JP2020074454A - Laser processing system and laser processing method for improving chip strength - Google Patents

Laser processing system and laser processing method for improving chip strength Download PDF

Info

Publication number
JP2020074454A
JP2020074454A JP2020010218A JP2020010218A JP2020074454A JP 2020074454 A JP2020074454 A JP 2020074454A JP 2020010218 A JP2020010218 A JP 2020010218A JP 2020010218 A JP2020010218 A JP 2020010218A JP 2020074454 A JP2020074454 A JP 2020074454A
Authority
JP
Japan
Prior art keywords
wafer
modified region
semiconductor wafer
grinding
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020010218A
Other languages
Japanese (ja)
Inventor
翼 清水
Tasuku Shimizu
翼 清水
修平 押田
Shuhei Oshida
修平 押田
明 植木原
Akira Uekihara
明 植木原
藤田 隆
Takashi Fujita
隆 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2020010218A priority Critical patent/JP2020074454A/en
Publication of JP2020074454A publication Critical patent/JP2020074454A/en
Priority to JP2020114007A priority patent/JP6979608B2/en
Priority to JP2021184119A priority patent/JP7217409B2/en
Priority to JP2023003952A priority patent/JP7417837B2/en
Priority to JP2023218767A priority patent/JP2024032712A/en
Pending legal-status Critical Current

Links

Images

Abstract

To improve the chip strength.SOLUTION: A laser processing device includes modified region forming means that irradiates the inside of a wafer with pulsed laser light emitted from a laser oscillator from the back surface side of a semiconductor wafer via a condenser lens to form a modified region having an independent minute hole at regular intervals inside the wafer, and modified region position control means that adjusts the modified region forming position to a position where a crack extending from the minute hole in the modified region develops and becomes a starting point of cutting of the semiconductor wafer when the modified region is ground and removed from the back surface of the semiconductor wafer, and the modified region position control means includes relative Z direction position adjustment means of the semiconductor wafer by a table, and condensed lens position control means by Z fine movement means constituted by a piezoelectric element.SELECTED DRAWING: Figure 1

Description

本発明は、内部にレーザ光で改質領域を形成したウェーハを割断するための技術に関する。   The present invention relates to a technique for cleaving a wafer having a modified region formed therein with a laser beam.

特許文献1には、裏面を上向きにして載置された半導体基板にレーザを照射して基板内部に改質領域を形成し、半導体基板の裏面にエキスパンドテープを装着し、エキスパンドテープの上からナイフエッジを当てて改質領域を基点として基板を割ることで、半導体基板をチップに切断することが記載されている。   In Patent Document 1, a semiconductor substrate placed with its back surface facing upward is irradiated with a laser to form a modified region inside the substrate, an expand tape is attached to the back surface of the semiconductor substrate, and a knife is applied from above the expand tape. It is described that a semiconductor substrate is cut into chips by applying an edge and breaking the substrate with the modified region as a base point.

また、特許文献1には、裏面を上向きにして載置された半導体基板にレーザを照射して基板内部に改質領域を形成した後で基板を研削して薄くし、半導体基板の裏面にエキスパンドテープを装着し、エキスパンドテープを伸張させることで改質領域を基点として基板を割ることが記載されている。   Further, in Patent Document 1, a semiconductor substrate mounted with the back surface facing upward is irradiated with a laser to form a modified region inside the substrate, and then the substrate is ground to be thinned and expanded on the back surface of the semiconductor substrate. It is described that a substrate is mounted and a expandable tape is stretched to split the substrate from the modified region as a base point.

特許文献2には、裏面を上向きにして載置された半導体基板にレーザを照射して基板内部に改質領域を形成することで半導体基板の厚さ方向に割れを発生させ、基板の裏面を研削及びケミカルエッチングすることで割れを裏面に露出させることで、半導体基板をチップに切断することが記載されている。そして、特許文献2には、自然に或いは比較的小さな力、例えば人為的な力や基板に温度差を与えることにより熱応力を発生させたりすることにより、改質領域から厚さ方向に割れが発生することが記載されている。   In Patent Document 2, by irradiating a semiconductor substrate mounted with the back surface facing upward with a laser to form a modified region inside the substrate, a crack is generated in the thickness direction of the semiconductor substrate, and the back surface of the substrate is It is described that a semiconductor substrate is cut into chips by exposing cracks on the back surface by grinding and chemical etching. Further, in Patent Document 2, cracks are generated in the thickness direction from the modified region by causing thermal stress by giving a natural or relatively small force, for example, an artificial force or a temperature difference to the substrate. It is described that it occurs.

特許3624909号公報Japanese Patent No. 3624909 特許3762409号公報Japanese Patent No. 3762409

特許文献1に記載の発明では、ナイフエッジにより局所的に外力を印加することで基板を割るが、この局所的に外力を印加するために曲げ応力やせん断応力を基板に付与させることになる。しかし、曲げ応力やせん断応力は基板全面に一様に分布させることは難しい。例えば、曲げ応力やせん断応力を基板にかける場合、どこか弱い点に応力が集中することになり、効率的に所望の部分に対して必要最低限の応力を一様に付与できない。   In the invention described in Patent Document 1, the substrate is cracked by locally applying an external force by the knife edge. However, in order to locally apply the external force, a bending stress or a shear stress is applied to the substrate. However, it is difficult to evenly distribute bending stress and shear stress over the entire surface of the substrate. For example, when a bending stress or a shearing stress is applied to a substrate, the stress concentrates at a weak point somewhere, and it is impossible to efficiently and uniformly apply a minimum required stress to a desired portion.

したがって、基板の割れにばらつきが生じ、割れが緩やかに進行しなかった場合には基板がチップ内においても破壊するという問題がある。また、基板を切断する部分に対して、局所的に順番に応力を与えて切断していく場合、例えば一枚の基板から多数のチップを収集する場合などでは、多数の切断ラインが存在するため、生産性が非常に低下するという問題がある。   Therefore, there is a problem that variations occur in the cracks of the substrate, and if the cracks do not progress slowly, the substrate is broken even in the chip. In addition, when stress is sequentially applied locally to the part to be cut into the substrate, for example, when many chips are collected from one substrate, there are many cutting lines. However, there is a problem that productivity is extremely reduced.

また、外力を印加して基板を割る場合に、基板を薄く加工していない場合には、ウェーハを割る際に非常に大きい応力を必要とするという問題がある。   Further, when an external force is applied to break the substrate, a very large stress is required when breaking the wafer unless the substrate is thinly processed.

特にレーザ加工の改質深さ幅に対して、基板厚みが充分厚い場合は、外力を印加しても、急激な外力の影響によって、基板に対してきれいに垂直に割断できるとは限らない。そのため、いくつかレーザパルスを基板の厚み方向に多段に照射するなどが必要な場合がある。   In particular, when the substrate thickness is sufficiently thick with respect to the modified depth width of the laser processing, even if an external force is applied, it is not always possible to cut the substrate neatly and vertically due to the effect of the sudden external force. Therefore, it may be necessary to irradiate several laser pulses in multiple steps in the thickness direction of the substrate.

また、特許文献1、2に記載の発明では、レーザの照射により基板内部に形成された改質領域は、最終的にチップ断面に残ることとなる。そのため、チップ断面の改質領域の部分から発塵する場合がある。また、チップ断面部分が局所的に破砕した結果、その破砕した断面がきっかけとなって、チップが破断する場合もある。その結果、チップの抗折強度は小さくなるという問題点がある。   Further, in the inventions described in Patent Documents 1 and 2, the modified region formed inside the substrate by the laser irradiation is finally left on the cross section of the chip. Therefore, dust may be generated from the modified region of the chip cross section. Further, as a result of local crushing of the chip cross-section, the crushed cross-section may trigger the chip to break. As a result, there is a problem that the bending strength of the chip becomes small.

特許文献2に記載の発明では、自然に改質領域から厚さ方向に割れが発生すると記載されているが、他方自然に割れる場合は必ずしも自然に割れない場合も存在する。割るという安定した効果を必然的に得るためには、時として恣意的な手段をとる必要があり、自然に割れる場合は恣意的な手段に該当しない。   In the invention described in Patent Document 2, it is described that the crack naturally occurs in the thickness direction from the modified region, but on the other hand, when the crack naturally breaks, the crack may not necessarily crack naturally. In order to inevitably obtain the stable effect of breaking, it is sometimes necessary to take an arbitrary means, and when it naturally breaks, it is not an arbitrary means.

また、比較的小さな力として、温度差を与えることにより熱応力を発生させて、改質領域から厚さ方向に割れを発生させることも考えられる。この場合においては、基板の面内に一様な熱勾配をどのように与えるかという点が非常に難しいという問題がある。すなわち、人為的に熱勾配を与えたとしても熱伝導によって、一部熱勾配を緩和するように基板内に熱が分散していく。したがって、一定の基板を切断する程度の安定した熱勾配(安定した温度差)をどのように絶えずに形成するか、という点で極めて難しい問題がある。   It is also conceivable that thermal stress is generated by giving a temperature difference as a relatively small force to generate cracks in the thickness direction from the modified region. In this case, there is a problem that how to provide a uniform thermal gradient in the plane of the substrate is very difficult. That is, even if a thermal gradient is artificially applied, the heat is dissipated in the substrate by heat conduction so as to partially relax the thermal gradient. Therefore, there is a very difficult problem in terms of how to constantly form a stable thermal gradient (stable temperature difference) to the extent that a certain substrate is cut.

また、特許文献2に記載の発明では、半導体基板を研削後、裏面にケミカルエッチングするが、研削した後には、研削後の表面は固定砥粒による研削条痕が残り、付随して微小なクラックが形成され、加工変質層が残存している。その表面をケミカルエッチングした場合には、微小クラックなどの格子歪が大きい部分が選択的にエッチングされることになる。そのため、微小クラックはかえって助長され大きいクラックになる。そのため、切断起点領域だけではなく、時として、研削とエッチングによって形成された微小クラックから破断する場合もあり、安定した切断加工が難しいという問題がある。   Further, in the invention described in Patent Document 2, after the semiconductor substrate is ground, chemical etching is performed on the back surface. However, after grinding, a grinding streak due to fixed abrasive grains remains on the surface after grinding, and accompanying minute cracks. Are formed, and the work-affected layer remains. When the surface is chemically etched, a portion having a large lattice strain such as a microcrack is selectively etched. Therefore, the microcracks are instead promoted to become large cracks. Therefore, not only the cutting start region, but sometimes the micro cracks formed by grinding and etching may break, which poses a problem that stable cutting is difficult.

また、エッチングにより基板表面の凹凸が助長されるため、基板表面は鏡面化されていない。そのため、分割されたチップにも凹凸が残るため、凹凸の大きい部分、すなわち微小クラックから破壊することが十分に考えられ、チップの抗折強度は低くなるという問題がある。   Further, since the unevenness of the substrate surface is promoted by etching, the substrate surface is not mirror-finished. As a result, since unevenness is left in the divided chips as well, it is sufficiently possible to break the chip from large unevenness, that is, minute cracks, and there is a problem that the bending strength of the chip becomes low.

また、さらに、レーザ加工し、改質した部分にエッチング液が作用した場合、改質した部分は一度溶融して再結晶化して固まっているため、大きな粒界が形成されている。   Further, when the etching solution acts on the modified portion after laser processing, the modified portion is once melted, recrystallized, and solidified, so that a large grain boundary is formed.

こうした粒界部分にエッチング液が作用すると、粒界からシリコン粒が剥げ落ちるようにエッチングが進行するため、さらに凹凸が助長されるようにエッチングされることになる。   When the etching liquid acts on such a grain boundary portion, the etching progresses so that the silicon grains are peeled off from the grain boundary, so that the unevenness is further promoted.

研磨工程としては、具体的には引用文献p.12_1行目において、研削工程と裏面にケミカルエッチングを施すことであると記載されている。ケミカルエッチングの場合、そのまま放置していても、クラック内にケミカルエッチング液が浸透し、クラック部分を溶かす作用がある。   Specifically, in the cited document, p.12_1 line, it is described that the polishing step is a grinding step and performing chemical etching on the back surface. In the case of chemical etching, even if the chemical etching is left as it is, the chemical etching liquid penetrates into the cracks and has a function of melting the cracked portions.

特に、クラックが基板の表面上にまで先走っている場合、エッチング液がチップとチップを接着しているフィルムの間に浸透し、チップをフィルムから剥離するという問題が発生する。   In particular, when the cracks extend to the surface of the substrate, the etching liquid penetrates between the chips and the film to which the chips are adhered, causing a problem of peeling the chips from the film.

また、クラックが基板の表面上にまで走っていなくても、クラックに沿ってエッチングは進行する。特に研削後に、薄くなった状態でエッチングを行う場合、クラックにエッチング液が毛細管現象によって浸透し、クラック先端を溶かしながら微小クラックをさらに深くするとともに、さらにそこへ新たなエッチング液が入り込むといった形となる。この場合、デバイス面の近傍にエッチング液が作用すると、デバイス面付近を溶かしてしまい、素子内部にまでエッチングが進行する場合がある。また、その時に問題なくても、ウェーハの壁面に残されたエッチング液がデバイス内部に入り込み、その後不良を起こすこともある。よって、ウェーハ表面の加工歪を除去する一方で、それ以上にクラックを助長し、それに伴う副次的な問題を誘発することになりかねない。   Moreover, even if the crack does not extend to the surface of the substrate, the etching proceeds along the crack. Especially when etching is performed in a thinned state after grinding, the etching solution penetrates into the cracks by a capillary phenomenon, deepens the microcracks while melting the crack tips, and a new etching solution further enters there. Become. In this case, when the etching liquid acts on the vicinity of the device surface, the vicinity of the device surface may be melted, and the etching may proceed to the inside of the element. Even if there is no problem at that time, the etching solution left on the wall surface of the wafer may enter the inside of the device and cause a defect thereafter. Therefore, while removing the processing strain on the wafer surface, cracks may be further promoted and secondary problems associated therewith may be induced.

また、こうした場合、結果的にクラックが表面上にまで先走って、一部チップとフィルムの間にエッチング液が入り込み、処理中にチップが剥がれる問題が発生することもある。特に、研削後が進行して基板が薄くなった場合、少しの外力でクラックが進行しやすく、クラックが表面に達することでチップ剥離が発生するため、基板が薄くなった場合には、クラックをそれ以上進行させないように処理をしなければならない。   Further, in such a case, as a result, a crack may advance to the surface, and an etching solution may partially enter between the chip and the film, causing a problem that the chip is peeled off during the process. In particular, when the substrate becomes thin after grinding, cracks are likely to proceed with a small external force, and chip peeling occurs when the crack reaches the surface. It must be processed so that it does not proceed any further.

特許文献2には、基板の裏面を研削することにより改質領域から割れが発生することが記載されているが、特許文献2には基板を研削する時の基板の固定方法が記載されていない。図20に示すように基板をリテーナ等に嵌め込むことで基板の外周を支持する場合や、図21に示すように基板の一部のみを吸着する場合には、基板が全面的に一様に拘束されないため、このような場合には基板の裏面を研削したとしても改質領域から割れが発生しない。   Although Patent Document 2 describes that a crack is generated from the modified region by grinding the back surface of the substrate, Patent Document 2 does not describe a method of fixing the substrate when grinding the substrate. .. When the outer circumference of the substrate is supported by fitting the substrate into a retainer or the like as shown in FIG. 20 or when only a part of the substrate is adsorbed as shown in FIG. In such a case, cracking does not occur in the modified region even if the back surface of the substrate is ground because it is not restrained.

本発明は、このような事情に鑑みてなされたものであり、安定した品質のチップを効率よく得ることができる半導体基板の割断方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of cleaving a semiconductor substrate that can efficiently obtain chips of stable quality.

上記目的を達成するために、本発明に係る半導体基板の割断方法の一態様は、内部にレーザ光で改質領域を形成したウェーハを割断するウェーハ割断方法において、前記ウェーハ表面を一様にテーブルに真空吸着する工程と、前記ウェーハを真空吸着した状態で前記ウェーハの裏面を研削除去し、前記改質領域から延びる微小亀裂をウェーハ深さ方向に進展させながら、前記進展した微小亀裂を残して前記改質領域を研削除去する研削工程と、前記研削工程後、前記ウェーハの裏面の化学機械研磨を行う鏡面化工程と、前記鏡面化工程後、前記ウェーハを割断する工程と、を有することを特徴とする。   In order to achieve the above object, one aspect of a method for cleaving a semiconductor substrate according to the present invention is a wafer cleaving method for cleaving a wafer having a modified region formed therein with a laser beam, wherein the wafer surface is uniformly tabled. In the step of vacuum adsorption to, the wafer backside is removed by grinding in a state of vacuum adsorbing the wafer, while advancing the microcracks extending from the modified region in the wafer depth direction, leaving the advanced microcracks. A grinding step of grinding and removing the modified region, a grinding step of performing a chemical mechanical polishing of the back surface of the wafer after the grinding step, and a step of cleaving the wafer after the mirroring step. Characterize.

本発明に係る半導体基板の割断方法の一態様において、前記研削工程は、前記ウェーハの裏面から前記改質領域より手前の部分まで研削除去し、前記改質領域から延びる微小亀裂を前記ウェーハ深さ方向に進展させる第1の研削工程と、前記進展した前記微小亀裂を残して前記ウェーハ内部に形成した前記改質領域を研削除去する第2の研削工程と、を含むことが好ましい。   In one aspect of the method for cleaving a semiconductor substrate according to the present invention, in the grinding step, the back surface of the wafer is removed by grinding from a portion before the modified region, and a microcrack extending from the modified region is formed in the wafer depth. It is preferable to include a first grinding step of advancing in a direction and a second grinding step of grinding and removing the modified region formed inside the wafer while leaving the advanced microcracks.

また、本発明に係る半導体基板の割断方法の一態様において、前記鏡面化工程は、前記微小亀裂を残しながら、前記研削工程で導入された加工変質層を除去して鏡面化を行うことが好ましい。   In one aspect of the method for cleaving a semiconductor substrate according to the present invention, it is preferable that the mirror-finishing step removes the work-affected layer introduced in the grinding step and mirror-finishes while leaving the microcracks. ..

本発明の半導体基板の割断方法によれば、割断が確実に効率よく行え、安定した品質のチップを効率よく得ることができる。   According to the semiconductor substrate cleaving method of the present invention, the cleaving can be performed reliably and efficiently, and chips of stable quality can be efficiently obtained.

レーザダイシング装置1の概観構成を示す図。The figure which shows the general structure of the laser dicing apparatus 1. レーザダイシング装置1の駆動手段の構成を表わす概念構成図。FIG. 3 is a conceptual configuration diagram showing a configuration of a driving unit of the laser dicing device 1. レーザダイシング装置1の駆動手段の構成を表わす平面図。FIG. 3 is a plan view showing a configuration of driving means of the laser dicing device 1. 研削装置2の概観構成を示す図。The figure which shows the general structure of the grinding device 2. 研削装置2の部分拡大図。The elements on larger scale of the grinding device 2. 研削装置2の部分拡大図。The elements on larger scale of the grinding device 2. 研削装置2の研磨ステージの概略図。3 is a schematic view of a polishing stage of the grinding device 2. FIG. 研削装置2のチャックの詳細を示す図であり、(a)は平面図、(b)は断面図、(c)は部分拡大図。It is a figure which shows the detail of the chuck | zipper of the grinding device 2, (a) is a top view, (b) is sectional drawing, (c) is a partially expanded view. テープ剥離装置3の側面図。The side view of the tape peeling apparatus 3. 割断の様子を示した側面断面図。The side sectional view showing the state of cleaving. 押圧された弾性体の様子を示した側面断面図。FIG. 4 is a side sectional view showing a state of the pressed elastic body. 割断の様子を示した斜視図。The perspective view which showed the mode of cleaving. テープの貼着方法を示した斜視図。The perspective view which showed the attachment method of a tape. 本発明に係る半導体基板の切断方法を示したフロー図。The flowchart which showed the cutting method of the semiconductor substrate which concerns on this invention. 研削除去工程を説明する図。The figure explaining a grinding removal process. 研削除去工程における亀裂進展を説明する図であり、(a)は研削時の概略図、(b)はウェーハW裏面の状態、(c)はウェーハW表面の状態、(d)はウェーハWの断面図。It is a figure explaining crack progress in a grinding removal process, (a) is a schematic diagram at the time of grinding, (b) is a state of the back surface of wafer W, (c) is a state of the front surface of wafer W, (d) is the state of wafer W Sectional view. 研削除去工程後のウェーハW裏面の表面状態を説明する図。The figure explaining the surface state of the wafer W back surface after a grinding removal process. 亀裂進展評価の条件について示した図。The figure shown about the conditions of crack growth evaluation. 亀裂進展評価の評価結果を示した図。The figure which showed the evaluation result of crack growth evaluation. 従来の基板研削時の固定状態を示す図。The figure which shows the fixed state at the time of the conventional substrate grinding. 従来の基板研削時の固定状態を示す図。The figure which shows the fixed state at the time of the conventional substrate grinding.

以下、添付図面に従って本発明に係る半導体基板の割断方法の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a method for cleaving a semiconductor substrate according to the present invention will be described in detail with reference to the accompanying drawings.

本発明は、レーザダイシング装置1と、研削装置2と、テープ剥離装置3と、レーザダイシング装置1により加工されたウェーハを研削装置2またはテープ剥離装置3へ搬送する搬送装置(図示せず)と、テープ剥離装置3により割断されたウェーハを離間するエキスパンド装置とで構成された切断装置により行われる。   The present invention includes a laser dicing device 1, a grinding device 2, a tape peeling device 3, and a carrying device (not shown) for carrying a wafer processed by the laser dicing device 1 to the grinding device 2 or the tape peeling device 3. The cutting device is composed of an expanding device that separates the wafers cut by the tape peeling device 3.

<装置構成について>
(1)レーザダイシング装置1について
図1は、レーザダイシング装置1の概観構成を示す図である。同図に示すように、本実施の形態のレーザダイシング装置1は、主として、ウェーハ移動部11、レーザ光学部20と観察光学部30とからなるレーザヘッド40、制御部50等から構成されている。
<About device configuration>
(1) About Laser Dicing Device 1 FIG. 1 is a diagram showing a general configuration of the laser dicing device 1. As shown in the figure, the laser dicing apparatus 1 of the present embodiment mainly includes a wafer moving unit 11, a laser head 40 including a laser optical unit 20 and an observation optical unit 30, a control unit 50, and the like. ..

ウェーハ移動部11は、ウェーハWを吸着保持する吸着ステージ13と、レーザダイシング装置1の本体ベース16に設けられ、吸着ステージ13をXYZθ方向に精密に移動させるXYZθテーブル12等からなる。このウェーハ移動部11によって、ウェーハWが図のXYZθ方向に精密に移動される。   The wafer moving unit 11 includes a suction stage 13 that holds the wafer W by suction, and an XYZθ table 12 that is provided on the main body base 16 of the laser dicing apparatus 1 and that moves the suction stage 13 precisely in the XYZθ directions. The wafer moving unit 11 precisely moves the wafer W in the XYZθ directions in the drawing.

ウェーハWは、不図示のテープ貼付装置によりデバイスが形成された表面に粘着材を有するバックグラインドテープ(以下、BGテープ)Bが貼付され、裏面が上向きとなるように吸着ステージ13に載置される。   A back grinding tape (hereinafter, BG tape) B having an adhesive material is attached to the surface of the wafer W on which the device is formed by a tape attaching device (not shown), and the wafer W is placed on the suction stage 13 so that the back surface faces upward. It

なお、ウェーハWは、一方の面に粘着材を有するダイシングシートが貼付され、このダイシングシートを介してフレームと一体化された状態で吸着ステージ13に載置されるようにしてもよい。この場合には、表面が上向きとなるように吸着ステージ13に載置される。   The wafer W may be mounted on the suction stage 13 in such a state that a dicing sheet having an adhesive material is attached to one surface of the wafer W and the wafer W is integrated with the frame via the dicing sheet. In this case, it is placed on the suction stage 13 with its surface facing upward.

レーザ光学部20は、レーザ発振器21、コリメートレンズ22、ハーフミラー23、コンデンスレンズ(集光レンズ)24、レーザ光をウェーハWに対して平行に微小移動させる駆動手段25等で構成されている。レーザ発振器21から発振されたレーザ光は、コリメートレンズ22、ハーフミラー23、コンデンスレンズ24等の光学系を経てウェーハWの内部に集光される。集光点のZ方向位置は、後出のZ微動手段27によるコンデンスレンズ24のZ方向微動によって調整される。   The laser optical unit 20 includes a laser oscillator 21, a collimator lens 22, a half mirror 23, a condensation lens (condensing lens) 24, a driving unit 25 that slightly moves the laser light in parallel to the wafer W, and the like. The laser light emitted from the laser oscillator 21 is focused inside the wafer W through an optical system such as a collimator lens 22, a half mirror 23, and a condensation lens 24. The position of the focal point in the Z direction is adjusted by the Z direction fine movement of the condensation lens 24 by the Z fine movement means 27 described later.

なお、レーザ光の条件は、光源が半導体レーザ励起Nd:YAGレーザ、波長が1064nm、レーザ光スポット断面積が3.14×10−8cm2、発振形態がQスイッチパルス、繰り返し周波数が100kHz、パルス幅が30ns、出力が20μJ/パルス、レーザ光品質がTEM00、偏光特性が直線偏光である。また、コンデンスレンズ24の条件は、倍率が50倍、N.A.が0.55、レーザ光波長に対する透過率が60パーセントである。   The conditions of the laser light are as follows: the light source is a semiconductor laser-excited Nd: YAG laser, the wavelength is 1064 nm, the laser light spot cross-sectional area is 3.14 × 10 −8 cm 2, the oscillation mode is a Q switch pulse, the repetition frequency is 100 kHz, and the pulse width is Is 30 ns, the output is 20 μJ / pulse, the laser beam quality is TEM00, and the polarization characteristic is linear polarization. The conditions of the condensation lens 24 are that the magnification is 50 times and N. A. Is 0.55 and the transmittance for the laser light wavelength is 60%.

観察光学部30は、観察用光源31、コリメートレンズ32、ハーフミラー33、コンデンスレンズ34、観察手段としてのCCDカメラ35、画像処理部38、テレビモニタ36等で構成されている。   The observation optical unit 30 includes an observation light source 31, a collimator lens 32, a half mirror 33, a condensation lens 34, a CCD camera 35 as an observation means, an image processing unit 38, a television monitor 36, and the like.

観察光学部30では、観察用光源31から出射された照明光がコリメートレンズ32、ハーフミラー33、コンデンスレンズ24等の光学系を経てウェーハWの表面を照射する。ウェーハWの表面からの反射光はコンデンスレンズ24、ハーフミラー23及び33、コンデンスレンズ34を経由して観察手段としてのCCDカメラ35に入射し、ウェーハWの表面画像が撮像される。   In the observation optical unit 30, the illumination light emitted from the observation light source 31 irradiates the surface of the wafer W through the optical system such as the collimator lens 32, the half mirror 33, and the condensation lens 24. The reflected light from the surface of the wafer W is incident on a CCD camera 35 as an observation means via the condensation lens 24, the half mirrors 23 and 33, and the condensation lens 34, and a surface image of the wafer W is captured.

この撮像データは画像処理部38に入力され、ウェーハWのアライメントに用いられるとともに、制御部50を経てテレビモニタ36に写し出される。   The imaged data is input to the image processing unit 38, used for alignment of the wafer W, and also displayed on the television monitor 36 via the control unit 50.

制御部50は、CPU、メモリ、入出力回路部等からなり、レーザダイシング装置1の各部の動作を制御する。   The control unit 50 includes a CPU, a memory, an input / output circuit unit, and the like, and controls the operation of each unit of the laser dicing device 1.

なお、レーザダイシング装置1は、図示しないウェーハカセットエレベータ、ウェーハ搬送手段、操作板、及び表示灯等から構成されている。   The laser dicing apparatus 1 is composed of a wafer cassette elevator, a wafer transfer means, an operation plate, an indicator lamp and the like, which are not shown.

ウェーハカセットエレベータは、ウェーハが格納されたカセットを上下移動して搬送位置に位置決めする。搬送手段はカセットと吸着ステージ13との間でウェーハを搬送する。   The wafer cassette elevator vertically moves a cassette in which wafers are stored and positions the cassette at a transfer position. The transfer unit transfers the wafer between the cassette and the suction stage 13.

操作板には、ダイシング装置10の各部を操作するスイッチ類や表示装置が取り付けられている。表示灯は、ダイシング装置10の加工中、加工終了、非常停止等の稼動状況を表示する。   Switches and a display device for operating each part of the dicing device 10 are attached to the operation plate. The indicator lamp displays the operating status of the dicing device 10, such as during processing, processing completion, and emergency stop.

図2は、駆動手段25の細部を説明する概念図である。駆動手段25は、コンデンスレンズ24を保持するレンズフレーム26、レンズフレーム26の上面に取り付けられレンズフレーム26を図のZ方向に微小移動させるZ微動手段27、Z微動手段27を保持する保持フレーム28、保持フレーム28をウェーハWと平行に微小移動させるリニア微動手段であるPZ1、PZ2等から構成される。   FIG. 2 is a conceptual diagram illustrating details of the driving unit 25. The driving means 25 includes a lens frame 26 for holding the condensation lens 24, a Z fine movement means 27 attached to the upper surface of the lens frame 26 for finely moving the lens frame 26 in the Z direction in the figure, and a holding frame 28 for holding the Z fine movement means 27. , PZ1 and PZ2 which are linear fine movement means for finely moving the holding frame 28 in parallel with the wafer W.

Z微動手段27には電圧印加によって伸縮する圧電素子が用いられている。この圧電素子の伸縮によってコンデンスレンズ24がZ方向に微小送りされて、レーザ光の集光点のZ方向位置が精密に位置決めされるようになっている。   A piezoelectric element that expands and contracts when a voltage is applied is used for the Z fine movement means 27. Due to the expansion and contraction of the piezoelectric element, the condensation lens 24 is slightly moved in the Z direction, and the position of the laser light focusing point in the Z direction is precisely positioned.

保持フレーム28は、図示しない4本のピアノ線からなる2対の平行バネで支持され、XY方向には移動自在で、Z方向の移動が拘束されている。なお、保持フレーム28の支持方法はこれに限らず、例えば複数のボールで上下に挟み込み、Z方向の移動を拘束するとともにXY方向に移動自在に支持してもよい。   The holding frame 28 is supported by two pairs of parallel springs made up of four piano wires (not shown), is movable in the XY directions, and is restrained from moving in the Z direction. The supporting method of the holding frame 28 is not limited to this, and may be sandwiched by a plurality of balls in the vertical direction to restrain the movement in the Z direction and support the holding frame 28 so as to be movable in the XY directions.

リニア微動手段PZ1、PZ2には、Z微動手段27と同じく圧電素子が用いられており、一端がレーザヘッド40のケース本体に固定され、他端が保持フレーム28の側面に当接している。   Piezoelectric elements are used for the linear fine movement means PZ1 and PZ2, like the Z fine movement means 27. One end is fixed to the case body of the laser head 40, and the other end is in contact with the side surface of the holding frame 28.

図3は、駆動手段25の平面図である。図3に示すように、リニア微動手段PZ1、PZ2はX方向に2個配置されており、夫々一端がレーザヘッド40のケース本体に固定され、他端が保持フレーム28の側面に当接している。したがって、印加電圧を制御することによってコンデンスレンズ24をX方向に往復微動送りすることができ、レーザ光をX方向に往復微動送りさせたり振動させたりすることができる。   FIG. 3 is a plan view of the driving means 25. As shown in FIG. 3, two linear fine movement units PZ1 and PZ2 are arranged in the X direction, one end of each is fixed to the case body of the laser head 40, and the other end is in contact with the side surface of the holding frame 28. .. Therefore, by controlling the applied voltage, the condensation lens 24 can be reciprocated in the X direction and the laser beam can be reciprocated in the X direction or oscillated.

なお、リニア微動手段PZ1、PZ2のうちどちらか一方に圧電素子を用い、他方をバネ材等の弾性部材にしてもよい。また、リニア微動手段を円周上に3個配置するようにしてもよい。   A piezoelectric element may be used for either one of the linear fine movement units PZ1 and PZ2, and the other may be an elastic member such as a spring material. Further, three linear fine movement means may be arranged on the circumference.

レーザ発振器21からレーザ光Lが出射され、レーザ光Lはコリメートレンズ22、ハーフミラー23、コンデンスレンズ24等の光学系を経由してウェーハWの内部に照射される。照射されるレーザ光Lの集光点のZ方向位置は、XYZθテーブル12によるウェーハWのZ方向位置調整、及びZ微動手段27によるコンデンスレンズ24の位置制御によって、ウェーハ内部の所定位置に正確に設定される。   Laser light L is emitted from the laser oscillator 21, and the laser light L is applied to the inside of the wafer W via an optical system such as a collimator lens 22, a half mirror 23, and a condensation lens 24. The Z-direction position of the focused point of the irradiated laser light L is accurately adjusted to a predetermined position inside the wafer by adjusting the Z-direction position of the wafer W by the XYZθ table 12 and controlling the position of the condensation lens 24 by the Z fine movement means 27. Is set.

この状態でXYZθテーブル12がダイシング方向であるX方向に加工送りされるとともに、レーザヘッド40に設けられたリニア微動手段PZ1、PZ2によってコンデンスレンズ24が往復微小移動され、レーザ光LがウェーハWと平行にX方向、または任意のXY方向に振動され、レーザ光Lの集光点がウェーハ内部で微小振動しながら改質領域Kを形成してゆく。これにより、ウェーハWの切断ラインに沿って、ウェーハW内部に多光子吸収による改質領域Kが1ライン形成される。   In this state, the XYZθ table 12 is processed and fed in the X direction, which is the dicing direction, and the condensation lens 24 is finely moved back and forth by the linear fine movement means PZ1 and PZ2 provided in the laser head 40, and the laser light L is transferred to the wafer W. The laser light L is oscillated in parallel in the X direction or in any XY direction, and the modified point K is formed while the focusing point of the laser light L slightly vibrates inside the wafer. As a result, one line of the modified region K due to multiphoton absorption is formed inside the wafer W along the cutting line of the wafer W.

なお、必要に応じ、Z微動手段27によるZ方向の振動を加えてもよい。また、レーザ光Lを加工方向であるX方向にゆっくり往復微動送りさせながらウェーハWをX方向に送ることにより、レーザ光Lをミシン目のように行きつ戻りつの状態で繰り返し照射するようにしてもよい。   If necessary, the Z fine movement means 27 may apply vibration in the Z direction. Further, the laser light L is slowly and reciprocally moved in the X direction, which is the processing direction, and the wafer W is sent in the X direction, so that the laser light L is repeatedly irradiated in a back and forth state like perforations. Good.

切断ラインに沿って改質領域が1ライン形成されると、XYZθテーブル12がY方向に1ピッチ割り出し送りされ、次のラインも同様に改質領域が形成される。   When one reformed region is formed along the cutting line, the XYZθ table 12 is indexed and fed by one pitch in the Y direction, and the reformed region is similarly formed on the next line.

全てのX方向と平行な切断ラインに沿って改質領域が形成されると、XYZθテーブル12が90°回転され、先程のラインと直交するラインも同様にして全て改質領域が形成される。   When the modified region is formed along all the cutting lines parallel to the X direction, the XYZθ table 12 is rotated by 90 °, and the modified region is also formed on all the lines orthogonal to the previous line.

(2)研削装置2について
図4は、研削装置2の概観構成を示す斜視図である。研削装置2の本体112には、アライメントステージ116、粗研削ステージ118、精研削ステージ120、研磨ステージ122、研磨布洗浄ステージ123、研磨布ドレッシングステージ127、及びウェーハ洗浄ステージ124が設けられている。
(2) Grinding Device 2 FIG. 4 is a perspective view showing the general configuration of the grinding device 2. The main body 112 of the grinding device 2 is provided with an alignment stage 116, a rough grinding stage 118, a fine grinding stage 120, a polishing stage 122, a polishing cloth cleaning stage 123, a polishing cloth dressing stage 127, and a wafer cleaning stage 124.

粗研削ステージ118、精研削ステージ120、研磨ステージ122は、図5に示すように仕切板125(図4では省略)によって仕切られ、各々のステージ118、120、122で使用する加工液が隣接するステージに飛散するのが防止されている。   The rough grinding stage 118, the fine grinding stage 120, and the polishing stage 122 are partitioned by a partition plate 125 (not shown in FIG. 4) as shown in FIG. 5, and the machining liquids used in the respective stages 118, 120, 122 are adjacent to each other. It is prevented from scattering on the stage.

仕切板125は、図5に示すように、インデックステーブル134に固定されるとともに、インデックステーブル134に設置された4台のチャック132、136、138、140を仕切るように十字形状に形成されている。   As shown in FIG. 5, the partition plate 125 is fixed to the index table 134 and is formed in a cross shape so as to partition the four chucks 132, 136, 138, 140 installed on the index table 134. ..

粗研削ステージ118は、粗研磨を行うステージであり、図5に示すように、本体112の側面、天板128、及び仕切板125によって囲まれている。精研削ステージ120は、精研磨を行うステージであり、粗研磨ステージ118と同様に、本体112の側面、天板129、及び仕切板125によって囲まれている。仕切板125の上面及び側面にはブラシ(図示せず)が配設され、粗研削ステージ118、精研削ステージ120を外部から隔離している。また、天板128、129には、各ステージのヘッドが挿通される貫通孔128A、129Aが形成されている。   The rough grinding stage 118 is a stage for performing rough polishing, and is surrounded by the side surface of the main body 112, the top plate 128, and the partition plate 125, as shown in FIG. The fine grinding stage 120 is a stage for performing fine polishing, and is surrounded by the side surface of the main body 112, the top plate 129, and the partition plate 125, like the rough polishing stage 118. Brushes (not shown) are arranged on the upper surface and the side surfaces of the partition plate 125 to isolate the rough grinding stage 118 and the fine grinding stage 120 from the outside. Further, the top plates 128 and 129 are formed with through holes 128A and 129A through which the heads of the respective stages are inserted.

研磨ステージ122は、化学機械研磨を行うものであり、他のステージから隔離するために、図5に示すように、天板126Aを有するケーシング126によって覆われている。なお、天板126Aには、各ステージのヘッドが挿通される貫通孔126Cが形成されている。   The polishing stage 122 performs chemical mechanical polishing, and is covered with a casing 126 having a top plate 126A as shown in FIG. 5 in order to isolate it from other stages. The top plate 126A is formed with a through hole 126C into which the head of each stage is inserted.

ケーシング126の仕切板125が通過する側面には、図6に示すように、ブラシ126Bが取り付けられており、このブラシ126Bは、チャック140が加工位置に位置した時に、仕切板125の上面125A及び側面125Bに接触される。これにより、チャック140が加工位置に位置すると、ケーシング126、仕切板125、及びブラシ126Bによって略気密状態に保持される。   As shown in FIG. 6, a brush 126B is attached to the side surface of the casing 126 through which the partition plate 125 passes, and this brush 126B has an upper surface 125A and a top surface 125A of the partition plate 125 when the chuck 140 is in the processing position. The side surface 125B is contacted. As a result, when the chuck 140 is located at the processing position, it is held in a substantially airtight state by the casing 126, the partition plate 125, and the brush 126B.

研磨ステージ122は、化学機械研磨を行うものであるため、研磨加工液に化学研磨剤が含有されている。このような研磨加工液に研削加工液が混入すると、化学研磨剤の濃度が低下し、加工時間が長くなるという不具合が生じる。研磨ステージ122を略機密状態に保つことにより、精研削ステージ120で使用される研削加工液や加工屑が研磨ステージ122に浸入するのを防止でき、また、研磨ステージ122で使用される研磨加工液が研磨ステージ122から飛散するのを防止できる。したがって、双方の加工液が混入することに起因する加工不具合を防止できる。   Since the polishing stage 122 performs chemical mechanical polishing, the polishing liquid contains a chemical polishing agent. When the grinding liquid is mixed with such a polishing liquid, the concentration of the chemical polishing agent is lowered and the processing time becomes long. By keeping the polishing stage 122 in a substantially airtight state, it is possible to prevent the grinding processing liquid or processing waste used in the fine grinding stage 120 from entering the polishing stage 122, and the polishing processing liquid used in the polishing stage 122 can be prevented. Can be prevented from scattering from the polishing stage 122. Therefore, it is possible to prevent processing defects due to the mixing of both processing liquids.

図7は、研磨ステージ122の構造図である。研磨ステージ122では、研磨布156と、研磨布156から供給されるスラリとによって研磨され、粗研磨、精研磨によりウェーハWの裏面に生じている加工変質層が除去される。加工変質層とは、研削によって生じた条痕や加工歪(結晶が変質している)等の総称である。   FIG. 7 is a structural diagram of the polishing stage 122. On the polishing stage 122, polishing is performed by the polishing cloth 156 and the slurry supplied from the polishing cloth 156, and the work-affected layer formed on the back surface of the wafer W by the rough polishing and the fine polishing is removed. The work-affected layer is a general term for striations, work strain (the crystal is altered) and the like caused by grinding.

研磨ステージ122の研磨布156は、モータ158の出力軸160に連結された研磨ヘッド161に取り付けられている。モータ158の側面には、直動ガイドを構成するガイドブロック162、162が設けられており、ガイドブロック162、162が、サポートプレート164の側面に設けられたガイドレール166に上下移動自在に係合されている。したがって、研磨布156はモータ158とともに、サポートプレート164に対して上下移動自在に取り付けられている。   The polishing cloth 156 of the polishing stage 122 is attached to the polishing head 161 connected to the output shaft 160 of the motor 158. Guide blocks 162, 162 forming a linear guide are provided on the side surface of the motor 158, and the guide blocks 162, 162 are vertically movably engaged with a guide rail 166 provided on the side surface of the support plate 164. Has been done. Therefore, the polishing cloth 156 is attached to the support plate 164 together with the motor 158 so as to be vertically movable.

サポートプレート164は、水平に配置されたアーム168の先端に設けられている。アーム168の基端部は、ケーシング170内に配置されたモータ172の出力軸174に接続されている。したがって、モータ172が駆動されると、アーム168は出力軸174を中心に回動することができる。これにより、研磨布56を研磨位置(図3の実線参照)と、研磨布洗浄ステージ123による研磨布洗浄位置(図3の2点鎖線参照)と、研磨布ドレッシングステージ127によるドレス位置との範囲内で移動させることができる。研磨布156は、研磨布洗浄位置に移動された際に、研磨布洗浄ステージ123によって、その表面が洗浄されて表面に付着している研磨屑等が除去される。なお、研磨布156としては、発泡ポリウレタン、研磨布等を例示することができ、研磨布洗浄ステージ123には、研磨屑を除去するブラシ等の除去部材が設けられている。この除去部材は、研磨布156の洗浄時に回転駆動され、研磨布156も同様にモータ158によって回転駆動される。研磨布ドレッシングステージ127には、研磨布156と同じ材料、例えば発泡ポリウレタンが採用されている。   The support plate 164 is provided at the tip of the horizontally arranged arm 168. A base end portion of the arm 168 is connected to an output shaft 174 of a motor 172 arranged inside the casing 170. Therefore, when the motor 172 is driven, the arm 168 can rotate about the output shaft 174. Thereby, the range between the polishing position of the polishing cloth 56 (see the solid line in FIG. 3), the polishing cloth cleaning position by the polishing cloth cleaning stage 123 (see the chain double-dashed line in FIG. 3), and the dressing position by the polishing cloth dressing stage 127. Can be moved within. When the polishing cloth 156 is moved to the polishing cloth cleaning position, the polishing cloth cleaning stage 123 cleans the surface of the polishing cloth 156 and removes polishing dust and the like adhering to the surface. The polishing cloth 156 can be exemplified by foamed polyurethane, a polishing cloth, etc., and the polishing cloth cleaning stage 123 is provided with a removing member such as a brush for removing polishing dust. The removing member is rotationally driven when the polishing cloth 156 is washed, and the polishing cloth 156 is also rotationally driven by the motor 158. The polishing cloth dressing stage 127 is made of the same material as the polishing cloth 156, for example, foamed polyurethane.

ケーシング170の側面には、直動ガイドを構成するガイドブロック176、176が設けられ、このガイドブロック176、176が、ねじ送り装置用のハウジング178の側面に設けられたガイドレール180に上下移動自在に係合されている。また、ケーシング170の側面には、ナット部材179が突設されている。ナット部材179は、ハウジング178に形成された開口部(図示せず)を介してハウジング178内に配設されたねじ送り装置のねじ棒181に螺合されている。ねじ棒181の上端には、モータ182の出力軸184が連結されている。したがって、モータ82が駆動されて、ねじ棒181が回転されると、ねじ送り装置の送り作用と、ガイドブロック176とガイドレール180の直進作用とによって、ケーシング70が上下移動される。これによって、研磨布156が上下方向に大きく移動され、研磨ヘッド161とウェーハWとの間隔が所定の間隔に設定される。   Guide blocks 176 and 176 forming a linear guide are provided on a side surface of the casing 170, and the guide blocks 176 and 176 are vertically movable on a guide rail 180 provided on a side surface of a housing 178 for a screw feeder. Is engaged with. Further, a nut member 179 is provided on the side surface of the casing 170 so as to project. The nut member 179 is screwed to the screw rod 181 of the screw feeder arranged in the housing 178 through an opening (not shown) formed in the housing 178. The output shaft 184 of the motor 182 is connected to the upper end of the screw rod 181. Therefore, when the motor 82 is driven and the screw rod 181 is rotated, the casing 70 is moved up and down by the feeding action of the screw feeding device and the rectilinear action of the guide block 176 and the guide rail 180. Thereby, the polishing cloth 156 is largely moved in the vertical direction, and the distance between the polishing head 161 and the wafer W is set to a predetermined distance.

モータ158の上面には、エアシリンダ装置186のピストン188がアーム168の貫通孔169を介して連結されている。また、エアシリンダ装置186には、シリンダの内圧Pを制御するレギュレータ190が接続されている。したがって、このレギュレータ190によって内圧Pが制御されると、ウェーハWに対する研磨布156の押圧力(圧接力)を制御することができる。   The piston 188 of the air cylinder device 186 is connected to the upper surface of the motor 158 through the through hole 169 of the arm 168. Further, the air cylinder device 186 is connected to a regulator 190 that controls the internal pressure P of the cylinder. Therefore, when the internal pressure P is controlled by the regulator 190, the pressing force (pressure contact force) of the polishing pad 156 against the wafer W can be controlled.

なお、本実施の形態では、研磨体として研磨布156を適用したが、これに限定されるものではなく、加工変質層の除去が可能であれば、例えば研磨砥石や砥粒の電気泳動等を適用してもよい。研磨砥石や砥粒の電気泳動等を適用した場合には、定量研磨を行うことが好ましい。   In the present embodiment, the polishing cloth 156 is applied as the polishing body, but the present invention is not limited to this, and if the work-affected layer can be removed, for example, a polishing grindstone or an electrophoresis of abrasive grains or the like can be used. You may apply. When a polishing grindstone or electrophoresis of abrasive grains is applied, quantitative polishing is preferably performed.

図4の説明に戻る。アライメントステージ116は、図示しない搬送装置によりレーザダイシング装置1から搬送されたウェーハWを所定の位置に位置合わせするステージである。このアライメントステージ116で位置合わせされたウェーハWは、図示しない搬送用ロボットに吸着保持された後、空のチャック132に向けて搬送され、このチャック132の吸着面に吸着保持される。   Returning to the explanation of FIG. The alignment stage 116 is a stage for aligning the wafer W transferred from the laser dicing device 1 by a transfer device (not shown) to a predetermined position. The wafer W aligned by the alignment stage 116 is adsorbed and held by a transfer robot (not shown), and then conveyed toward an empty chuck 132, and adsorbed and held on an adsorption surface of the chuck 132.

チャック132は、インデックステーブル134に設置され、また、同機能を備えたチャック136、138、140が、インデックステーブル134の回転軸135を中心とする円周上に90度の間隔をもって設置されている。回転軸135には、モータ(図示せず)のスピンドル(図示せず)が連結されている。   The chuck 132 is installed on the index table 134, and chucks 136, 138, 140 having the same function are installed at intervals of 90 degrees on the circumference around the rotation axis 135 of the index table 134. .. A spindle (not shown) of a motor (not shown) is connected to the rotary shaft 135.

チャック136は、図4においては粗研削ステージ118に位置されており、吸着したウェーハWがここで粗研削される。チャック138は、図4においては精研削ステージ120に位置され、吸着したウェーハWがここで仕上げ研削(精研削、スパークアウト)される。チャック140は、図4においては研磨ステージ122に位置され、吸着したウェーハWがここで研磨され、研削で生じた加工変質層、及びウェーハWの厚みのバラツキ分が除去される。   The chuck 136 is located on the rough grinding stage 118 in FIG. 4, and the sucked wafer W is roughly ground here. The chuck 138 is located on the fine grinding stage 120 in FIG. 4, and the adsorbed wafer W is finally ground (fine grinding, spark out) here. The chuck 140 is positioned on the polishing stage 122 in FIG. 4, and the adsorbed wafer W is polished here, and the work-affected layer caused by grinding and the variation in the thickness of the wafer W are removed.

ここで、チャック132、136、138、140について説明する。チャック136、138、140はチャック132と同様の構成を有するため、チャック132について説明し、チャック136、138、140については説明を省略する。   Here, the chucks 132, 136, 138, 140 will be described. The chucks 136, 138, and 140 have the same configuration as the chuck 132, so the chuck 132 will be described, and the description of the chucks 136, 138, and 140 will be omitted.

図8は、チャック132の詳細を示す図であり、(a)はチャック132の平面図、(b)は(a)におけるA−A’断面図、(c)は(b)におけるB部拡大図である。   8A and 8B are diagrams showing details of the chuck 132. FIG. 8A is a plan view of the chuck 132, FIG. 8B is a sectional view taken along line AA ′ in FIG. 8A, and FIG. It is a figure.

チャック132は、緻密体で形成されたチャック本体132bに、多孔質材(例えば、ポーラスセラミックス)で形成された載置台132aが嵌めこまれることにより構成される。チャック本体132bの載置台132aが嵌めこまれる下側には、真空吸着のために吸着孔132cが形成されている。なお、チャック132は、熱伝導率の低い材質で形成されることが望ましい。   The chuck 132 is configured by fitting a mounting table 132a formed of a porous material (for example, porous ceramics) into a chuck body 132b formed of a dense body. A suction hole 132c for vacuum suction is formed on the lower side of the chuck body 132b into which the mounting table 132a is fitted. The chuck 132 is preferably formed of a material having low thermal conductivity.

載置台132aには、図8(c)に示すように、ウェーハWがBGテープBを介して載置される。載置台132aは、図8(c)に示すように、ウェーハWを載置台132aに載置した時に、ウェーハWの外周の一部が載置台132aからはみ出すよう形成されているが、その幅xは約1.5mm程度である。なお、本実施の形態で用いられるウェーハWは、直径が約12インチ、厚さtは約775μmである。   On the mounting table 132a, as shown in FIG. 8C, the wafer W is mounted via the BG tape B. As shown in FIG. 8C, the mounting table 132a is formed such that when the wafer W is mounted on the mounting table 132a, a part of the outer periphery of the wafer W protrudes from the mounting table 132a. Is about 1.5 mm. The wafer W used in this embodiment has a diameter of about 12 inches and a thickness t of about 775 μm.

吸着孔132cは、図8(a)、(b)に示すように、載置台132aの略全域を覆うように配置されている。吸着孔132cには、図示しない流体継手が連結され、この流体継手に連結された図示しないサクションポンプが空気を吸引する。したがって、ウェーハWの略全面が載置台132aの表面にしっかりと真空吸着される。これにより、位置ずれを起こすことなく、ウェーハWと載置台132aとを面で密着させることができる。   As shown in FIGS. 8A and 8B, the suction holes 132c are arranged so as to cover substantially the entire area of the mounting table 132a. A fluid coupling (not shown) is connected to the suction hole 132c, and a suction pump (not shown) coupled to the fluid coupling sucks air. Therefore, the substantially entire surface of the wafer W is firmly vacuum-adsorbed on the surface of the mounting table 132a. As a result, the wafer W and the mounting table 132a can be brought into close contact with each other on the surface without displacement.

チャック132、136、138、140は、図7に示すように、その下面にスピンドル194とモータ192が各々連結され、これらのモータ192の駆動力によって回転される。モータ192は、支持部材193を介してインデックステーブル134に支持されている。これにより、チャック132、136、138、140をモータ137で移動させる毎に、スピンドル194をチャック132、136、138、140から切り離したり、次の移動位置に設置されたスピンドル194にチャック132、136、138、140を連結したりする手間を省くことができる。   As shown in FIG. 7, the chucks 132, 136, 138, 140 are connected at their lower surfaces with a spindle 194 and a motor 192, respectively, and are rotated by the driving force of these motors 192. The motor 192 is supported by the index table 134 via a support member 193. Accordingly, every time the chucks 132, 136, 138, 140 are moved by the motor 137, the spindle 194 is separated from the chucks 132, 136, 138, 140, or the chucks 132, 136 are attached to the spindle 194 installed at the next movement position. It is possible to save the trouble of connecting 138, 140.

モータ192の下部には、シリンダ装置117のピストン119が連結されている。このピストン119が伸長されると、チャック132、136、138、140の下部に形成された凹部(図示せず)に嵌入されて連結される。そして、チャック132、136、138、140は、ピストン119の継続する伸長動作によって、インデックステーブル134から上昇移動され、砥石146、154による研削位置に位置される。   The piston 119 of the cylinder device 117 is connected to the lower portion of the motor 192. When the piston 119 is extended, the piston 119 is fitted into a recess (not shown) formed in the lower portion of the chucks 132, 136, 138, 140 and connected. Then, the chucks 132, 136, 138, 140 are moved upward from the index table 134 by the continuous extension operation of the piston 119, and are positioned at the grinding positions by the grindstones 146, 154.

制御部100は、CPU、メモリ、入出力回路部等からなり、研削装置2の各部の動作を制御する。   The control unit 100 includes a CPU, a memory, an input / output circuit unit, and the like, and controls the operation of each unit of the grinding device 2.

チャック132に吸着保持されたウェーハWは、制御部100に接続された一対の測定ゲージ(図示せず)によってその厚みが測定される。これらの測定ゲージは、それぞれ接触子を有し、接触子はウェーハWの上面(裏面)に、他の接触子はチャック132の上面に接触されている。これらの測定ゲージは、チャック132の上面を基準点としてウェーハWの厚みをインプロセスゲージ読取値の差として検出することができる。なお、測定ゲージによる厚み測定はインラインで実施してもよい。また、ウェーハWの厚み測定の方法はこれに限られない。   The thickness of the wafer W sucked and held by the chuck 132 is measured by a pair of measuring gauges (not shown) connected to the control unit 100. Each of these measuring gauges has a contact, and the contact is in contact with the upper surface (back surface) of the wafer W and the other contact is in contact with the upper surface of the chuck 132. These measurement gauges can detect the thickness of the wafer W as a difference between in-process gauge readings with the upper surface of the chuck 132 as a reference point. The thickness may be measured in-line with a measuring gauge. The method of measuring the thickness of the wafer W is not limited to this.

制御部100によりインデックステーブル134が図4の矢印R方向に90度回転されることで、厚みが測定されたウェーハWが粗研削ステージ118に位置され、粗研削ステージ118のカップ型砥石146によってウェーハWの裏面が粗研削される。このカップ型砥石146は、図4に示すように、モータ148の図示しない出力軸に連結され、また、モータ148のサポート用ケーシング150を介して砥石送り装置152に取り付けられている。砥石送り装置152は、カップ型砥石146をモータ148とともに昇降移動させるもので、この下降移動によりカップ型砥石146がウェーハWの裏面に押し付けられる。これにより、ウェーハWの裏面の粗研削が行われる。制御部100は、カップ型砥石146の下降移動量を設定し、モータ148を制御する。なお、カップ型砥石46の下降移動量、即ちカップ型砥石146による研削量は、予め登録されているカップ型砥石146の基準位置と、測定ゲージで検出されたウェーハWの厚みとに基づいて設定される。また、制御部100は、モータ148の回転数を制御することで、カップ型砥石146の回転数を制御する。   By rotating the index table 134 by 90 degrees in the direction of arrow R in FIG. 4 by the control unit 100, the wafer W whose thickness has been measured is positioned on the rough grinding stage 118, and the wafer W is moved by the cup-shaped grindstone 146 of the rough grinding stage 118. The back surface of W is roughly ground. As shown in FIG. 4, the cup-shaped grindstone 146 is connected to an output shaft (not shown) of the motor 148, and is attached to the grindstone feeding device 152 via a support casing 150 of the motor 148. The grindstone feeding device 152 moves the cup-shaped grindstone 146 up and down together with the motor 148, and by this downward movement, the cup-shaped grindstone 146 is pressed against the back surface of the wafer W. As a result, the back surface of the wafer W is roughly ground. The controller 100 sets the descending movement amount of the cup-shaped grindstone 146 and controls the motor 148. The amount of downward movement of the cup-shaped grindstone 46, that is, the amount of grinding by the cup-shaped grindstone 146 is set based on the reference position of the cup-shaped grindstone 146 registered in advance and the thickness of the wafer W detected by the measurement gauge. To be done. The control unit 100 also controls the rotation speed of the cup-shaped grindstone 146 by controlling the rotation speed of the motor 148.

粗研削ステージ118で裏面が粗研削されたウェーハWは、ウェーハWからカップ型砥石146が退避移動した後、制御部100に接続された測定ゲージ(図示せず)によってその厚みが測定される。制御部100によりインデックステーブル134が図4の矢印R方向に90度回転されることで、厚みが測定されたウェーハWが精研削ステージ120に位置され、精研削ステージ120のカップ型砥石154によって精研削、スパークアウトされる。この精研削ステージ120の構造は、粗研削ステージ118の構造と同一なので、ここではその説明を省略する。また、カップ型砥石154による研削量は制御部100により設定され、カップ型砥石154の加工移動量及び回転数は制御部100により制御される。   The thickness of the wafer W whose back surface is roughly ground by the rough grinding stage 118 is measured by a measuring gauge (not shown) connected to the control unit 100 after the cup-shaped grindstone 146 is retreated from the wafer W. By rotating the index table 134 by 90 degrees in the direction of arrow R in FIG. 4 by the control unit 100, the wafer W whose thickness has been measured is positioned on the fine grinding stage 120, and finely moved by the cup-shaped grindstone 154 of the fine grinding stage 120. Grinded and sparked out. Since the structure of the fine grinding stage 120 is the same as the structure of the rough grinding stage 118, the description thereof will be omitted here. The amount of grinding by the cup-shaped grindstone 154 is set by the control unit 100, and the processing movement amount and the rotation speed of the cup-shaped grindstone 154 are controlled by the control unit 100.

精研削ステージ120で裏面が精研削されたウェーハWは、ウェーハWからカップ型砥石154が退避移動した後、制御部100に接続された測定ゲージ(図示せず)によってその厚みが測定される。制御部100によりインデックステーブル134が図4の矢印R方向に90度回転されると、厚みが測定されたウェーハWが研磨ステージ122に位置され、研磨ステージ122の研磨布156によって化学機械研磨が行われ、ウェーハWの裏面が鏡面加工される。研磨布156の上下移動距離は、制御部100により設定され、制御部100によりモータ182が制御されることで研磨布156の位置が制御される。また、制御部100によりモータ158の回転数、すなわち研磨布156の回転数が制御される。   The thickness of the wafer W whose back surface has been finely ground by the fine grinding stage 120 is measured by a measuring gauge (not shown) connected to the control unit 100 after the cup-shaped grindstone 154 is retracted from the wafer W. When the index table 134 is rotated 90 degrees in the direction of arrow R in FIG. 4 by the control unit 100, the wafer W whose thickness has been measured is placed on the polishing stage 122, and chemical mechanical polishing is performed by the polishing cloth 156 of the polishing stage 122. The back surface of the wafer W is mirror-finished. The vertical movement distance of the polishing pad 156 is set by the controller 100, and the position of the polishing pad 156 is controlled by controlling the motor 182 by the controller 100. Further, the control unit 100 controls the rotation speed of the motor 158, that is, the rotation speed of the polishing cloth 156.

研磨ステージ122で研磨されたウェーハWは、制御部100によりアーム168が回動され、研磨布156がウェーハWの上方位置から退避移動した後に、ロボット(図示せず)のハンド(図示せず)で吸着保持されてウェーハ洗浄ステージ124に搬送される。ウェーハ洗浄ステージ124としては、リンス洗浄機能、及びスピン乾燥機能を有するステージが適用されている。研磨終了したウェーハWは、加工変質層が除去されているので、容易に破損することはなく、よって、ロボットによる搬送時、及びウェーハ洗浄ステージ124における洗浄時において破損しない。   For the wafer W polished by the polishing stage 122, the arm 168 is rotated by the controller 100 and the polishing cloth 156 is retracted from the position above the wafer W, and then the hand (not shown) of the robot (not shown). Then, the wafer is sucked and held by and is transported to the wafer cleaning stage 124. As the wafer cleaning stage 124, a stage having a rinse cleaning function and a spin drying function is applied. The wafer W that has been polished does not easily break because the work-affected layer has been removed, and therefore does not break during transportation by the robot and during cleaning in the wafer cleaning stage 124.

ウェーハ洗浄ステージ124で洗浄乾燥終了したウェーハWは、ロボット(図示せず)のハンド(図示せず)に吸着保持されて、カセット(図示せず)の所定の棚に収納される。   The wafer W, which has been cleaned and dried by the wafer cleaning stage 124, is suction-held by a hand (not shown) of a robot (not shown) and stored in a predetermined shelf of a cassette (not shown).

(3)テープ剥離装置3について
図9はテープ剥離装置3の構成を示す側面図である。ウェーハWへのBGテープBまたはエキスパンドテープEの貼着はテープ剥離装置3により行われる。さらに研削装置2により研削、研磨されたウェーハWはテープ剥離装置3により割断が行われる。
(3) Tape Peeling Device 3 FIG. 9 is a side view showing the configuration of the tape peeling device 3. The tape peeling device 3 adheres the BG tape B or the expanded tape E to the wafer W. Further, the wafer W ground and polished by the grinding device 2 is cut by the tape peeling device 3.

テープ剥離装置3は、不図示の駆動装置により回転可能に設けられたテーブル211を備えている。テーブル211の上面には、ウェーハWを載置する弾性体212が取り付けられている。   The tape peeling device 3 includes a table 211 rotatably provided by a driving device (not shown). An elastic body 212 on which the wafer W is placed is attached to the upper surface of the table 211.

テーブル211の上方には供給リール213、剥離用ローラ214が設けられ、ウェーハWの表面に貼着されたBGテープBを剥離する剥離用フィルム215が供給リール213から繰り出され、ガイドローラ216、217を経て巻取りリール218に巻き取られるようになっている。   A supply reel 213 and a peeling roller 214 are provided above the table 211, and a peeling film 215 for peeling off the BG tape B attached to the surface of the wafer W is fed from the supply reel 213 to guide rollers 216, 217. After that, it is wound around the take-up reel 218.

剥離用ローラ214の近傍(例えばテーブル211の外周部上方など)にはウェーハWの割断を行う押圧部材219が備えられている。   A pressing member 219 for cleaving the wafer W is provided near the peeling roller 214 (for example, above the outer peripheral portion of the table 211).

テーブル211の上面に取り付けられた弾性体212は、圧縮永久歪の小さい空隙の無い弾性体であり、ウェーハWに形成されているチップCのサイズ以下の間隔で図10に示すように格子状または平行に並ぶ溝212a、212a・・が形成されている。弾性体212は、不図示の真空発生源と接続され、溝212a、212a・・等により、表面にBGテープBが貼着され、裏面に貼着されたエキスパンドテープEを介してフレームFにマウントされたウェーハWを吸着固定可能に形成されている。   The elastic body 212 attached to the upper surface of the table 211 is an elastic body having a small compression set and having no void, and has a lattice shape or a lattice shape as shown in FIG. 10 at intervals equal to or smaller than the size of the chip C formed on the wafer W. .. are formed in parallel with each other. The elastic body 212 is connected to a vacuum generating source (not shown), the BG tape B is attached to the front surface by the grooves 212a, 212a, etc., and the elastic body 212 is mounted on the frame F via the expand tape E attached to the back surface. The formed wafer W is formed so that it can be fixed by suction.

弾性体212の素材としては例えばSBR(スチレンブタジエンゴム)やNBR(ニトリルブタジエンゴム)等が好適に使用できる。なお、溝212aは孔形状、凹凸形状であっても良い。   As the material of the elastic body 212, for example, SBR (styrene butadiene rubber) or NBR (nitrile butadiene rubber) can be preferably used. The groove 212a may have a hole shape or an uneven shape.

例えば図11(a)に示す、小さい空隙が多数形成されているスポンジ状の弾性体212BをウェーハWの割断の際に使用した場合、空隙が小さくなることや、空隙が扁平することによる圧縮永久歪が発生する。このため、繰り返し弾性体212Bを使用すると、変形により徐々に弾性係数が変化して安定した割断をすることができない。   For example, when the sponge-like elastic body 212B shown in FIG. 11A in which a large number of small voids are formed is used for cleaving the wafer W, the voids become small and the compression permanent due to the flattening of the voids. Distortion occurs. For this reason, when the elastic body 212B is repeatedly used, the elastic coefficient gradually changes due to deformation, and stable cleaving cannot be performed.

また、図11(b)に示すように、溝や孔、凹凸などが無い弾性体212Cでは、一部の弾性体が押し込まれた際に、体積が一定であるため押し込んだ周りの部分が盛り上がることとなる。この場合、局所的に押圧してウェーハを沈み込ませて割断しようとしても、応力が分散して効率的に割断することが困難となる。   In addition, as shown in FIG. 11B, in the elastic body 212C having no groove, hole, or unevenness, when a part of the elastic body is pushed in, the volume around the elastic body 212C is constant, so that the portion around the pushed up portion rises. It will be. In this case, even if an attempt is made to locally squeeze the wafer by sinking it, the stress is dispersed and it becomes difficult to efficiently sever the wafer.

これに対し、弾性体212は、図11(c)に示すように、上からの押圧に対して溝212aにより横方向の変形の余地があるため、均一な変形が起こり、割断を望む切断ラインSに対して応力が集中し、確実に効率よく割断が行える。   On the other hand, as shown in FIG. 11C, the elastic body 212 has room for lateral deformation due to the groove 212a when pressed from above, so that uniform deformation occurs and a cutting line desired to be cleaved. Stress concentrates on S, and reliable and efficient cutting can be performed.

押圧部材219は、図10に示すように、半径Rが改質層Pの形成されている切断ラインSの間隔Lよりも小さく形成さえている。半径Rが間隔Lよりも小さいことにより、押圧部材219は1つの切断ラインSを押圧する際に、他の切断ラインSを押圧することが無くなる。これにより、割断を望む切断ラインSに対して応力が集中し、確実に効率よく割断が行える。   As shown in FIG. 10, the pressing member 219 is formed so that the radius R is smaller than the interval L between the cutting lines S where the modified layer P is formed. Since the radius R is smaller than the interval L, the pressing member 219 does not press another cutting line S when pressing one cutting line S. As a result, stress concentrates on the cutting line S desired to be cleaved, and reliable and efficient cleaving can be performed.

ウェーハWの割断は、図12に示すように、切断ラインSに沿って改質層Pが形成されたウェーハWの表面にBGテープB、裏面側へエキスパンドテープEが貼着されて行われる。テープ剥離装置3は、図12に示すように押圧部材219が格子状に形成されている切断ラインSの一方と平行になるように、テーブル211を回転させてウェーハWの位置を調整する。   As shown in FIG. 12, the cleavage of the wafer W is performed by adhering the BG tape B on the front surface of the wafer W on which the modified layer P is formed along the cutting line S and the expanding tape E on the rear surface side. As shown in FIG. 12, the tape peeling device 3 rotates the table 211 and adjusts the position of the wafer W so that the pressing member 219 is parallel to one of the cutting lines S formed in a lattice shape.

この状態で押圧部材219がウェーハWへ押圧されるとともに転動されて、一方の切断ラインSに沿ってウェーハWが割断される。一方の切断ラインSの割断後、ウェーハWが載置されたテーブル211不図示の駆動手段により90度回転することで他方の切断ラインSと押圧部材219が平行になるように配置される。この状態で押圧部材219がウェーハWへ押圧されるとともに転動されて他方の切断ラインSに沿ってウェーハWが割断される。   In this state, the pressing member 219 is pressed against the wafer W and is rolled, so that the wafer W is cut along the one cutting line S. After the cutting of one of the cutting lines S, the table W on which the wafer W is placed is rotated 90 degrees by a driving unit (not shown) so that the other cutting line S and the pressing member 219 are arranged in parallel. In this state, the pressing member 219 is pressed against the wafer W and is rolled, so that the wafer W is cut along the other cutting line S.

ウェーハWは表面及び裏面にBGテープB、エキスパンドテープEが貼着されているので、一つの切断ラインSを割断後、その隣の切断ラインSを割断する際、BGテープB、エキスパンドテープEにより位置が拘束され、既に割断された切断ラインSにおいてチップ間隔が大きく広がることがなくなる。これにより、弾性体212による縦方向の変形だけでなく、チップCの間隔が大きく広がることによる横方向の変形によって押圧部材219の局所的な応力が分散されてしまうことがなくなり、応力を集中させて確実に効率よく割断が行える。   Since the BG tape B and the expanding tape E are attached to the front surface and the back surface of the wafer W, when the cutting line S is cut after cutting one cutting line S, the BG tape B and the expanding tape E are used. The position is restrained, and the chip interval does not greatly expand in the already cut cutting line S. As a result, not only the vertical deformation due to the elastic body 212 but also the lateral deformation due to the large distance between the chips C is prevented from locally distributing the stress of the pressing member 219, and the stress is concentrated. Cleavage can be performed reliably and efficiently.

また、表面及び裏面にBGテープB、エキスパンドテープEが貼着されることにより、ウェーハWが割断された際に生じる破片などが弾性体212に付着することが無く、次のウェーハWを弾性体212に載置しても破片による悪影響が生じない。   In addition, since the BG tape B and the expanding tape E are attached to the front surface and the back surface, fragments or the like generated when the wafer W is cleaved do not adhere to the elastic body 212, and the next wafer W is elastic. Even if it is placed on 212, no adverse effect due to the fragments will occur.

剥離用ローラ214は、弾性体212よりも柔らかい弾性体により形成されている。BGテープBは、貼着面に例えば紫外線硬化型粘着剤を有しており、テープ剥離装置3内または外部に設けられた不図示の紫外線照射装置により紫外線を照射されて粘着力が低下される。粘着力が低下したBGテープB上へは、図9に示すように剥離用ローラ214を下方に押圧しながら横方向(図9に示す矢印A方向)に転動させることによって剥離用フィルム215が貼着される。   The peeling roller 214 is formed of an elastic body that is softer than the elastic body 212. The BG tape B has, for example, an ultraviolet-curable adhesive on the adhered surface, and its adhesive strength is reduced by being irradiated with ultraviolet rays by an ultraviolet irradiation device (not shown) provided inside or outside the tape peeling device 3. .. As shown in FIG. 9, the peeling film 215 is rolled on the BG tape B having the reduced adhesive force by rolling the peeling roller 214 in the lateral direction (direction of arrow A in FIG. 9) while pressing the peeling roller 214 downward. It is attached.

剥離用フィルム215が貼着された後、巻取りリール218及びガイドローラ217を含む巻取りユニット218Aは、剥離用フィルム215を巻取りながら剥離用ローラ214とともに横方向(図9に示す矢印B方向)へ移動することで、BGテープBがウェーハW上より剥離される。   After the peeling film 215 is attached, the winding unit 218A including the take-up reel 218 and the guide roller 217 winds the peeling film 215 together with the peeling roller 214 in the lateral direction (direction of arrow B shown in FIG. 9). ), The BG tape B is peeled from the wafer W.

剥離用ローラ214により剥離用フィルム215を貼着する際またはBGテープBを剥離する際には、図13(a)に示すようにチップCを分割する切断ラインSが剥離用ローラ214に対して平行に配置されているウェーハWを、テーブル211を45度回転させることにより、図13(b)に示すように剥離用ローラ214に対して切断ラインSが傾斜して交差するように配置させる。   When the peeling film 215 is attached by the peeling roller 214 or when the BG tape B is peeled off, the cutting line S for dividing the chip C into the peeling roller 214 is divided as shown in FIG. By rotating the table 211 by 45 degrees, the wafers W arranged in parallel are arranged so that the cutting line S inclines with respect to the peeling roller 214 as shown in FIG. 13B.

これにより、これにより剥離用フィルム215の貼着時やBGテープBの剥離時に割断されたチップCの位置がずれることが無くなり、エキスパンド後のチップCのピックアップなどの後の工程に悪影響を及ぼさない。   As a result, the position of the cleaved chip C is not displaced when the peeling film 215 is attached or when the BG tape B is peeled off, and it does not adversely affect subsequent steps such as picking up the chip C after expansion. ..

(4)エキスパンド装置について
次にエキスパンド装置(不図示)について説明する。エキスパンド装置は、従来の通常のエキスパンド装置を使用することができる。例えば、特開2007−173587に開示されている、以下のような構成のエキスパンド装置を使用することができる。
(4) Expanding Device Next, an expanding device (not shown) will be described. As the expander, a conventional normal expander can be used. For example, an expanding device having the following configuration disclosed in Japanese Patent Laid-Open No. 2007-173587 can be used.

即ち、エキスパンドテープEの周縁部は枠状のフレームFに固定されている。エキスパンドテープE周縁部の内側部分の下面にはリング部材が当接している。このリング部材の上面外周縁部は滑らかにR面取りがされている。フレームFに下方向に力が付与され、下方に押し下げられる。これによりダイシングテープはエキスパンドされ、チップ同士の間隔が広げられる。この時、リング部材の上面外周縁部が滑らかにR面取りされているので、エキスパンドテープEはスムーズにエキスパンドされる。   That is, the peripheral portion of the expand tape E is fixed to the frame F having a frame shape. A ring member is in contact with the lower surface of the inner portion of the peripheral edge of the expanded tape E. The outer peripheral edge portion of the upper surface of this ring member is smoothly chamfered. A downward force is applied to the frame F and the frame F is pushed downward. As a result, the dicing tape is expanded and the distance between the chips is widened. At this time, since the outer peripheral edge portion of the upper surface of the ring member is smoothly chamfered, the expand tape E is expanded smoothly.

フレームFを押し下げるための機構としては、公知の各種直動装置が採用できる。例えば、シリンダ部材(油圧、空圧等による)、モータとねじ(シャフトとしての雄ねじと軸受としての雌ねじとの組み合わせ)よりなる直動装置が採用できる。   As a mechanism for pushing down the frame F, various known linear motion devices can be adopted. For example, a linear motion device including a cylinder member (by hydraulic pressure, pneumatic pressure, etc.), a motor and a screw (combination of a male screw as a shaft and a female screw as a bearing) can be adopted.

<半導体基板の切断方法>
次に、半導体基板の切断方法について説明する。図14は、半導体基板の切断方法の処理の流れを示すフローチャートである。
<Method of cutting semiconductor substrate>
Next, a method of cutting the semiconductor substrate will be described. FIG. 14 is a flowchart showing a processing flow of the semiconductor substrate cutting method.

(1)BGテープ貼付工程(ステップS1)
本発明の半導体基板の切断方法では、まずウェーハWの回路パターン等が形成されている表面側へBGテープBが貼着される(ステップS1)。
(1) BG tape attaching process (step S1)
In the semiconductor substrate cutting method of the present invention, the BG tape B is first attached to the front surface side of the wafer W on which the circuit pattern and the like are formed (step S1).

ウェーハWへのBGテープBの貼着は、不図示のテープ貼着装置により行われる。BGテープBを貼着する際には、チップCを分割する切断ラインSがテープを貼り付ける貼着用ローラに対して傾斜して交差するように、テーブル211を45度回転させる。これにより、BGテープBをウェーハWへ貼着している最中に貼着用ローラの加圧力でウェーハWが切断ラインSに沿って割断してしまうことが無い。   The BG tape B is attached to the wafer W by a tape attaching device (not shown). When adhering the BG tape B, the table 211 is rotated by 45 degrees so that the cutting line S dividing the chip C intersects the adhering roller for adhering the tape at an angle. This prevents the wafer W from being cut along the cutting line S by the pressure of the sticking roller while the BG tape B is stuck to the wafer W.

(2)レーザ改質工程(ステップS2)
表面にBGテープBが貼付されたウェーハWが、裏面が上向きとなるようにレーザダイシング装置1の吸着ステージ13に載置される。以下の処理はレーザダイシング装置1で行われ、制御部50により制御される。
(2) Laser modification step (step S2)
The wafer W having the BG tape B adhered on the front surface is placed on the suction stage 13 of the laser dicing device 1 so that the back surface faces upward. The following processing is performed by the laser dicing apparatus 1 and controlled by the controller 50.

レーザ発振器21からレーザ光Lが出射されると、レーザ光Lはコリメートレンズ22、ハーフミラー23、コンデンスレンズ24等の光学系を経由してウェーハWの内部に照射され、ウェーハWの内部に改質領域Kが形成される。   When the laser light L is emitted from the laser oscillator 21, the laser light L is irradiated to the inside of the wafer W via the optical system such as the collimator lens 22, the half mirror 23, and the condensation lens 24, and is re-introduced into the inside of the wafer W. A quality region K is formed.

本実施の形態では、最終的に生成されるチップの厚さが略50μmであるため、ウェーハWの表面から略60μm〜略80μmの深さにレーザ光を照射する。ウェーハWの表面(デバイス面)を効率的に破断するためには、ウェーハW表面からチップCの厚み分だけ裏面側に位置する面である基準面に近い比較的深い位置にレーザ改質領域を形成する必要があるからである。   In the present embodiment, since the thickness of the finally produced chip is approximately 50 μm, laser light is irradiated from the surface of the wafer W to a depth of approximately 60 μm to approximately 80 μm. In order to efficiently break the front surface (device surface) of the wafer W, the laser modified region is formed at a relatively deep position near the reference surface, which is a surface located on the back surface side by the thickness of the chip C from the front surface of the wafer W. This is because it needs to be formed.

制御部50は、パルス状の加工用のレーザ光LをウェーハWの表面に平行に走査して、ウェーハW内部に複数の不連続な改質領域K…を並べて形成する。改質領域Kの内部には、微小空孔(以下、クラックという)が形成される。以下、複数の不連続な改質領域K、…が並べて形成された領域を改質層という。   The controller 50 scans the surface of the wafer W in parallel with a pulsed laser beam L for processing to form a plurality of discontinuous modified regions K ... Inside the wafer W. Inside the modified region K, minute holes (hereinafter referred to as cracks) are formed. Hereinafter, a region formed by arranging a plurality of discontinuous modified regions K, ... Is referred to as a modified layer.

図10に示す切断ラインSの全てに沿って改質層が形成されたら、ステップS2の処理を終了する。   When the modified layer is formed along all of the cutting lines S shown in FIG. 10, the process of step S2 ends.

(3)研削除去工程(ステップS3)
レーザ改質工程(ステップS2)により切断ラインSに沿って改質領域Kが形成されたら、 搬送装置(図示せず)によりウェーハWをレーザダイシング装置1から研削装置2へ搬送する。以下の処理は研削装置2で行われ、制御部100により制御される。
(3) Grinding removal step (step S3)
After the modified region K is formed along the cutting line S by the laser modification process (step S2), the wafer W is transferred from the laser dicing device 1 to the grinding device 2 by a transfer device (not shown). The following processing is performed by the grinding device 2 and controlled by the control unit 100.

搬送されたウェーハWを裏面を上側、すなわちウェーハWの表面に貼付されたBGテープBを下側にしてチャック132(例示、チャック136、148、140でも可)に載置させ、ウェーハWの略全面をチャック132に真空吸着させる。   The transferred wafer W is placed on the chuck 132 (eg, chucks 136, 148, and 140 are also possible) with the back surface facing upward, that is, the BG tape B attached to the front surface of the wafer W facing downward, The entire surface is vacuum-adsorbed by the chuck 132.

インデックステーブル134を回転軸135を中心に回転させてチャック132を粗研削ステージ118に搬入し、ウェーハWを粗研磨する。   The index table 134 is rotated about the rotating shaft 135, and the chuck 132 is carried into the rough grinding stage 118 to roughly polish the wafer W.

粗研磨は、チャック132を回転させるとともにカップ型砥石146を回転させることにより行う。本実施の形態では、カップ型砥石146として例えば、東京精密製ビトリファイド♯325を用い、カップ型砥石146の回転数は略3000rpmである。   The rough polishing is performed by rotating the chuck 132 and the cup-shaped grindstone 146. In the present embodiment, for example, vitrified # 325 manufactured by Tokyo Seimitsu Co., Ltd. is used as the cup-shaped grindstone 146, and the rotation speed of the cup-shaped grindstone 146 is about 3000 rpm.

粗研磨後、インデックステーブル134を回転軸135を中心に回転させてチャック132を精研削ステージ120に搬入し、チャック132を回転させるとともにカップ型砥石154を回転させてウェーハWを精研磨する。本実施の形態では、カップ型砥石154として粗例えば、東京精密製レジン♯2000を用い、カップ型砥石154の回転数は略2400rpmである。   After the rough polishing, the index table 134 is rotated about the rotating shaft 135 to bring the chuck 132 into the fine grinding stage 120, and the chuck 132 is rotated and the cup-shaped grindstone 154 is rotated to finely polish the wafer W. In this embodiment, as the cup-shaped grindstone 154, for example, resin # 2000 manufactured by Tokyo Seimitsu Co., Ltd. is used, and the rotation speed of the cup-shaped grindstone 154 is approximately 2400 rpm.

本実施の形態では、図15に示すように、粗研磨と精研磨とをあわせて目標面まで、すなわちウェーハWの表面から略50μmの深さまで研削を行う。本実施の形態では、粗研磨で略700μmの研削を行い、精研磨で略30〜40μmの研削を行うが、厳密に決まっているわけではなく、粗研磨と精研磨との時間が略同一となるように研削量を決定してもよい。   In the present embodiment, as shown in FIG. 15, both rough polishing and fine polishing are performed to a target surface, that is, to a depth of about 50 μm from the surface of the wafer W. In the present embodiment, the rough polishing is performed to about 700 μm and the fine polishing is performed to about 30 to 40 μm. However, it is not strictly determined, and the time between the rough polishing and the fine polishing is substantially the same. The grinding amount may be determined so that

したがって、図15に示すように、改質層は研削工程で除去され、最終的な製品であるチップC断面にはレーザ光による改質領域Kは残らない。そのため、チップ断面から改質層が破砕し、破砕した部分からチップCが割れたり、また破砕した部分から発塵したりということをなくすことができる。   Therefore, as shown in FIG. 15, the modified layer is removed in the grinding step, and the modified region K due to the laser beam does not remain on the cross section of the chip C which is the final product. Therefore, it is possible to prevent the modified layer from crushing from the cross section of the chip, cracking the chip C from the crushed portion, and generating dust from the crushed portion.

また、本実施の形態においては、この研削除去工程において、改質層内のクラックをウェーハWの厚み方向に進展させる亀裂進展工程が含まれる。図16は、クラックが進展する仕組みを説明する図であり、(a)は研削時の概略図、(b)はウェーハW裏面の様子、(c)はウェーハW表面の様子、(d)は研削時のウェーハWの断面図である。   In addition, in the present embodiment, the grinding and removing step includes a crack developing step of causing cracks in the modified layer to propagate in the thickness direction of the wafer W. 16A and 16B are views for explaining a mechanism in which a crack propagates. FIG. 16A is a schematic diagram at the time of grinding, FIG. 16B is a state of the back surface of the wafer W, FIG. 16C is a state of the front surface of the wafer W, and FIG. It is sectional drawing of the wafer W at the time of grinding.

研削によって、図16(a)に示す研削面、すなわちウェーハW裏面は、図16(b)に示すように研削熱によって膨張する。それに対し、研削面の反対側の面、すなわちウェーハW表面は、図16(c)に示すように真空チャックにより略全面が減圧吸着されており、熱膨張による位置ずれが生じないように横方向への変位に対して物理的に拘束されている。   By the grinding, the ground surface shown in FIG. 16A, that is, the back surface of the wafer W is expanded by the grinding heat as shown in FIG. 16B. On the other hand, the surface opposite to the ground surface, that is, the surface of the wafer W, is substantially vacuum-adsorbed by the vacuum chuck as shown in FIG. 16C, and is laterally moved so as not to be displaced due to thermal expansion. Is physically constrained against displacement to.

すなわち、図16(d)に示すように、ウェーハWの裏面(研削面)は熱膨張によって円盤状の場合外周方向に広がろうとする(熱膨張による変位)のに対し、ウェーハWの表面(吸着面)はその広がろうとするウェーハ面内の各点を物理的に位置ずれしないように拘束されている。そのため、ウェーハ内部に歪が生じ、この内部歪によりクラックがウェーハWの厚み方向に進展する。この内部歪は、熱膨張により膨張する部分と、物理拘束されるウェーハ面内各点との間に均等に働く。内部歪による亀裂進展は、最も研削量が大きく、摩擦力も大きくなる、すなわち摩擦熱も大きくできる研削初期、すなわち粗研磨時が最も効率よい。   That is, as shown in FIG. 16D, when the back surface (grinding surface) of the wafer W is disk-shaped due to thermal expansion, it tends to expand in the outer peripheral direction (displacement due to thermal expansion), whereas the front surface of the wafer W (displacement due to thermal expansion). The suction surface) is constrained so as not to physically displace each point on the wafer surface which is about to spread. Therefore, strain is generated inside the wafer, and the crack propagates in the thickness direction of the wafer W due to this internal strain. This internal strain acts equally between the portion that expands due to thermal expansion and each point in the wafer surface that is physically constrained. The crack growth due to the internal strain is most efficient at the initial stage of grinding, that is, at the time of rough polishing, where the grinding amount is the largest and the frictional force is also large, that is, the friction heat can be large.

レーザ改質領域は、チップの厚みに近い比較的深い位置に形成される。したがって、研削初期では研削表面からレーザ改質層までの距離は比較的遠くなるが、改質層から目標面は、亀裂進展させる程度に比較的近い位置にある。そのため、亀裂進展のためには、粗研磨の初期に研削熱によってウェーハWの熱膨張を促すとよい。   The laser modified region is formed at a relatively deep position near the thickness of the chip. Therefore, in the initial stage of grinding, the distance from the grinding surface to the laser modified layer is relatively large, but the modified layer is relatively close to the target surface to the extent of crack propagation. Therefore, in order to propagate cracks, it is advisable to promote the thermal expansion of the wafer W by the grinding heat at the initial stage of rough polishing.

ウェーハWを熱膨張させる条件、すなわち摩擦熱をよい多く発生させるための条件(例えば、研削液を少なくする等)で研削を行ったとしても、研削のせん断応力がすぐに改質層に及ぼされるものでもない。本実施の形態では、研削によるせん断応力によって亀裂が進展するのではなく、研削熱による熱膨張が亀裂進展の支配的要素である。   Even if grinding is performed under the condition of thermally expanding the wafer W, that is, under the condition of generating a large amount of frictional heat (for example, using less grinding liquid), the shearing stress of grinding is immediately exerted on the modified layer. Not even a thing. In the present embodiment, the crack does not propagate due to the shear stress due to grinding, but the thermal expansion due to the grinding heat is the dominant factor for crack propagation.

内部歪によりクラックを進展させる場合には、ウェーハW面内の剛性ばらつきなどに起因することなく、どのようなウェーハWであってもウェーハW面内各点一様にクラックを進展させることができる。したがって、人為的な応力を付与する場合のように、ウェーハW面内の欠陥の存在などに起因する剛性の弱い部分に応力が集中することを防ぐことができる。   When the cracks are propagated by the internal strain, the cracks can be uniformly propagated at each point in the wafer W plane regardless of the rigidity variation in the wafer W plane. .. Therefore, it is possible to prevent stress from concentrating on a portion having a low rigidity due to the presence of defects in the surface of the wafer W as in the case where artificial stress is applied.

また、人為的に外力を与えた場合においては、材料の弱い部分に応力が集中するため、クラックを一様に緩やかに進展させるという制御は困難であり、完全にウェーハが割断される。それに対し、本実施の形態における内部歪によるクラックの進展の場合、熱膨張の度合いよる内部歪であることから、クラックを微妙に進展させることが可能となる。すなわち、目標面とウェーハWの表面との間にまでクラックを進展させることができる。したがって、後に説明するウェーハ割断工程(ステップS6)で効率よく分割することが可能となる。   Further, when an external force is artificially applied, the stress concentrates on a weak portion of the material, so that it is difficult to control the cracks to uniformly and gently progress, and the wafer is completely cut. On the other hand, in the case of the crack propagation due to the internal strain in the present embodiment, the crack can be subtly propagated because the internal strain depends on the degree of thermal expansion. That is, the crack can be propagated between the target surface and the surface of the wafer W. Therefore, the wafer can be efficiently divided in the wafer cutting step (step S6) described later.

なお、ウェーハWの熱膨張による内部歪は、温度差に起因するいわゆる熱応力とは区別される。熱応力は温度勾配に比例して発生するが、本実施の形態では発生した熱はチャック132、136、138、140へ逃げていくため、熱応力は発生しない。   The internal strain due to the thermal expansion of the wafer W is distinguished from so-called thermal stress caused by the temperature difference. The thermal stress is generated in proportion to the temperature gradient, but in the present embodiment, the generated heat escapes to the chucks 132, 136, 138, 140, so that the thermal stress is not generated.

(4)化学機械研磨工程(ステップS4)
この工程は研削装置2で行われ、制御部100により制御される。
(4) Chemical mechanical polishing step (step S4)
This process is performed by the grinding device 2 and controlled by the control unit 100.

精研磨後、インデックステーブル134を回転軸135を中心に回転させてチャック132を研磨ステージ122に搬入し、研磨ステージ122の研磨布156によって化学機械研磨が行われ、研削除去工程(ステップS3)においてウェーハWの裏面に形成された加工変質層が除去され、ウェーハW裏面が鏡面加工される。   After the precise polishing, the index table 134 is rotated about the rotary shaft 135 to carry the chuck 132 into the polishing stage 122, and the chemical mechanical polishing is performed by the polishing cloth 156 of the polishing stage 122. In the grinding removal step (step S3). The work-affected layer formed on the back surface of the wafer W is removed, and the back surface of the wafer W is mirror-finished.

本実施の形態では、研磨布156としてポリウレタン含浸不繊布(例えば、東京精密製TS200L)を用い、スラリとしてコロイダルシリカを用い、研磨布156の回転数は略300rpmである。   In this embodiment, polyurethane-impregnated non-woven cloth (for example, TS200L manufactured by Tokyo Seimitsu Co., Ltd.) is used as the polishing cloth 156, colloidal silica is used as the slurry, and the rotation speed of the polishing cloth 156 is about 300 rpm.

研削除去工程(ステップS3)により、ウェーハWの裏面は、図17に示すような凹凸が多数形成されている。化学エッチングにより研磨を行う場合には、表面形状がそのまま保たれるため、凹部から割れが発生する恐れがあるし、表面が鏡面化されない。それに対し、本実施の形態では、化学機械研磨であるため、加工により生じた加工歪を除去され、表面の凹凸が除去されて鏡面化される。   By the grinding and removing step (step S3), the back surface of the wafer W has many irregularities as shown in FIG. When polishing is performed by chemical etching, the surface shape is maintained as it is, so cracks may occur from the recesses, and the surface is not mirror-finished. On the other hand, in the present embodiment, since the chemical mechanical polishing is performed, the processing strain caused by the processing is removed, and the unevenness on the surface is removed to give a mirror surface.

すなわち、最終製品であるチップCの品質向上のためには、砥石を用いた研削除去工程と、研磨布を使用した化学液を含んだ遊離砥粒による化学機械研磨工程の二つが必要不可欠となる。   That is, in order to improve the quality of the final product, the chip C, two processes, that is, a grinding and removing process using a grindstone and a chemical mechanical polishing process using free abrasive grains containing a chemical solution using a polishing cloth are indispensable. ..

(5)エキスパンドテープ貼付工程(ステップS5)
化学機械研磨工程(ステップS4)が行われたウェーハWの裏面にはエキスパンドテープEが貼着される。エキスパンドテープは弾性テープの一種であり、伸縮自在である。
(5) Expand tape attaching step (step S5)
The expand tape E is attached to the back surface of the wafer W that has undergone the chemical mechanical polishing step (step S4). Expanded tape is a type of elastic tape that can expand and contract.

ウェーハWへのエキスパンドテープEの貼着は、ステップS1のBGテープBの貼着と同様に不図示のテープ貼着装置により行われる。エキスパンドテープEを貼着する際には、BGテープBと同様にチップCを分割する切断ラインSがテープを貼り付ける貼着用ローラに対して傾斜して交差するように、テーブル211を45度回転させる。   Adhesion of the expanded tape E to the wafer W is performed by a tape attachment device (not shown) as in the case of attaching the BG tape B in step S1. When the expanded tape E is attached, the table 211 is rotated 45 degrees so that the cutting line S that divides the chip C, like the BG tape B, is inclined and intersects the attachment roller to which the tape is attached. Let

これにより、エキスパンドテープEをウェーハWへ貼着している最中に貼着用ローラの加圧力でウェーハWが切断ラインSに沿って割断してしまうことが無い。   This prevents the wafer W from being cut along the cutting line S by the pressure of the sticking roller while the expanded tape E is stuck to the wafer W.

(6)ウェーハ割断工程(ステップS6)
エキスパンドテープEが貼着されたウェーハWはテープ剥離装置3へ搬送され、ウェーハWへ押圧部材218を押圧し、切断ラインSに沿ってウェーハWを割断することでウェーハWが個々のチップCに分割される。
(6) Wafer cleaving process (step S6)
The wafer W to which the expand tape E is attached is conveyed to the tape peeling device 3, the pressing member 218 is pressed against the wafer W, and the wafer W is cut along the cutting line S, so that the wafer W is cut into individual chips C. Will be divided.

ウェーハWの割断では、図12に示すように押圧部材219が格子状に形成されている切断ラインである切断ラインSの一方と平行になるように、ウェーハWが上面に弾性体212が設けられたテーブル211上に載置される。この状態で押圧部材219がウェーハWへ押圧されるとともに転動されて、一方の切断ラインSに沿ってウェーハWが割断される。一方の切断ラインSの割断後、ウェーハWが載置されたテーブル211が不図示の駆動手段により90度回転されて他方の切断ラインSと押圧部材219が平行になるように配置され、他方の切断ラインSに沿ってウェーハWが割断される。   In the cutting of the wafer W, the elastic member 212 is provided on the upper surface of the wafer W so that the pressing member 219 is parallel to one of the cutting lines S, which is a cutting line formed in a lattice shape as shown in FIG. It is placed on the table 211. In this state, the pressing member 219 is pressed against the wafer W and is rolled, so that the wafer W is cut along the one cutting line S. After the cutting of one cutting line S, the table 211 on which the wafer W is placed is rotated by 90 degrees by a driving unit (not shown) so that the other cutting line S and the pressing member 219 are arranged in parallel, and the other cutting line S is arranged. The wafer W is cut along the cutting line S.

テーブル211の上面に取り付けられた弾性体212は、圧縮永久歪の小さい空隙の無い弾性体であり、ウェーハWに形成されているチップCのサイズ以下の間隔で図10に示すように格子状または平行に並ぶ溝212a、212a・・が形成されている。これにより、弾性体212は、図11(c)に示すように、上からの押圧に対して溝212aにより横方向の変形の余地があるため、均一な変形が起こり、割断を望む切断ラインSに対して応力が集中し、確実に効率よく割断が行える。   The elastic body 212 attached to the upper surface of the table 211 is an elastic body having a small compression set and having no void, and has a lattice shape or a lattice shape as shown in FIG. 10 at intervals equal to or smaller than the size of the chip C formed on the wafer W. .. are formed in parallel with each other. As a result, as shown in FIG. 11C, the elastic body 212 has room for lateral deformation due to the groove 212a in response to pressure from above, so that uniform deformation occurs and the cutting line S desired to be cleaved. The stress concentrates on the and reliable cutting can be performed efficiently.

押圧部材219は、図10に示すように、半径rが改質領域Kの形成されている切断ラインSの間隔lよりも小さく形成されていることにより、押圧部材19は1つの切断ラインSを押圧する際に、他の切断ラインSを押圧することが無くなる。これにより、割断を望む切断ラインSに対して応力が集中し、確実に効率よく割断が行える。   As shown in FIG. 10, the pressing member 219 is formed so that the radius r is smaller than the interval l between the cutting lines S in which the modified region K is formed, so that the pressing member 19 forms one cutting line S. When pressing, it is not necessary to press another cutting line S. As a result, stress concentrates on the cutting line S desired to be cleaved, and reliable and efficient cleaving can be performed.

ウェーハWの割断では、表面及び裏面にBGテープB、エキスパンドテープEが貼着されているので、一つの切断ラインSを割断後その隣の切断ラインSを割断する際、BGテープB、エキスパンドテープEにより位置が拘束されて既に割断された切断ラインSにおいてチップ間隔が大きく広がることがなくなる。これにより、弾性体212による縦方向の変形だけでなく、チップCの間隔が大きく広がることによる横方向の変形によって押圧部材218の局所的な応力が分散されてしまうことがなくなり、応力を集中させて確実に効率よく割断が行える。   In the cutting of the wafer W, since the BG tape B and the expanding tape E are attached to the front surface and the back surface, when cutting one cutting line S and then cutting the adjacent cutting line S, the BG tape B and the expanding tape E are cut. The position of the chip is restrained by E, and the chip interval does not greatly expand in the cutting line S that has already been cut. As a result, not only the vertical deformation due to the elastic body 212 but also the lateral deformation due to the large distance between the chips C is prevented from distributing the local stress of the pressing member 218, so that the stress is concentrated. Cleavage can be performed reliably and efficiently.

また、表面及び裏面にBGテープB、エキスパンドテープEが貼着されることにより、ウェーハWが割断された際に生じる破片などが弾性体212に付着することが無く、次のウェーハWを弾性体212に載置しても破片による悪影響が生じない。   In addition, since the BG tape B and the expanding tape E are attached to the front surface and the back surface, fragments or the like generated when the wafer W is cleaved do not adhere to the elastic body 212, and the next wafer W is elastic. Even if it is placed on 212, no adverse effect due to the fragments will occur.

(7)BGテープ剥離工程(ステップS7)
割断されたウェーハWは、剥離用フィルム215が剥離用ローラ214によりBGテープBへ貼着されBGテープBが剥離される。
(7) BG tape peeling process (step S7)
The peeling film 215 of the cleaved wafer W is attached to the BG tape B by the peeling roller 214, and the BG tape B is peeled.

剥離用ローラ214は、弾性体212よりも柔らかい弾性体により形成されている。BGテープBは、貼着面に例えば紫外線硬化型粘着剤を有しており、テープ剥離装置3内または外部に設けられた不図示の紫外線照射装置により紫外線を照射されて粘着力が低下される。粘着力が低下したBGテープB上へは、図9に示すように剥離用ローラ214を下方に押圧しながら横方向(図9に示す矢印A方向)に転動させることによって剥離用フィルム215が貼着される。   The peeling roller 214 is formed of an elastic body that is softer than the elastic body 212. The BG tape B has, for example, an ultraviolet-curable adhesive on the adhered surface, and its adhesive strength is reduced by being irradiated with ultraviolet rays by an ultraviolet irradiation device (not shown) provided inside or outside the tape peeling device 3. .. As shown in FIG. 9, the peeling film 215 is rolled on the BG tape B having the reduced adhesive force by rolling the peeling roller 214 in the lateral direction (direction of arrow A in FIG. 9) while pressing the peeling roller 214 downward. It is attached.

剥離用フィルム215が貼着された後、2巻取りリール18及びガイドローラ217を含む巻取りユニット218Aは、剥離用フィルム215を巻取りながら剥離用ローラ214とともに横方向(図9に示す矢印B方向)へ移動することで、BGテープBがウェーハW上より剥離される。   After the peeling film 215 is attached, the take-up unit 218A including the two-winding reel 18 and the guide roller 217 winds the peeling film 215 together with the peeling roller 214 in the lateral direction (arrow B shown in FIG. 9). BG tape B is peeled from the wafer W by moving in the direction).

剥離用ローラ214により剥離用フィルム215を貼着する際またはBGテープBを剥離する際には、図13(a)に示すようにチップCを分割する切断ラインSが剥離用ローラ214に対して平行に配置されているウェーハWを、テーブル211を45度回転させることにより、図13(b)に示すように剥離用ローラ214に対してストリートSが傾斜して交差するように配置させる。   When the peeling film 215 is attached by the peeling roller 214 or when the BG tape B is peeled off, the cutting line S for dividing the chip C into the peeling roller 214 is divided as shown in FIG. By rotating the table 211 by 45 degrees, the wafers W arranged in parallel are arranged so that the streets S incline with respect to the peeling roller 214 as shown in FIG. 13B.

これにより、これにより剥離用フィルム215の貼着時やBGテープBの剥離時に割断されたチップCの位置がずれることが無くなり、エキスパンド後のチップCのピックアップなどの後の工程に悪影響を及ぼさない。   As a result, the position of the cleaved chip C is not displaced when the peeling film 215 is attached or when the BG tape B is peeled off, and it does not adversely affect subsequent steps such as picking up the chip C after expansion. ..

(8)ウェーハ離間工程(ステップS8)
BGテープBを剥離した後、ウェーハWはエキスパンドテープEを下にして不図示のエキスパンドテーブル上に載置され、フレームFを押し下げる、またはフレームFを固定してテーブルを上昇させることによりエキスパンドテープEを引き伸ばしチップCの間隔が広げられる。
(8) Wafer separation step (step S8)
After the BG tape B is peeled off, the wafer W is placed on the expanding table (not shown) with the expanding tape E facing down, and the frame F is pushed down or the frame F is fixed and the expanding tape E is raised. And the distance between the tips C is widened.

エキスパンド後のウェーハWはチップC毎にエキスパンドテープEよりピックアップされ、後の各種工程へ搬送される。   The expanded wafer W is picked up by the expanding tape E for each chip C and conveyed to various subsequent processes.

<<研磨による亀裂進展評価>>
次に、上記研削除去工程(ステップS3)における研磨による亀裂進展評価について図18、図19を参照して説明する。研磨方法、分割離間方法、それらの条件等は基本的に上記ステップS1からS8の通りである。図18は、亀裂進展評価の条件について示した図であり、図19は、亀裂進展評価の評価結果を示した図である。
<< Evaluation of crack growth by polishing >>
Next, with reference to FIG. 18 and FIG. 19, description will be made on the evaluation of crack growth due to polishing in the grinding removal step (step S3). The polishing method, the division and separation method, and the conditions thereof are basically the same as those in steps S1 to S8. FIG. 18 is a diagram showing conditions for crack growth evaluation, and FIG. 19 is a diagram showing evaluation results of crack growth evaluation.

図18の(A)、(B)、(C)において、横軸は共通し、各位置が互いに対応しており、研磨時間(s)を示す。図18の(A)の縦軸は、切り込み速度(研磨速度)(μm/s)を示し、(B)の縦軸は、研磨中の砥石への給水のON、OFFを示し、(C)の縦軸は、研磨中のウェーハW裏面の温度(℃)を示す。   In (A), (B), and (C) of FIG. 18, the horizontal axis is common, the positions correspond to each other, and the polishing time (s) is shown. The vertical axis of (A) of FIG. 18 shows the cutting speed (polishing speed) (μm / s), the vertical axis of (B) shows ON / OFF of the water supply to the whetstone during polishing, (C) The vertical axis indicates the temperature (° C.) on the back surface of the wafer W during polishing.

図18の(A)に示すように、研磨速度を変えながら粗研磨を合計710μm行い、その後、精研磨を13μm(図示せず)行い、さらに化学機械研磨(図示せず)を2μm行った。ウェーハの際、図18の(B)に示すように、粗研磨の途中に砥石またはウェーハへの給水の中断期間を設けた。研磨開始後t1秒経過後に給水を中止し、研磨開始後t2秒経過後に給水を再開した。給水は、10L/minの流量で行った。その後、上記ステップS5、S6、S7工程を行って、ウェーハを割断し、その割断状態を観察して評価した。チップが割れたり、発塵したりせず良好に割れた場合を○とし、チップが割れたり発塵したものは×として、図19に結果をまとめた。   As shown in (A) of FIG. 18, rough polishing was performed for a total of 710 μm while changing the polishing rate, then fine polishing was performed for 13 μm (not shown), and further chemical mechanical polishing (not shown) was performed for 2 μm. In the case of a wafer, as shown in FIG. 18B, an interruption period of water supply to the grindstone or the wafer was provided during the rough polishing. Water supply was stopped after t1 seconds had elapsed after the start of polishing, and water supply was resumed after t2 seconds had elapsed after the start of polishing. Water was supplied at a flow rate of 10 L / min. After that, the above steps S5, S6, and S7 were performed to cleave the wafer, and the cleaved state was observed and evaluated. The results are summarized in FIG. 19, in which the chip was satisfactorily cracked without dusting or dusting, and the chip was cracking or dusting.

図18の(C)に示すように、ウェーハWの裏面温度は、給水が中止された研磨開始後t1秒経過後に急に上昇を初め、給水が再開された研磨開始後t2秒経過直後に下降し始めた。   As shown in (C) of FIG. 18, the back surface temperature of the wafer W starts to rise abruptly after t1 seconds have passed since the start of polishing when water supply was stopped, and immediately after t2 seconds have elapsed since the start of polishing when water supply was restarted. Started to do.

図19に示すように、研磨によりウェーハWの裏面温度が70℃以上になった場合、良好にウェーハの割断が行われた。これは、研磨の熱によりレーザによって形成されたクラックが進展したためと考えられる。   As shown in FIG. 19, when the back surface temperature of the wafer W was 70 ° C. or higher due to polishing, the wafer was satisfactorily cleaved. It is considered that this is because the crack formed by the laser developed due to the heat of polishing.

よって、本発明に係る研削装置は、ウェーハの温度測定する手段と、研削中に砥石またはウェーハへの給水をON、OFFする手段と、研削開始から所定の時間経過後にウェーハ温度が所定の値になるまでウェーハへの給水をOFFするように制御する手段とを備えることができる。これにより、レーザによって形成されたクラックを進展させ、ウェーハの割断を良好に行うことができる。   Therefore, the grinding apparatus according to the present invention, means for measuring the temperature of the wafer, means for turning ON / OFF the water supply to the grindstone or the wafer during grinding, and the wafer temperature to a predetermined value after a predetermined time has elapsed from the start of grinding. And means for controlling to turn off the water supply to the wafer. Thereby, the cracks formed by the laser can be propagated and the wafer can be satisfactorily cut.

以上、説明したように、本実施の形態によれば、研削によりレーザ光により形成された改質領域内のクラックを進展させることができるため、チップCの断面にレーザ光により形成された改質領域が残らないようにすることができる。そのため、チップCが割れたり、チップC断面から発塵したりとするという不具合を防ぐことができる。したがって、安定した品質のチップを効率よく得ることができる。また、ウェーハの切断ラインに対して押圧部材の応力を集中させ、割断が確実に効率よく行うことが可能となる。さらに、ウェーハを載置する弾性体上に割断時の汚染を残さず、割断を連続して行ってもウェーハに悪影響を及ぼさない。   As described above, according to the present embodiment, since the crack in the modified region formed by the laser light can be propagated by grinding, the modification formed by the laser light on the cross section of the chip C can be performed. You can avoid leaving any areas. Therefore, it is possible to prevent a problem that the chip C is broken or dust is generated from the cross section of the chip C. Therefore, a chip of stable quality can be efficiently obtained. Further, the stress of the pressing member is concentrated on the wafer cutting line, and the cutting can be surely and efficiently performed. Furthermore, no contamination is left on the elastic body on which the wafer is placed when the wafer is cut, and even if the wafer is continuously cut, the wafer is not adversely affected.

(付記)
上記に詳述した実施形態についての記載から把握されるとおり、本明細書では以下に示す発明を含む多様な技術思想の開示を含んでいる。
(Appendix)
As can be understood from the description of the embodiments detailed above, the present specification includes disclosure of various technical ideas including the following inventions.

(付記1)ウェーハの表面にバックグラインドテープを貼着する工程と、前記バックグラインドテープが表面に貼着された前記ウェーハの切断ラインに沿って裏面からレーザ光を入射して前記ウェーハの内部に改質領域を形成することで前記改質領域内に微小空孔を形成する改質領域形成工程と、前記改質領域形成工程で改質領域が形成されたウェーハの表面の略全面を各領域独立して一様にテーブルに真空吸着させる真空吸着工程と、前記吸着工程で表面の略全面がテーブルに吸着されたウェーハを裏面から研削して前記改質領域を除去するとともに、前記微小空孔を前記ウェーハの厚み方向に進展させる研削工程と、前記研削工程後、前記研削工程で前記微小空孔が前記ウェーハの厚み方向に進展されたウェーハを化学機械的に研磨する工程と、化学機械的に研磨された前記ウェーハの裏面にエキスパンドテープを貼着する工程と、前記エキスパンドテープが裏面に貼着された前記ウェーハを、前記バックグラインドテープを介して押圧部材で押圧して前記ウェーハを割断する割断工程と、前記バックグラインドテープを剥離する剥離用テープを帖着し、剥離用ローラで前記バックグラインドテープの剥離を行う剥離工程と、割段された前記ウェーハを、前記エキスパンドテープを引き伸ばすことにより複数のチップに分割する分割離間工程と、を含むことを特徴とする半導体基板の切断方法。   (Supplementary Note 1) A step of adhering a back grind tape to the front surface of the wafer, and a laser beam is incident from the back surface along the cutting line of the wafer having the back grind tape adhered to the front surface to the inside of the wafer. A modified region forming step of forming minute holes in the modified region by forming the modified region, and a substantially entire surface of the wafer on which the modified region is formed in the modified region forming step Independently and uniformly vacuum-adsorbing on the table, a vacuum adsorption step, and by removing the modified region by grinding the back surface of the wafer whose substantially entire surface is adsorbed on the table in the adsorption step, and removing the minute holes. And a grinding step for advancing in the thickness direction of the wafer, and after the grinding step, the micropores are chemically mechanically polished in the grinding step in which the microscopic holes have progressed in the thickness direction of the wafer. A step of attaching an expand tape to the back surface of the wafer that has been chemically mechanically polished, and pressing the wafer having the expand tape attached to the back surface with a pressing member via the back grind tape. And a cleaving step of cleaving the wafer, affixing a peeling tape for peeling the back grind tape, a peeling step of peeling the back grind tape with a peeling roller, and the divided wafer, A method of cutting a semiconductor substrate, comprising a step of dividing and separating the expanded tape into a plurality of chips by stretching.

付記1に記載された発明によれば、ウェーハの表面にはテープを貼り付ける機構により、保護用のバックグラインドテープが貼着される。バックグラインドテープ貼着後、切断ラインに沿ってウェーハの裏面からレーザ光を入射してウェーハの内部に改質領域を形成することで改質領域内に微小空孔が形成される。改質領域が形成されたウェーハ表面の略全面をテーブルに基板の各位値を独立して一様に吸着させた状態でウェーハを裏面から研削して改質領域を除去する。   According to the invention described in appendix 1, a backgrinding tape for protection is attached to the surface of the wafer by a mechanism for attaching the tape. After adhering the back grinding tape, laser light is incident from the back surface of the wafer along the cutting line to form a modified region inside the wafer, thereby forming microscopic holes in the modified region. The wafer is ground from the back surface to remove the modified region while the substantially entire surface of the wafer on which the modified region is formed is adsorbed uniformly on the table with the respective values of the substrate independently.

この時に、研削によって生じた研削熱により、研削しているウェーハ表面とともに半径方向に熱膨張して広がろうとする。しかし、一方でウェーハは熱容量の大きいウェーハ真空チャックによって、その膨張による広がりを阻止しようとする。   At this time, the grinding heat generated by the grinding tends to thermally expand in the radial direction together with the surface of the wafer being ground to spread. However, on the other hand, the wafer tries to prevent the expansion due to its expansion by the wafer vacuum chuck having a large heat capacity.

その結果、ウェーハ表面は熱膨張で拡大する一方、チャックされているウェーハ裏面は真空チャックにより膨張せず、そのままの状態を維持しようとする。その結果、ウェーハ内部に形成された改質領域は、そのウェーハ表面と裏面の膨張の違いに応じて、改質領域がさらに拡大するように作用し、さらに亀裂が進展するようになる。改質領域は、レーザ光が照射され、一度溶融状態になって再結晶した部分もあるため、結晶粒が大きくもろい。こうした改質領域が将来的なチップの側面に現れた場合、チップ側面から発塵するほか、チップ側面から大きな結晶粒が欠けたりすることもある。しかし、改質領域から進展した微小亀裂部分は、純粋な結晶面であるため、将来的なチップ側面にこの面が現れたとしても、チップ側面から発塵したり、大きな結晶粒となって欠けたりということは無い。   As a result, the front surface of the wafer is expanded by thermal expansion, while the back surface of the chucked wafer is not expanded by the vacuum chuck and tries to maintain the same state. As a result, the modified region formed inside the wafer acts so as to further expand the modified region according to the difference in expansion between the front surface and the back surface of the wafer, and cracks further develop. Since the modified region has a portion which is once re-crystallized by being irradiated with laser light, the crystal grains are large and fragile. When such a modified region appears on the side surface of the chip in the future, in addition to dust generation from the side surface of the chip, large crystal grains may be chipped from the side surface of the chip. However, since the microcrack portion that has evolved from the modified region is a pure crystal plane, even if this plane appears on the side surface of the chip in the future, dust will be generated from the side surface of the chip or large crystal grains will be generated and chipped. There is no such thing.

こうして、研削工程によってウェーハを削りながら除去するとともに、微小空孔をウェーハの厚み方向に進展させ改質領域を除去する。次に、研削により形成された加工変質層と、進展した微小空孔とを、際立たせるために、ウェーハ全面に対して化学機械研磨を施して(後に詳細記載)、加工変質層を完全に除去する。その結果、微小空孔のみが表面に残り、その残りの領域は加工歪も残らない完全な鏡面となる。その後、まだ割れていないウェーハの裏面に対して、テープを貼り付ける機構内によりエキスパンドフィルムが貼着される。   In this way, the wafer is removed by grinding in the grinding step, and the microscopic holes are developed in the thickness direction of the wafer to remove the modified region. Next, in order to make the work-affected layer formed by grinding and the developed micropores stand out, chemical mechanical polishing is performed on the entire surface of the wafer (described in detail later) to completely remove the work-affected layer. To do. As a result, only minute pores remain on the surface, and the remaining area becomes a perfect mirror surface with no machining strain. After that, the expand film is attached to the back surface of the wafer which is not yet broken by the mechanism for attaching the tape.

エキスパンドフィルムが貼着されたウェーハは反転されて、バックグラインドテープを剥離する機構内に設けられたテーブル上に載置される。続いて、切断ラインと平行に位置づけられた、剥離機構内に設けられている押圧部材により一方の切断ラインが割断される。一方の切断ラインが全て割断された後、ウェーハが90度回転して他方の切断ラインが割断される。   The wafer to which the expand film is attached is turned over and placed on the table provided in the mechanism for peeling the back grinding tape. Then, one of the cutting lines is cut by the pressing member provided in the peeling mechanism, which is positioned parallel to the cutting line. After all the one cutting lines are cleaved, the wafer is rotated 90 degrees and the other cutting line is cleaved.

割断後、紫外線照射や加熱などによりバックグラインドテープの粘着力が低減される。粘着力が低減されたバックグラインドテープには、剥離用ローラにより剥離用テープが貼着されて剥離が行われる。バックグラインドテープが剥離されたウェーハはエキスパンドフィルムが拡張されてチップの離間が行われる。これにより、チップの断面にレーザ光により形成された改質領域が残らないようにすることができる。そのため、チップが割れたり、チップ断面から発塵したりとするという不具合を防ぎ、安定した品質のチップを効率よく得ることができる。   After cleaving, the adhesive force of the back grind tape is reduced by UV irradiation or heating. The peeling tape is adhered to the back grind tape having the reduced adhesive force by the peeling roller to perform peeling. The expand film is expanded on the wafer from which the back grinding tape has been peeled off, and the chips are separated from each other. This can prevent the modified region formed by the laser beam from remaining on the cross section of the chip. Therefore, it is possible to prevent a defect that the chip is broken or dust is generated from the cross section of the chip and efficiently obtain a chip of stable quality.

また、研削されたウェーハの裏面を化学機械研磨してからウェーハを分割するので、チップの抗折強度を高くすることができる。ここで、化学機械研磨においては、引用文献2に示す研磨工程におけるエッチング処理とは大きく区別される。   Further, since the back surface of the ground wafer is chemically mechanically polished and then the wafer is divided, the bending strength of the chip can be increased. Here, the chemical mechanical polishing is largely distinguished from the etching treatment in the polishing step shown in the cited document 2.

まず、本願における化学液は、引用文献2のエッチング液は異なる。引用文献2におけるエッチング液は、基板表面に液が作用することで基板を自然に溶かす、すなわちエッチングする作用を有する。それにより、クラックが発生した部分においても、エッチング液が浸透して周囲を自然とエッチングするため、レーザによって形成された改質層をさらに大きくするという作用がある。また、従来のエッチング液の場合、先にも述べた通り、エッチング液がクラック内を浸透しすぎてクラックを進展させ、最終的にチップとフィルムの間の部分にまで浸透する。それにより、チップ表面までエッチング液が回り込み、チップ表面がエッチング液により浸食されて、それぞれのチップデバイスが機能しなくなる場合もある。   First, the chemical liquid used in the present application is different from the etching liquid disclosed in Reference 2. The etching liquid in the cited document 2 has a function of naturally melting the substrate, that is, etching by the action of the liquid on the surface of the substrate. As a result, the etching liquid permeates even in the portion where the crack is generated and the surrounding area is naturally etched, which has the effect of further increasing the size of the modified layer formed by the laser. Further, in the case of the conventional etching solution, as described above, the etching solution penetrates too much into the cracks to develop the cracks, and finally penetrates into the portion between the chip and the film. As a result, the etching solution may reach the surface of the chip, and the surface of the chip may be corroded by the etching solution, so that each chip device may not function.

これに対して本願の化学機械研磨において使用する研磨剤(スラリ)は、静的な状況下ではエッチング作用は無い。すなわち、ウェーハに対して研磨剤のみを供給したとしても、全くエッチングが進行せず、単にウェーハ表面を改質するだけである。そのため、たとえ、研磨剤がウェーハの切断予定ラインにあるクラック内に入り込んだとしても、周りのシリコンを溶かすことは無いため、それ以上クラックが進展することは無い。   On the other hand, the abrasive (slurry) used in the chemical mechanical polishing of the present application has no etching action under static conditions. That is, even if only the polishing agent is supplied to the wafer, etching does not proceed at all, and the surface of the wafer is simply modified. Therefore, even if the polishing agent enters into the cracks in the planned cutting line of the wafer, it does not melt the surrounding silicon, and the cracks do not progress any further.

結果的に、引用文献2における研磨工程すなわちエッチング工程ではクラックが進展するかもしれないが、本願の研磨工程では、研磨剤を入れて放置しても全くウェーハはエッチングされないため、クラックはほとんど進展しない。その結果、研磨剤が浸透して勝手にチップをフィルムから剥離するようなことやチップ表面の方に研磨剤が回り込んでチップを侵食し、チップデバイスが機能しなくなるという従来の問題が起こることは無い。   As a result, cracks may develop in the polishing step or the etching step in the reference document 2, but in the polishing step of the present application, the wafer is not etched at all even if an abrasive is put and left, so the cracks hardly progress. .. As a result, the conventional problem that the abrasive penetrates and peels the chip from the film without permission, or the abrasive wraps around the chip surface and erodes the chip, causing the chip device to stop functioning There is no.

ここで、化学機械研磨のメカニズムは次に示す通りである。すなわち、研磨において、まず研磨剤がウェーハに供給されるが、これによりウェーハ表面は化学的に改質されるだけである。次に改質された表面は柔らかくなっているため、この状態でスラリの中に含まれる砥粒がウェーハ表面に作用することで、ごく小さい応力であってもウェーハ表面を効率的に除去できるのである。   Here, the mechanism of chemical mechanical polishing is as follows. That is, in polishing, the polishing agent is first supplied to the wafer, but the surface of the wafer is only chemically modified by this. Next, since the modified surface is softened, the abrasive grains contained in the slurry act on the wafer surface in this state, so that the wafer surface can be efficiently removed even with a very small stress. is there.

例えば、シリコンを除去するプロセスの場合、シリカ系のスラリを使用する。シリカ系のスラリを使用する場合、ウェーハ表面で次の反応が起こる。   For example, for processes that remove silicon, silica based slurries are used. When using a silica-based slurry, the following reactions occur on the wafer surface.

[数1]
Si(−OH)+SiOH=SiO2+H2O
すなわち、通常研磨直後のウェーハ表面はSi原子がある。このSi原子は水中における表面では水和されており、Si原子表面には-OHが存在することになる。このSi基板表面に付着したOH基と、液中に存在するシリカゾルのSiOHやシリカ粒子表面に存在するSiOHが結びつく。
[Equation 1]
Si (-OH) + SiOH = SiO2 + H2O
That is, usually, there are Si atoms on the wafer surface immediately after polishing. This Si atom is hydrated on the surface in water, and -OH exists on the Si atom surface. The OH groups attached to the surface of the Si substrate are combined with SiOH of silica sol existing in the liquid and SiOH existing on the surface of silica particles.

しかし、これだけでは、エッチングが進行しない。結果的に、この状態でシリカ粒子を多量に含んだ研磨パッドを基板に対して相対的に運動させて、ある一定の運動量の下でシリカ粒子を基板表面に作用することによって、ある一定の温度環境と圧力環境の下で、化学反応が進行しながら、機械的に除去されるのである。   However, the etching does not proceed with this alone. As a result, in this state, the polishing pad containing a large amount of silica particles is moved relatively to the substrate, and the silica particles act on the surface of the substrate under a certain momentum, so that a certain temperature is maintained. It is mechanically removed as the chemical reaction proceeds under the environment and pressure.

このとき、クラックに浸透したシリカゾルやシリカ粒子によって、クラックをさらに進展させる効果は働かない。クラック内へは研磨パッドが入り込むこともないため機械的な作用が働かず、結果的に化学的な除去作用も発生しないからである。   At this time, the effect of further developing the crack does not work due to silica sol or silica particles that have penetrated into the crack. This is because the polishing pad does not enter the cracks, so that the mechanical action does not work and, as a result, the chemical removing action does not occur.

こうしたことにより、研削時に発生した基板表面の加工変質層は、シリカゾルとシリカ粒子を有する化学性をもつスラリが供給されるとともに、研磨パッドが基板に接触することで機械的な摩擦作用が働くこととあいまって、基板表面のみが化学機械的に研磨が進行して、除去される(土肥俊郎編著:詳説半導体CMP技術(工業調査会)(2001)p.40〜42)。   As a result, the work-affected layer on the surface of the substrate generated during grinding is supplied with a chemical slurry containing silica sol and silica particles, and the polishing pad comes into contact with the substrate to cause mechanical friction. Together with this, only the substrate surface is chemically mechanically polished and removed (edited by Toshio Dohi: Detailed Semiconductor CMP Technology (Industrial Research Society) (2001) p.40-42).

その結果、ウェーハ表面の加工変質層はほとんどが除去される。また、形成されたウェーハ表面は鏡面になる。この鏡面になる原理は、引用文献2にある化学エッチングと比較すると次の通りである。   As a result, most of the work-affected layer on the wafer surface is removed. Further, the surface of the formed wafer becomes a mirror surface. The principle of the mirror surface is as follows when compared with the chemical etching in the cited document 2.

化学エッチングの場合は、先にも述べた通り、シリコンなどの結晶において格子歪や結晶欠陥部分が選択的にエッチングされる。そのため、エッチピットが形成されたり、結晶粒界に沿って大きくえぐれたりということが起こり、こうしたことは原理的に免れることはできない。   In the case of chemical etching, as described above, lattice strain and crystal defect portions are selectively etched in crystals such as silicon. As a result, etch pits may be formed, and large cuts may occur along the crystal grain boundaries, which cannot be avoided in principle.

それに対して、化学機械的な研磨の場合、先にも述べた通り、機械的な作用が働かない限り、化学的な除去作用が働かない。機械的な作用、ここではすなわち研磨パッドによってウェーハ表面を擦ることであるが、この機械的な作用は、基板表面の結晶状態とは全く関係無く、全ての基板表面において等確率に起こるものである。そのため、結晶状態に関係無くすべての表面が一様に除去される中で、化学的に作用が働くため、表面は一様な表面で結晶欠陥も無く、鏡面になるのである。ここで、鏡面といっても相対的な観点から曖昧であるため、本願では、化学機械研磨によって得られた鏡面というように定義する。   On the other hand, in the case of chemical mechanical polishing, as described above, the chemical removing action does not work unless the mechanical action works. The mechanical action, here the rubbing of the wafer surface by the polishing pad, has nothing to do with the crystalline state of the substrate surface, but it occurs with equal probability on all substrate surfaces. .. Therefore, since all surfaces are uniformly removed regardless of the crystalline state, a chemical action is exerted, so that the surface is a uniform surface and has no crystal defects, and becomes a mirror surface. Here, since the mirror surface is ambiguous from a relative point of view, in the present application, it is defined as a mirror surface obtained by chemical mechanical polishing.

このような化学機械研磨を行うことによって、引用文献2とは大きく異なり、理想的な鏡面状態を得ることができるとともに、チップとフィルム間にエッチング液が浸透することによる侵食を防ぐことができる。   By performing such chemical mechanical polishing, it is possible to obtain an ideal mirror surface state, which is very different from the reference document 2, and it is possible to prevent erosion due to the penetration of the etching solution between the chip and the film.

なお、化学機械研磨を行った後において、チップはまだ完全に割れてはいない。一部化学機械研磨後における表面部分に改質層から進展した微小空孔を残すだけである。なお、改質層は前の研削加工処理で既に除去されている。   After the chemical mechanical polishing, the chips were not completely broken. It only leaves micropores that have evolved from the modified layer on the surface after partial chemical mechanical polishing. The modified layer has already been removed in the previous grinding process.

この改質層から進展した微小空孔を残した状態が、例えば引用文献2に示すような研削とエッチングを施した表面状態に形成されていた場合、改質層から進展した微小空孔と、研削後のエッチング処理により助長された凹凸とを明確に区別することはできなくなる。よって、チップを割断する際に、必ずしも微小空孔から破断するのではなく、場合によっては、研削した研削条痕をエッチングにてさらに助長した凹凸部分から破断する場合も考えられる。   When the state in which the micropores that have evolved from the modified layer remain is formed in a surface state that is subjected to grinding and etching as shown in the cited document 2, for example, the microvoids that have evolved from the modified layer, It becomes impossible to clearly distinguish the unevenness promoted by the etching treatment after the grinding. Therefore, when the chip is cleaved, it is not always fractured from the minute holes, and in some cases, the ground striations that are ground may be fractured from the uneven portion further promoted by etching.

本願のように、表面に化学機械研磨を施した場合、処理後のウェーハ表面には凹凸はほとんどなく、唯一改質層から進展した微小空孔だけが残されることになる。よって、この状態で割断処理する場合、微小空孔からさらに亀裂が進展して割断することになる。   When the surface is subjected to chemical mechanical polishing as in the present application, there is almost no unevenness on the surface of the wafer after the treatment, and only micropores that have evolved from the modified layer are left. Therefore, when the cleaving process is performed in this state, the cracks further develop from the minute holes and cleave.

このように、本願発明の方法においては、研削後及び化学機械研磨を施した後においても、微小空孔が大きくなり亀裂が進展するものの、完全に基板は分割されていない。仮に、研削中ないしは化学機械研磨中に亀裂が進展して完全に基板が分割されてしまうと、特にウェーハ外周部のチップは研削や研磨時のせん断応力に耐え切れず、吸着テーブルから剥がされてチッピングを起こしてしまう問題がある。   As described above, in the method of the present invention, even after the grinding and the chemical mechanical polishing, the micropores become large and the cracks propagate, but the substrate is not completely divided. If a crack develops during grinding or chemical mechanical polishing and the substrate is completely divided, the chips on the outer periphery of the wafer in particular cannot withstand the shearing stress during grinding or polishing and are peeled off from the adsorption table. There is a problem of causing chipping.

しかし、本願発明においては、研削、研磨を行った後においても、亀裂は進展するものの、完全に分断されていない。完全に分断されていない状態から亀裂をさらに進展させて完全に割断するためには、さらに割断する工程が必要となる。割断工程としては、ウェーハ裏面にエキスパンドテープを貼り付けた後、そのテープを介して押圧部材を押圧して、局所的にウェーハに曲げ応力を与える。これにより、研削によって進展された亀裂を起点として、効率よく割断することが可能となる。   However, in the present invention, although the cracks propagate even after grinding and polishing, they are not completely divided. In order to further develop the crack from the state where the crack is not completely broken and to completely break the crack, a step of further breaking is necessary. In the cleaving step, after the expanded tape is attached to the back surface of the wafer, the pressing member is pressed through the tape to locally apply bending stress to the wafer. As a result, it is possible to efficiently fracture the crack starting from the crack propagated by grinding.

ここで、エキスパンドテープが貼着されていない場合、押圧部材でウェーハが直接押圧され、ウェーハが割断された際にその割れの振動がウェーハ面内を伝播される。伝播した振動は、切断ラインの他の部分が付随的に割ることや、切断ライン以外の部分を割ることがある。   Here, when the expand tape is not attached, the wafer is directly pressed by the pressing member, and when the wafer is cleaved, the vibration of the crack propagates in the wafer surface. The propagating vibration may be incidentally broken by other parts of the cutting line or may break parts other than the cutting line.

しかし、エキスパンドテープを貼り付けて、テープを介して押圧部材により応力を付与することにより、ウェーハが割断される際にテープが割れの振動を吸収するため、余計な振動を発生させることない。また、エキスパンドテープは皺や寄りがなく伸ばされた状態で貼着されているため、絶えず一定の張力をウェーハへ付与し、ウェーハが拘束された状態となる。ウェーハが割断される際においてウェーハを拘束した状態にすると、ウェーハの様々な部分の曲げ変形が拘束され、ウェーハ内部の剛性弱い箇所である進展した亀裂部分に対して、押圧部材の押圧力が曲げではなく、せん断的な応力として集中する。これにより、本来切断する箇所のみが効率よく切断され、切断ライン以外の箇所においては、保護された状態になり、割れることは無い。   However, by attaching the expand tape and applying stress by the pressing member via the tape, the tape absorbs the vibration of the crack when the wafer is cleaved, so that unnecessary vibration is not generated. Further, since the expanded tape is attached in a stretched state without wrinkles or deviations, a constant tension is constantly applied to the wafer and the wafer is restrained. When the wafer is constrained when it is cleaved, the bending deformation of various parts of the wafer is constrained, and the pressing force of the pressing member bends against the developed crack part where the rigidity is weak inside the wafer. Instead, it concentrates as shear stress. As a result, only the part to be cut is efficiently cut, and the part other than the cutting line is protected and is not broken.

特に、ウェーハ両面ともにテープが貼り付けられている場合、割れの振動は完全に封じ込められるとともに、ウェーハの曲げも一層拘束されていることから、効率的な割断が可能となる。   In particular, when the tape is attached to both sides of the wafer, the vibration of the crack is completely contained and the bending of the wafer is further restrained, so that the efficient cutting is possible.

(付記2)ウェーハの表面にバックグラインドテープを貼着する工程と、前記バックグラインドテープが表面に貼着された前記ウェーハの切断ラインに沿って裏面からレーザ光を入射して前記ウェーハの内部に改質領域を形成することで、前記改質領域内に微小空孔を形成する改質領域形成工程と、前記改質領域形成工程で改質領域が形成されたウェーハの表面の略全面を一様かつ各領域内で独立してテーブルに吸着させる工程と、前記ウェーハを吸着した状態で、前記レーザ光を入射してウェーハ内部に形成した改質領域より手前の部分まで研削除去し、該改質領域から延びる微小亀裂を基板の深さ方向に進展させる第1の研削工程と、前記ウェーハ内部に形成した改質領域を研削除去する第2の研削工程と、ウェーハ表面を改質する化学スラリと研磨パッドを用いて化学機械研磨を行いながら、前記改質領域から延びる微小亀裂を残しながら、前記第1及び第2の研削工程で導入された加工変質層を除去して表面を鏡面化する工程と、表面を鏡面化された前記ウェーハの裏面にエキスパンドテープを貼着する工程と、前記エキスパンドテープが裏面に貼着された前記ウェーハを、前記バックグラインドテープを介して押圧部材で押圧して前記ウェーハを割断する割断工程と、前記バックグラインドテープを剥離する剥離用テープを貼着し、剥離用ローラで前記バックグラインドテープの剥離を行う剥離工程と、割段された前記ウェーハを、前記エキスパンドテープを引き伸ばすことにより複数のチップに分割する分割離間工程と、を含むことを特徴とする半導体基板の切断方法。   (Supplementary Note 2) A step of adhering a back grind tape to the front surface of the wafer, and a step of applying laser light from the back surface along the cutting line of the wafer having the back grind tape adhered to the front surface to the inside of the wafer. By forming the modified region, the modified region forming step of forming minute holes in the modified region and the substantially entire surface of the wafer on which the modified region is formed in the modified region forming step are formed. In the same manner, the step of independently adsorbing to the table in each region, and in the state where the wafer is adsorbed, the laser beam is incident to grind and remove the portion before the modified region formed inside the wafer, First grinding step for propagating microcracks extending from the quality region in the depth direction of the substrate, second grinding step for grinding and removing the modified region formed inside the wafer, and chemical polishing for modifying the wafer surface. While performing chemical mechanical polishing using a polishing pad and a polishing pad, leaving the microcracks extending from the modified region, the work-affected layer introduced in the first and second grinding steps is removed to mirror the surface. Step, a step of attaching an expand tape to the back surface of the wafer whose surface is mirror-finished, and the wafer in which the expand tape is attached to the back surface are pressed by a pressing member via the back grind tape. And a cleaving step of cleaving the wafer, affixing a peeling tape for peeling the back grind tape, a peeling step of peeling the back grind tape with a peeling roller, and the divided wafer, A method of cutting a semiconductor substrate, comprising a step of dividing and separating the expanded tape into a plurality of chips by stretching.

付記2に記載された発明によれば、初期に改質領域をウェーハ内部の深い位置に形成し、初期に第1の研削工程で研削熱を発生させながら除去加工していくことで、改質領域に形成された亀裂をウェーハのさらに深い位置にまで進展させることが可能となる。   According to the invention described in appendix 2, the reforming region is initially formed at a deep position inside the wafer, and is removed and processed in the first grinding step while generating the grinding heat. It is possible to propagate the crack formed in the region to a deeper position in the wafer.

しかし、第1研削工程で、改質していない領域と同じ容量で、レーザで改質した領域も研削除去加工すると、改質領域は結晶粒界が大きいため、大きな結晶粒が欠け落ちたり、こうした結晶粒に伴って、さらに致命的な亀裂が進展したりすることもある。よって、第1の研削工程は、結晶性が一定である改質領域手前の部分まで研削を行うとよい。   However, in the first grinding step, when the laser-modified region having the same capacity as the unmodified region is ground and removed, the modified region has a large crystal grain boundary, and thus large crystal grains are chipped off, With such crystal grains, a fatal crack may further develop. Therefore, in the first grinding step, it is preferable to grind up to the portion before the modified region where the crystallinity is constant.

第2の研削工程では、主としてレーザで改質された領域を研削する。この際、研削砥石も番手が高い、すなわち第1の研削工程と比べて細かい粒度の研削砥石を使用し、第1の研削工程と比較して、改質領域から派生した致命的なクラックや欠陥を誘発することのないように、穏やかな研削加工を行う。第2研削工程は改質領域だけであり、第1の研削工程と比較しても研削レートは小さい条件とし、細かく削り落とす。   In the second grinding step, the laser-modified region is mainly ground. At this time, the grinding wheel also has a high count, that is, a grinding wheel having a finer grain size is used as compared with the first grinding step, and fatal cracks or defects derived from the modified region are obtained as compared with the first grinding step. A gentle grinding process is carried out so as not to induce. The second grinding step is performed only on the modified region, and the grinding rate is set to be smaller than that of the first grinding step, and the fine grinding is performed.

そして、レーザ改質領域が除去された後に、最終的に化学機械研磨を行う。化学機械研磨では、ウェーハを改質する化学液を供給しつつ、高分子や不織布などの研磨パッドをウェーハに押し付けて、化学的かつ機械的に研磨を行う。   Then, after the laser modified region is removed, chemical mechanical polishing is finally performed. In chemical mechanical polishing, a polishing pad such as a polymer or a non-woven fabric is pressed against a wafer while supplying a chemical liquid that modifies the wafer to perform chemical and mechanical polishing.

仮に、先程の改質領域に、化学機械研磨を行う場合、改質領域は大きい結晶粒が欠け落ちる場合がある。化学機械研磨では不織布や発泡ポリウレタンなどの研磨パッドを使用するため、こうしたパッド表面に欠け落ちた結晶粒が入り込むと研磨中絶えず欠け落ちた結晶粒によってスクラッチを発生させてしまう。このような場合、研削加工での加工変質層を除去しつつ、鏡面化するという目的を果たすまでもなく、研磨面をスクラッチだらけにしてしまうことになる。   If chemical mechanical polishing is performed on the modified region, large crystal grains may drop off in the modified region. Since a polishing pad made of non-woven fabric or polyurethane foam is used in chemical mechanical polishing, scratched crystal grains constantly generate scratches during polishing if such dropped crystal grains enter the pad surface. In such a case, it is necessary to remove the work-affected layer in the grinding process and achieve the mirror-finished surface, and the scratched surface is covered with scratches.

そうしたことから、化学機械研磨工程に導入される状態では、先の第2の研削工程においてレーザによって導入された改質層は完全に除去されていなければならない。   Therefore, in the state of being introduced into the chemical mechanical polishing step, the modified layer introduced by the laser in the above second grinding step must be completely removed.

(付記3)前記切断ラインに沿ってレーザ光により改質層が形成され、表面に前記バックグラインドテープが貼着され、裏面に前記エキスパンドテープが貼着されたウェーハを弾性体が上面に取り付けられたテーブル上に載置し、前記押圧部材が前記切断ラインと平行になるように前記テーブルを回転させ、前記押圧部材を前記ウェーハに押圧するとともに転動させて前記切断ラインを割断することを特徴とする付記1または付記2に記載の半導体基板の切断方法。   (Supplementary Note 3) A modified layer is formed by laser light along the cutting line, the back grind tape is adhered to the front surface, and the elastic body is attached to the upper surface of the wafer having the expand tape adhered to the back surface. It is placed on a table, and the table is rotated so that the pressing member is parallel to the cutting line, and the pressing member is pressed against the wafer and rolled to cut the cutting line. The method for cutting a semiconductor substrate according to Supplementary Note 1 or Supplementary Note 2.

付記3に記載された発明によれば、ウェーハの割断ではバックグラインドテープが表面に貼着され、裏面から入射されたレーザ光により改質層が形成されたウェーハは裏面が研削、研磨された後にテープを貼り付ける機構によりエキスパンドテープが裏面に貼着される。   According to the invention described in appendix 3, a back grinding tape is adhered to the front surface of the wafer when cleaving the wafer, and the back surface of the wafer having the modified layer formed by the laser light incident from the rear surface is ground and polished. The expanding tape is attached to the back surface by the tape attaching mechanism.

バックグラインドテープとエキスパンドテープが両面に貼着されたウェーハはバックグラインドテープを剥離する機構に設けられた、弾性体が上面に取り付けられたテーブル上に載置される。続いて剥離機構内に設けられている押圧部材が切断ラインと平行に位置づけられ、押圧されるとともに転動されて一方の切断ラインが割断される。   The wafer to which the back grind tape and the expand tape are attached on both sides is placed on a table having an elastic body attached to the upper surface thereof, which is provided in a mechanism for peeling the back grind tape. Subsequently, the pressing member provided in the peeling mechanism is positioned parallel to the cutting line, and is pressed and rolled to cut one cutting line.

一方の切断ラインが全て割断された後、ウェーハが90度回転して他方の切断ラインが割断される。割断されたウェーハは紫外線照射や加熱などによりバックグラインドテープの粘着力が低減される。粘着力が低減されたバックグラインドテープには、剥離用ローラにより剥離用テープが貼着されて剥離が行われる。バックグラインドテープが剥離されたウェーハはエキスパンドフィルムが拡張されてチップの離間が行われる。これにより、割断が確実に効率よく行われ、割断を連続して行っても後のウェーハに悪影響を及ぼすことなく連続して割断を行うことが可能となる。   After all the one cutting lines are cleaved, the wafer is rotated 90 degrees and the other cutting line is cleaved. The adhesive force of the back grind tape is reduced on the cleaved wafer by UV irradiation or heating. The peeling tape is adhered to the back grind tape having the reduced adhesive force by the peeling roller to perform peeling. The expand film is expanded on the wafer from which the back grinding tape has been peeled off, and the chips are separated from each other. As a result, the cleaving is surely and efficiently performed, and even if the cleaving is continuously performed, the cleaving can be continuously performed without adversely affecting the subsequent wafer.

(付記4)前記押圧部材は前記切断ラインの間隔よりも小さい半径に形成されていることを特徴とする付記3に記載の半導体基板の切断方法。   (Supplementary Note 4) The method for cutting a semiconductor substrate according to Supplementary Note 3, wherein the pressing member is formed with a radius smaller than an interval between the cutting lines.

付記4に記載された発明によれば、押圧部材の半径は押圧するウェーハに形成された切断ラインの間隔よりも小さい半径となるように形成されている。切断ラインの間隔よりも小さい半径であるため、押圧部材が複数の切断ラインを一度に押圧して応力が分散することがない。これにより一つの切断ラインに応力を集中させて作用させることが可能となり、割断が確実に効率よく行える。   According to the invention described in appendix 4, the radius of the pressing member is formed to be smaller than the interval between the cutting lines formed on the wafer to be pressed. Since the radius is smaller than the interval between the cutting lines, the pressing member does not press the plurality of cutting lines at once and the stress is not dispersed. As a result, it is possible to concentrate the stress on one cutting line and act it, so that the cutting can be performed reliably and efficiently.

(付記5)前記弾性体には前記ウェーハに形成されたチップのサイズ以下の間隔で溝、孔、または凹凸が形成されていることを特徴とする付記3または付記4に記載の半導体基板の切断方法。   (Supplementary note 5) The semiconductor substrate according to Supplementary note 3 or Supplementary note 4, wherein grooves, holes, or irregularities are formed in the elastic body at intervals equal to or smaller than the size of the chips formed on the wafer. Method.

付記5に記載された発明によれば、ウェーハが載置される弾性体は表面に溝加工、孔加工、または凹凸加工が施されている。弾性体には初期の弾性係数と、幾度か使用した後の弾性係数の変化が少ないように圧縮永久歪の小さい空隙のない弾性体が好ましい。弾性体にウェーハに形成されたチップのサイズ以下の間隔で溝、孔、または凹凸が形成されていることにより、ウェーハは局所的に変形することが可能となり、割断が確実に効率よく行える。   According to the invention described in appendix 5, the surface of the elastic body on which the wafer is placed is grooved, holed, or roughened. The elastic body is preferably an elastic body having a small compression set and having no voids so that the elastic modulus at the initial stage and the elastic modulus after being used a few times are small. Since the groove, the hole, or the unevenness is formed in the elastic body at intervals equal to or smaller than the size of the chip formed on the wafer, the wafer can be locally deformed, and the cutting can be surely and efficiently performed.

(付記6)前記バックグラインドテープまたは前記エキスパンドテープを貼着させる際には、格子状に形成された前記切断ラインに対して傾斜して交差する方向に貼着用ローラを転動させて貼着させることを特徴とする付記3から付記5のいずれか1項に記載の半導体基板の切断方法。   (Supplementary Note 6) When applying the back grind tape or the expanding tape, the applying roller is applied by rolling in a direction that intersects the cutting lines formed in a grid with an inclination. 6. The method for cutting a semiconductor substrate according to any one of appendices 3 to 5, characterized in that.

付記6に記載された発明によれば、バックグラインドテープやエキスパンドテープをウェーハ表面及び裏面に貼着させる際には、ウェーハが載置されたテーブルを45度程度回転させることにより、格子状に形成された切断ラインに対して傾斜して交差する方向に貼着用ローラを押圧した後、転動させてテープの貼着が行われる。   According to the invention described in appendix 6, when the back grinding tape or the expanding tape is attached to the front surface and the back surface of the wafer, the table on which the wafer is placed is rotated by about 45 degrees to form a lattice shape. After pressing the sticking roller in a direction intersecting with the cut line inclined, it is rolled to stick the tape.

仮にテープ貼着用ローラの押圧力により切断ラインが割断された場合、貼着面に気泡が入ることや、チップ方向の崩れにより精度よくテープを貼り付けることが困難となる。切断ラインに対して傾斜するように交差させてテープ貼着ローラを移動させることにより、割断が確実に効率よく行え、後の工程にも悪影響を及ぼすことがない。   If the cutting line is broken by the pressing force of the tape sticking roller, it becomes difficult to stick the tape with high accuracy because of bubbles entering the sticking surface and collapsing in the chip direction. By moving the tape adhering roller so as to intersect with the cutting line so as to be inclined, the cutting can be surely and efficiently performed, and the subsequent steps are not adversely affected.

1…レーザダイシング装置,2…研削装置,3…テープ剥離装置,11…ウェーハ移動部,13…吸着ステージ,20…レーザ光学部,30…観察光学部,40…レーザヘッド,50…制御部,118…粗研削ステージ,120…精研削ステージ,122…研磨ステージ,132、136、138、140…チャック,146、154…カップ型砥石,156…研磨布,211…テーブル,212…弾性体,212a…溝,213…供給リール,214…剥離用ローラ,215…剥離用テープ,216、217…ガイドローラ,218…巻取りリール,219…押圧部材,B…BGテープ,C…チップ,E…エキスパンドテープ,F…フレーム,K…改質領域,L…レーザ光,S…切断ライン,W…ワーク   DESCRIPTION OF SYMBOLS 1 ... Laser dicing device, 2 ... Grinding device, 3 ... Tape peeling device, 11 ... Wafer moving part, 13 ... Adsorption stage, 20 ... Laser optical part, 30 ... Observation optical part, 40 ... Laser head, 50 ... Control part, 118 ... Coarse grinding stage, 120 ... Fine grinding stage, 122 ... Polishing stage, 132, 136, 138, 140 ... Chuck, 146, 154 ... Cup grindstone, 156 ... Polishing cloth, 211 ... Table, 212 ... Elastic body, 212a ... Groove, 213 ... Supply reel, 214 ... Separation roller, 215 ... Separation tape, 216, 217 ... Guide roller, 218 ... Take-up reel, 219 ... Pressing member, B ... BG tape, C ... Chip, E ... Expand Tape, F ... Frame, K ... Modified area, L ... Laser light, S ... Cutting line, W ... Work

Claims (2)

チップ強度の向上を図るレーザ加工システムにおいて、
デバイス面を保護する保護シートを貼り付けた半導体ウェーハの、保護シート側をウェーハチャックに保持するウェーハ保持手段と、
観察用光源から出た照明光を、集光レンズを経由して半導体ウェーハの裏面側から照射し、前記デバイス面がある前記半導体ウェーハの表面を観察して、前記半導体ウェーハのアライメントを行うアライメント手段と、
レーザ発振器から出射されたパルスレーザ光を、前記集光レンズを経由して前記半導体ウェーハの裏面側からウェーハ内部に照射し、前記ウェーハ内部に一定間隔の独立した微小空孔を有する改質領域を形成する改質領域形成手段と、
前記半導体ウェーハの裏面から前記改質領域を研削除去した際に、前記改質領域内の前記微小空孔から延びる亀裂が進展して前記半導体ウェーハの切断の起点となる位置に、前記改質領域の形成位置を調整する改質領域位置制御手段と、
を備え、
前記改質領域位置制御手段は、テーブルによる前記半導体ウェーハの相対的なZ方向位置調整手段と、圧電素子で構成されるZ微動手段によるコンデンスレンズ位置制御手段とを有する、
チップ強度の向上を図るレーザ加工システム。
In a laser processing system that improves chip strength,
A semiconductor wafer having a protective sheet attached to protect the device surface, a wafer holding unit for holding the protective sheet side to a wafer chuck,
Alignment means for irradiating illumination light emitted from an observation light source from the back surface side of the semiconductor wafer via a condenser lens, observing the front surface of the semiconductor wafer having the device surface, and aligning the semiconductor wafer When,
Pulsed laser light emitted from a laser oscillator is irradiated to the inside of the wafer from the back surface side of the semiconductor wafer via the condenser lens, and a modified region having independent minute holes at regular intervals is formed inside the wafer. A modified region forming means to be formed,
When the modified region is ground and removed from the back surface of the semiconductor wafer, the modified region is located at a position where a crack extending from the micropores in the modified region is a starting point of cutting of the semiconductor wafer. Reforming area position control means for adjusting the formation position of
Equipped with
The modified region position control means has a relative Z direction position adjustment means for the semiconductor wafer by a table and a condensation lens position control means by a Z fine movement means composed of a piezoelectric element.
Laser processing system that improves chip strength.
チップ強度の向上を図るレーザ加工方法において、
デバイス面を保護する保護シートを貼り付けた半導体ウェーハの、保護シート側をウェーハチャックに保持するウェーハ保持ステップと、
観察用光源から出た照明光を、集光レンズを経由して半導体ウェーハの裏面側から照射し、前記デバイス面がある前記半導体ウェーハの表面を観察して、前記半導体ウェーハのアライメントを行うアライメントステップと、
レーザ発振器から出射されたパルスレーザ光を、前記集光レンズを経由して前記半導体ウェーハの裏面側からウェーハ内部に照射し、前記ウェーハ内部に一定間隔の独立した微小空孔を有する改質領域を形成する改質領域形成ステップと、
前記半導体ウェーハの裏面から前記改質領域を研削除去した際に、前記改質領域内の前記微小空孔から延びる亀裂が進展して前記半導体ウェーハの切断の起点となる位置に、前記改質領域の形成位置を調整する改質領域位置制御ステップと、
を備え、
前記改質領域位置制御ステップは、テーブルによる前記半導体ウェーハの相対的なZ方向位置調整ステップと、圧電素子で構成されるZ微動手段によるコンデンスレンズ位置制御ステップとを含む、
チップ強度の向上を図るレーザ加工方法。
In the laser processing method for improving the chip strength,
A wafer holding step of holding the protective sheet side of the semiconductor wafer with the protective sheet attached to protect the device surface on the wafer chuck,
An alignment step of aligning the semiconductor wafer by illuminating illumination light emitted from an observation light source from the back side of the semiconductor wafer via a condenser lens, observing the front surface of the semiconductor wafer having the device surface. When,
Pulsed laser light emitted from a laser oscillator is irradiated to the inside of the wafer from the back surface side of the semiconductor wafer via the condenser lens, and a modified region having independent minute holes at regular intervals is formed inside the wafer. A modified region forming step to be formed,
When the modified region is ground and removed from the back surface of the semiconductor wafer, the modified region is located at a position where a crack extending from the micropores in the modified region is a starting point of cutting of the semiconductor wafer. A modified region position control step for adjusting the formation position of
Equipped with
The modified region position control step includes a relative Z direction position adjustment step of the semiconductor wafer by a table, and a condensation lens position control step by a Z fine movement unit composed of a piezoelectric element.
Laser processing method to improve chip strength.
JP2020010218A 2020-01-24 2020-01-24 Laser processing system and laser processing method for improving chip strength Pending JP2020074454A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020010218A JP2020074454A (en) 2020-01-24 2020-01-24 Laser processing system and laser processing method for improving chip strength
JP2020114007A JP6979608B2 (en) 2020-01-24 2020-07-01 Grinding device and grinding method
JP2021184119A JP7217409B2 (en) 2020-01-24 2021-11-11 Crack growth device and crack growth method
JP2023003952A JP7417837B2 (en) 2020-01-24 2023-01-13 Crack propagation device and crack propagation method
JP2023218767A JP2024032712A (en) 2020-01-24 2023-12-26 Crack propagation device and crack propagation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020010218A JP2020074454A (en) 2020-01-24 2020-01-24 Laser processing system and laser processing method for improving chip strength

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019234761A Division JP6653943B1 (en) 2019-12-25 2019-12-25 Laser processing equipment for semiconductor wafers to obtain chips with high bending strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020114007A Division JP6979608B2 (en) 2020-01-24 2020-07-01 Grinding device and grinding method

Publications (1)

Publication Number Publication Date
JP2020074454A true JP2020074454A (en) 2020-05-14

Family

ID=70610264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020010218A Pending JP2020074454A (en) 2020-01-24 2020-01-24 Laser processing system and laser processing method for improving chip strength

Country Status (1)

Country Link
JP (1) JP2020074454A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077295A1 (en) * 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
JP2004349623A (en) * 2003-05-26 2004-12-09 Disco Abrasive Syst Ltd Partitioning method of nonmetallic substrate
JP2005086111A (en) * 2003-09-10 2005-03-31 Hamamatsu Photonics Kk Method for cutting semiconductor substrate
JP2005175147A (en) * 2003-12-10 2005-06-30 Tokyo Seimitsu Co Ltd Laser dicing apparatus and dicing method
JP2006140355A (en) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk Laser processing method and semiconductor chip
JP2009140958A (en) * 2007-12-03 2009-06-25 Tokyo Seimitsu Co Ltd Laser dicing device and dicing method
JP2009289773A (en) * 2008-05-27 2009-12-10 Disco Abrasive Syst Ltd Method of dividing wafer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077295A1 (en) * 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
JP2004349623A (en) * 2003-05-26 2004-12-09 Disco Abrasive Syst Ltd Partitioning method of nonmetallic substrate
JP2005086111A (en) * 2003-09-10 2005-03-31 Hamamatsu Photonics Kk Method for cutting semiconductor substrate
JP2005175147A (en) * 2003-12-10 2005-06-30 Tokyo Seimitsu Co Ltd Laser dicing apparatus and dicing method
JP2006140355A (en) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk Laser processing method and semiconductor chip
JP2009140958A (en) * 2007-12-03 2009-06-25 Tokyo Seimitsu Co Ltd Laser dicing device and dicing method
JP2009289773A (en) * 2008-05-27 2009-12-10 Disco Abrasive Syst Ltd Method of dividing wafer

Similar Documents

Publication Publication Date Title
JP5825511B2 (en) Semiconductor substrate cutting method
JP5953645B2 (en) Semiconductor substrate cutting method and semiconductor substrate cutting apparatus
JP6703073B2 (en) Wafer processing method and wafer processing system
JP6703072B2 (en) Wafer processing method and wafer processing system
JP5803049B2 (en) Semiconductor substrate cutting method
JP6128666B2 (en) Semiconductor substrate cleaving method and cleaving apparatus
JP6276437B2 (en) Method and system for forming thin chip with high bending strength
JP2020080409A (en) Laser processing system and laser processing method
JP5995023B2 (en) Semiconductor substrate cleaving method
JP2020025142A (en) Wafer processing device and wafer processing method for obtaining chip with high transverse intensity
JP2019071476A (en) Laser optical unit
JP6081005B2 (en) Grinding / polishing apparatus and grinding / polishing method
JP2017224826A (en) Method and system for forming thin chip with high bending strength
JP2020074454A (en) Laser processing system and laser processing method for improving chip strength
JP7217409B2 (en) Crack growth device and crack growth method
JP2020074414A (en) Laser processing device of semiconductor wafer to obtain chips with high bending strength
JP6979608B2 (en) Grinding device and grinding method
JP6276347B2 (en) Wafer processing system
JP6276332B2 (en) Wafer processing system
JP6276357B2 (en) Wafer processing method
JP6197970B2 (en) Division start point formation method and division start point formation apparatus
JP6276356B2 (en) Wafer processing method
JP6103739B2 (en) Wafer processing method and wafer processing apparatus
JP6157668B2 (en) Wafer processing method and processing apparatus
JP5900811B2 (en) Semiconductor substrate cleaving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200403