JP2020071186A - Buried object survey device and sonic speed estimation method for buried object survey - Google Patents

Buried object survey device and sonic speed estimation method for buried object survey Download PDF

Info

Publication number
JP2020071186A
JP2020071186A JP2018207021A JP2018207021A JP2020071186A JP 2020071186 A JP2020071186 A JP 2020071186A JP 2018207021 A JP2018207021 A JP 2018207021A JP 2018207021 A JP2018207021 A JP 2018207021A JP 2020071186 A JP2020071186 A JP 2020071186A
Authority
JP
Japan
Prior art keywords
probe
time
medium
value time
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018207021A
Other languages
Japanese (ja)
Other versions
JP7139061B2 (en
Inventor
孝則 秋池
Takanori Akiike
孝則 秋池
貴宏 後藤
Takahiro Goto
貴宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2018207021A priority Critical patent/JP7139061B2/en
Publication of JP2020071186A publication Critical patent/JP2020071186A/en
Application granted granted Critical
Publication of JP7139061B2 publication Critical patent/JP7139061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To provide a buried object survey device that can accurately estimate sonic speed in a concrete body.SOLUTION: A buried object survey device performs the following: performing ultrasonic wave transmission and reception between a plurality of probes in which a probe transmits ultrasonic wave to a concrete body and another probe receives reflection wave from the bottom surface of the concrete body; averaging reflection waves with the same distance between the probes; extracting the maximum value time and the minimum value time of the averaged waveform for each distance between the probes; creating a maximum value time graph and a minimum value time graph indicating the maximum value time and the minimum value time for each distance between the probes on a coordinate whose axes are the distance between the probes and time; determining a delay time from the minimum value time graph; converting the maximum value time graph into a graph on a coordinate that incorporates the thickness of the concrete body and the delay time; and estimating sonic speed based on the converted graph.SELECTED DRAWING: Figure 3

Description

この発明は、超音波を用いて埋設物を探査する埋設物探査装置に関し、特に、コンクリートなどの媒質中の音速を推定する埋設物探査装置および埋設物探査用音速推定方法に関する。   The present invention relates to an embedded object exploration apparatus for exploring an embedded object using ultrasonic waves, and more particularly to an embedded object exploration apparatus and an embedded object exploration sound velocity estimation method for estimating the speed of sound in a medium such as concrete.

地中や壁、床などの媒質に埋設されている鉄筋やガス管などの埋設物・ターゲットを探査するために、超音波・レーダを用いた埋設物探査装置が知られている(例えば、特許文献1等参照。)。この埋設物探査装置は、送受信回路と送受信アンテナなどから構成されるセンサ部と、モニタ部(ディスプレイ)とが装置本体に備わり、装置本体には、前後方向に移動させるための4つの車輪が配設されている。そして、所定の繰り返し周期で発生されるパルス状のレーダ波を、送信アンテナから地中や壁に放射し、地中や壁から戻ってきた反射波を受信アンテナで受信し、反射波に基づいて解析処理を行い、地中や壁の内部情報をモニタ部に表示するものである。   A buried object exploration device using ultrasonic waves and radar is known for exploring buried objects and targets such as reinforcing bars and gas pipes buried in media such as the ground, walls, and floors (for example, patents Reference 1 etc.). This buried object exploration device is provided with a sensor unit composed of a transmission / reception circuit, a transmission / reception antenna, and the like, and a monitor unit (display) in the device body, and four wheel wheels for moving in the front-back direction are arranged in the device body. It is set up. Then, a pulsed radar wave generated at a predetermined repetition period is radiated from the transmitting antenna to the ground or the wall, the reflected wave returning from the ground or the wall is received by the receiving antenna, and based on the reflected wave. The analysis processing is performed and the inside information of the ground and the wall is displayed on the monitor unit.

このような埋設物探査装置において明瞭な画像を得るためには、媒質中の音速(超音波伝搬速度)を知得する必要があり、音速を計測する機能を備えた超音波非破壊計測装置が知られている(例えば、特許文献2等参照。)。この装置は、第1の探触子からコンクリート構造物に超音波を放射し、コンクリート構造物の底面で反射した受信信号を第2の探触子で受信して、異なる探触子間隔にそれぞれ対応して算出した反射波到達時間から音速を決定するものである。   In order to obtain a clear image in such a buried object exploration device, it is necessary to know the sound velocity (ultrasonic wave propagation velocity) in the medium, and an ultrasonic nondestructive measurement device equipped with a function of measuring the sound velocity is known. (For example, refer to Patent Document 2). This device radiates ultrasonic waves from the first probe to the concrete structure, receives the reception signal reflected by the bottom surface of the concrete structure with the second probe, and receives the signals at different probe intervals. The sound velocity is determined from the arrival time of the reflected wave calculated correspondingly.

特開2000−019257号公報Japanese Patent Laid-Open No. 2000-019257 特開2011−242332号公報JP, 2011-242332, A

ところで、特許文献2に記載の装置では、探触子間隔が異なる一対の反射波到達時間のみから音速を算出、決定するため、音速値のバラツキを把握することができず、音速精度が低下するおそれがある。また、受信信号を周波数解析して単一周波数か否かを判断し、反射波到達時間を特定、知得するため、構成が複雑であるばかりでなく反射波到達時間の特定に誤差が生じるおそれがある。   By the way, in the device described in Patent Document 2, since the sound velocity is calculated and determined only from the pair of reflected wave arrival times having different probe intervals, it is not possible to grasp the variation in the sound velocity value, and the sound velocity accuracy is deteriorated. There is a risk. In addition, the received signal is frequency analyzed to determine whether it is a single frequency, and the reflected wave arrival time is specified and known. Therefore, not only the configuration is complicated, but also an error may occur in specifying the reflected wave arrival time. is there.

そこで本発明は、媒質中の音速をより正確に推定可能な埋設物探査装置および埋設物探査用音速推定方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an embedded object exploration apparatus and an embedded object exploration sound velocity estimation method that can more accurately estimate the acoustic velocity in a medium.

上記目的を達成するために、請求項1に記載の発明は、複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査装置であって、ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、前記媒質の既知である厚みと前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、座標変換した極大値時間グラフに基づいて音速を推定する、ことを特徴とする。   In order to achieve the above object, the invention according to claim 1 radiates ultrasonic waves from a plurality of probes to a medium, receives reflected waves from the medium by the plurality of probes, and performs an analysis process. By doing so, a buried object exploration device for exploring an embedded object in the medium, wherein ultrasonic waves are transmitted from a certain probe to the medium and reflected waves from the bottom surface of the medium are detected by another probe. Ultrasonic transmission and reception of receiving is performed between the plurality of probes, and the reflected waves having the same inter-probe distance are averaged to generate an average waveform for each inter-probe distance, and the average The maximum value time, which is the time of the peak portion of the waveform, and the minimum value time, which is the time of the valley portion of the average waveform, are extracted for each inter-probe distance, and the maximum value for each inter-probe distance. A maximum value time graph showing time on a coordinate with the distance between the probes and time as an axis, and the distance between the probes And the minimum value time, and to create a minimum value time graph showing on the coordinates with the distance between the probe and time as an axis, and the ultrasonic wave is actually transmitted to the medium after the ultrasonic wave transmission processing is performed. The delay time until being incident is calculated from the minimum value time graph, and the coordinates of the known thickness of the medium and the delay time are incorporated into the coordinates, and the maximum value time graph is coordinate-converted, and the maximum value is coordinate-converted. The sound velocity is estimated based on a time graph.

請求項2に記載の発明は、複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査装置であって、ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、前記媒質の厚みの仮定値と前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、座標変換した極大値時間グラフに基づいて音速を推定する、という推定処理を所定数の仮定値に対して行い、推定した複数の音速に基づいて最終的な音速を推定する、ことを特徴とする。   According to a second aspect of the present invention, ultrasonic waves are radiated from a plurality of probes to a medium, reflected waves from the medium are received by the plurality of probes, and analysis processing is performed. An embedded object exploration device for exploring an embedded object, wherein ultrasonic waves are transmitted and received by transmitting ultrasonic waves from a certain probe to the medium and receiving reflected waves from the bottom surface of the medium by another probe. It is performed between the plurality of probes, and the reflected waves having the same inter-probe distance are averaged to generate an average waveform for each inter-probe distance, which is the time of the peak portion of the average waveform. The maximum value time and the minimum value time that is the time of the valley portion of the average waveform are extracted for each inter-probe distance, and the maximum time for each inter-probe distance is calculated as the inter-probe distance. And a maximum value time graph shown on a coordinate with time as an axis, and the minimum value time for each distance between the probes. Creating a minimum value time graph shown on the coordinates with the inter-child distance and time as an axis, and the delay time from when the ultrasonic wave is actually transmitted to the medium after performing the ultrasonic wave transmission process, Determining from the minimum value time graph, the coordinates incorporating the assumed value of the medium and the delay time, coordinate conversion of the maximum value time graph, to estimate the speed of sound based on the coordinate converted maximum value time graph, This estimation process is performed on a predetermined number of hypothetical values, and the final sound velocity is estimated based on the estimated plurality of sound velocities.

請求項3に記載の発明は、複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査において、前記媒質中の音速を推定する埋設物探査用音速推定方法であって、ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、前記媒質の既知である厚みと前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、座標変換した極大値時間グラフに基づいて音速を推定する、ことを特徴とする。   According to a third aspect of the present invention, ultrasonic waves are radiated from a plurality of probes to a medium, reflected waves from the medium are received by the plurality of probes, and analysis processing is performed. In a buried object exploration, which is a method for estimating a sound velocity in a buried object for estimating a sound velocity in the medium, ultrasonic waves are transmitted from a certain probe to the medium, and reflected from the bottom surface of the medium. Receiving a wave with another probe, ultrasonic wave transmission / reception between the plurality of probes is performed, the reflected waves having the same inter-probe distance are averaged, and each inter-probe distance is increased. An average waveform is generated, and a maximum value time that is the time of the peak portion of the average waveform and a minimum value time that is the time of the valley portion of the average waveform are extracted for each inter-probe distance, and the probe The maximal value indicating the maximal time for each inter-child distance on a coordinate system with the inter-probe distance and time as axes. Between the probe and the minimum value time for each distance between the probes, a minimum value time graph showing on the coordinates with the distance between the probes and time as an axis is created, and ultrasonic wave transmission processing is performed. The delay time from when the ultrasonic wave is actually incident on the medium is calculated from the minimum value time graph, and the maximum value time graph is plotted on the coordinates incorporating the known thickness of the medium and the delay time. Is subjected to coordinate conversion, and the sound velocity is estimated based on the coordinate-converted maximum value time graph.

請求項4に記載の発明は、複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査において、前記媒質中の音速を推定する埋設物探査用音速推定方法であって、ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、前記媒質の厚みの仮定値と前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、座標変換した極大値時間グラフに基づいて音速を推定する、という推定処理を所定数の仮定値に対して行い、推定した複数の音速に基づいて最終的な音速を推定する、ことを特徴とする。   According to a fourth aspect of the present invention, ultrasonic waves are radiated from a plurality of probes to a medium, reflected waves from the medium are received by the plurality of probes, and analysis processing is performed. In a buried object exploration, which is a method for estimating a sound velocity in a buried object for estimating a sound velocity in the medium, ultrasonic waves are transmitted from a certain probe to the medium, and reflected from the bottom surface of the medium. Receiving a wave with another probe, ultrasonic wave transmission / reception between the plurality of probes is performed, the reflected waves having the same inter-probe distance are averaged, and each inter-probe distance is increased. An average waveform is generated, and a maximum value time that is the time of the peak portion of the average waveform and a minimum value time that is the time of the valley portion of the average waveform are extracted for each inter-probe distance, and the probe The maximal value indicating the maximal time for each inter-child distance on a coordinate system with the inter-probe distance and time as axes. Between the probe and the minimum value time for each distance between the probes, a minimum value time graph showing on the coordinates with the distance between the probes and time as an axis is created, and ultrasonic wave transmission processing is performed. The delay time from when the ultrasonic wave is actually incident on the medium is calculated from the minimum value time graph, and the maximum value time graph is coordinated with the assumed value of the medium thickness and the delay time. Coordinate conversion, estimating the sound velocity based on the coordinate-converted maximum value time graph, performing an estimation process for a predetermined number of assumed values, and estimating the final sound velocity based on a plurality of estimated sound velocity, It is characterized by

請求項1および請求項3の発明によれば、複数の探触子間距離の平均波形に基づいて極大値時間グラフと極小値時間グラフとを作成し、遅れ時間を極小値時間グラフから割り出し、媒質の厚みと遅れ時間とを組み入れた座標である極大値時間グラフに基づいて音速を推定するため、骨材などの影響で底面反射波が見つけづらい場合においても極大値・極小値時間グラフから特徴的な曲線を見つけ出すことができて、媒質中の音速をより正確に推定することが可能となる。   According to the inventions of claims 1 and 3, a maximum value time graph and a minimum value time graph are created based on an average waveform of a plurality of distances between the probes, and a delay time is calculated from the minimum value time graph, Since the sound velocity is estimated based on the maximum value time graph, which is a coordinate that incorporates the thickness of the medium and the delay time, even if the bottom surface reflected wave is difficult to find due to the influence of aggregates, etc. It is possible to find a characteristic curve and estimate the speed of sound in the medium more accurately.

しかも、探触子間距離が同じ反射波同士を平均化して平均波形を生成するため、計算量を削減することができ、熱雑音の影響が削減されることが期待できて、極大値時間と極小値時間をより正確に抽出することが可能となり、その結果、媒質中の音速をより正確に推定することが可能となる。   Moreover, since the averaged waveforms are generated by averaging the reflected waves with the same probe-to-probe distance, the amount of calculation can be reduced, and the effect of thermal noise can be expected to be reduced. It becomes possible to extract the minimum value time more accurately, and as a result, it becomes possible to more accurately estimate the sound velocity in the medium.

請求項2および請求項4の発明によれば、媒質の厚みによって曲線の特徴が変わるため、媒質の厚みが未知であっても、媒質中の音速をより正確に推定することが可能となる。   According to the inventions of claims 2 and 4, the characteristic of the curve changes depending on the thickness of the medium, so that the speed of sound in the medium can be more accurately estimated even if the thickness of the medium is unknown.

この発明の実施の形態に係る埋設物探査装置を示す概略構成ブロック図である。It is a schematic block diagram which shows the buried object exploration apparatus which concerns on embodiment of this invention. 図1の埋設物探査装置のプローブとコンクリート体との位置関係を示す平面図(a)と正面図(b)である。FIG. 2 is a plan view (a) and a front view (b) showing the positional relationship between the probe and the concrete body of the buried object exploration apparatus of FIG. 1. 図1の埋設物探査装置における音速推定方法を示す第1のフローチャートである。6 is a first flowchart showing a sound velocity estimation method in the buried object exploration apparatus of FIG. 1. 図3に続く第2のフローチャートである。It is a 2nd flowchart following FIG. 図1の埋設物探査装置において受信波形を平均化した波形を示す図であり、(a)は第1のプローブ間距離の波形を示し、(b)は第2のプローブ間距離の波形を示す。It is a figure which shows the waveform which averaged the received waveform in the buried object search apparatus of FIG. 1, (a) shows the waveform of the 1st inter-probe distance, (b) shows the waveform of the 2nd inter-probe distance. .. 図1の埋設物探査装置において、プローブ間距離ごとの平均波形をグラフ化した図である。It is the figure which plotted the average waveform for every distance between probes in the buried object exploration apparatus of FIG. 図6のグラフに基づいて作成した極大値時間グラフを示す図である。It is a figure which shows the maximum value time graph created based on the graph of FIG. 図1の埋設物探査装置において、あるプローブ間距離の平均波形から極大値時間を抽出する方法を示す図である。It is a figure which shows the method of extracting the maximum value time from the average waveform of a certain inter-probe distance in the buried object search apparatus of FIG. 図8の方法で抽出した極大値時間をプローブ間距離ごとに示す図(極大値時間グラフ)である。It is a figure (maximum value time graph) which shows the maximum value time extracted by the method of FIG. 8 for every distance between probes. 図1の埋設物探査装置において、極小値時間グラフから遅れ時間を割り出す方法を示す図である。It is a figure which shows the method of calculating delay time from the minimum value time graph in the buried object search apparatus of FIG. 図1の埋設物探査装置において、コンクリート体の厚みと遅れ時間とを組み入れた座標パラメータを説明する図である。It is a figure explaining the coordinate parameter which incorporated the thickness and delay time of a concrete body in the buried object exploration apparatus of FIG. 図1の埋設物探査装置において、座標変換した極大値時間グラフに基づいて音速を推定する方法を示す図である。It is a figure which shows the method of estimating sound velocity based on the maximum value time graph which carried out coordinate conversion in the buried object exploration apparatus of FIG. 図1の埋設物探査装置において、適正な直線を取得する方法を示す図である。It is a figure which shows the method of acquiring an appropriate straight line in the buried object search apparatus of FIG. 図1の埋設物探査装置によるコンクリート体の厚みと二乗残差との関係を示す図である。It is a figure which shows the relationship between the thickness of a concrete body and the square residual by the buried object exploration apparatus of FIG. 図1の埋設物探査装置によるコンクリート体の厚みと推定音速との関係を示す図である。It is a figure which shows the relationship between the thickness of a concrete body and estimated sound velocity by the buried object exploration apparatus of FIG. この発明の実施の形態における音速の理論値(a)と、図1の埋設物探査装置による推定値(b)とを示す図である。It is a figure which shows the theoretical value (a) of the sound velocity in embodiment of this invention, and the estimated value (b) by the buried object search apparatus of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1〜図16は、この発明の実施の形態を示し、図1は、この実施の形態に係る埋設物探査装置1を示す概略構成ブロック図である。この埋設物探査装置1は、コンクリート製の壁や床、天井、あるいは地中などの媒質に埋設された、鉄筋やガス管などの埋設物・ターゲットを探査する装置であり、媒質中の音速(超音波伝搬速度)を推定する方法が従来と異なり、その他の構成、機能は従来と同等となっている。すなわち、複数のプローブ(探触子)2から超音波を媒質中に放射し、媒質からの反射波を複数のプローブ2で受信して測定部3で解析処理し、その結果をディスプレイに表示する。   1 to 16 show an embodiment of the present invention, and FIG. 1 is a schematic block diagram showing a buried object exploration apparatus 1 according to this embodiment. The buried object exploration apparatus 1 is an apparatus for exploring an embedded object / target such as a reinforcing bar or a gas pipe, which is buried in a medium such as a concrete wall, floor, ceiling, or underground, and has a speed of sound ( The method of estimating the ultrasonic wave propagation velocity) is different from the conventional method, and other configurations and functions are the same as those of the conventional method. That is, ultrasonic waves are radiated into the medium from the plurality of probes (probes) 2, reflected waves from the medium are received by the plurality of probes 2, analyzed by the measurement unit 3, and the result is displayed on the display. ..

このような埋設物探査装置1において、媒質中の音速を推定する埋設物探査用音速推定方法について、以下に説明する。ここで、この実施の形態では、図2に示すように、64個のプローブ2〜264が等間隔に、横16列縦4列の格子状に配設され、厚みhのコンクリート体(媒質)101の表面101aに接するように埋設物探査装置1が配置されるものとする。そして、音速部4は、プローブ2〜264を制御しながら次のようにしてコンクリート体中101の音速を推定する。ここで、コンクリート体101の厚みhが既知である場合と、未知である場合とを合わせて説明する。 In the buried object exploration apparatus 1 as described above, a method for estimating the sound velocity for buried object exploration for estimating the sound velocity in the medium will be described below. Here, in this embodiment, as shown in FIG. 2, at equal intervals of 64 probe 2 1 to 2 64 are arranged in 16 horizontal Retsutate 4 columns lattice, concrete having a thickness h ( It is assumed that the buried object exploration apparatus 1 is arranged so as to be in contact with the surface 101a of the medium 101. Then, the sound velocity unit 4 estimates the sound velocity in the concrete body 101 as follows while controlling the probes 2 1 to 2 64 . Here, the case where the thickness h of the concrete body 101 is known and the case where it is unknown will be described together.

図3に示すように、まず、超音波送受信ステップとして、コンクリート体101の表面101aに埋設物探査装置1のプローブ2群を接触させて、すべてのプローブ2間で底面反射波を送受信する(ステップS1)。すなわち、あるプローブ2からコンクリート体中101に超音波を送信してコンクリート体101の底面101bからの反射波を別のプローブ2で受信する、という超音波送受信をすべてのプローブ2間で行う。具体的には、第1のプローブ2から超音波を送信して第2のプローブ2で受信し、第1のプローブ2から超音波を送信して第3のプローブ2で受信する、という超音波送受信を4032(=64×63)通りで行う。 As shown in FIG. 3, first, as an ultrasonic wave transmission / reception step, the probe 2 group of the buried object exploration apparatus 1 is brought into contact with the surface 101a of the concrete body 101, and bottom surface reflected waves are transmitted / received between all the probes 2 (step S1). That is, ultrasonic wave transmission / reception is performed between all probes 2 such that ultrasonic waves are transmitted from a certain probe 2 into the concrete body 101 and reflected waves from the bottom surface 101b of the concrete body 101 are received by another probe 2. Specifically, by transmitting ultrasonic waves from the first probe 2 1 received by the second probe 2 2, received by the third probe 2 3 transmits the ultrasonic wave from the first probe 2 1 4032 (= 64 × 63) ultrasonic transmissions and receptions are performed.

次に、波形平均化ステップとして、プローブ間距離が等しいすべての受信波形を平均化する(ステップS2)。すなわち、プローブ間距離が同じ反射波同士をすべて重ねて平均化して、プローブ間距離ごとの平均波形を生成する。ここで、この実施の形態では、56種類のプローブ間距離が存在し、56個のプローブ間距離ごとに平均化した反射波を生成する。例えば、プローブ間距離が最も小さい受信波形を平均化して、図5(a)に示すような第1のプローブ間距離d1の平均波形を生成し、プローブ間距離が2番目に小さい受信波形を平均化して、図5(b)に示すような第2のプローブ間距離d2の平均波形を生成する。このような平均波形の生成を56個のすべてのプローブ間距離に対して行う。   Next, as a waveform averaging step, all received waveforms having the same probe distance are averaged (step S2). That is, all the reflected waves having the same probe distance are overlapped and averaged to generate an average waveform for each probe distance. Here, in this embodiment, there are 56 types of inter-probe distances, and a reflected wave averaged for each of the 56 inter-probe distances is generated. For example, the received waveform having the smallest inter-probe distance is averaged to generate an average waveform of the first inter-probe distance d1 as shown in FIG. 5A, and the received waveform having the second smallest inter-probe distance is averaged. Then, the average waveform of the second inter-probe distance d2 as shown in FIG. 5B is generated. Generation of such an average waveform is performed for all 56 inter-probe distances.

続いて、グラフ作成ステップとして、各平均波形の極大値時間と極小値時間をグラフ化する(ステップS3)。すなわち、まず、図6に示すように、横軸がプローブ間距離で縦軸が時間である座標上に、各プローブ間距離の平均波形を(図5の波形を縦に配置したように)図示・グラフ化する。次に、平均波形の山部の時間である極大値時間と平均波形の谷部の時間である極小値時間とを、プローブ間距離の平均波形ごとに抽出する。そして、図7に示すように、プローブ間距離ごとの極大値時間の列を、プローブ間距離と時間とを軸とする座標上に示す極大値時間グラフを作成し、同様に、プローブ間距離ごとの極小値時間の列を、プローブ間距離と時間とを軸とする座標上に示す極小値時間グラフを作成する。   Subsequently, as a graph creating step, the maximum value time and the minimum value time of each average waveform are graphed (step S3). That is, first, as shown in FIG. 6, an average waveform of each inter-probe distance is shown (as if the waveform of FIG. 5 is arranged vertically) on a coordinate where the horizontal axis is the inter-probe distance and the vertical axis is time.・ Make a graph. Next, the maximum value time that is the time of the peak portion of the average waveform and the minimum value time that is the time of the valley portion of the average waveform are extracted for each average waveform of the inter-probe distance. Then, as shown in FIG. 7, a maximum value time graph is shown in which a column of maximum value times for each inter-probe distance is shown on a coordinate with the inter-probe distance and time as axes, and similarly, for each inter-probe distance. A minimum value time graph is shown in which the minimum value time column of is shown on the coordinates with the inter-probe distance and time as axes.

より具体的には、図8に示すように、あるプローブ間距離の平均波形の山部Pの時間である極大値時間をすべて抽出し、図9に示すように、横軸がプローブ間距離で縦軸が時間である座標上に、抽出した極大値時間の列を該当するプローブ間距離上にプロットする。このような極大値時間のプロットをすべてのプローブ間距離の平均波形に対して行うとともに、極小値時間についても行うことで、極大値時間グラフ(プローブ間距離vs極大値時間のグラフ)と極小値時間グラフ(プローブ間距離vs極小値時間のグラフ)を作成する。   More specifically, as shown in FIG. 8, all the maximum value times which are the time of the peak portion P of the average waveform of a certain inter-probe distance are extracted, and as shown in FIG. 9, the horizontal axis represents the inter-probe distance. A column of the extracted maximum value times is plotted on the corresponding inter-probe distance on the coordinate whose vertical axis is time. By performing such a plot of the maximum value time on the average waveform of all the inter-probe distances, and also performing the minimum value time, a maximum value time graph (a graph of the probe distance vs. the maximum value time) and a minimum value A time graph (graph of distance between probes vs. minimum value time) is created.

続いて、遅れ時間割り出しステップとして、極小値時間グラフから遅れ時間を取得する(ステップS4)。すなわち、遅れ時間とは、埋設物探査装置1において超音波の送信処理を行ってから実際に超音波がコンクリート体101に入射されるまでの時間であり(受信処理に要する時間を含む場合もある)、この遅れ時間だけ反射波の受信が遅れることになる。一方、コンクリート体101の表面101aから反射する直達波の到達時間は、プローブ間距離に比例し、各プローブ間距離の直達波による極小値時間を結ぶと、図10に示すような直線L1(y=αx+β)となる。そして、この直線L1の時間軸に対する切片βが遅れ時間となる。このため、傾きαと切片βの2つのパラメータを変えながら、最もフィッティングする(二乗残差が小さい)直線L1を極小値時間グラフ上で探し、この直線L1から遅れ時間を割り出す。   Then, as a delay time indexing step, the delay time is acquired from the minimum value time graph (step S4). That is, the delay time is the time from the ultrasonic wave transmitting process in the buried object exploration apparatus 1 until the ultrasonic wave is actually incident on the concrete body 101 (may include the time required for the receiving process. ), The reception of the reflected wave will be delayed by this delay time. On the other hand, the arrival time of the direct wave reflected from the surface 101a of the concrete body 101 is proportional to the inter-probe distance, and if the minimum value time due to the direct wave of each inter-probe distance is connected, a straight line L1 (y = Αx + β). The intercept β of the straight line L1 with respect to the time axis is the delay time. Therefore, while changing the two parameters of the slope α and the intercept β, the straight line L1 that is most fitted (the square residual is small) is searched for on the minimum value time graph, and the delay time is calculated from this straight line L1.

ここで、極小値時間グラフから遅れ時間を割り出すのは、反射波(極大値時間グラフ)はコンクリート体101の底面101b(空気との境)で反射するため振幅にマイナス(負号)が付くのに対して、直達波は反射を伴わないので振幅にマイナスが付かないためである。このため、直達波は極小値時間を適用し、反射波は極大値時間を適用する。また、図7は極大値時間グラフであるが、直線L1と双曲線L2の違いを比較しやすいように極大値時間で線を結んでいる。しかし実際は、直線L1は極小値グラフから算出したほうがよい。   Here, the delay time is calculated from the minimum value time graph because the reflected wave (maximum value time graph) is reflected on the bottom surface 101b (boundary with air) of the concrete body 101 so that the amplitude has a minus sign. On the other hand, since the direct wave does not involve reflection, the amplitude does not have a negative value. Therefore, the direct wave applies the minimum time, and the reflected wave applies the maximum time. Further, although FIG. 7 is a maximum value time graph, lines are connected by the maximum value time so that the difference between the straight line L1 and the hyperbola L2 can be easily compared. However, in practice, the straight line L1 should be calculated from the minimum value graph.

次に、コンクリート体101の厚みhが既知の場合(ステップS5で「Y」の場合)には、ステップS6に進み、未知の場合(ステップS5で「N」の場合)には、ステップS8に進む。ここで、例えば、埋設物探査装置1の入力部でコンクリート体101の厚みhが入力されると、埋設物探査装置1の記憶部に厚みhが記憶されて既知となる。   Next, if the thickness h of the concrete body 101 is known (in the case of “Y” in step S5), the process proceeds to step S6, and if it is unknown (in the case of “N” in step S5), the process proceeds to step S8. move on. Here, for example, when the thickness h of the concrete body 101 is input to the input unit of the buried object exploration apparatus 1, the thickness h is stored in the storage unit of the buried object exploration apparatus 1 and becomes known.

ステップS6では、座標変換ステップとして、コンクリート体101の厚みhと遅れ時間とを組み入れた座標に、極大値時間グラフを座標変換する。すなわち、図11に示すように、あるプローブ2からコンクリート体中101に超音波を送信して別のプローブ2で受信するまでの時間tは、式1のように表される。ここで、dはプローブ間距離、δtは遅れ時間である。次に、時間パラメータTを式2にように定義し、距離パラメータDを式3のように定義する。そして、遅れ時間δtにステップS4で割り出した遅れ時間を代入し、厚みhに既知の厚みを代入して、図12に示すように、横軸が距離パラメータDで縦軸が時間パラメータTの座標に、極大値時間グラフを座標変換する。   In step S6, as a coordinate conversion step, the maximum value time graph is subjected to coordinate conversion into coordinates incorporating the thickness h of the concrete body 101 and the delay time. That is, as shown in FIG. 11, a time t from the transmission of an ultrasonic wave from a certain probe 2 to the concrete body 101 and the reception of the ultrasonic wave by another probe 2 is represented by Expression 1. Here, d is the inter-probe distance, and δt is the delay time. Next, the time parameter T is defined as in Equation 2, and the distance parameter D is defined as in Equation 3. Then, the delay time calculated in step S4 is substituted into the delay time δt, the known thickness is substituted into the thickness h, and as shown in FIG. 12, the horizontal axis represents the distance parameter D and the vertical axis represents the coordinate of the time parameter T. Then, coordinate conversion of the maximum value time graph is performed.

続いて、音速推定ステップとして、ステップS6で座標変換した極大値時間グラフに基づいて音速を推定する(ステップS7)。すなわち、上記のようにして座標変換した極大値時間グラフにおいて、厚みhのコンクリート体101の底面101bから反射する波の極大値時間(ピーク時刻)は、原点を通る直線(T=αD)で結べるはずであるため、極大値時間の列が最もフィッティングする原点からの直線を探し出す。そして、図12に示すように、直線L11を探し出した場合に、この直線L11の傾きαの逆数(1/α)を音速として算出、推定するものである。   Then, as a sound velocity estimation step, the sound velocity is estimated based on the maximum value time graph coordinate-converted in step S6 (step S7). That is, in the maximum value time graph coordinate-converted as described above, the maximum value time (peak time) of the wave reflected from the bottom surface 101b of the concrete body 101 having the thickness h is connected by a straight line (T = αD) passing through the origin. Since it should be, find the straight line from the origin to which the sequence of maximum values fits best. Then, as shown in FIG. 12, when the straight line L11 is searched for, the inverse number (1 / α) of the inclination α of the straight line L11 is calculated and estimated as the sound velocity.

ここで、フィッティングする直線を探し出すには、図13に示すように、直線の傾きαを少しずつ変えながら、原点から延びる直線(T=αD)を作って二乗残差を算出する。そして、二乗残差が最も小さい直線を最もフィッティングする直線として選定する。例えば、図13(a)は、傾きが最も小さい直線とその二乗残差Raを示し、図13(b)は、傾きが2番目に小さい直線とその二乗残差Rbを示し、図13(c)は、傾きが中程度の直線とその二乗残差Rcを示し、図13(d)は、傾きが2番目に大きい直線とその二乗残差Rdを示し、図13(e)は、傾きが最も大きい直線とその二乗残差Reを示す。この場合、二乗残差Rcが最も小さく、図13(c)の直線を選定する。   Here, in order to find a straight line to be fitted, as shown in FIG. 13, while changing the inclination α of the straight line little by little, a straight line (T = αD) extending from the origin is created and the squared residual is calculated. Then, the straight line with the smallest squared residual is selected as the best fitting straight line. For example, FIG. 13A shows a straight line having the smallest slope and its square residual Ra, FIG. 13B shows a straight line having the second smallest slope and its square residual Rb, and FIG. ) Shows a straight line with a moderate slope and its squared residual Rc, FIG. 13D shows a straight line with the second largest slope and its squared residual Rd, and FIG. The largest straight line and its squared residual Re are shown. In this case, the squared residual Rc is the smallest, and the straight line in FIG. 13C is selected.

一方、コンクリート体101の厚みhが未知の場合、まず、厚みhを仮定し(ステップS8)、次に、座標変換ステップとして、上記のステップS6と同様にして、仮定した厚み(仮定値)hと遅れ時間とを組み入れた座標に、極大値時間グラフを座標変換する(ステップS9)。続いて、音速推定ステップとして、上記のステップS7と同様にして、座標変換した極大値時間グラフに基づいて音速を推定する(ステップS10)。   On the other hand, when the thickness h of the concrete body 101 is unknown, first, the thickness h is assumed (step S8), and then the coordinate conversion step is performed in the same manner as in step S6, and the assumed thickness (assumed value) h Then, the maximum value time graph is coordinate-converted into the coordinates including the delay time and the delay time (step S9). Subsequently, as a sound velocity estimation step, the sound velocity is estimated based on the coordinate-converted maximum value time graph in the same manner as in step S7 described above (step S10).

その後、所定数の音速値が得られていない場合(ステップS11で「N」の場合)には、ステップS8に戻って厚みhを次の仮定値に設定し、同様の処理を行う。このように、厚みhを仮定して座標変換ステップと音速推定ステップとを行う、という推定処理を所定数の仮定値に対して行う。ここで、所定数は、次のステップS12で所望の精度の音速が得られるだけの十分大きな値に設定されている。   After that, when the predetermined number of sound velocity values are not obtained (“N” in step S11), the process returns to step S8, the thickness h is set to the next assumed value, and the same processing is performed. In this way, the estimation process of performing the coordinate conversion step and the sound velocity estimation step assuming the thickness h is performed for a predetermined number of assumed values. Here, the predetermined number is set to a value large enough to obtain a desired speed of sound in the next step S12.

そして、所定数の音速値が得られた場合(ステップS11で「Y」の場合)には、最終音速推定ステップとして、推定した複数の音速値に基づいて最終的な音速を推定する(ステップS12)。すなわち、厚みhの仮定値に対してステップS10で推定した各音速値(直線)の二乗残差を比較し、二乗残差が最も小さい音速値を最終的な音速として特定、推定する。例えば、ステップS10で推定した各音速値(厚みhの各仮定値)の二乗残差が図14に示すように得られた場合、二乗残差が最も小さい厚みhである150mmを選定する。そして、例えば、厚みhの仮定値に対する音速値が図15に示すように得られた場合、厚みhが150mmの音速値である4032m/sを最終的な音速として特定、推定する。   Then, when a predetermined number of sound velocity values are obtained (“Y” in step S11), the final sound velocity is estimated based on the estimated sound velocity values as the final sound velocity estimation step (step S12). ). That is, the square residual of each sound velocity value (straight line) estimated in step S10 is compared with the assumed value of the thickness h, and the sound velocity value with the smallest square residual is specified and estimated as the final sound velocity. For example, when the square residual of each sound velocity value (each assumed value of the thickness h) estimated in step S10 is obtained as shown in FIG. 14, 150 mm that is the thickness h having the smallest square residual is selected. Then, for example, when the sound velocity value with respect to the assumed value of the thickness h is obtained as shown in FIG. 15, 4032 m / s which is the sound velocity value of the thickness h of 150 mm is specified and estimated as the final sound velocity.

このように、この埋設物探査装置1および埋設物探査用音速推定方法によれば、複数のプローブ間距離の平均波形に基づいて極大値時間グラフと極小値時間グラフとを作成し、遅れ時間δtを極小値時間グラフから割り出し、コンクリート体101の厚みhと遅れ時間δtとを組み入れた座標である極大値時間グラフに基づいて音速を推定するため、コンクリート体101中の音速をより正確に推定することが可能となる。   Thus, according to the buried object exploration apparatus 1 and the method for estimating the sound velocity for buried object exploration, the maximum value time graph and the minimum value time graph are created based on the average waveform of a plurality of inter-probe distances, and the delay time δt Is estimated from the minimum value time graph, and the sound velocity is estimated based on the maximum value time graph which is a coordinate incorporating the thickness h of the concrete body 101 and the delay time δt. Therefore, the sound velocity in the concrete body 101 is more accurately estimated. It becomes possible.

しかも、プローブ間距離が同じ反射波同士を平均化して平均波形を生成するため、周波数解析を行う必要がなく構成が簡易となるばかりでなく、極大値時間と極小値時間をより正確に抽出することが可能となり、その結果、コンクリート体101中の音速をより正確に推定することが可能となる。さらに、骨材などの埋設物がある場合でも、埋設物からの反射を含む全平均波形の極大値時間と極小値時間とに基づいて音速を推定するため、音速をより正確に推定することが可能となる。   Moreover, since the averaged waveforms are generated by averaging the reflected waves with the same probe distance, it is not necessary to perform the frequency analysis, which simplifies the configuration and more accurately extracts the maximum value time and the minimum value time. As a result, it becomes possible to more accurately estimate the speed of sound in the concrete body 101. Furthermore, even if there is a buried object such as an aggregate, the sound speed is estimated based on the maximum value time and the minimum value time of the total average waveform including the reflection from the buried object, so the sound speed can be estimated more accurately. It will be possible.

また、コンクリート体101の厚みhを所定数仮定して音速を推定するため、コンクリート体101の厚みhが未知であっても、コンクリート体101中の音速をより正確に推定することが可能となる。   Further, since the sound velocity is estimated by assuming the thickness h of the concrete body 101 to be a predetermined number, it is possible to more accurately estimate the sound velocity in the concrete body 101 even if the thickness h of the concrete body 101 is unknown. ..

ここで、この埋設物探査用音速推定方法で実際に推定した例を紹介する。図16(a)は、骨材がなく厚みhが150mmのコンクリート体101と、骨材があり厚みhが150mmのコンクリート体101と、骨材があり厚みhが100mmのコンクリート体101の、遅れ時間(時間遅れ)δtと音速と厚みの理論値を示す。また、図16(b)は、骨材がなく厚みhが150mmのコンクリート体101と、骨材があり厚みhが150mmのコンクリート体101と、骨材があり厚みhが100mmのコンクリート体101の、遅れ時間(時間遅れ)δtと音速と厚みの、本方法による推定値を示す。この結果から、本方法によれば、骨材がない場合でもある場合でも、理論値に近い音速を推定できることが確認された。   Here, we will introduce an example of actual estimation using this sound velocity estimation method for buried object exploration. FIG. 16A shows a delay of the concrete body 101 having no aggregate and a thickness h of 150 mm, the concrete body 101 having aggregate and a thickness h of 150 mm, and the concrete body 101 having an aggregate and a thickness h of 100 mm. The theoretical values of time (time delay) δt, sound velocity and thickness are shown. 16B shows a concrete body 101 having no aggregate and a thickness h of 150 mm, a concrete body 101 having aggregate and a thickness h of 150 mm, and a concrete body 101 having aggregate and a thickness h of 100 mm. The estimated values of the delay time (time delay) δt, the speed of sound, and the thickness by this method are shown. From this result, it was confirmed that the present method can estimate the sound velocity close to the theoretical value even when there is no aggregate.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、超音波送受信ステップをすべてのプローブ2間で行っているが、所定の規則に従って特定した(例えば、数個飛ばした毎の)プローブ2間に対して、超音波送受信ステップを行うようにしてもよい。さらに、波形平均化ステップで平均化された平均波形から熱雑音を除去した後に、グラフ作成ステップに移行するようにしてもよい。また、遅れ時間を極小値、音速を極大値から推定したが、極小値と極大値の役割が入れ替わっていてもよい。   Although the embodiments of the present invention have been described above, the specific configuration is not limited to the above-mentioned embodiments, and even if there is a design change or the like within the scope not departing from the gist of the present invention, Included in the invention. For example, in the above-described embodiment, the ultrasonic wave transmission / reception step is performed between all the probes 2, but the ultrasonic wave transmission is performed between the probes 2 specified according to a predetermined rule (for example, every time several probes are skipped). You may make it perform a transmission / reception step. Furthermore, after removing the thermal noise from the averaged waveform averaged in the waveform averaging step, the process may proceed to the graph creating step. Although the delay time is estimated from the minimum value and the sound velocity is estimated from the maximum value, the roles of the minimum value and the maximum value may be exchanged.

1 埋設物探査装置
2 プローブ(探触子)
3 測定部
4 音速部
101 コンクリート体(媒質)
101a 表面
101b 底面
1 buried object exploration device 2 probe (probe)
3 Measuring part 4 Sound velocity part 101 Concrete body (medium)
101a front surface 101b bottom surface

Claims (4)

複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査装置であって、
ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、
探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、
前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、
超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、
前記媒質の既知である厚みと前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、
座標変換した極大値時間グラフに基づいて音速を推定する、ことを特徴とする埋設物探査装置。
An embedded object exploration apparatus for exploring an embedded object in the medium by radiating ultrasonic waves from a plurality of probes to a medium and receiving reflected waves from the medium by the plurality of the probes for analysis processing. And
Performing ultrasonic wave transmission / reception between the plurality of probes by transmitting an ultrasonic wave from a certain probe to the medium and receiving a reflected wave from the bottom surface of the medium by another probe,
Averaging the reflected waves having the same inter-probe distance to generate an average waveform for each inter-probe distance,
The maximum value time, which is the time of the peak portion of the average waveform, and the minimum value time, which is the time of the valley portion of the average waveform, are extracted for each of the inter-probe distances, and for each of the inter-probe distances, Maximum value time, the maximum value time graph showing on the coordinates with the distance between the probe and the time axis, the minimum value time for each distance between the probes, the distance between the probe and the time Create a minimum value time graph shown on the axis coordinate,
Determining the delay time from performing the ultrasonic wave transmission process until the ultrasonic wave is actually incident on the medium from the minimum value time graph,
To the coordinates incorporating the known thickness of the medium and the delay time, coordinate conversion of the maximum value time graph,
An embedded object exploration device, which estimates a sound velocity based on a coordinate-converted maximum value time graph.
複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査装置であって、
ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、
探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、
前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、
超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、
前記媒質の厚みの仮定値と前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、座標変換した極大値時間グラフに基づいて音速を推定する、という推定処理を所定数の仮定値に対して行い、
推定した複数の音速に基づいて最終的な音速を推定する、ことを特徴とする埋設物探査装置。
An embedded object exploration apparatus for exploring an embedded object in the medium by radiating ultrasonic waves from a plurality of probes to a medium and receiving reflected waves from the medium by the plurality of the probes for analysis processing. And
Performing ultrasonic wave transmission / reception between the plurality of probes by transmitting an ultrasonic wave from a certain probe to the medium and receiving a reflected wave from the bottom surface of the medium by another probe,
Averaging the reflected waves having the same inter-probe distance to generate an average waveform for each inter-probe distance,
The maximum value time, which is the time of the peak portion of the average waveform, and the minimum value time, which is the time of the valley portion of the average waveform, are extracted for each of the inter-probe distances, and for each of the inter-probe distances, Maximum value time, the maximum value time graph showing on the coordinates with the distance between the probe and the time axis, the minimum value time for each distance between the probes, the distance between the probe and the time Create a minimum value time graph shown on the axis coordinate,
Determining the delay time from performing the ultrasonic wave transmission process until the ultrasonic wave is actually incident on the medium from the minimum value time graph,
Coordinate conversion of the assumed value of the thickness of the medium and the delay time, coordinate conversion of the maximum value time graph, the sound speed is estimated based on the coordinate converted maximum value time graph, an estimation process of a predetermined number. Do it for the hypothetical value,
A buried object exploration device, characterized in that a final sound velocity is estimated based on a plurality of estimated sound velocities.
複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査において、前記媒質中の音速を推定する埋設物探査用音速推定方法であって、
ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、
探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、
前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、
超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、
前記媒質の既知である厚みと前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、
座標変換した極大値時間グラフに基づいて音速を推定する、ことを特徴とする埋設物探査用音速推定方法。
In the embedded object exploration for exploring the embedded object in the medium, by radiating ultrasonic waves to the medium from the plural probes and receiving the reflected waves from the medium by the plural probes to perform analysis processing. A sound velocity estimation method for buried object exploration for estimating the sound velocity in the medium,
Performing ultrasonic wave transmission / reception between the plurality of probes by transmitting an ultrasonic wave from a certain probe to the medium and receiving a reflected wave from the bottom surface of the medium by another probe,
Averaging the reflected waves having the same inter-probe distance to generate an average waveform for each inter-probe distance,
The maximum value time, which is the time of the peak portion of the average waveform, and the minimum value time, which is the time of the valley portion of the average waveform, are extracted for each of the inter-probe distances, and for each of the inter-probe distances, Maximum value time, the maximum value time graph showing on the coordinates with the distance between the probe and the time axis, the minimum value time for each distance between the probes, the distance between the probe and the time Create a minimum value time graph shown on the axis coordinate,
Determining the delay time from performing the ultrasonic wave transmission process until the ultrasonic wave is actually incident on the medium from the minimum value time graph,
To the coordinates incorporating the known thickness of the medium and the delay time, coordinate conversion of the maximum value time graph,
A method for estimating the speed of sound for buried object exploration, which comprises estimating the speed of sound based on a coordinate-converted maximum value time graph.
複数の探触子から超音波を媒質に放射し、前記媒質からの反射波を前記複数の探触子で受信して解析処理することで、前記媒質中の埋設物を探査する埋設物探査において、前記媒質中の音速を推定する埋設物探査用音速推定方法であって、
ある探触子から前記媒質に超音波を送信して前記媒質の底面からの反射波を別の探触子で受信する、という超音波送受信を前記複数の探触子間で行い、
探触子間距離が同じ前記反射波同士を平均化して、前記探触子間距離ごとの平均波形を生成し、
前記平均波形の山部の時間である極大値時間と前記平均波形の谷部の時間である極小値時間とを、前記探触子間距離ごとに抽出し、前記探触子間距離ごとの前記極大値時間を、探触子間距離と時間とを軸とする座標上に示す極大値時間グラフと、前記探触子間距離ごとの前記極小値時間を、探触子間距離と時間とを軸とする座標上に示す極小値時間グラフとを作成し、
超音波の送信処理を行ってから実際に超音波が前記媒質に入射されるまでの遅れ時間を、前記極小値時間グラフから割り出し、
前記媒質の厚みの仮定値と前記遅れ時間とを組み入れた座標に、前記極大値時間グラフを座標変換し、座標変換した極大値時間グラフに基づいて音速を推定する、という推定処理を所定数の仮定値に対して行い、
推定した複数の音速に基づいて最終的な音速を推定する、ことを特徴とする埋設物探査用音速推定方法。
In the embedded object exploration for exploring the embedded object in the medium, by radiating ultrasonic waves to the medium from the plural probes and receiving the reflected waves from the medium by the plural probes to perform analysis processing. A sound velocity estimation method for buried object exploration for estimating the sound velocity in the medium,
Performing ultrasonic wave transmission / reception between the plurality of probes by transmitting an ultrasonic wave from a certain probe to the medium and receiving a reflected wave from the bottom surface of the medium by another probe,
Averaging the reflected waves having the same inter-probe distance to generate an average waveform for each inter-probe distance,
The maximum value time, which is the time of the peak portion of the average waveform, and the minimum value time, which is the time of the valley portion of the average waveform, are extracted for each of the inter-probe distances, and for each of the inter-probe distances, Maximum value time, the maximum value time graph showing on the coordinates with the distance between the probe and the time axis, the minimum value time for each distance between the probes, the distance between the probe and the time Create a minimum value time graph shown on the axis coordinate,
Determining the delay time from performing the ultrasonic wave transmission process until the ultrasonic wave is actually incident on the medium from the minimum value time graph,
Coordinate conversion of the assumed value of the thickness of the medium and the delay time, coordinate conversion of the maximum value time graph, the sound speed is estimated based on the coordinate converted maximum value time graph, an estimation process of a predetermined number. Do it for the hypothetical value,
A sound velocity estimation method for exploring buried objects, comprising estimating a final sound velocity based on a plurality of estimated sound velocities.
JP2018207021A 2018-11-02 2018-11-02 Buried Object Exploration Device and Sound Speed Estimation Method for Buried Object Exploration Active JP7139061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018207021A JP7139061B2 (en) 2018-11-02 2018-11-02 Buried Object Exploration Device and Sound Speed Estimation Method for Buried Object Exploration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018207021A JP7139061B2 (en) 2018-11-02 2018-11-02 Buried Object Exploration Device and Sound Speed Estimation Method for Buried Object Exploration

Publications (2)

Publication Number Publication Date
JP2020071186A true JP2020071186A (en) 2020-05-07
JP7139061B2 JP7139061B2 (en) 2022-09-20

Family

ID=70549453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207021A Active JP7139061B2 (en) 2018-11-02 2018-11-02 Buried Object Exploration Device and Sound Speed Estimation Method for Buried Object Exploration

Country Status (1)

Country Link
JP (1) JP7139061B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234540A (en) * 1985-08-09 1987-02-14 株式会社東芝 Ultrasonic diagnostic apparatus
JPH09318607A (en) * 1996-06-03 1997-12-12 Tokimec Inc Method and device for measuring bulk wave velocity or thickness
WO2000052418A1 (en) * 1999-03-01 2000-09-08 H & B System Co. Ltd. Ultrasonic detector and method for ultrasonic detection
JP2010117294A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Method and device for measuring ultrasonic wave

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234540B1 (en) 2016-11-25 2017-11-22 本田技研工業株式会社 Power transaction mediation system, program, and power transaction mediation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234540A (en) * 1985-08-09 1987-02-14 株式会社東芝 Ultrasonic diagnostic apparatus
US4716765A (en) * 1985-08-09 1988-01-05 Kabushiki Kaisha Toshiba Ultrasonic measuring apparatus
JPH09318607A (en) * 1996-06-03 1997-12-12 Tokimec Inc Method and device for measuring bulk wave velocity or thickness
WO2000052418A1 (en) * 1999-03-01 2000-09-08 H & B System Co. Ltd. Ultrasonic detector and method for ultrasonic detection
JP2010117294A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Method and device for measuring ultrasonic wave

Also Published As

Publication number Publication date
JP7139061B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP5389267B2 (en) Method and apparatus for measuring seabed contours
JP5150125B2 (en) Detection apparatus, detection program, and detection method
KR20110012584A (en) Apparatus and method for estimating position by ultrasonic signal
JP5148353B2 (en) Underwater vehicle and obstacle detection device
RU2451300C1 (en) Hydroacoustic navigation system
RU2527136C1 (en) Method of measuring depth of object using sonar
EP2477042A1 (en) Method and device for measuring distance and orientation using a single electro-acoustic transducer
US20220236437A1 (en) Method and system for determining top and bottom depth of an under water mud layer
JP4691656B2 (en) Object search method in structure, computer program, and recording medium
JP5496338B2 (en) Method and apparatus for measuring seabed contours
KR100979286B1 (en) Apparatus and method for detecting distance and orientation between objects under water
JP2020071186A (en) Buried object survey device and sonic speed estimation method for buried object survey
JP2008076294A (en) Under-bottom-of-water survey method and instrument
JP2020071185A (en) Buried object survey device and sonic speed estimation method for buried object survey
JP5317176B2 (en) Object search device, object search program, and object search method
JP2004361131A (en) Method and device for measuring oscillation
JP2007163271A (en) Underground radar image processing method
JP6922262B2 (en) Sonar image processing device, sonar image processing method and sonar image processing program
JP5708018B2 (en) Active sonar device
KR101809666B1 (en) Method for predicting defect location by triangulation sensors
CN111337881B (en) Underwater target detection method utilizing propeller noise
JP2006250595A (en) Ultrasonic measuring method and device
RU2516602C1 (en) Method to determine depth of object submersion
JP6311230B2 (en) Target detection apparatus, target detection method, program, and recording medium
RU2687086C1 (en) Method of ultrasonic monitoring of pipeline wall thickness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211027

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220906

R150 Certificate of patent or registration of utility model

Ref document number: 7139061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150