JP2020071139A - Method of predicting heat insulation temperature rise amount of fly ash-containing concrete - Google Patents

Method of predicting heat insulation temperature rise amount of fly ash-containing concrete Download PDF

Info

Publication number
JP2020071139A
JP2020071139A JP2018205572A JP2018205572A JP2020071139A JP 2020071139 A JP2020071139 A JP 2020071139A JP 2018205572 A JP2018205572 A JP 2018205572A JP 2018205572 A JP2018205572 A JP 2018205572A JP 2020071139 A JP2020071139 A JP 2020071139A
Authority
JP
Japan
Prior art keywords
temperature rise
fly ash
amount
heat insulation
containing concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018205572A
Other languages
Japanese (ja)
Inventor
香奈子 森
Kanako Mori
香奈子 森
瑛紀 安田
Eiki Yasuda
瑛紀 安田
多田 克彦
Katsuhiko Tada
克彦 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018205572A priority Critical patent/JP2020071139A/en
Publication of JP2020071139A publication Critical patent/JP2020071139A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a method of predicting a heat insulation temperature rise amount of a fly ash-containing concrete which is high in practical use value as mass concrete from composition of the fly ash-containing concrete.SOLUTION: The present invention relates to a method of predicting a heat insulation temperature rise amount of fly ash-containing concrete that uses following formulas (1) to (4) and a unit ordinary Portland cement amount (Wc) to predict the heat insulation temperature rise amount of the fly ash-containing concrete. In the formulas (1) to (4), Q(t) is a heat insulation temperature rise amount (°C) on a day of a material age t, Qa final heat insulation temperature rise amount (°C), r a coefficient of regression affecting a gradient of a curve that the formula (1) draws, s a coefficient of regression affecting a shape of the curve that the formula (1) draws, and ta constant corresponding to an induction period of hydration reaction of the cement.SELECTED DRAWING: Figure 5

Description

本発明は、新規な予測式を用いてフライアッシュ含有コンクリートの断熱温度上昇量を予測する方法に関する。   The present invention relates to a method for predicting an adiabatic temperature rise amount of fly ash-containing concrete by using a novel prediction formula.

マスコンクリート(大型コンクリート構造部材)は、セメントの水和熱を蓄積しやすく温度上昇量が大きいため、温度ひび割れが発生し易い。そこで、主に、温度上昇量を低減するため、セメントの一部をポゾラン物質の1つであるフライアッシュで置換したフライアッシュ含有コンクリートが用いられている。
ところで、マスコンクリートの施工に際し、温度ひび割れを制御するため、事前に温度応力解析を行って温度ひび割れを照査した上で、温度ひび割れの制御対策を講じる必要がある。そして、この温度応力解析では、事前にコンクリートの熱特性や力学的特性を把握する必要があるが、これらの中でも、コンクリートの断熱温度上昇特性の把握が重要になる。
Mass concrete (large-scale concrete structural member) easily accumulates heat of hydration of cement and has a large temperature rise amount, and thus temperature cracks easily occur. Therefore, mainly in order to reduce the amount of temperature rise, fly ash-containing concrete in which a part of the cement is replaced with fly ash which is one of the pozzolanic substances is used.
By the way, in order to control temperature cracks during construction of mass concrete, it is necessary to perform temperature stress analysis in advance to check the temperature cracks and then take measures to control the temperature cracks. Further, in this temperature stress analysis, it is necessary to grasp the thermal characteristics and mechanical characteristics of concrete in advance, and among these, it is important to grasp the adiabatic temperature rise characteristics of concrete.

コンクリートの断熱温度上昇特性を把握する方法は、(i)断熱温度上昇試験を行って求める方法と、(ii)セメントの鉱物組成から複合水和発熱モデルにより推定する方法があり、(i)の方法がより一般的である。ただし、断熱温度上昇試験は標準化されていないため、様々な試験条件(部材の大きさ、セメントの種類、コンクリートの配合、打設条件、および試験装置等)の下で得られた試験結果が多く存在する。そして、断熱温度上昇試験により断熱温度上昇特性を評価する方法は、これらの試験結果に基づき回帰分析により回帰係数(パラメータ)を求め、これらの係数を用いて断熱温度上昇特性を統一的に表示して把握する方法である。   There are two methods for understanding the adiabatic temperature rise characteristics of concrete: (i) adiabatic temperature rise test is performed and (ii) a method of estimating from mineral composition of cement by a complex hydration exothermic model. The method is more general. However, since the adiabatic temperature rise test is not standardized, there are many test results obtained under various test conditions (size of material, type of cement, mix of concrete, setting conditions, test equipment, etc.). Exists. The method for evaluating the adiabatic temperature rise characteristics by the adiabatic temperature rise test is to calculate regression coefficients (parameters) by regression analysis based on these test results, and to display the adiabatic temperature rise characteristics in a unified manner using these coefficients. Is a way to figure out.

そして、前記回帰分析で用いる回帰式の一つに、下記(1)式がある(非特許文献1)。

Figure 2020071139
ただし、前記(1)式中、Q(t)は材齢t日の断熱温度上昇量(℃)、Qは終局断熱温度上昇量(℃)、rは(1)式が描く曲線の傾きに影響する回帰係数、sは(1)式が描く曲線の形状に影響する回帰係数、および、tはセメントの水和反応における誘導期に相当する定数であり、図形的には、t=0のときの(1)式が描く曲線を、材齢軸(横軸)方向に平行移動して、該曲線が断熱温度上昇曲線にフィットするまでに移動した距離である。 One of the regression equations used in the regression analysis is the following equation (1) (Non-Patent Document 1).
Figure 2020071139
However, in the above formula (1), Q (t) is the adiabatic temperature increase amount (° C) on the age t days, Q is the final adiabatic temperature increase amount (° C), and r is the slope of the curve drawn by the formula (1). , S is a regression coefficient that influences the shape of the curve drawn by equation (1), and t 0 is a constant corresponding to the induction period in the hydration reaction of cement, and graphically, t 0 It is the distance that the curve drawn by the equation (1) when = 0 is moved in parallel along the age axis (horizontal axis) until the curve fits the adiabatic temperature rise curve.

以上述べたように、断熱温度上昇試験により断熱温度上昇特性を評価する方法は、試験結果を用いて回帰分析を行って回帰係数を求め、これらの回帰係数により断熱温度上昇特性を、統一的に表示して把握する一般的な方法であるが、これとは逆に、(1)式中のQ、r、およびs等に関係するコンクリート材料(例えば、セメントや水等)を特定できれば、あえて試験をするまでもなく、コンクリートの配合(例えば、単位セメント量、単位水量等)のみに基づきQ、r、およびs等を求め、次に、求めたQ、r、およびsを(1)式に代入すれば、該(1)式から材齢t日における断熱温度上昇量Q(t)が求まるから、コンクリートの断熱温度上昇量は、全材齢において簡易に予測できるものと期待できる。 As described above, the method for evaluating the adiabatic temperature rise characteristic by the adiabatic temperature rise test is to perform regression analysis using the test results to obtain the regression coefficient, and to use these regression coefficients to uniformly determine the adiabatic temperature rise characteristic. Although it is a general method of displaying and grasping, on the contrary, if the concrete material (for example, cement, water, etc.) related to Q , r, and s etc. in the equation (1) can be specified, Needless to do a test, Q , r, s, etc. are obtained based only on the mix of concrete (for example, unit cement content, unit water content, etc.), and then the obtained Q , r, and s ( By substituting into equation (1), the adiabatic temperature rise amount Q (t) at age t days can be obtained from the equation (1), and therefore the adiabatic temperature rise amount of concrete is expected to be easily predictable at all ages. it can.

「マスコンクリートのひび割れ制御指針2016、2016.11」、公益社団法人コンクリート工学会発行"Guideline for crack control of mass concrete 2016, 2016.11", Published by Japan Society of Concrete Engineering

したがって、本発明は、フライアッシュ含有コンクリートの配合から、フライアッシュ含有コンクリートの断熱温度上昇量を予測する方法を提供することを目的とする。   Therefore, it is an object of the present invention to provide a method for predicting the amount of rise in adiabatic temperature of fly ash-containing concrete from the composition of fly ash-containing concrete.

そこで、本発明者は、前記目的を達成するため鋭意検討したところ、Q、r、およびsに関係するコンクリート材料は、単位普通ポルトランドセメント量であることを見い出し、本発明を完成させた。なお、tはセメントの水和反応における誘導期に相当する定数であるから、単位普通ポルトランドセメント量とは関係がないことは想像に難くない。 Then, the present inventor conducted extensive studies to achieve the above-mentioned object, and found that the concrete material relating to Q , r, and s had a unit amount of ordinary Portland cement, and completed the present invention. Since t 0 is a constant corresponding to the induction period in the hydration reaction of cement, it is not difficult to imagine that it is not related to the unit amount of ordinary Portland cement.

すなわち、本発明は、下記の構成を有するフライアッシュ含有コンクリートの断熱温度上昇量の予測方法である。
[1]下記(1)〜(4)式と単位普通ポルトランドセメント量(Wc)を用いて、フライアッシュ含有コンクリートの断熱温度上昇量を予測する、フライアッシュ含有コンクリートの断熱温度上昇量の予測方法。

Figure 2020071139
ただし、前記(1)〜(4)式中、Q(t)は材齢t日の断熱温度上昇量(℃)、Qは終局断熱温度上昇量(℃)、rは(1)式が描く曲線の傾きに影響する回帰係数、sは(1)式が描く曲線の形状に影響する回帰係数、および、tはセメントの水和反応における誘導期に相当する定数である。 That is, the present invention is a method for predicting an adiabatic temperature rise amount of fly ash-containing concrete having the following configuration.
[1] A method for predicting an adiabatic temperature increase amount of fly ash-containing concrete, which predicts an adiabatic temperature increase amount of fly ash-containing concrete using the following formulas (1) to (4) and a unit ordinary Portland cement amount (Wc). .
Figure 2020071139
However, in the above formulas (1) to (4), Q (t) is the adiabatic temperature increase amount (° C) on the age t days, Q is the final adiabatic temperature increase amount (° C), and r is the expression (1). A regression coefficient that affects the slope of the drawn curve, s is a regression coefficient that affects the shape of the curve drawn by equation (1), and t 0 is a constant corresponding to the induction period in the hydration reaction of cement.

本発明は、フライアッシュ含有コンクリートの単位普通ポルトランドセメント量から、フライアッシュ含有コンクリートの断熱温度上昇量を、全材齢において簡易に予測できる。   INDUSTRIAL APPLICABILITY The present invention can easily predict the amount of increase in adiabatic temperature of fly ash-containing concrete at all ages from the unit amount of ordinary Portland cement of fly ash-containing concrete.

終局断熱温度上昇量Qと、単位普通ポルトランドセメント量Wcの相関を示す図である。It is a figure which shows the correlation of the amount Q ∞ of final adiabatic temperature rise, and the unit normal Portland cement amount Wc. 配合No.1のフライアッシュ含有コンクリートの断熱温度上昇の実験値と、本願発明を用いた予測値を示す図である。Formulation No. It is a figure which shows the experimental value of the heat insulation temperature rise of the fly ash containing concrete of 1, and the predicted value which used this invention. 配合No.3のフライアッシュ含有コンクリートの断熱温度上昇の実験値と、本願発明を用いた予測値を示す図である。Formulation No. It is a figure which shows the experimental value of the heat insulation temperature rise of the fly ash containing concrete of 3, and the predicted value which used this invention. 配合No.5のフライアッシュ含有コンクリートの断熱温度上昇の実験値と、本願発明を用いた予測値を示す図である。Formulation No. It is a figure which shows the experimental value of the heat insulation temperature rise of the fly ash containing concrete of 5, and the predicted value which used this invention. 配合No.13のフライアッシュ含有コンクリートの断熱温度上昇の実験値と、本願発明を用いた予測値を示す図である。Formulation No. It is a figure which shows the experimental value of the heat insulation temperature rise of the fly ash containing concrete of 13 and the predicted value which used this invention. 配合No.20のフライアッシュ含有コンクリートの断熱温度上昇の実験値と、本願発明を用いた予測値を示す図である。Formulation No. It is a figure which shows the experimental value of the heat insulation temperature rise of 20 fly ash containing concrete, and the prediction value which used this invention. 配合No.21のフライアッシュ含有コンクリートの断熱温度上昇の実験値と、本願発明を用いた予測値を示す図である。Formulation No. It is a figure which shows the experimental value of the heat insulation temperature rise of the fly ash containing concrete of 21, and the predicted value which used this invention.

本発明は、前記のとおり、前記(1)〜(4)式と単位普通ポルトランドセメント量を用いて、フライアッシュ含有コンクリートの断熱温度上昇量を予測する方法である。以下、本発明について説明する。   As described above, the present invention is a method of predicting the amount of rise in adiabatic temperature of fly ash-containing concrete by using the formulas (1) to (4) and the unit amount of ordinary Portland cement. The present invention will be described below.

本発明で用いる予測式は、前記(1)〜(4)式を組み合わせたものである。このうち(1)式は公知である。
また、(2)式はQとWcの単回帰式、(3)式はrとWcの単回帰式、sとWcの単回帰式であり、いずれも新規な式である。Q、rおよびsは、断熱温度上昇試験装置を用いて得られたフライアッシュ含有コンクリートの断熱温度上昇量(断熱温度上昇曲線)に、(1)式を最小二乗法によりフィッティングして得ることができる。フィッティングに用いる解析ソフトは、例えば、表計算ソフトウェア Microsoft Office Excel 2007 SP3(マイクロソフト社製)に使用されているソルバー「GRG2 非線形最適化コード」が挙げられる。
そして、前記単回帰式は、求めたQ、r、およびsのそれぞれを目的変数とし、単位普通ポルトランドセメント量Wcを説明変数として単回帰分析を行い、例えば、図1に示すように、単回帰式および回帰係数(傾きおよび切片)を求める。
次に、前記求めた単回帰式と単位普通ポルトランド量(=単位結合材量×(100−FA置換率)/100)を用いて算出したQ、r、およびsの値と、同じく(1)式のフィッティングにより求めたtの値を前記(1)式に代入して、フライアッシュ含有コンクリートの断熱温度上昇量の予測式が得られる。さらに、該予測式に材齢tの値を代入すれば、断熱温度上昇量の予測曲線を描くことができる。
The prediction formula used in the present invention is a combination of the formulas (1) to (4). Of these, the formula (1) is known.
Further, the equation (2) is a simple regression equation of Q and Wc, the equation (3) is a simple regression equation of r and Wc, and the simple regression equation of s and Wc, all of which are novel equations. Q , r and s are obtained by fitting equation (1) by the least squares method to the adiabatic temperature rise amount (adiabatic temperature rise curve) of concrete containing fly ash obtained by using an adiabatic temperature rise tester. You can The analysis software used for fitting includes, for example, the solver “GRG2 nonlinear optimization code” used in spreadsheet software Microsoft Office Excel 2007 SP3 (manufactured by Microsoft Corporation).
Then, the single regression equation is obtained by performing a single regression analysis with each of the obtained Q , r, and s as an objective variable and the unit normal Portland cement amount Wc as an explanatory variable. For example, as shown in FIG. A regression equation and regression coefficient (slope and intercept) are obtained.
Next, the values of Q , r, and s calculated by using the obtained simple regression equation and the unit ordinary Portland amount (= unit binder amount × (100−FA substitution rate) / 100) are the same as ( By substituting the value of t 0 obtained by the fitting of the equation (1) into the equation (1), a prediction equation of the adiabatic temperature rise amount of the fly ash-containing concrete can be obtained. Furthermore, by substituting the value of material age t into the prediction formula, a prediction curve of the adiabatic temperature rise amount can be drawn.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
1.フライアッシュ含有コンクリートの作製と回帰分析
表1に示す配合に従い、フライアッシュで普通ポルトランドセメントの一部を置換した結合材、細骨材、および粗骨材を、一軸強制練りミキサに投入して30秒間空練りした後、さらに練混ぜ水を投入し、60秒間練り混ぜ、かき落としを行なって、さらに30秒間練り混ぜて、練上がり温度が20℃のフライアッシュ含有コンクリート(No.1〜22)を作製した。
次に、該フライアッシュ含有コンクリート35リットルを、直径40cm、高さ40cm、容量約50リットルの容器に打設して、該コンクリートの中心部に温度センサーを取り付けた後、前記フライアッシュ含有コンクリートの断熱温度上昇曲線(断熱温度上昇量)を、断熱温度上昇試験装置(型番:ATR−123、株式会社東京理工社製)を用いて求めた。これらの曲線の中から、代表的な断熱温度上昇曲線(No.1、3、5、13、20、および21)を選んで、図2〜7に示す。
さらに、前記断熱温度上昇曲線と前記(1)式を用いて、最小二乗法(マイクロソフト社製表計算ソフトウェア Microsoft Office Excel 2007 SP3に使用されているソルバー「GRG2 非線形最適化コード」を使用した。)によりフィッティングして、終局断熱温度上昇量Q、回帰係数r、回帰係数s、および補正定数tを求めた。その結果を表1に示す。
次に、前記Q、r、およびsのそれぞれを目的変数とし、単位普通ポルトランドセメント量Wcを説明変数として、単回帰分析を行い、回帰係数(傾きおよび切片)を求めた。得られた単回帰式は、それぞれ前記(2)〜(4)式である。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
1. Preparation of Fly Ash-Containing Concrete and Regression Analysis According to the composition shown in Table 1, the binder, the fine aggregate, and the coarse aggregate in which a part of ordinary Portland cement was replaced with fly ash were charged into a uniaxial forced kneading mixer, and 30 After kneading for 2 seconds, further add kneading water, kneading for 60 seconds, scraping off, and kneading for another 30 seconds to prepare fly ash-containing concrete (No. 1 to 22) having a kneading temperature of 20 ° C. It was made.
Next, 35 liters of the fly ash-containing concrete was poured into a container having a diameter of 40 cm, a height of 40 cm, and a volume of about 50 liters, and a temperature sensor was attached to the center of the concrete. The adiabatic temperature rise curve (adiabatic temperature rise amount) was determined using an adiabatic temperature rise tester (model number: ATR-123, manufactured by Tokyo Riko Co., Ltd.). Typical adiabatic temperature rise curves (No. 1, 3, 5, 13, 20, and 21) are selected from these curves and shown in FIGS.
Furthermore, using the adiabatic temperature rise curve and the equation (1), the least squares method (the solver “GRG2 nonlinear optimization code” used in Microsoft Office Excel 2007 SP3 was used). The final adiabatic temperature rise amount Q , the regression coefficient r, the regression coefficient s, and the correction constant t 0 were determined by fitting with. The results are shown in Table 1.
Next, each of the Q , r, and s was used as an objective variable, and the unit normal Portland cement amount Wc was used as an explanatory variable to perform a single regression analysis to obtain regression coefficients (slope and intercept). The obtained simple regression equations are the equations (2) to (4).

Figure 2020071139
Figure 2020071139

2.フライアッシュ含有コンクリートの断熱温度上昇量の予測
前記単回帰式と単位普通ポルトランド量(=単位結合材量×(100−FA置換率)/100)を用いて算出したQ、r、およびsの値と、表1中のtの値を、前記(1)式に代入して予測式を得た。次に、この予測式にt=0〜28(日)を代入して予測曲線を得た。これらの予測曲線(図中の「予測」の曲線)を図2〜7に示す。
図2〜7に示すとおり、予測式が描く予測曲線(図中の「予測」の曲線)は、断熱温度上昇曲線(図中の「実験」の曲線)とよく一致している。
以上述べたように、本発明のフライアッシュ含有コンクリートの断熱温度上昇量の予測方法によれば、フライアッシュ含有コンクリートの全材齢における断熱温度上昇量(断熱温度上昇曲線)を高い精度で予測することができる。
2. Prediction of adiabatic temperature rise amount of fly ash-containing concrete Q , r, and s calculated using the simple regression equation and the unit ordinary Portland amount (= unit binder amount × (100−FA substitution rate) / 100) And the value of t 0 in Table 1 were substituted into the formula (1) to obtain a prediction formula. Next, a prediction curve was obtained by substituting t = 0 to 28 (days) into this prediction formula. These prediction curves (curve of “prediction” in the figure) are shown in FIGS.
As shown in FIGS. 2 to 7, the prediction curve drawn by the prediction formula (curve of “prediction” in the figure) is in good agreement with the adiabatic temperature rise curve (curve of “experiment” in the figure).
As described above, according to the method for predicting the adiabatic temperature increase amount of fly ash-containing concrete of the present invention, the adiabatic temperature increase amount (adiabatic temperature increase curve) for all ages of fly ash-containing concrete is predicted with high accuracy. be able to.

Claims (1)

下記(1)〜(4)式と単位普通ポルトランドセメント量(Wc)を用いて、フライアッシュ含有コンクリートの断熱温度上昇量を予測する、フライアッシュ含有コンクリートの断熱温度上昇量の予測方法。
Figure 2020071139
ただし、前記(1)〜(4)式中、Q(t)は材齢t日の断熱温度上昇量(℃)、Qは終局断熱温度上昇量(℃)、rは(1)式が描く曲線の傾きに影響する回帰係数、sは(1)式が描く曲線の形状に影響する回帰係数、および、tはセメントの水和反応における誘導期に相当する定数である。
A method for predicting an adiabatic temperature increase amount of fly ash-containing concrete, which predicts an adiabatic temperature increase amount of fly ash-containing concrete by using the following formulas (1) to (4) and unit ordinary Portland cement amount (Wc).
Figure 2020071139
However, in the above formulas (1) to (4), Q (t) is the adiabatic temperature increase amount (° C) on the age t days, Q is the final adiabatic temperature increase amount (° C), and r is the expression (1). A regression coefficient that affects the slope of the drawn curve, s is a regression coefficient that affects the shape of the curve drawn by equation (1), and t 0 is a constant corresponding to the induction period in the hydration reaction of cement.
JP2018205572A 2018-10-31 2018-10-31 Method of predicting heat insulation temperature rise amount of fly ash-containing concrete Pending JP2020071139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205572A JP2020071139A (en) 2018-10-31 2018-10-31 Method of predicting heat insulation temperature rise amount of fly ash-containing concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205572A JP2020071139A (en) 2018-10-31 2018-10-31 Method of predicting heat insulation temperature rise amount of fly ash-containing concrete

Publications (1)

Publication Number Publication Date
JP2020071139A true JP2020071139A (en) 2020-05-07

Family

ID=70547609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205572A Pending JP2020071139A (en) 2018-10-31 2018-10-31 Method of predicting heat insulation temperature rise amount of fly ash-containing concrete

Country Status (1)

Country Link
JP (1) JP2020071139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112861337A (en) * 2021-02-01 2021-05-28 中国科学院宁波材料技术与工程研究所 Surface temperature prediction method for heated carbon fiber heating wire
CN115855287A (en) * 2023-02-07 2023-03-28 中国铁路济南局集团有限公司 Temperature measuring method for large-volume concrete temperature field

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209024A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Method of manufacturing mortar or concrete, and method of estimating adiabatic temperature rising rate in mortar or concrete
JP2016138025A (en) * 2015-01-29 2016-08-04 太平洋セメント株式会社 Coal ash activation method, activated coal ash and production method of cement composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209024A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Method of manufacturing mortar or concrete, and method of estimating adiabatic temperature rising rate in mortar or concrete
JP2016138025A (en) * 2015-01-29 2016-08-04 太平洋セメント株式会社 Coal ash activation method, activated coal ash and production method of cement composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
嶋毅ら: "コンクリートの断熱温度上昇および強度発現の標準値の提案", コンクリート光学年次論文集, vol. 29, no. 2, JPN6022036924, 30 July 2007 (2007-07-30), JP, pages 181, ISSN: 0004942217 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112861337A (en) * 2021-02-01 2021-05-28 中国科学院宁波材料技术与工程研究所 Surface temperature prediction method for heated carbon fiber heating wire
CN112861337B (en) * 2021-02-01 2024-04-30 中国科学院宁波材料技术与工程研究所 Surface temperature prediction method for heated carbon fiber heating wire
CN115855287A (en) * 2023-02-07 2023-03-28 中国铁路济南局集团有限公司 Temperature measuring method for large-volume concrete temperature field
CN115855287B (en) * 2023-02-07 2023-05-23 中国铁路济南局集团有限公司 Temperature measurement method for mass concrete temperature field

Similar Documents

Publication Publication Date Title
Szilágyi et al. Rebound surface hardness of concrete: Introduction of an empirical constitutive model
Barnett et al. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies
Guan et al. Determination of fracture parameter and prediction of structural fracture using various concrete specimen types
Zhang et al. Ultrasound monitoring of setting and hardening process of ultra-high performance cementitious materials
Hu et al. Feasibility study of using fine recycled concrete aggregate in producing self-consolidation concrete
Wade et al. Effect of temperature on the setting behavior of concrete
Yang et al. An initial trial mixture proportioning procedure for structural lightweight aggregate concrete
Lee et al. Influence of cement type on heat of hydration and temperature rise of the mass concrete
Güneyisi et al. Effect of volcanic pumice powder on the fresh properties of self-compacting concretes with and without silica fume
Kaszyńska Early age properties of high-strength/high-performance concrete
Van Lam et al. Effect of natural pozzolan on strength and temperature distribution of heavyweight concrete at early ages
JP2020071139A (en) Method of predicting heat insulation temperature rise amount of fly ash-containing concrete
CN109270255A (en) A method of prediction ready-mixed concrete intensity
Harish et al. Experimental investigation and analytical modeling of the σ–ε characteristics in compression of heat-treated ultra-high strength mortars produced from conventional materials
Marasli et al. Development of a maturity method for GFRC shell concretes with different fiber ratios
Zain et al. Mathematical regression model for the prediction of concrete strength
Nagarajan et al. Experimental approach to investigate the behaviour of brick masonry for different mortar ratios
JP6508467B2 (en) Prediction method of adiabatic temperature rise of concrete
JP6512960B2 (en) Concrete evaluation method
Wang et al. Apparent activation energy of concrete in early age determined by adiabatic test
Vinkler et al. Drying and shrinkage of massive concrete wall segments—3 years experiment and analytical observations
Cherki El Idrissi The development of a global mix design and analysis approach for alkali activated soil reinforcement grouts
Gholami et al. Shrinkage behaviour of superplasticised RCCP and its relationship with internal temperature
Yazdani et al. Accelerated curing of silica-fume concrete
JP5777208B2 (en) Prediction method of self-shrinkage strain of ultra high strength concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230306