物もまた前記形質および任意の遺伝マーカーについて好ましい。MOET法が好ましくは選抜育種のために使用されてもよい。
本明細書で言及されるすべての出版物および特許出願は、本発明が関係する当業者の技術レベルの指標となる。個別の出版物または特許出願がそれぞれ特定的かつ個別に引用によって本明細書に加えられることが示されたのと同程度に、すべての出版物と特許出願が引用によって本明細書に加えられる。
前述の発明は明確な理解を提供するために図示および例示により詳細に説明されているが、付属する特許請求の範囲の範囲内で一定の変更と改変が行われてもよいことは自明であろう。したがって、本発明の多くの改変と他の実施形態が、本発明に関係する分野の当業者の頭に浮かび、前述された説明と関連した図に提示される教示が役立つだろう。したがって、本発明が開示される前記特定の実施形態に限定されるものではなく、付属する特許請求の範囲の範囲内で改変と他の実施形態が含まれることが意図されていることが理解されなければならない。
以下の実施例は例示的かつ非限定的に提供される。
〔実施例1〕
本研究の目的は生産者の記録データに由来する乳房炎(MAST)、子宮炎(MET)およびケトン症(KET)の遺伝的評価法を開発することであった。出産から分娩後60日までの期間は、雌牛の泌乳期において最大75%までの疾患が発症する最も困難な時期の1つである。酪農業者は管理目的で日常的に健康データを収集しており、これらのデータはまた遺伝的な評価においても価値がある。これらの形質に関する限定された遺伝的評価法が存在する。雌牛が疾患の1つの症状を有することを示すキーワードを探すことにより、農場管理システムに由来するデータが検索された。雌牛の初回泌乳期における最初の60日間における症例だけが使用された。776箇所、593箇所および421箇所の農場に由来する初回泌乳期のホルスタインからの合計で3,264,415個、2,822,312個および2,035,174個の観察記録がそれぞれMAST、METおよびKETの評価に使用された。8世代の家系に線形雄親モデルを適合するためにASRemlが使用された。各形質について出産の群-年-季節および初産年齢並びに平均値も固定効果として適合された。雄親に関する無作為な遺伝的効果がすべての形質について使用された。初回泌乳期の平均疾患発症率は、MAST、METおよびKETについてそれぞれ16%、10%および3%であった。MAST、METおよびKETの遺伝率は、それぞれ2%、4%および3%であった。上位10%と下位10%の雄牛の間にEBVの遺伝的バリエーションが存在した。平均して下位10%の雄親の疾患発症率は上位10%の雄親の発症率に比べ、MAST、METおよびKETについてそれぞれ5%、8%および4%高かった。MAST、METおよびKETは酪農場に対する経済的影響が大きく、雌の仔がより低い疾患発症率を有する雄親を選抜することは、その集団に累積的かつ永続的な変化をもたらすために費用対効果の高い方法である。これらの形質の低い遺伝率および酪農において経済的に関連する幅広い形質を前提とすれば、移行期の雌牛をより健康的にするためにこれらは選抜指数に取り込まれるべきである。
MAST、METまたはKETの症例を示すキーワードを探すことにより、農場管理ソフトウェアに由来するデータが検索された。雌牛の初回泌乳期の最初の60日間における症例のみが使用された。
776箇所、593箇所および421箇所の農場に由来する初回泌乳期のホルスタインからの合計で3,264,415個、2,822,312個および2,035,174個の観察記録がそれぞれMAST、METおよびKETの分析に使用された。
8世代の家系に線形雄親モデルを適合するためにASReml(Gilmour et al., 2014)が使用された。
固定効果は全体の平均値、出産の群-年-季節および初産年齢であった。雄親は無作為な遺伝的な効果として適合された。
EBVと他の形質との遺伝的相関(P<0.01)
・MAST、METおよびKETは酪農場に大きな経済的影響を及ぼし、雌の仔がより低い疾患発症率を有する雄親を選抜することは、その集団において累積的かつ永続的な変化をもたらすために費用対効果の高い方法である。
・これらの形質の遺伝率の低いことと酪農における経済的に関連する幅広い形質を前提とすれば、これらは驚くほど予測性が高い。
〔実施例2〕
星の等級分類と表現型
本発明の選抜スキームを使用すれば、1動物において子宮炎の発症率が13%低く、且つケトン症の発症率が17%低くなると予測できることが分かる。
その上さらに提供される方法は、多排卵胚移植法(MOET法)を使用して畜牛を選抜育種するための方法であり、前記方法は、上述の基準により選抜された雌動物を過剰排卵させ、前記過剰排卵させた雌から卵細胞を回収し、上述の基準により選抜された好適な雄動物に由来する前記卵細胞を体外受精し、他の選抜された雌に前記受精卵を移植して胚発生させることを含む。好ましい実施形態では、子宮炎、乳房炎およびケトン症の特徴について好ましい雄牛を選抜すること、およびその精液を選抜された雌動物を受精させるために使用することを含めて、乳牛を選抜育種するために前記方法が使用される。
本発明はまた、以下に関する。
[項目1]
乳生産形質が改善されたウシ亜科の動物を同定する方法であって、
前記ウシ亜科の動物の1頭以上の祖先における乳房炎、子宮炎及びケトン症の発症率の特徴について前記動物の系統を分析し;
前記系統の好ましい組み合わせを有する動物を親動物として選抜する、
ことを含む、前記方法。
[項目2]
前記親動物が雌牛である、項目1記載の方法。
[項目3]
前記親動物が雄親である、項目1記載の方法。
[項目4]
両方の親動物が選抜される、項目1記載の方法。
[項目5]
前記乳房炎、子宮炎及びケトン症の発症率データが複数の場所に由来する複数の動物から収集される、項目1記載の方法。
[項目6]
前記祖先が数千頭の動物を含む、項目1記載の方法。
[項目7]
前記動物が上位10%以内の動物である、項目1記載の方法。
[項目8]
前記動物が上位20%以内の動物である、項目1記載の方法。
[項目9]
前記動物が上位30%以内の動物である、項目1記載の方法。
[項目10]
前記子宮炎、乳房炎及びケトン症の発症率が推定育種価に割り当てられる、項目1記載の方法。
[項目11]
前記推定育種価を、乳、脂肪及びタンパク質生産量、脂肪及びタンパク質率、生産寿命、並びに体細胞スコアなどの他の形質に関する推定育種価と組み合わせ、その好ましい組み合わせを決定する、項目6記載の方法。
[項目12]
ウシ亜科の動物の集団を同定する方法であって、
雌牛又は雄親の1頭以上の祖先における乳房炎、子宮炎及びケトン症の発症率の特徴に基づいて、前記雌牛又は雄親の系統を分析し;
前記系統の好ましい組み合わせを有する雌牛を選抜する、
ことを含む、前記方法。
[項目13]
前記親動物が雌牛である、項目12記載の方法。
[項目14]
前記親動物が雄親である、項目12記載の方法。
[項目15]
両方の親動物が選抜される、項目12記載の方法。
[項目16]
前記動物が上位10%以内の動物である、項目12記載の方法。
[項目17]
前記動物が上位20%以内の動物である、項目12記載の方法。
[項目18]
前記動物が上位30%以内の動物である、項目12記載の方法。
[項目19]
前記乳房炎、子宮炎及びケトン症の発症率データが複数の場所に由来する複数の動物から収集される、項目12記載の方法。
[項目20]
前記祖先が数千頭の動物を含む、項目12記載の方法。
[項目21]
前記子宮炎、乳房炎及びケトン症の発症率が推定育種価に割り当てられる、項目12記載の方法。
[項目22]
前記推定育種価を、乳、脂肪及びタンパク質生産量、脂肪及びタンパク質率、生産寿命、並びに体細胞スコアなどの他の形質に関する推定育種価と組み合わせ、前記推定育種価の好ましい組み合わせを決定する、項目21記載の方法。
[項目23]
前記推定育種価を、乳、脂肪及びタンパク質生産量、脂肪及びタンパク質率、生産寿命、並びに体細胞スコアなどの他の形質に関する推定育種価と組み合わせる、項目3記載の方法。
[項目24]
多排卵胚移植法(MOET法)における使用のための畜牛を同定する方法であって、
雌からの卵細胞の回収における使用のために、項目1記載の方法に従って前記雌を選抜し、
項目1記載の方法に従い、且つ雌動物を受精させるための精液の回収における使用のために雄牛を選抜する、
ことを含む、前記方法。
[項目25]
乳牛集団で乳生産を改善するための方法であって、
前記雌牛動物の1頭以上の祖先における乳房炎、子宮炎及びケトン症の発症率について前記動物の系統を分析し;
乳生産に関して好ましい組み合わせの系統を有する動物を選抜し;且つ
前記系統を好ましい組み合わせで有しない動物を集団から除き、ここで前記選抜された集団の雌牛は、同様に動物が選抜されなかった雌牛集団に比べて、特に移行期の間に乳生産と健康の改善を示す、
ことを含む、前記方法。
本発明はさらに、以下に関する。
[項目1]
乳生産形質が改善された子孫集団を作るためにウシ亜科の動物を育種する方法であって、
前記ウシ亜科の動物の1頭以上の祖先における乳房炎、子宮炎およびケトン症の発症率の特徴について前記動物の系統を分析し;
前記系統の好ましい組み合わせを有する動物を親動物として選択し;且つ
前記親動物を第2の動物と交配して子孫集団を作り、ここで前記子孫集団の雌牛は親動物を同様に選択されなかった子孫集団の雌牛に比べ特に移行期の間に乳生産と健康の改善を示す、
ことを含む、前記方法。
[項目2]
前記親動物が雌牛である、項目1に記載の方法。
[項目3]
前記親動物が雄親である、項目1に記載の方法。
[項目4]
両方の親動物が選択される、項目1に記載の方法。
[項目5]
前記乳房炎、子宮炎およびケトン症の発症率データが複数の場所に由来する複数の動物から収集される、項目1に記載の方法。
[項目6]
前記祖先が数千頭の動物を含む、項目1に記載の方法。
[項目7]
前記動物が上位10%以内の動物である、項目1に記載の方法。
[項目8]
前記動物が上位20%以内の動物である、項目1に記載の方法。
[項目9]
前記動物が上位30%以内の動物である、項目1に記載の方法。
[項目10]
前記子宮炎、乳房炎およびケトン症の発症率が推定育種価に割り当てられる、項目1に記載の方法。
[項目11]
前記推定育種価を、乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコアなどの他の形質に関する推定育種価と組み合わせ、その好ましい組み合わせを決定する、項目6に記載の方法。
[項目12]
ウシ亜科の動物の育種集団を選抜する方法であって、
雌牛または雄親の1頭以上の祖先における乳房炎、子宮炎およびケトン症の発症率の特徴に基づいて、前記雌牛または雄親の系統を分析し;
前記系統の好ましい組み合わせを有する雌牛を選抜し;且つ
前記雌牛を雄牛と交配して子孫集団を作り、ここで前記子孫集団は、動物が同様に選抜されなかった子孫集団に比べて、特に移行期の間に乳生産と健康が改善している、
ことを含む、前記方法。
[項目13]
前記親動物が雌牛である、項目12に記載の方法。
[項目14]
前記親動物が雄親である、項目12に記載の方法。
[項目15]
両方の親動物が選抜される、項目12に記載の方法。
[項目16]
前記動物が上位10%以内の動物である、項目12に記載の方法。
[項目17]
前記動物が上位20%以内の動物である、項目12に記載の方法。
[項目18]
前記動物が上位30%以内の動物である、項目12に記載の方法。
[項目19]
前記乳房炎、子宮炎およびケトン症の発症率データが複数の場所に由来する複数の動物から収集される、項目12に記載の方法。
[項目20]
前記祖先が数千頭の動物を含む、項目12に記載の方法。
[項目21]
前記子宮炎、乳房炎およびケトン症の発症率が推定育種価に割り当てられる、項目12に記載の方法。
[項目22]
前記推定育種価を、乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコアなどの他の形質に関する推定育種価と組み合わせ、前記推定育種価の好ましい組み合わせを決定する、項目21に記載の方法。
[項目23]
前記推定育種価を、乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコアなどの他の形質に関する推定育種価と組み合わせる、項目3に記載の方法。
[項目24]
多排卵胚移植法(MOET法)を使用して畜牛を選抜育種する方法であって、
項目1に記載の方法に従って選抜された雌を過剰排卵させ、
前記過剰排卵させた雌から卵細胞を回収し、
好適な雄動物に由来する前記卵細胞を体外受精し、前記受精卵を他の雌に移植して胚発生させ、動物が同様に選抜されなかった子孫集団に比べて特に移行期の間に乳生産と健康が改善している子孫畜牛集団を作る、
ことを含む、前記方法。
[項目25]
項目1に従って雄牛を選抜すること、およびその精液を雌動物を受精させるために使用することを含む、乳牛を選抜育種する方法。
[項目26]
雌動物が体外受精される、項目25に記載の方法。
[項目27]
MOET法が使用される、項目25に記載の方法。
[項目28]
乳牛集団で乳生産を改善するための方法であって、
前記雌牛動物の1頭以上の祖先における乳房炎、子宮炎およびケトン症の発症率について前記動物の系統を分析し;
乳生産に関して好ましい組み合わせの系統を有する動物を選抜し;且つ
前記系統を好ましい組み合わせで有しない動物を集団から除き、ここで前記選抜された集団の雌牛は、同様に動物が選抜されなかった雌牛集団に比べて、特に移行期の間に乳生産と健康の改善を示す、
ことを含む、前記方法。

Claims (28)

  1. 乳生産形質が改善された子孫集団を作るためにウシ亜科の動物を育種する方法であって、
    前記ウシ亜科の動物の1頭以上の祖先における乳房炎、子宮炎およびケトン症の発症率の特徴について前記動物の系統を分析し;
    前記系統の好ましい組み合わせを有する動物を親動物として選択し;且つ
    前記親動物を第2の動物と交配して子孫集団を作り、ここで前記子孫集団の雌牛は親動物を同様に選択されなかった子孫集団の雌牛に比べ特に移行期の間に乳生産と健康の改善を示す、
    ことを含む、前記方法。
  2. 前記親動物が雌牛である、請求項1に記載の方法。
  3. 前記親動物が雄親である、請求項1に記載の方法。
  4. 両方の親動物が選択される、請求項1に記載の方法。
  5. 前記乳房炎、子宮炎およびケトン症の発症率データが複数の場所に由来する複数の動物から収集される、請求項1に記載の方法。
  6. 前記祖先が数千頭の動物を含む、請求項1に記載の方法。
  7. 前記動物が上位10%以内の動物である、請求項1に記載の方法。
  8. 前記動物が上位20%以内の動物である、請求項1に記載の方法。
  9. 前記動物が上位30%以内の動物である、請求項1に記載の方法。
  10. 前記子宮炎、乳房炎およびケトン症の発症率が推定育種価に割り当てられる、請求項1に記載の方法。
  11. 前記推定育種価を、乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコアなどの他の形質に関する推定育種価と組み合わせ、その好ましい組み合わせを決定する、請求項6に記載の方法。
  12. ウシ亜科の動物の育種集団を選抜する方法であって、
    雌牛または雄親の1頭以上の祖先における乳房炎、子宮炎およびケトン症の発症率の特徴に基づいて、前記雌牛または雄親の系統を分析し;
    前記系統の好ましい組み合わせを有する雌牛を選抜し;且つ
    前記雌牛を雄牛と交配して子孫集団を作り、ここで前記子孫集団は、動物が同様に選抜されなかった子孫集団に比べて、特に移行期の間に乳生産と健康が改善している、
    ことを含む、前記方法。
  13. 前記親動物が雌牛である、請求項12に記載の方法。
  14. 前記親動物が雄親である、請求項12に記載の方法。
  15. 両方の親動物が選抜される、請求項12に記載の方法。
  16. 前記動物が上位10%以内の動物である、請求項12に記載の方法。
  17. 前記動物が上位20%以内の動物である、請求項12に記載の方法。
  18. 前記動物が上位30%以内の動物である、請求項12に記載の方法。
  19. 前記乳房炎、子宮炎およびケトン症の発症率データが複数の場所に由来する複数の動物から収集される、請求項12に記載の方法。
  20. 前記祖先が数千頭の動物を含む、請求項12に記載の方法。
  21. 前記子宮炎、乳房炎およびケトン症の発症率が推定育種価に割り当てられる、請求項12に記載の方法。
  22. 前記推定育種価を、乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコアなどの他の形質に関する推定育種価と組み合わせ、前記推定育種価の好ましい組み合わせを決定する、請求項21に記載の方法。
  23. 前記推定育種価を、乳、脂肪およびタンパク質生産量、脂肪およびタンパク質率、生産寿命、ならびに体細胞スコアなどの他の形質に関する推定育種価と組み合わせる、請求項3に記載の方法。
  24. 多排卵胚移植法(MOET法)を使用して畜牛を選抜育種する方法であって、
    請求項1に記載の方法に従って選抜された雌を過剰排卵させ、
    前記過剰排卵させた雌から卵細胞を回収し、
    好適な雄動物に由来する前記卵細胞を体外受精し、前記受精卵を他の雌に移植して胚発生させ、動物が同様に選抜されなかった子孫集団に比べて特に移行期の間に乳生産と健康が改善している子孫畜牛集団を作る、
    ことを含む、前記方法。
  25. 請求項1に従って雄牛を選抜すること、およびその精液を雌動物を受精させるために使用することを含む、乳牛を選抜育種する方法。
  26. 雌動物が体外受精される、請求項25に記載の方法。
  27. MOET法が使用される、請求項25に記載の方法。
  28. 乳牛集団で乳生産を改善するための方法であって、
    前記雌牛動物の1頭以上の祖先における乳房炎、子宮炎およびケトン症の発症率について前記動物の系統を分析し;
    乳生産に関して好ましい組み合わせの系統を有する動物を選抜し;且つ
    前記系統を好ましい組み合わせで有しない動物を集団から除き、ここで前記選抜された集団の雌牛は、同様に動物が選抜されなかった雌牛集団に比べて、特に移行期の間に乳生産と健康の改善を示す、
    ことを含む、前記方法。
JP2020004043A 2015-07-29 2020-01-15 乳生産量を改善するための雌牛の育種方法 Pending JP2020074781A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562198455P 2015-07-29 2015-07-29
US62/198,455 2015-07-29
US201662350813P 2016-06-16 2016-06-16
US62/350,813 2016-06-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018504754A Division JP2018525985A (ja) 2015-07-29 2016-07-29 乳生産量を改善するための雌牛の育種方法

Publications (1)

Publication Number Publication Date
JP2020074781A true JP2020074781A (ja) 2020-05-21

Family

ID=56694227

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018504754A Pending JP2018525985A (ja) 2015-07-29 2016-07-29 乳生産量を改善するための雌牛の育種方法
JP2020004043A Pending JP2020074781A (ja) 2015-07-29 2020-01-15 乳生産量を改善するための雌牛の育種方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018504754A Pending JP2018525985A (ja) 2015-07-29 2016-07-29 乳生産量を改善するための雌牛の育種方法

Country Status (13)

Country Link
US (2) US10368532B2 (ja)
EP (1) EP3328192A1 (ja)
JP (2) JP2018525985A (ja)
CN (1) CN108135149A (ja)
AU (2) AU2016301159B2 (ja)
BR (1) BR112018001946A2 (ja)
CA (1) CA2993658A1 (ja)
CL (1) CL2018000196A1 (ja)
MX (1) MX2018000962A (ja)
NZ (1) NZ739278A (ja)
RU (1) RU2018107214A (ja)
WO (1) WO2017019996A1 (ja)
ZA (1) ZA201801212B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ739278A (en) * 2015-07-29 2019-10-25 Genus Plc Method of breeding cows for improved milk yield
RU2687183C2 (ru) * 2017-10-27 2019-05-07 Федеральное Государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства Способ комплектования стада мясного скота желательного типа
RU2718001C1 (ru) * 2019-07-15 2020-03-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Способ отбора быков на резистентность к маститу по индексам племенной ценности на основе количества соматических клеток в молоке
CN112568182A (zh) * 2020-12-01 2021-03-30 内蒙古绿蒙农牧业科技开发有限公司 一种奶牛乳肉兼用品种的饲养方法
CN114418182B (zh) * 2021-12-17 2023-01-31 北京市农林科学院信息技术研究中心 基于机器学习的肉牛育种优选方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9722109D0 (en) * 1997-10-21 1997-12-17 Univ Glasgow Mastitis assay
US20040241723A1 (en) * 2002-03-18 2004-12-02 Marquess Foley Leigh Shaw Systems and methods for improving protein and milk production of dairy herds
AU2003237840A1 (en) * 2002-05-14 2003-12-02 Monsanto Technology Llc Multiple closed nucleus breeding for swine production
US7812009B2 (en) * 2002-12-16 2010-10-12 Intervet International B.V. Mastitis treatment
ZA200506094B (en) * 2002-12-31 2006-11-29 Mmi Genomics Inc Compositions, methods and systems for inferring bovine traits
WO2005040400A2 (en) * 2003-10-24 2005-05-06 Mmi Genomics, Inc. Methods and systems for inferring traits to manage non-beef livestock
US20050123929A1 (en) * 2003-12-04 2005-06-09 Wisconsin Alumni Research Foundation Methods and compositions for genetically detecting improved milk production traits in cattle
US20080189085A1 (en) * 2004-07-29 2008-08-07 Can Technologies, Inc. System and method for optimizing animal production
MX2008001191A (es) * 2005-07-27 2008-03-18 Cargill Inc Sistema y metodo para optimizar la produccion animal usando informacion del genotipo.
US7886691B2 (en) * 2005-09-13 2011-02-15 Wisconsin Alumni Research Foundation Method for optimizing health and productivity of milk producing animals
AU2008300011A1 (en) * 2007-09-12 2009-03-19 Pfizer, Inc. Methods of using genetic markers and related epistatic interactions
WO2009085689A2 (en) * 2007-12-17 2009-07-09 Pfizer Inc. Methods of improving genetic profiles of dairy animals and products
EP2342665A1 (en) * 2008-08-19 2011-07-13 Viking Genetics FmbA Methods for determining a breeding value based on a plurality of genetic markers
WO2011132192A2 (en) * 2010-04-21 2011-10-27 Joshua Miron Method for enhancing milk quantity and quality
CA2823891C (en) * 2011-01-07 2021-07-06 Idemitsu Kosan Co., Ltd. Milk yield and/or milk quality improving agent, perinatal disease preventive or therapeutic agent, and reproductivity improving agent for ruminant
CN104812912A (zh) * 2012-08-28 2015-07-29 奥胡斯大学 乳腺炎抗性的遗传标记
US9873731B2 (en) * 2014-09-15 2018-01-23 The Lauridsen Group Incorporated Method for increasing milk production by ruminants
WO2016077693A1 (en) * 2014-11-14 2016-05-19 Genus Plc Hybrid dairy cattle and systems for maximizing hybrid advantage
NZ739278A (en) * 2015-07-29 2019-10-25 Genus Plc Method of breeding cows for improved milk yield

Also Published As

Publication number Publication date
US20170360012A1 (en) 2017-12-21
WO2017019996A4 (en) 2017-03-09
MX2018000962A (es) 2019-01-28
US10368532B2 (en) 2019-08-06
ZA201801212B (en) 2018-12-19
AU2016301159A1 (en) 2018-02-15
RU2018107214A3 (ja) 2019-08-29
JP2018525985A (ja) 2018-09-13
US11690361B2 (en) 2023-07-04
EP3328192A1 (en) 2018-06-06
AU2016301159B2 (en) 2019-09-26
CA2993658A1 (en) 2017-02-02
WO2017019996A1 (en) 2017-02-02
CL2018000196A1 (es) 2018-06-22
US20190357504A1 (en) 2019-11-28
NZ739278A (en) 2019-10-25
CN108135149A (zh) 2018-06-08
AU2019275526A1 (en) 2020-01-02
BR112018001946A2 (pt) 2018-09-18
RU2018107214A (ru) 2019-08-29

Similar Documents

Publication Publication Date Title
Baes et al. Symposium review: The genomic architecture of inbreeding: How homozygosity affects health and performance
US11690361B2 (en) Transition cow index
Ahmad et al. Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip
US20070105107A1 (en) Marker assisted best linear unbiased prediction (ma-blup): software adaptions for large breeding populations in farm animal species
US20110123983A1 (en) Methods of Using Genetic Markers and Related Epistatic Interactions
JP2011505872A (ja) 乳用動物および乳用生産物の遺伝的プロフィールを改良する方法
Iamartino et al. The buffalo genome and the application of genomics in animal management and improvement.
Ducrocq et al. Genetic improvement of dairy cattle.
RU2583301C2 (ru) Способ геномной селекции крупного рогатого скота
Mark et al. Genomic dairy cattle breeding: risks and opportunities for cow welfare
US20100304353A1 (en) Methods of improving a genomic marker index of dairy animals and products
STANOJEVIĆ et al. GENOMICS AS A TOOL FOR IMPROVING DAIRY CATTLE POPULATIONS
Ardicli et al. Associations of bovine beta-casein and kappa-casein genotypes with genomic merit in Holstein Friesian cattle
JP7465485B2 (ja) 乳房炎発症リスクの判定に用いるdnaマーカー及びそれを用いた乳房炎リスクの判定方法
Raj Improvement of Farm Animal Breeding by DNA Sequencing
Elsen Utilization of genomic information in livestock improvement
Naidoo Characterisation of the divergence of the Elsenburg Merino resource flock.
Rangel et al. Breeding and Genetics II
Schöpke Sole haemorrhage, dermatitis and co.-how genomic information and precise phenotypes help to unscramble genetic background of health traits in dairy cattle.
Gangaraj Evaluation of Genetic Merit of Buffaloes by Direct Sequencing
Aliloo Exploiting non-additive genetic effects to improve fertility in Australian dairy herds
AUTOZYGOSITY et al. FRANCISCO ROSA
Karimi et al. Study of Genetic Diversity of Sheep Breeds in Afghanistan Using SNP Markers
Carta et al. Fine mapping of QTLs and genomic selection for production traits in an experimental population of Sarda dairy sheep.
ABDELFATAH Crossbreeding effects on some semen and litter traits in rabbits

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817