JP2020072019A - Manufacturing method of stacked cell - Google Patents

Manufacturing method of stacked cell Download PDF

Info

Publication number
JP2020072019A
JP2020072019A JP2018205763A JP2018205763A JP2020072019A JP 2020072019 A JP2020072019 A JP 2020072019A JP 2018205763 A JP2018205763 A JP 2018205763A JP 2018205763 A JP2018205763 A JP 2018205763A JP 2020072019 A JP2020072019 A JP 2020072019A
Authority
JP
Japan
Prior art keywords
cutting
cutting blade
layer
electrode
electrode laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018205763A
Other languages
Japanese (ja)
Other versions
JP7087920B2 (en
Inventor
正剛 藤嶋
Masatake Fujishima
正剛 藤嶋
佐藤 彰生
Akio Sato
彰生 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018205763A priority Critical patent/JP7087920B2/en
Publication of JP2020072019A publication Critical patent/JP2020072019A/en
Application granted granted Critical
Publication of JP7087920B2 publication Critical patent/JP7087920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Nonmetal Cutting Devices (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a manufacturing method of stacked cell capable of restraining short circuit.SOLUTION: A manufacturing method of stacked cell includes a step of cutting an electrode laminate, having a positive electrode layer, a negative electrode layer, and an isolating layer interposed between the positive electrode layer and the negative electrode layer, by means of a cutting blade. In the step of cutting, assuming the angle formed by the direction of travel of the cutting blade and the interlayer direction of the electrode laminate is θ, the thickness of the isolating layer is t, the amplitude of vibration generated in the cutting blade when cutting the electrode laminate is A, the angle formed by the direction of vibration generated in the cutting blade and the interlayer direction of the electrode laminate is θ, and the maximum burr dimensions when cutting the electrode laminate at θ=90° by means of the cutting blade is h, the cutting step satisfies the following formula (1). t>hsinθ+Asinθ... (1).SELECTED DRAWING: Figure 5

Description

本願は積層電池の製造方法を開示するものである。   This application discloses a method of manufacturing a laminated battery.

近年、電池に要求される出力を満足する電子伝導性及びイオン伝導性を確保するために活物質層の厚みを厚くし、さらに電池の容量密度を向上させるために集電箔及び絶縁層(電解質層)の厚みを極力薄くすることが求められている。しかしながら、絶縁層を薄くすると正極層と負極層との間の短絡が懸念される。そのため、図1のように正極活物質層及び負極活物質層の層間方向の長さよりも、絶縁層の層間方向の長さを長くし、絶縁性を向上させる積層構造(異径構造)とすることが一般的に採用されている。   In recent years, the thickness of the active material layer has been increased in order to secure the electronic conductivity and ionic conductivity that satisfy the output required for the battery, and further, in order to improve the capacity density of the battery, a collector foil and an insulating layer (electrolyte) It is required to make the thickness of the layer) as thin as possible. However, if the insulating layer is made thin, there is a fear of short circuit between the positive electrode layer and the negative electrode layer. Therefore, as shown in FIG. 1, the length in the interlayer direction of the insulating layer is made longer than the length in the interlayer direction of the positive electrode active material layer and the negative electrode active material layer to form a laminated structure (different diameter structure) that improves the insulating property. Is generally adopted.

一方で、図1のような積層電池では、集電箔が活物質層に接している面積のみ電池として機能するため、集電箔の層間方向の長さよりも外側に位置する部分は余剰であり、このような余剰部位の長さ(余剰寸法)が長くなるほど、電池の容量密度が低下する。そのため、図2に示されているように、余剰部位が切断され、全層同一な面積で積層されている電池(同径構造)が求められている。   On the other hand, in the laminated battery as shown in FIG. 1, only the area where the current collector foil is in contact with the active material layer functions as a battery, and therefore the portion located outside the length of the current collector foil in the interlayer direction is a surplus. As the length (excess dimension) of such an excess portion increases, the capacity density of the battery decreases. Therefore, as shown in FIG. 2, a battery (same diameter structure) in which surplus portions are cut and all layers are stacked in the same area is required.

特許文献1には、図2のような同径構造の積層電池の製造方法が開示されており、電極材料を積層しプレスした後に、積層体の端部を切断することにより積層電池を作製することが記載されている。また、切断方法については、積層体の積層方向に沿って切断することが記載されており、これにより加工時間を短縮することが図られている。
特許文献2にも、図2のような同径構造の積層電池の製造方法が開示されており、同文献には、切断部材の刃を層構造体の層方向に略平行な方向に移動させて層構造体を切断することにより、層構造体の電気的短絡を抑制できることが記載されている。
Patent Document 1 discloses a method for manufacturing a laminated battery having the same diameter structure as shown in FIG. 2. After laminating and pressing electrode materials, the laminated body is produced by cutting the end portions of the laminated body. Is described. As for the cutting method, it is described that the cutting is performed along the stacking direction of the stacked body, and thereby the processing time is shortened.
Patent Document 2 also discloses a method of manufacturing a laminated battery having the same diameter structure as shown in FIG. 2, in which the blade of the cutting member is moved in a direction substantially parallel to the layer direction of the layer structure. It is described that an electrical short circuit of the layered structure can be suppressed by cutting the layered structure with the use of.

特開2000−90940号公報JP 2000-90940 A 特開2008−20760号公報JP, 2008-20760, A

特許文献1に記載の方法では、積層体の積層方向に沿って切断することになるため、切断面に生じたバリや電極崩れが絶縁層を超えて正極層から負極層、又は負極層から正極層に延びてしまい、短絡する虞がある。
特許文献2に記載の方法では、切断部材の刃を層構造体の層方向に略平行な方向に移動させて層構造体を切断しているため、層構造体の電極間における短絡は抑制可能であるが、切断時間が長くなる問題が生じる。また、このような切断方法では、切断部材の刃の単位幅に対して掛かる力が大きくなり、切断部材の寿命に影響する問題がある。
In the method described in Patent Document 1, since cutting is performed along the stacking direction of the stacked body, burrs and electrode collapse generated on the cut surface exceed the insulating layer and the positive electrode layer to the negative electrode layer, or the negative electrode layer to the positive electrode. It may extend into the layer and cause a short circuit.
In the method described in Patent Document 2, since the blade of the cutting member is moved in a direction substantially parallel to the layer direction of the layer structure to cut the layer structure, a short circuit between the electrodes of the layer structure can be suppressed. However, there arises a problem that the cutting time becomes long. Further, in such a cutting method, the force applied to the unit width of the blade of the cutting member becomes large, and there is a problem that the life of the cutting member is affected.

そこで本願では、短絡を抑制することが可能な積層電池の製造方法を提供することを課題とする。   Therefore, an object of the present application is to provide a method of manufacturing a laminated battery capable of suppressing a short circuit.

本発明者らは、鋭意検討の結果、切断時の切り取り刃と電極積層体との関係を所定の式を満たすように設定することにより、切断時の短絡を抑制し、かつ、切断時間を低減することが可能なことを見出し、本発明を完成させた。   As a result of intensive studies, the inventors of the present invention suppress the short circuit at the time of cutting and reduce the cutting time by setting the relationship between the cutting blade and the electrode laminate at the time of cutting to satisfy a predetermined formula. The inventors have found that it is possible to complete the present invention.

すなわち、本願は上記した課題を解決するための一つの手段として、
正極層と、負極層と、正極層及び負極層の間に配置される絶縁層とを有する電極積層体を切り取り刃で切断する工程を備え、切断する工程は、切断時の切り取り刃の進行方向と電極積層体の層間方向との成す角をθ、絶縁層の厚みをt、電極積層体を切断する際に切り取り刃に発生する振動の振幅をA、切り取り刃に発生する振動の方向と電極積層体の層間方向との成す角をθとし、さらに、θ=90°において電極積層体を切り取り刃で切断したときの最大バリ崩れ寸法をhとしたとき、
下記式(1)を満たすことを特徴とする、積層電池の製造方法を開示する。
t>hsinθ+Asinθ・・・(1)
That is, the present application, as one means for solving the above problems,
The method includes a step of cutting an electrode laminate having a positive electrode layer, a negative electrode layer, and an insulating layer arranged between the positive electrode layer and the negative electrode layer with a cutting blade, and the cutting step includes a traveling direction of the cutting blade at the time of cutting. The angle between the electrode laminate and the interlayer direction is θ 1 , the thickness of the insulating layer is t, the amplitude of vibration generated at the cutting blade when cutting the electrode laminate is A, and the direction of vibration generated at the cutting blade is When the angle formed between the electrode laminate and the interlayer direction is θ 2, and when the maximum crushing dimension when the electrode laminate is cut with a cutting blade at θ 1 = 90 ° is h,
Disclosed is a method for manufacturing a laminated battery, which satisfies the following formula (1).
t> hsin θ 1 + Asin θ 2 (1)

上記積層電池の製造方法によれば、電極積層体切断時の短絡を抑制することができる。また、電極積層体の層間方向に沿って切断した場合に比べて、切断時間を低減することができ、さらに切り取り刃の単位幅に対して掛かる力が小さくなるため、切り取り刃の寿命を延長させることができる。   According to the above method for manufacturing a laminated battery, it is possible to suppress a short circuit when the electrode laminate is cut. Further, compared with the case of cutting along the interlayer direction of the electrode laminate, the cutting time can be reduced, and the force applied to the unit width of the cutting blade is reduced, so that the life of the cutting blade is extended. be able to.

異径構造の積層電池の断面概略図である。It is a cross-sectional schematic diagram of the laminated battery of different diameter structure. 同径構造の積層電池の断面概略図である。It is a cross-sectional schematic diagram of the laminated battery of the same diameter structure. 積層電池の製造方法10のフローチャートである。It is a flowchart of the manufacturing method 10 of a laminated battery. 電極積層体1の断面概略図である。It is a cross-sectional schematic diagram of the electrode laminated body 1. 切断工程S1の様子を説明する図である。It is a figure explaining the mode of cutting process S1. バリ崩れを説明する図である。It is a figure explaining a flash collapse.

本開示の積層電池の製造方法について、一実施形態である積層電池の製造方法10(以下、「製造方法10」ということがある。)を用いて説明する。   A method for manufacturing a laminated battery according to the present disclosure will be described using a method for manufacturing a laminated battery 10 (hereinafter, also referred to as “manufacturing method 10”) according to an embodiment.

<製造方法10>
図3に示したとおり、製造方法10は電極積層体1を切り取り刃で切断する切断工程S1を備えており、電極積層体1を切断することにより積層電池が製造される。
以下において、切断工程S1について詳しく説明するが、まずは電極積層体1から説明する。
<Manufacturing method 10>
As shown in FIG. 3, the manufacturing method 10 includes a cutting step S1 of cutting the electrode laminated body 1 with a cutting blade, and the laminated battery is manufactured by cutting the electrode laminated body 1.
Hereinafter, the cutting step S1 will be described in detail, but first, the electrode laminated body 1 will be described.

(電極積層体1)
電極積層体1は、正極層2と、負極層3と、正極層2及び負極層3の間に配置される絶縁層4とを有している。図4に電極積層体1の断面図を示した。
図4に示されているように、正極層2は正活物質層2aと正極集電箔2bとを有し、正極活物質層2aの面のうち絶縁層4が配置されている側とは反対側の面に正極集電箔2bが積層されている。負極層3も同様に、負極活物質層3aと負極集電箔3bとを有し、負極活物質層3aの面のうち絶縁層4が配置されている側とは反対側の面に負極集電箔3bが積層されている。
正極活物質層2a、正極集電箔2b、負極活物質層3a、負極集電箔3b、絶縁層4を構成する材料は、公知の材料を採用することができる。
(Electrode laminate 1)
The electrode stack 1 includes a positive electrode layer 2, a negative electrode layer 3, and an insulating layer 4 arranged between the positive electrode layer 2 and the negative electrode layer 3. FIG. 4 shows a sectional view of the electrode laminate 1.
As shown in FIG. 4, the positive electrode layer 2 has a positive active material layer 2a and a positive electrode current collector foil 2b, and the side of the positive electrode active material layer 2a on which the insulating layer 4 is arranged is The positive electrode current collector foil 2b is laminated on the opposite surface. Similarly, the negative electrode layer 3 also has a negative electrode active material layer 3a and a negative electrode current collector foil 3b, and a negative electrode collector is provided on the surface of the negative electrode active material layer 3a opposite to the side on which the insulating layer 4 is arranged. The electric foil 3b is laminated.
As a material forming the positive electrode active material layer 2a, the positive electrode current collector foil 2b, the negative electrode active material layer 3a, the negative electrode current collector foil 3b, and the insulating layer 4, known materials can be adopted.

以上、電極積層体1について説明したが、本開示の積層電池の製造方法に用いることができる電極積層体は、上記の電極積層体1に限定されず、公知の電極積層体の構造を採用することができる。
例えば、電極積層体1の積層構造の各層間に他の層が積層されていてもよい。また、図4の電極積層体1では正極層、負極層、絶縁層がそれぞれ1つずつ積層されている形態を示したが、これに限定されず、正極層、負極層、絶縁層が2つ以上積層されている形態であってもよい。さらに、図4の電極積層体1は異径構造であるが、これに限定されず、同径構造であってもよい。
Although the electrode laminate 1 has been described above, the electrode laminate that can be used in the method for manufacturing a laminated battery of the present disclosure is not limited to the electrode laminate 1 described above, and a known electrode laminate structure is adopted. be able to.
For example, another layer may be laminated between each layer of the laminated structure of the electrode laminate 1. Further, the electrode laminate 1 of FIG. 4 shows a mode in which one positive electrode layer, one negative electrode layer, and one insulating layer are laminated, but the present invention is not limited to this, and two positive electrode layers, two negative electrode layers, and two insulating layers are provided. It may be in the form of being laminated. Furthermore, although the electrode laminate 1 of FIG. 4 has a different diameter structure, the invention is not limited to this and may have the same diameter structure.

(切断工程S1)
次に切断工程S1について説明する。
切断工程S1は電極積層体1を切り取り刃5で切断する工程であり、切断時の切り取り刃5の進行方向と電極積層体1の層間方向との成す角をθ、絶縁層4の厚みをt、電極積層体1を切断する際に切り取り刃5に発生する振動の振幅をA、切り取り刃5に発生する振動の方向と電極積層体1の層間方向との成す角をθとし、さらに、θ=90°において電極積層体を切り取り刃5で切断したときの最大バリ崩れ寸法をhとしたとき、下記式(1)を満たすことを特徴としている。
t>hsinθ+Asinθ・・・(1)
(Cutting step S1)
Next, the cutting step S1 will be described.
The cutting step S1 is a step of cutting the electrode laminated body 1 with the cutting blade 5. The angle formed by the traveling direction of the cutting blade 5 and the interlayer direction of the electrode laminated body 1 at the time of cutting is θ 1 , and the thickness of the insulating layer 4 is t, the amplitude of the vibration generated in the cutting blade 5 when the electrode laminated body 1 is cut is A, the angle between the direction of the vibration generated in the cutting blade 5 and the interlayer direction of the electrode laminated body 1 is θ 2 , and , Θ 1 = 90 °, the following formula (1) is satisfied, where h is the maximum size of collapse when the electrode laminate is cut by the cutting blade 5.
t> hsin θ 1 + Asin θ 2 (1)

以下、式(1)の各要素について、図5を用いて詳しく説明する。図5は切断工程S1において電極積層体1を切り取り刃5で切断する様子を示した図であり、図5に示されている電極積層体の図は図4のVの方向から見た図である。   Hereinafter, each element of the formula (1) will be described in detail with reference to FIG. FIG. 5 is a view showing how the electrode laminate 1 is cut by the cutting blade 5 in the cutting step S1, and the view of the electrode laminate shown in FIG. 5 is a view seen from the direction V in FIG. is there.

図5に記載されているように、切断時の切り取り刃5の進行方向と電極積層体1の層間方向との成す角がθである。ここで「層間方向」とは、切断する電極積層体1の断面における電極積層体1の各層間の界面に沿った方向であり、具体的には切断する電極積層体1の断面における電極積層体1の積層方向に直交する方向である。角度θは0°<θ1<90°であることが好ましい。
絶縁層4の厚みtは、電極積層体1の積層方向における絶縁層4の長さである。
電極積層体1を切断する際に切り取り刃5に発生する振動の振幅Aとは、例えば電極積層体1を切断する際に、超音波等を用いて切り取り刃5を振動させた場合の該振動の振幅である。
また、切り取り刃5に発生する振動方向と電極積層体1の層間方向との成す角がθである。角度θは0°<θ<90°であることが好ましい。なお、切り取り刃5に発生する振動の方向とは、上記超音波等によって発生する切り取り刃5の振動の方向である。図5には切り取り刃5が紙面左右方向に振動している例を示している。
As shown in FIG. 5, the angle between the advancing direction of the cutting blade 5 and the interlayer direction of the electrode laminate 1 at the time of cutting is θ 1 . Here, the “interlayer direction” is a direction along the interface between the layers of the electrode laminate 1 in the cross section of the electrode laminate 1 to be cut, and specifically, the electrode laminate in the cross section of the electrode laminate 1 to be cut. 1 is a direction orthogonal to the stacking direction. The angle θ 1 is preferably 0 ° <θ1 <90 °.
The thickness t of the insulating layer 4 is the length of the insulating layer 4 in the stacking direction of the electrode stack 1.
The amplitude A of the vibration generated in the cutting blade 5 when the electrode laminated body 1 is cut means, for example, the vibration when the cutting blade 5 is vibrated by using ultrasonic waves when the electrode laminated body 1 is cut. Is the amplitude of.
Further, the angle formed by the vibration direction generated in the cutting blade 5 and the interlayer direction of the electrode laminate 1 is θ 2 . The angle θ 2 is preferably 0 ° <θ 2 <90 °. The direction of vibration of the cutting blade 5 is the direction of vibration of the cutting blade 5 generated by the ultrasonic waves or the like. FIG. 5 shows an example in which the cutting blade 5 vibrates in the left-right direction on the paper surface.

また、θ=90°において電極積層体を切り取り刃5で切断したときの最大バリ崩れ寸法hとは、切り取り刃5を電極積層体1の積層方向に沿った方向(θ=90°)に進行させて電極積層体1を切断したときの最大バリ崩れ寸法hであり、切断工程S1の前に予め試験をして求めておくものである。
「バリ崩れ」とは、切断時における集電箔(正極集電箔、負極集電箔)のバリ、及び活物質層(正極活物質層、負極活物質層)の崩れの総称である。図6にバリ崩れを説明する図を示した。図6に示したように、電極積層体1を切断すると、このようなバリ崩れAやバリ崩れBが発生する場合がある。そして、例えばバリ崩れBのように、正極活物質層2aが絶縁層4を超えて負極活物質層3aに接触すると電池が短絡する。このように、正極層2及び負極層3が絶縁層4を超えて接触すると、電池に短絡が発生する。切断工程S1では、このようなバリ崩れによる電池の短絡を抑制することができる。
ここで「バリ崩れ寸法」とは、絶縁層4の面のうち切り取り刃5に最初に接触する面を基準として、該基準からバリ崩れの先端までの積層方向の長さであり、「最大バリ崩れ寸法」とは、得られたバリ崩れ寸法のうち最大のものである。
Further, the maximum burr collapsed dimension h when cut in theta 1 = 90 ° the electrodes laminate cut blade 5, the direction (θ 1 = 90 °) along the cut edge 5 in the stacking direction of the electrode stack 1 It is the maximum burr collapse dimension h when the electrode laminated body 1 is cut by advancing to the above, and is obtained by performing a test in advance before the cutting step S1.
The "burr collapse" is a general term for burrs of the current collector foil (positive electrode current collector foil, negative electrode current collector foil) at the time of cutting and collapse of the active material layer (positive electrode active material layer, negative electrode active material layer). FIG. 6 shows a diagram for explaining the collapse. As shown in FIG. 6, when the electrode laminated body 1 is cut, such a burrs collapse A and a burrs collapse B may occur. When the positive electrode active material layer 2a exceeds the insulating layer 4 and comes into contact with the negative electrode active material layer 3a, as in the case of the collapse B, the battery is short-circuited. In this way, when the positive electrode layer 2 and the negative electrode layer 3 contact each other beyond the insulating layer 4, a short circuit occurs in the battery. In the cutting step S1, it is possible to suppress a short circuit of the battery due to such collapse.
Here, the "burr collapse dimension" is the length in the stacking direction from the reference to the tip of the barrack, based on the surface of the surface of the insulating layer 4 that comes into contact with the cutting blade 5 as a reference. The "collapse dimension" is the largest of the obtained burr collapse dimensions.

以上に説明した要素を、式(1)を満たすように設定することにより、電極積層体1を切断する際の短絡を抑制することができる。理由は次のとおりである。
式(1)のhsinθは切り取り刃5の進行によるバリ崩れの絶縁層の厚み方向成分(積層方向成分)の最大寸法を表している。Asinθは、切り取り刃5の振動によるバリ崩れの絶縁層の厚み方向成分の最大寸法を表している。振動の影響によって発生するバリ崩れが、切り取り刃5の振動範囲よりも広い範囲で発生しないためである。よって、hsinθ、Asinθの和は切断によって発生する、絶縁層の厚み方向成分のバリ崩れ寸法の最大値を表している。そのため、これらの和が絶縁層の厚みtよりも小さくなることにより、必ずバリ崩れ寸法よりも絶縁層の厚みが厚くなることから、バリ崩れが起きたとしても、正極層2及び負極層3が接触することが抑制される。従って、製造方法10によれば、積層電池の短絡を抑制することが可能となる。
By setting the elements described above so as to satisfy the formula (1), it is possible to suppress a short circuit when the electrode laminate 1 is cut. The reason is as follows.
In equation (1), hsin θ 1 represents the maximum dimension of the component in the thickness direction (component in the stacking direction) of the insulating layer that is caused by the movement of the cutting blade 5. Asin θ 2 represents the maximum dimension of the component in the thickness direction of the insulating layer that is caused by the vibration of the cutting blade 5 due to vibration. This is because the burr collapse caused by the vibration does not occur in a range wider than the vibration range of the cutting blade 5. Therefore, the sum of hsin θ 1 and Asin θ 2 represents the maximum value of the collapse dimension of the component in the thickness direction of the insulating layer generated by cutting. Therefore, since the sum of these is smaller than the thickness t of the insulating layer, the thickness of the insulating layer is always larger than the size of the breakdown, so that even if the breakdown occurs, the positive electrode layer 2 and the negative electrode layer 3 are Contact is suppressed. Therefore, according to the manufacturing method 10, it is possible to suppress a short circuit of the laminated battery.

また、製造方法10によれば、電極積層体1の層間方向に沿って切断した場合に比べて、切断時間を低減することができ、さらに切り取り刃5の単位幅に対して掛かる力が小さくなるため、切り取り刃5の寿命を延長させることができる。   Further, according to the manufacturing method 10, the cutting time can be reduced and the force applied to the unit width of the cutting blade 5 can be reduced as compared with the case where the electrode laminate 1 is cut along the interlayer direction. Therefore, the life of the cutting blade 5 can be extended.

なお、式(1)においてAsinθの項は0であってもよい。すなわち、切り取り刃5は電極積層体1の切断時に振動していなくてもよい。この場合であっても、上記の効果を奏することが、発明者らによって確認されている。切り取り刃5を振動させる理由は、切断性向上のためである。このような切り取り刃5としては、超音波カッター等を挙げることができる。 Note that the term of Asin θ 2 in the formula (1) may be 0. That is, the cutting blade 5 does not have to vibrate when the electrode laminate 1 is cut. Even in this case, it has been confirmed by the present inventors that the above-mentioned effects are exhibited. The reason why the cutting blade 5 is vibrated is to improve the cuttability. Examples of such a cutting blade 5 include an ultrasonic cutter.

また、電極積層体1を切断する部位は特に限定されないが、電極積層体1が図4のように余剰部位を有する場合、当該余剰部位が無くなるように切断することが好ましい。   Moreover, although the site | part which cut | disconnects the electrode laminated body 1 is not specifically limited, when the electrode laminated body 1 has an excess site | part like FIG. 4, it is preferable to cut so that the said excess site | part may be lost.

さらに、切断工程S1は、電極積層体1の切断を1回のみ行っても良く、複数回行ってもよい。   Further, in the cutting step S1, the electrode laminate 1 may be cut only once or plural times.

1 電極積層体
2 正極層
2a 正極活物質層
2b 正極集電箔
3 負極層
3a 負極活物質層
3b 負極集電箔
4 絶縁層
5 切り取り刃
DESCRIPTION OF SYMBOLS 1 Electrode laminated body 2 Positive electrode layer 2a Positive electrode active material layer 2b Positive electrode current collector foil 3 Negative electrode layer 3a Negative electrode active material layer 3b Negative electrode current collector foil 4 Insulating layer 5 Cutting blade

Claims (1)

正極層と、負極層と、前記正極層及び前記負極層の間に配置される絶縁層とを有する電極積層体を切り取り刃で切断する工程を備え、
前記切断する工程は、
切断時の前記切り取り刃の進行方向と前記電極積層体の層間方向との成す角をθ、前記絶縁層の厚みをt、前記電極積層体を切断する際に前記切り取り刃に発生する振動の振幅をA、前記切り取り刃に発生する前記振動の方向と前記電極積層体の前記層間方向との成す角をθとし、
さらに、θ=90°において前記電極積層体を前記切り取り刃で切断したときの最大バリ崩れ寸法をhとしたとき、
下記式(1)を満たすことを特徴とする、
積層電池の製造方法。
t>hsinθ+Asinθ・・・(1)
A step of cutting an electrode laminate having a positive electrode layer, a negative electrode layer, and an insulating layer arranged between the positive electrode layer and the negative electrode layer with a cutting blade,
The cutting step includes
The angle formed by the advancing direction of the cutting blade and the interlayer direction of the electrode laminate at the time of cutting is θ 1 , the thickness of the insulating layer is t, and the vibration generated in the cutting blade when the electrode laminate is cut The amplitude is A, the angle formed by the direction of the vibration generated in the cutting blade and the interlayer direction of the electrode laminate is θ 2 ,
Further, when θ 1 = 90 ° and the maximum flash collapse dimension when the electrode laminate is cut by the cutting blade is h,
Characterized by satisfying the following formula (1),
Manufacturing method of laminated battery.
t> hsin θ 1 + Asin θ 2 (1)
JP2018205763A 2018-10-31 2018-10-31 Manufacturing method of laminated battery Active JP7087920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205763A JP7087920B2 (en) 2018-10-31 2018-10-31 Manufacturing method of laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205763A JP7087920B2 (en) 2018-10-31 2018-10-31 Manufacturing method of laminated battery

Publications (2)

Publication Number Publication Date
JP2020072019A true JP2020072019A (en) 2020-05-07
JP7087920B2 JP7087920B2 (en) 2022-06-21

Family

ID=70547978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205763A Active JP7087920B2 (en) 2018-10-31 2018-10-31 Manufacturing method of laminated battery

Country Status (1)

Country Link
JP (1) JP7087920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111760958A (en) * 2020-06-22 2020-10-13 骆驼集团新能源电池有限公司 Pole piece cutting and manufacturing process of lithium ion soft package battery
CN114824505A (en) * 2022-04-06 2022-07-29 苏州时代华景新能源有限公司 Manufacturing process and production line system for zero deformation of winding type battery
WO2024152189A1 (en) * 2023-01-17 2024-07-25 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electrical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188099A (en) * 1998-12-22 2000-07-04 Mitsubishi Chemicals Corp Manufacture of thin film type battery
JP2001283897A (en) * 2000-04-04 2001-10-12 Sony Corp Battery and its manufacturing method
JP2017062871A (en) * 2015-09-21 2017-03-30 トヨタ自動車株式会社 Method and device for manufacturing electrode body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188099A (en) * 1998-12-22 2000-07-04 Mitsubishi Chemicals Corp Manufacture of thin film type battery
JP2001283897A (en) * 2000-04-04 2001-10-12 Sony Corp Battery and its manufacturing method
JP2017062871A (en) * 2015-09-21 2017-03-30 トヨタ自動車株式会社 Method and device for manufacturing electrode body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111760958A (en) * 2020-06-22 2020-10-13 骆驼集团新能源电池有限公司 Pole piece cutting and manufacturing process of lithium ion soft package battery
CN114824505A (en) * 2022-04-06 2022-07-29 苏州时代华景新能源有限公司 Manufacturing process and production line system for zero deformation of winding type battery
CN114824505B (en) * 2022-04-06 2023-11-03 苏州时代华景新能源有限公司 Manufacturing process of zero deformation of winding type battery and production line system thereof
WO2024152189A1 (en) * 2023-01-17 2024-07-25 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electrical device

Also Published As

Publication number Publication date
JP7087920B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP7087920B2 (en) Manufacturing method of laminated battery
JP6477769B2 (en) Power storage device
KR20200103778A (en) All-solid-state battery, its manufacturing method and processing device
JP7085976B2 (en) How to manufacture a secondary battery
JP2013051035A5 (en)
WO2017014233A1 (en) Electrode assembly of lithium ion secondary battery and method for producing same
TWI569504B (en) Electrode with improvement of biased movement and secondary battery comprising the same
JP2014187322A (en) Electronic component
JP2017076478A (en) Folding type secondary battery
JP2015215988A (en) Square battery
JP2012190697A (en) Battery
JP2013134881A (en) Power storage device and power storage device mounting vehicle
JP2011077384A (en) Capacitor and method of manufacturing the same
KR102052589B1 (en) Electrode, rechargeable battery and fablicating method of electrode
JP2020013706A (en) Power storage device and manufacturing method thereof
JP2019040720A (en) Power storage device and manufacturing method thereof
JP2019102196A (en) Manufacturing method of battery
JP2013149813A (en) Electrode structure for laminate type energy device, method of manufacturing the same, and electric double-layer capacitor
JP6229430B2 (en) Stacked battery
WO2019044613A1 (en) Power storage device
JP7369351B2 (en) Secondary batteries and secondary battery manufacturing methods
JP2016066535A (en) Power storage element and manufacturing method of power storage element
JP2019053898A (en) Manufacturing method of battery pack
JP2016100170A (en) Nonaqueous electrolyte secondary battery
JP6146353B2 (en) Electrode storage separator manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151