JP2020070255A - Bis(amino or nitrophenoxy) benzene compound, method for producing the same, and polyimide - Google Patents

Bis(amino or nitrophenoxy) benzene compound, method for producing the same, and polyimide Download PDF

Info

Publication number
JP2020070255A
JP2020070255A JP2018205308A JP2018205308A JP2020070255A JP 2020070255 A JP2020070255 A JP 2020070255A JP 2018205308 A JP2018205308 A JP 2018205308A JP 2018205308 A JP2018205308 A JP 2018205308A JP 2020070255 A JP2020070255 A JP 2020070255A
Authority
JP
Japan
Prior art keywords
formula
represented
compound
substituent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018205308A
Other languages
Japanese (ja)
Other versions
JP7315135B2 (en
Inventor
昌弘 寺本
Masahiro Teramoto
昌弘 寺本
元則 竹田
Motonori Takeda
元則 竹田
和秀 西山
Kazuhide Nishiyama
和秀 西山
充隆 井本
Mitsutaka Imoto
充隆 井本
正裕 笠松
Masahiro Kasamatsu
正裕 笠松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKA CORP
Seika Sangyo Co Ltd
Original Assignee
SEIKA CORP
Seika Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKA CORP, Seika Sangyo Co Ltd filed Critical SEIKA CORP
Priority to JP2018205308A priority Critical patent/JP7315135B2/en
Publication of JP2020070255A publication Critical patent/JP2020070255A/en
Priority to JP2022177771A priority patent/JP7390754B2/en
Application granted granted Critical
Publication of JP7315135B2 publication Critical patent/JP7315135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a novel bis (amino or nitrophenoxy) benzene derivative, a method for producing the same, and polyimide synthesis.SOLUTION: The present invention relates to a compound represented by the following formula (1) and a method for producing the compound (where R, R, R, R, R, R, R, R, R, R, Rand Rindependently represent a hydrogen atom or a substituent selected from a C1 to 6 optionally substituted alkyl group and a C1 to 3 alkoxy group, at least one of R, R, Rand Ris the above-mentioned substituent, at least one of R, R, Rand Ris the above-mentioned substituent, and at least one of R, R, Rand Ris the above-mentioned substituent, and A and B independently represent a nitro group or an amino group), excluding 1,4-bis(4-amino-2-methyl phenoxy)-2,3,5-trimethyl benzene.SELECTED DRAWING: None

Description

本発明は、ポリイミドをはじめとした高機能性高分子および種々の有機化合物のための原料として有用なビス(アミノフェノキシ)ベンゼン及びその誘導体、及びその製造方法に関する。さらに本発明は、該ジアミン化合物の前駆体である(アミノフェノキシ)(ニトロフェノキシ)ベンゼン、ビス(ニトロフェノキシ)ベンゼン、及びこれらの誘導体、並びにこれら化合物の製造方法に関する。   TECHNICAL FIELD The present invention relates to bis (aminophenoxy) benzene and derivatives thereof which are useful as a raw material for highly functional polymers such as polyimide and various organic compounds, and a method for producing the same. Further, the present invention relates to (aminophenoxy) (nitrophenoxy) benzene, bis (nitrophenoxy) benzene, which are precursors of the diamine compound, and derivatives thereof, and a method for producing these compounds.

情報通信分野において使用されるプリント配線基板等では高速・大容量通信が求められており、そのため従来よりも高周波数帯使用が期待されている。しかし、高周波数化することで伝送損失が増大するという問題がある。伝送損失は抵抗損失と誘電損失の寄与に分けられる。そのうち、抵抗損失は周波数に比例して熱に変わる特徴があり、誘電損失は周波数、誘電正接、比誘電率に比例する特徴がある。   High-speed, large-capacity communication is required for printed wiring boards and the like used in the field of information and communication, and therefore higher frequency bands are expected to be used than before. However, there is a problem that the transmission loss increases as the frequency becomes higher. Transmission loss is divided into contributions of resistance loss and dielectric loss. Among them, the resistance loss has a characteristic of changing to heat in proportion to the frequency, and the dielectric loss has a characteristic of being proportional to frequency, dielectric loss tangent, and relative permittivity.

高周波数帯での使用に耐えうる材料には、耐熱性に加え、優れた電気特性、特に低誘電率、低誘電正接であることが求められている。優れた高耐熱性材料として,例えばポリイミド樹脂(PI)やポリアミド樹脂が知られている(非特許文献1、2)。しかし、これらの樹脂は分子内に極性の高いイミド基、あるいはアミド基構造を有しており、これらの寄与のため、多くのPIの誘電率(k)は3.0を越えるのが通常である。また、優れた電気特性を有する材料として、例えばポリフェニレンエーテル樹脂(PPE)が知られている(特許文献1,非特許文献1,2)。しかし、熱可塑性であり、溶融時の流動性が悪い、溶剤溶解性が乏しいといった問題がある。   A material that can withstand use in a high frequency band is required to have not only heat resistance but also excellent electrical characteristics, particularly a low dielectric constant and a low dielectric loss tangent. Polyimide resins (PI) and polyamide resins are known as excellent high heat resistant materials (Non-Patent Documents 1 and 2). However, these resins have a highly polar imide group or amide group structure in the molecule, and due to these contributions, the dielectric constant (k) of many PIs usually exceeds 3.0. is there. In addition, for example, polyphenylene ether resin (PPE) is known as a material having excellent electrical characteristics (Patent Document 1, Non-Patent Documents 1 and 2). However, they are thermoplastic and have problems such as poor fluidity during melting and poor solvent solubility.

特開2005−82793号公報JP, 2005-82793, A

Pathrick R.A.et,al「Journal of Applied Polymer Science」、vol.132、p.41684−41692、2015年.Pathrick R. et al. A. et al, "Journal of Applied Polymer Science", vol. 132, p. 41684-41692, 2015. Akhter Z.et,al「Polymer Bulletin」vol.74、p.3889−3906、2017年.Akhter Z. et al, "Polymer Bulletin", vol. 74, p. 3889-3906, 2017.

優れた高耐熱性と電気特性を有する材料として、PIの低誘電率化が提案されている。PIはそのモノマーであるジアミンの設計の多様性から、低誘電率化の分子設計には魅力的な材料である。PIの低誘電率化の基本的な考えは、高誘電率に寄与するイミド基濃度をどのように希釈(低減)していくかにある。PI中のイミド基濃度を下げるには,芳香族ジアミンとして代表的なオキシジアニリンのような二核体に代え、三核以上の芳香環を有するジアミンを採用するのが有効である。しかし、イミド基濃度を下げる分、PIの耐熱性を損なうことになる。イミド基濃度を下げ、なおかつ耐熱性を損なわないようにするには、芳香環に嵩高い炭化水素を導入し、芳香族アミン部位のエーテル結合や、イミド環と芳香環との単結合の自由回転を規制し、ポリイミド主鎖の一次運動を阻害するのが有効である。   As a material having excellent high heat resistance and electric characteristics, a low dielectric constant of PI has been proposed. PI is an attractive material for molecular design with a low dielectric constant because of the variety of diamine designs that are its monomers. The basic idea of lowering the dielectric constant of PI lies in how to dilute (reduce) the imide group concentration that contributes to the high dielectric constant. In order to reduce the imide group concentration in PI, it is effective to employ a diamine having a trinuclear or higher aromatic ring instead of a binuclear compound such as oxydianiline, which is a typical aromatic diamine. However, as the imide group concentration is lowered, the heat resistance of PI is impaired. In order to reduce the imide group concentration and not to impair the heat resistance, a bulky hydrocarbon is introduced into the aromatic ring to allow free rotation of the ether bond at the aromatic amine site or the single bond between the imide ring and the aromatic ring. Is effective to inhibit the primary movement of the polyimide main chain.

本発明は上記事情に鑑み、ポリイミド樹脂などの樹脂原料、また、電子材料やこれらの中間体や原料として有用な、ビス(アミノフェノキシ)ベンゼン及びその誘導体を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide bis (aminophenoxy) benzene and its derivatives, which are useful as resin raw materials such as polyimide resins, electronic materials, and intermediates and raw materials thereof.

本発明者らは、上記のようなビス(アミノフェノキシ)ベンゼンの問題点を鋭意検討した結果、アミノフェノキシ又はニトロフェノキシを有し三核体である、ビス(アミノ又はニトロフェノキシ)ベンゼン化合物であって、3つの芳香環が夫々少なくとも1のアルキル基又はアルコキシ基を有する新規の化合物を製造し、本発明を成すに至った。   As a result of intensive studies on the problems of bis (aminophenoxy) benzene as described above, the present inventors have found that it is a bis (amino or nitrophenoxy) benzene compound having aminophenoxy or nitrophenoxy and being a trinuclear body. As a result, a novel compound having three aromatic rings each having at least one alkyl group or alkoxy group was produced, and the present invention was completed.

すなわち本発明は、下記式(1)で表される化合物及び該化合物の製造方法を提供する。
(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、互いに独立に、水素原子、又は、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基から選ばれる置換基であり、R、R、R及びRの少なくとも一つは前記置換基であり、R1’、R2’、R3’及びR4’の少なくとも一つは前記置換基であり、且つ、R、R、R及びRの少なくとも一つは前記置換基であり、A及びBは、互いに独立に、ニトロ基又はアミノ基である)
但し、1,4−ビス(4−アミノ−2−メチルフェノキシ)−2,3,5−トリメチルベンゼンを除く。
That is, the present invention provides a compound represented by the following formula (1) and a method for producing the compound.
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are each independently hydrogen. An atom or a substituent selected from an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, and at least one of R 1 , R 2 , R 3 and R 4 . One is the substituent, at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ is the substituent, and at least one of R 5 , R 6 , R 7 and R 8 Is a substituent, and A and B are each independently a nitro group or an amino group.)
However, 1,4-bis (4-amino-2-methylphenoxy) -2,3,5-trimethylbenzene is excluded.

本発明のビス(アミノ又はニトロフェノキシ)ベンゼン化合物は、中央に位置するベンゼン環に少なくとも1つのアルキル基を持つことから、誘電率、及び誘電正接が低いポリイミド樹脂を提供し、ポリイミド原料として好適に使用できる。また、本発明のビス(ニトロフェノキシ)ベンゼン化合物は、ニトロ基を還元することにより前記ビス(アミノフェノキシ)ベンゼン化合物を容易に提供することができ、ポリイミド原料として有用である。   Since the bis (amino or nitrophenoxy) benzene compound of the present invention has at least one alkyl group in the benzene ring located in the center, it provides a polyimide resin having a low dielectric constant and a low dielectric loss tangent, and is suitable as a polyimide raw material. Can be used. Further, the bis (nitrophenoxy) benzene compound of the present invention can easily provide the bis (aminophenoxy) benzene compound by reducing the nitro group, and is useful as a polyimide raw material.

図1は実施例1で製造した化合物のH−NMRスペクトルのチャートである。FIG. 1 is a chart of 1 H-NMR spectrum of the compound produced in Example 1. 図2は実施例1で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 2 is a chart of 13 C-NMR spectrum of the compound produced in Example 1. 図3は実施例2で製造した化合物のH−NMRスペクトルのチャートである。FIG. 3 is a chart of the 1 H-NMR spectrum of the compound produced in Example 2. 図4は実施例2で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 4 is a chart of the 13 C-NMR spectrum of the compound produced in Example 2. 図5は実施例3で製造した化合物のH−NMRスペクトルのチャートである。FIG. 5 is a chart of the 1 H-NMR spectrum of the compound produced in Example 3. 図6は実施例3で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 6 is a chart of the 13 C-NMR spectrum of the compound produced in Example 3. 図7は実施例4で製造した化合物のH−NMRスペクトルのチャートである。FIG. 7 is a chart of the 1 H-NMR spectrum of the compound produced in Example 4. 図8は実施例4で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 8 is a chart of the 13 C-NMR spectrum of the compound produced in Example 4. 図9は実施例5で製造した化合物のH−NMRスペクトルのチャートである。FIG. 9 is a chart of the 1 H-NMR spectrum of the compound produced in Example 5. 図10は実施例5で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 10 is a chart of 13 C-NMR spectrum of the compound produced in Example 5. 図11は実施例6で製造した化合物のH−NMRスペクトルのチャートである。FIG. 11 is a chart of 1 H-NMR spectrum of the compound produced in Example 6. 図12は実施例6で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 12 is a chart of 13 C-NMR spectrum of the compound produced in Example 6. 図13は実施例7で製造した化合物のH−NMRスペクトルのチャートである。FIG. 13 is a chart of the 1 H-NMR spectrum of the compound produced in Example 7. 図14は実施例7で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 14 is a chart of 13 C-NMR spectrum of the compound produced in Example 7. 図15は実施例8で製造した化合物のH−NMRスペクトルのチャートである。FIG. 15 is a chart of the 1 H-NMR spectrum of the compound produced in Example 8. 図16は実施例8で製造した化合物の13C−NMRスペクトルのチャートである。FIG. 16 is a chart of 13 C-NMR spectrum of the compound produced in Example 8.

本発明のビス(アミノ又はニトロフェノキシ)ベンゼン化合物は、下記式(1)で表される。以下、詳細に説明する。
The bis (amino or nitrophenoxy) benzene compound of the present invention is represented by the following formula (1). The details will be described below.

上記式(1)において、A及びBは互いに独立にアミノ基又はニトロ基である。A及びBが共にアミノ基であるジアミン化合物(下記(1−a))は、後述する方法により、上記式(1)で表されA及びBの少なくとも1がニトロ基である化合物(下記(1−b)又は(1−c))のニトロ基を還元することにより、容易に得ることができる。
In the above formula (1), A and B are each independently an amino group or a nitro group. A diamine compound in which both A and B are amino groups (following (1-a)) is a compound represented by the above formula (1) in which at least one of A and B is a nitro group (following (1 It can be easily obtained by reducing the nitro group of -b) or (1-c)).

上記式(1)において、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、互いに独立に、水素原子、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基から選ばれる置換基である。R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRの結合箇所は特に制限されるものでない。但し、R、R、R及びRのうち3つが前記置換基であり、残る一つが水素原子である化合物においては、R、R、R、およびRのうち少なくとも1つの置換基はAで示される基のオルト位にあり、R1’、R2’、R3’、及びR4’のうち少なくとも1つの置換基はBで示される基のオルト位にあるのがよい。
また、R、R、R、及びRと、R1’、R2’、R3’、及びR4’ は共通していてもよく、その場合は下記式(1’)で表される。
In the above formula (1), R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are independent of each other. And a substituent selected from a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms. The binding sites of R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are not particularly limited. However, in a compound in which three of R 5 , R 6 , R 7 and R 8 are the substituents and the remaining one is a hydrogen atom, at least 1 of R 1 , R 2 , R 3 and R 4 is One substituent is in the ortho position of the group represented by A, and at least one substituent of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ is in the ortho position of the group represented by B. Is good.
In addition, R 1 , R 2 , R 3 , and R 4 and R 1 ′ , R 2 ′ , R 3 ′ , and R 4 ′ may be common, and in that case, in the following formula (1 ′) expressed.

本発明の化合物は、R、R、R及びRの少なくとも一つと、R1’、R2’、R3’及びR4’の少なくとも一つと、R、R、R及びRの少なくとも一つが、互いに独立に、置換されていてよい炭素原子数1〜6のアルキル基、及び炭素原子数1〜3のアルコキシ基から選ばれる置換基であることを特徴とする。 The compound of the present invention has at least one of R 1 , R 2 , R 3 and R 4 , and at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ , R 5 , R 6 and R 7. And at least one of R 8 is independently a substituent selected from an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms.

、R、R及びRの少なくとも一つと、R1’、R2’、R3’及びR4’の少なくとも一つと、R、R、R及びRの少なくとも一つとは、各々異なる置換基であってよいし、2以上が同じ置換基であってもよい。より詳細には、R、R、R及びRのうち少なくとも一つ、好ましくは一つ又は二つ、より好ましくはいずれか一つと、R1’、R2’、R3’及びR4’のうち少なくとも一つ、好ましくは一つ又は二つ、より好ましくはいずれか一つが、互いに独立に炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であるのがよい。また、R、R、R及びRのうち1以上、好ましくは1〜4つ、更に好ましくは1〜3つ、最も好ましくは1つ又は2つが、炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であるのがよい。 At least one of R 1 , R 2 , R 3 and R 4 , at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ and at least one of R 5 , R 6 , R 7 and R 8 The two may be different substituents, and two or more may be the same substituent. More specifically, at least one, preferably one or two, more preferably any one of R 1 , R 2 , R 3 and R 4 and R 1 ′ , R 2 ′ , R 3 ′ and At least one, preferably one or two, and more preferably any one of R 4 ′ is independently an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. Good. One or more, preferably 1 to 4, more preferably 1 to 3, most preferably 1 or 2 of R 5 , R 6 , R 7 and R 8 is an alkyl group having 1 to 6 carbon atoms. Alternatively, it is preferably an alkoxy group having 1 to 3 carbon atoms.

上記置換されていてよい炭素原子数1〜6のアルキル基とは、例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、及びイソブチル基等、又は、これらの炭素原子に結合する水素原子の少なくとも1が、本発明の効果を妨げない範囲において、ハロゲン原子、アルコキシ基、フェニル基等に置換されている基である。好ましくは、置換されていない炭素原子数1〜6のアルキル基である。炭素原子数1〜3のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、及びプロポキシ基が挙げられる。より好ましくは、置換されていない、炭素原子数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、さらに好ましくは炭素原子数1〜4のアルキル基であり、特に好ましくは炭素原子数1〜3のアルキル基であり、最も好ましくはメチル基である。   The alkyl group having 1 to 6 carbon atoms which may be substituted is, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, an isobutyl group, or the like, or a bond to these carbon atoms. At least one of the hydrogen atoms is a group substituted with a halogen atom, an alkoxy group, a phenyl group or the like within a range that does not impair the effects of the present invention. It is preferably an unsubstituted alkyl group having 1 to 6 carbon atoms. Examples of the alkoxy group having 1 to 3 carbon atoms include methoxy group, ethoxy group, isopropoxy group, and propoxy group. More preferably, it is an unsubstituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, still more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably carbon. It is an alkyl group having 1 to 3 atoms, and most preferably a methyl group.

本発明の上記式(1)で表される化合物は下記式(1−d)で表される、1,4−ビス(4−アミノ−2−メチルフェノキシ)−2,3,5−トリメチルベンゼンを含まない。
The compound represented by the above formula (1) of the present invention is represented by the following formula (1-d): 1,4-bis (4-amino-2-methylphenoxy) -2,3,5-trimethylbenzene Does not include.

、R、R及びRのうち1つ又は2つが、置換されていてよい炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、R、R、R及びRのうち残りが水素原子である化合物は、下記式(1a)又は(1b)で表される。
上記各式において、R、R、R、R、R1’、R2’、R3’、及びR4’ は上記の通りであり、Rは、互いに独立に、置換されていてよい炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、最も好ましくはメチル基であり、A及びBは上記の通りである。
中でも下記式(1a’)又は(1b’)で表される化合物が好ましい。
上記各式において、R、A、及びBは上記の通りである。R’及びR’’は、互いに独立に、置換されていてよい炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、好ましくは、RがAで示される基に対してオルト位又はメタ位にあり、R’’がBで示される基に対してオルト位又はメタ位にあるのがよい。
One or two of R 5 , R 6 , R 7 and R 8 are an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and R 5 , R 6 , R 7 and R 8 are compounds represented by the following formula (1a) or (1b), the rest being hydrogen atoms.
In each of the above formulas, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , and R 4 ′ are as described above, and R is independently substituted. Which may be an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, most preferably a methyl group, and A and B are as described above.
Of these, compounds represented by the following formula (1a ′) or (1b ′) are preferable.
In the above formulas, R, A, and B are as described above. R ′ and R ″ are each independently an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and preferably R is a group represented by A. On the other hand, it is preferably in the ortho position or meta position, and R is in the ortho position or meta position with respect to the group represented by B.

また、R、R、R及びRのうち3つが、置換されていてよい炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、残る一つが水素原子である化合物としては、下記式(1c)、(1d)、(1e)、又は(1f)のいずれかの化合物が挙げられる。
上記において、R、R’及びR’’は、互いに独立に、置換されていてよい炭素数1〜6のアルキル基又は炭素原子数1〜3のアルコキシ基であり、A及びBは上記の通りであり、各式においてR’の少なくとも1つはAで示される基のオルト位にあり、R’’の少なくとも1つはBで示される基のオルト位にあるのがよい。好ましくは、上記式(1c)で表され、R’がAで示される基のオルト位にあり、R’’がBで示される基のオルト位にある化合物である。
Further, three of R 5 , R 6 , R 7 and R 8 are an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and the remaining one is a hydrogen atom. As a certain compound, the compound of any one of following formula (1c), (1d), (1e), or (1f) is mentioned.
In the above, R, R ′ and R ″ are each independently an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and A and B are as described above. In each formula, at least one of R'is in the ortho position of the group represented by A, and at least one of R '' is in the ortho position of the group represented by B. Preferred is a compound represented by the above formula (1c) in which R ′ is in the ortho position of the group represented by A and R ″ is in the ortho position of the group represented by B.

より詳細には、上記式(1)で表され、A及びBが共にアミノ基であるジアミン化合物としては、例えば、1,4−ビス(4−アミノ−2−メチルフェノキシ)−2−メチルベンゼン、1,4−ビス(4−アミノ−3−メチルフェノキシ)−2−メチルベンゼン、1,4−ビス(4−アミノ−3−メチルフェノキシ)−2,3,5−トリメチルベンゼン、及び1,3−ビス(4−アミノ―2−メチルフェノキシ)−5−メチルベンゼン等が挙げられるが、これらの化合物に制限されるものでない。上記式(1)で表され、A及びBが共にニトロ基であるジニトロ化合物としては、例えば、1,4−ビス(2−メチル−4−ニトロフェノキシ)−2−メチルベンゼン、1,4−ビス(3−メチル−4−ニトロフェノキシ)−2−メチルベンゼン、1,4−ビス(3−メチル−4−ニトロフェノキシ)−2,3,5−トリメチルベンゼン、1,3−ビス(2−メチル−4−ニトロフェノキシ)−5−メチルベンゼン等が挙げられるが、これらの化合物に制限されるものでない。   More specifically, examples of the diamine compound represented by the above formula (1), in which A and B are both amino groups, include, for example, 1,4-bis (4-amino-2-methylphenoxy) -2-methylbenzene. 1,4-bis (4-amino-3-methylphenoxy) -2-methylbenzene, 1,4-bis (4-amino-3-methylphenoxy) -2,3,5-trimethylbenzene, and 1, Examples thereof include 3-bis (4-amino-2-methylphenoxy) -5-methylbenzene, but are not limited to these compounds. Examples of the dinitro compound represented by the above formula (1) in which both A and B are nitro groups include 1,4-bis (2-methyl-4-nitrophenoxy) -2-methylbenzene and 1,4- Bis (3-methyl-4-nitrophenoxy) -2-methylbenzene, 1,4-bis (3-methyl-4-nitrophenoxy) -2,3,5-trimethylbenzene, 1,3-bis (2- Examples thereof include methyl-4-nitrophenoxy) -5-methylbenzene, but are not limited to these compounds.

[製造方法]
(1)下記式(1−a)で表されるジアミン化合物の製造方法
(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは上述した通りである)
該ジアミン化合物の製造方法は何ら制限されるものではなく、いかなる方法で製造してもよい。例えば、下記一般式(1−b)又は(1−c)で表される化合物のニトロ基を還元することにより得ることが出来る。
(上記式中、式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは上述した通りである)
[Production method]
(1) Method for producing diamine compound represented by the following formula (1-a)
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are as described above).
The method for producing the diamine compound is not particularly limited and may be produced by any method. For example, it can be obtained by reducing the nitro group of the compound represented by the following general formula (1-b) or (1-c).
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are as described above. The street)

上記ニトロ基の還元反応は、特に限定されるものではなく、ニトロ基をアミノ基に還元する公知の方法を用いることが出来る。例えば、芳香族ジニトロ化合物の還元方法としては、接触還元、ベシャン還元、亜鉛末還元、塩化スズ還元、及びヒドラジン還元等が挙げられる。    The reduction reaction of the nitro group is not particularly limited, and a known method of reducing the nitro group to an amino group can be used. For example, examples of the method for reducing the aromatic dinitro compound include catalytic reduction, Beshan reduction, zinc dust reduction, tin chloride reduction, and hydrazine reduction.

還元反応に用いられる溶剤は例えば、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、2−メトキシエタノール、及び2−エトキシエタノールなどのアルコール系溶剤、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、N,N’−ジメチルイミダゾリジノンなどのアミド系溶剤、及び、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、及びジエチレングリコールなどのエーテル系溶剤が挙げられるが、芳香族ジニトロ化合物が溶解する溶媒であれば、これらに限定されることはない。溶剤の量は適宜調整されればよい。   The solvent used for the reduction reaction is, for example, an alcohol solvent such as methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-methoxyethanol, and 2-ethoxyethanol, N, N-dimethylformamide, N, N-. Examples include amide-based solvents such as dimethylacetamide, N-methylpyrrolidone, and N, N′-dimethylimidazolidinone, and ether-based solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and diethylene glycol. The solvent is not limited to these as long as it can be dissolved. The amount of the solvent may be adjusted appropriately.

還元反応に使用される触媒は上記各還元反応の触媒として公知の触媒を使用すればよい。例えば、接触還元またはヒドラジン還元に用いられる触媒としては、活性炭、カーボンブラック、グラファイト、アルミナなどに担持させたパラジウム、白金、ロジウムなどの貴金属触媒、ラネーニッケル触媒、及びスポンジニッケル触媒が挙げられる。触媒の量は特に制限されるものでないが、通常0.1〜10wt%である。   As the catalyst used for the reduction reaction, a catalyst known as a catalyst for each of the above reduction reactions may be used. Examples of the catalyst used for catalytic reduction or hydrazine reduction include activated carbon, carbon black, graphite, precious metal catalysts such as palladium, platinum and rhodium supported on alumina, Raney nickel catalyst, and sponge nickel catalyst. The amount of the catalyst is not particularly limited, but is usually 0.1 to 10 wt%.

還元反応の反応温度及び時間は適宜選択されればよい。例えば、50〜150℃の範囲にある温度、好ましくは60〜130℃の範囲にある温度で、1〜35時間、好ましくは3〜10時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、触媒を除去し、冷却した後、生成した固体を濾過、水洗、乾燥することにより、上記一般式(1−a)で示される化合物を得ることができる。また、更に必要に応じて、再度、晶析濾過、カラム分離等の方法にて精製すれば、高純度品を得ることが出来る。   The reaction temperature and time of the reduction reaction may be appropriately selected. For example, the reaction may be performed at a temperature in the range of 50 to 150 ° C., preferably in the range of 60 to 130 ° C. for 1 to 35 hours, preferably 3 to 10 hours. The method of treating the reaction product is not particularly limited. For example, the compound represented by the general formula (1-a) can be obtained by removing the catalyst, cooling, and filtering the resulting solid, washing with water, and drying. Further, if necessary, a high-purity product can be obtained by refining again by a method such as crystallization filtration and column separation.

(2)上記一般式(1−b)又は(1−c)で表される(ジ)ニトロ化合物の製造方法
上記一般式(1−b)又は(1−c)で表される(ジ)ニトロ化合物の製造方法は、何ら制限されるものではなく、いかなる方法で製造してもよい。好ましくは、下記一般式(2)で示される化合物の一以上と下記一般式(3)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、上記一般式(1−b)で表されるジニトロ化合物が得られる。
式(2)中、R、R、R及びRは上述した通りである。Xはハロゲン原子であり、例えば塩素原子又はフッ素原子であり、好ましくはフッ素原子である。
式(3)中、R、R、R及びRは、上述した通りである。Yは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。
(2) Method for producing (di) nitro compound represented by the general formula (1-b) or (1-c) (di) represented by the general formula (1-b) or (1-c) The method for producing the nitro compound is not particularly limited and may be produced by any method. Preferably, one or more compounds represented by the following general formula (2) and one or more compounds represented by the following general formula (3) are heated in an organic solvent, preferably in the presence of a base, under heating. By performing a dehydration condensation reaction, the dinitro compound represented by the above general formula (1-b) is obtained.
In the formula (2), R 1 , R 2 , R 3 and R 4 are as described above. X is a halogen atom, for example, a chlorine atom or a fluorine atom, preferably a fluorine atom.
In the formula (3), R 5 , R 6 , R 7 and R 8 are as described above. Y is a hydrogen atom, an alkali metal or an alkaline earth metal, and is, for example, sodium or potassium, preferably potassium.

製造方法の別の態様としては、下記一般式(4)で示される化合物の一以上と下記一般式(5)で示される化合物の一以上とを、有機溶媒中、好ましくは塩基の存在下にて、加温下で脱水縮合反応させることにより、上記一般式(1−b)で表されるジニトロ化合物が得られる。
式(4)中、R、R、R及びRは上記の通りである。Yは水素原子、アルカリ金属またはアルカリ土類金属であり、例えばナトリウム又はカリウムであり、好ましくはカリウムである。
式(5)中、R、R、R及びRは上記の通りであり、Xはハロゲン原子であり、例えばヨウ素又は臭素であり、好ましくは臭素である。
In another embodiment of the production method, one or more compounds represented by the following general formula (4) and one or more compounds represented by the following general formula (5) are prepared in an organic solvent, preferably in the presence of a base. Then, the dinitro compound represented by the general formula (1-b) is obtained by performing a dehydration condensation reaction under heating.
In the formula (4), R 1 , R 2 , R 3 and R 4 are as described above. Y is a hydrogen atom, an alkali metal or an alkaline earth metal, and is, for example, sodium or potassium, preferably potassium.
In formula (5), R 5 , R 6 , R 7 and R 8 are as described above, and X is a halogen atom, for example, iodine or bromine, preferably bromine.

例えば、上記一般式(2)で示される化合物として2−クロロ−5−ニトロトルエンと、一般式(3)で示される化合物としてメチルヒドロキノンとを反応させる場合、下記反応式で表される。
For example, in the case of reacting 2-chloro-5-nitrotoluene as the compound represented by the general formula (2) with methylhydroquinone as the compound represented by the general formula (3), it is represented by the following reaction formula.

一般式(2)で示される化合物と一般式(3)で示される化合物の原料モル比は、通常、一般式(3)で示される化合物1モルに対して一般式(2)で示される化合物を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(3)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。 The starting material molar ratio of the compound represented by the general formula (2) and the compound represented by the general formula (3) is usually 1 mol of the compound represented by the general formula (3) to the compound represented by the general formula (2). Is in the range of 2 to 5 mol, preferably in the range of 2 to 3 mol. The reaction solvent is preferably used, and examples thereof include solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (3), but may be appropriately adjusted. The reaction temperature and reaction time may be appropriately adjusted. For example, the reaction may be performed at a temperature in the range of 100 to 200 ° C., preferably in the range of 130 to 160 ° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after the completion of the reaction, the reaction solution is cooled, or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

一般式(4)で示される化合物と一般式(5)で示される化合物の原料モル比としては、通常、一般式(4)で示される化合物1モルに対して一般式(5)で示される化合物を2〜5モルの範囲、好ましくは2〜3モルの範囲である。反応溶媒は用いるほうが好ましく、例えばN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の溶媒が挙げられる。溶媒の使用量は通常、一般式(3)で示される化合物1重量部に対して1〜20重量部の範囲であるが、適宜調整されればよい。反応温度、反応時間は適宜調整されればよい。例えば、100〜200℃の範囲にある温度、好ましくは130〜160℃の範囲にある温度で0.5〜12時間、好ましくは2〜7時間反応させればよい。反応生成物の処理方法は特に制限されるものではない。例えば、反応終了後、反応液を冷却するか、もしくは水を加えることによって析出または再沈した固体や結晶を濾別し、水洗、乾燥して目的物を得ることが出来る。   The starting material molar ratio of the compound represented by the general formula (4) to the compound represented by the general formula (5) is usually represented by the general formula (5) with respect to 1 mol of the compound represented by the general formula (4). The compound is in the range of 2 to 5 mol, preferably in the range of 2 to 3 mol. The reaction solvent is preferably used, and examples thereof include solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone. The amount of the solvent used is usually in the range of 1 to 20 parts by weight with respect to 1 part by weight of the compound represented by the general formula (3), but may be appropriately adjusted. The reaction temperature and reaction time may be appropriately adjusted. For example, the reaction may be carried out at a temperature in the range of 100 to 200 ° C., preferably in the range of 130 to 160 ° C. for 0.5 to 12 hours, preferably 2 to 7 hours. The method of treating the reaction product is not particularly limited. For example, after the completion of the reaction, the reaction solution is cooled, or water is added to precipitate or reprecipitate solids or crystals which are separated by filtration, washed with water and dried to obtain the desired product.

上記式(1−a)で表されるビス(アミノフェノキシ)ベンゼン化合物はポリイミドの原料として有用である。また、上記式(1−b)で表されるるビス(ニトロフェノキシ)ベンゼン化合物及び式(1−c)で表される(アミノフェノキシ)(ニトロフェノキシ)ベンゼン化合物は、上述した通りビス(アミノフェノキシ)ベンゼン化合物の前駆体として有用である。上記式(1−a)で表されるビス(アミノフェノキシ)ベンゼン化合物は、例えば、酸無水物と反応させることにより、ポリイミド化合物を提供する。   The bis (aminophenoxy) benzene compound represented by the above formula (1-a) is useful as a raw material for polyimide. Further, the bis (nitrophenoxy) benzene compound represented by the formula (1-b) and the (aminophenoxy) (nitrophenoxy) benzene compound represented by the formula (1-c) are bis (aminophenoxy) as described above. ) Useful as a precursor of a benzene compound. The bis (aminophenoxy) benzene compound represented by the above formula (1-a) provides a polyimide compound by reacting with an acid anhydride, for example.

酸無水物はポリイミドの原料として用いられている従来公知のものであればよい。例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、2,2−ビス〔3−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、および3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物およびオキシ−4,4’−ジフタル酸二無水物からなる群から選択される少なくとも1以上である。   The acid anhydride may be any conventionally known one that is used as a raw material for polyimide. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, benzophenone-3,4,3 ′, 4′-tetracarboxylic dianhydride, 4,4 ′ -(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride, 2,2-bis [3- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [4- ( 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, and the group consisting of 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride and oxy-4,4′-diphthalic dianhydride. It is at least 1 or more selected from.

上記ジアミン化合物と酸無水物の反応条件や反応比率は特に制限されるものでなく、従来公知の方法に従い、適宜選択されればよい。例えば、反応条件は
25〜30℃の範囲にある温度で0.5〜24時間反応させればよい。反応比率は1.00とすればよい。得られるポリイミド化合物は、好ましくは数平均分子量2,000〜200,000、好ましくは10,000〜50,000を有するのがよい。該数平均分子量は例えばGPC(ゲル浸透クロマトグラフィー、THF)により、測定される値である。
The reaction conditions and reaction ratio of the above diamine compound and acid anhydride are not particularly limited and may be appropriately selected according to a conventionally known method. For example, the reaction conditions are
The reaction may be performed at a temperature in the range of 25 to 30 ° C for 0.5 to 24 hours. The reaction ratio may be 1.00. The polyimide compound obtained preferably has a number average molecular weight of 2,000 to 200,000, preferably 10,000 to 50,000. The number average molecular weight is a value measured by, for example, GPC (gel permeation chromatography, THF).

上記ポリイミド化合物としては、本発明のジアミン化合物以外の任意のジアミン化合物をさらに反応させてもよい。全ジアミン化合物の合計モルに対する本発明のジアミン化合物の割合は10モル%〜100モル%であるのが好ましい。本発明のジアミン化合物以外の任意のジアミン化合物としては、例えば、1,4−フェニレンジアミン、1,3−フェニレンジアミン、1,2−フェニレンジアミン、2,4−ジアミノトルエン、2,6−ジアミノトルエン、m−キシリレンジアミン、p−キシリレンジアミン、2,2’−ジメチルベンジジン、3,3’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノベンズアニリド、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、9,9’−ビス(4−アミノフェニル)フルオレン、9,9’−ビス[4−(4−アミノフェノキシ)フェニル]フルオレンからなる群から選択される1以上である。   As the polyimide compound, any diamine compound other than the diamine compound of the present invention may be further reacted. The ratio of the diamine compound of the present invention to the total moles of all diamine compounds is preferably 10 mol% to 100 mol%. Examples of any diamine compound other than the diamine compound of the present invention include 1,4-phenylenediamine, 1,3-phenylenediamine, 1,2-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene. , M-xylylenediamine, p-xylylenediamine, 2,2′-dimethylbenzidine, 3,3′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine, 4,4′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminobenz Anilide, 1,3-bis (4-aminophenoxy) benzene 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) Phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 9,9′-bis (4-aminophenyl) fluorene, One or more selected from the group consisting of 9,9'-bis [4- (4-aminophenoxy) phenyl] fluorene.

本発明のポリイミド化合物からなる成形物としては、例えば高速・大容量通信用材料が挙げられる。   Examples of the molded product made of the polyimide compound of the present invention include materials for high speed / large capacity communication.

以下、実施例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものでない。
下記実施例において用いた測定方法及び装置は以下の通りである。
HPLC測定にはSHIMADZU製SPD−10Aを使用し、融点測定にはYAMATO製MP−21を使用した。
H核磁気共鳴スペクトル分析には、JEOL製JNM−ECA600型を用い、共鳴周波数600MHzで測定した。測定溶媒は重クロロホルムを用いた。
13C核磁気共鳴スペクトル分析には、JEOL製JNM−ECA600型を用い、共鳴周波数150MHzで測定した。測定溶媒は重クロロホルムを用いた。
赤外分光測定には日本分光製FT/IR−4100を使用し、KBr錠剤法により測定した。
質量分析には、SHIMADZU製GCMS−QP2010を使用した。
精密質量分析には、SHIMADZU製LCMS−IT−TOFを使用した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
The measuring method and apparatus used in the following examples are as follows.
SHIMADZU SPD-10A was used for HPLC measurement, and YAMATO MP-21 was used for melting point measurement.
For 1 H nuclear magnetic resonance spectrum analysis, JEOL's JNM-ECA600 type was used, and measurement was performed at a resonance frequency of 600 MHz. Deuterated chloroform was used as the measurement solvent.
For 13 C nuclear magnetic resonance spectral analysis, JEOL's JNM-ECA600 type was used, and measurement was performed at a resonance frequency of 150 MHz. Deuterated chloroform was used as the measurement solvent.
FT / IR-4100 manufactured by JASCO Corporation was used for the infrared spectroscopic measurement, and the measurement was performed by the KBr tablet method.
GCMS-QP2010 manufactured by SHIMADZU was used for mass spectrometry.
LCMS-IT-TOF manufactured by SHIMADZU was used for accurate mass spectrometry.

[実施例1]
1,4−ビス(2−メチル−4−ニトロフェノキシ)−2−メチルベンゼンの合成
100mL三口フラスコにメチルヒドロキノン1.0g(8.1mmol)と2−クロロ−5−ニトロトルエン2.9g(16.9mmol)と炭酸カリウム1.5g(10.6mmol)とDMF20mLと撹拌用マグネットを仕込んだ後加熱し、反応温度150℃を保ちながら7時間反応を行った。反応終了後、冷却し、蒸留水100mLを加えた。析出した固体を濾過し、洗浄及び乾燥して、1,4−ビス(2−メチル−4−ニトロフェノキシ)−2−メチルベンゼンの粗生成物を得た。これをアセトニトリルに溶解させ、加熱し、加水、冷却、濾過、洗浄及び乾燥して精製された1,4−ビス(2−メチル−4−ニトロフェノキシ)−2−メチルベンゼン2.2gを得た。HPLCで測定した純度は99.9%であり、mp.は179−180℃であった。
該実施例1で製造した化合物のH−NMRスペクトルのチャートを図1に示し、13C−NMRスペクトルのチャートを図2に示す。IR及びGC−MSの結果は以下の通り。
IR(KBr,cm−1):3435,1590,1509,1483,1344,1241,1196,1180,1094,748.
GC−MS:m/z=394(M
[Example 1]
Synthesis of 1,4-bis (2-methyl-4-nitrophenoxy) -2-methylbenzene In a 100 mL three-necked flask, 1.0 g (8.1 mmol) of methylhydroquinone and 2.9 g (16. (9 mmol), 1.5 g (10.6 mmol) of potassium carbonate, 20 mL of DMF, and a stirring magnet were charged and heated, and the reaction was carried out for 7 hours while maintaining the reaction temperature of 150 ° C. After completion of the reaction, the mixture was cooled and 100 mL of distilled water was added. The precipitated solid was filtered, washed and dried to obtain a crude product of 1,4-bis (2-methyl-4-nitrophenoxy) -2-methylbenzene. This was dissolved in acetonitrile, heated, heated, watered, cooled, filtered, washed and dried to obtain 2.2 g of purified 1,4-bis (2-methyl-4-nitrophenoxy) -2-methylbenzene. .. The purity measured by HPLC is 99.9%, mp. Was 179-180 ° C.
The 1 H-NMR spectrum chart of the compound produced in Example 1 is shown in FIG. 1, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and GC-MS are as follows.
IR (KBr, cm < -1 >): 3435, 1590, 1509, 1483, 1344, 1241, 1196, 1180, 1094, 748.
GC-MS: m / z = 394 (M + ).

[実施例2]
1,4−ビス(4−アミノ―2−メチルフェノキシ)−2−メチルベンゼンの合成
300mLオートクレーブに、実施例1で得た1,4−ビス(2−メチル−4−ニトロフェノキシ)−2−メチルベンゼン40.0gと2−メトキシエタノール200g、5%Pd/C 0.20gを仕込み、0.8MPaで80℃を保ちながら接触水素化還元を行った。反応終了後、触媒を除去した後に冷却、加水し、濾過、洗浄及び乾燥して1,4−ビス(4−アミノ―2−メチルフェノキシ)−2−メチルベンゼン31.9gを得た。HPLCで測定した純度は99.6%であり、mp.は149−150℃であった。
該実施例2で製造した化合物のH−NMRスペクトルのチャートを図3に示し、13C−NMRスペクトルのチャートを図4に示す。IR、GC−MS、及びHRMSの結果は以下の通り。
IR(KBr,cm−1):3403,3320,3219,1637,1489,1211,1190.
GC−MS:m/z=334(M
HRMS(ESI):335.1736(M+H)
[Example 2]
Synthesis of 1,4-bis (4-amino-2-methylphenoxy) -2-methylbenzene 1,4-bis (2-methyl-4-nitrophenoxy) -2-obtained in Example 1 in a 300 mL autoclave. Methylbenzene (40.0 g) and 2-methoxyethanol (200 g) and 5% Pd / C (0.20 g) were charged, and catalytic hydrogenation reduction was performed while maintaining 80 ° C. at 0.8 MPa. After completion of the reaction, the catalyst was removed, and the mixture was cooled, hydrated, filtered, washed and dried to obtain 31.9 g of 1,4-bis (4-amino-2-methylphenoxy) -2-methylbenzene. The purity measured by HPLC is 99.6%, mp. Was 149-150 ° C.
The 1 H-NMR spectrum chart of the compound produced in Example 2 is shown in FIG. 3, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR, GC-MS, and HRMS are as follows.
IR (KBr, cm < -1 >): 3403, 3320, 3219, 1637, 1489, 1211, 1190.
GC-MS: m / z = 334 (M + ).
HRMS (ESI): 335.1736 (M + H) +

[実施例3]
1,4−ビス(3−メチル−4−ニトロフェノキシ)−2−メチルベンゼンの合成
100mL三口フラスコにメチルヒドロキノン1.0g(8.1mmol)と5−フルオロ−2−ニトロトルエン2.7g(17.0mmol)と炭酸カリウム1.5g(10.6mmol)とDMF20mLと撹拌用マグネットを仕込んだ後加熱し、反応温度150℃を保ちながら5時間反応を行った。反応終了後、冷却し、蒸留水100mLを加えた。析出した固体を濾過し、洗浄及び乾燥して、1,4−ビス(3−メチル−4−ニトロフェノキシ)−2−メチルベンゼン3.0gを得た。HPLCで測定した純度は98.4%であり、mp.は139−141℃であった。
該実施例3で製造した化合物のH−NMRスペクトルのチャートを図5に示し、13C−NMRスペクトルのチャートを図6に示す。IR及びGC−MSの結果は以下の通り。
IR(KBr,cm−1):3448,1615,1577,1509,1477,1337,1278,1238,1188,1076,958,753.
GC−MS:m/z=394(M
[Example 3]
Synthesis of 1,4-bis (3-methyl-4-nitrophenoxy) -2-methylbenzene In a 100 mL three-necked flask, 1.0 g (8.1 mmol) of methylhydroquinone and 2.7 g (17.17. (0 mmol), 1.5 g (10.6 mmol) of potassium carbonate, 20 mL of DMF, and a stirring magnet were charged and heated, and the reaction was carried out for 5 hours while maintaining the reaction temperature of 150 ° C. After completion of the reaction, the mixture was cooled and 100 mL of distilled water was added. The precipitated solid was filtered, washed and dried to obtain 1,4-bis (3-methyl-4-nitrophenoxy) -2-methylbenzene (3.0 g). The purity measured by HPLC is 98.4%, mp. Was 139-141 ° C.
The 1 H-NMR spectrum chart of the compound produced in Example 3 is shown in FIG. 5, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and GC-MS are as follows.
IR (KBr, cm < -1 >): 3448, 1615, 1577, 1509, 1477, 1337, 1278, 1238, 1188, 1076, 958, 753.
GC-MS: m / z = 394 (M + ).

[実施例4]
1,4−ビス(4−アミノ―3−メチルフェノキシ)−2−メチルベンゼンの合成
冷却管を取り付けた30mL二口フラスコに実施例3で得た1,4−ビス(3−メチル−4−ニトロフェノキシ)−2−メチルベンゼン2.0gと2−メトキシエタノール12mL、5%Pd/C 0.30gを仕込み100℃まで昇温した。ヒドラジン水溶液3.3mLを加え13時間保温して反応させた。触媒を除去した後、溶媒を留去し、乾燥して、1,4−ビス(4−アミノ―3−メチルフェノキシ)−2−メチルベンゼンの粗生成物を得た。これを酢酸エチルに溶解させた後、塩酸を加えて酸析させ、析出した固体を濾別した。この固体を酢酸エチルに加え、さらにアルカリ水溶液を加え、水層を除去した。得られた油層に活性炭を加え脱色し、濾過し、濾液を濃縮し、減圧乾燥して精製された1,4−ビス(4−アミノ―3−メチルフェノキシ)−2−メチルベンゼン0.5gを得た。HPLCで測定した純度は97.9%であった。
該実施例4で製造した化合物のH−NMRスペクトルのチャートを図7に示し、13C−NMRスペクトルのチャートを図8に示す。IR、GC−MS、及びHRMSの結果は以下の通り。
IR(KBr,cm−1):3403,3320,3219,1637,1489,1211,1190.
GC−MS:m/z=334(M+)
HRMS(ESI):335.1732(M+H)
[Example 4]
Synthesis of 1,4-bis (4-amino-3-methylphenoxy) -2-methylbenzene 1,4-bis (3-methyl-4-) obtained in Example 3 in a 30 mL two-necked flask equipped with a cooling tube. Nitrophenoxy) -2-methylbenzene (2.0 g) and 2-methoxyethanol (12 mL) and 5% Pd / C (0.30 g) were charged and the temperature was raised to 100 ° C. 3.3 mL of an aqueous hydrazine solution was added and the mixture was kept warm for 13 hours for reaction. After removing the catalyst, the solvent was distilled off and the residue was dried to obtain a crude product of 1,4-bis (4-amino-3-methylphenoxy) -2-methylbenzene. This was dissolved in ethyl acetate, hydrochloric acid was added to cause acid precipitation, and the precipitated solid was separated by filtration. This solid was added to ethyl acetate, an aqueous alkaline solution was further added, and the aqueous layer was removed. Activated carbon was added to the obtained oil layer for decolorization, filtration, the filtrate was concentrated, and 0.5 g of 1,4-bis (4-amino-3-methylphenoxy) -2-methylbenzene purified by drying under reduced pressure was added. Obtained. The purity measured by HPLC was 97.9%.
The 1 H-NMR spectrum chart of the compound produced in Example 4 is shown in FIG. 7, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR, GC-MS, and HRMS are as follows.
IR (KBr, cm < -1 >): 3403, 3320, 3219, 1637, 1489, 1211, 1190.
GC-MS: m / z = 334 (M +)
HRMS (ESI): 335.1732 (M + H) +

[実施例5]
1,4−ビス(3−メチル−4−ニトロフェノキシ)−2,3,5−トリメチルベンゼンの合成
100mL三口フラスコにトリメチルヒドロキノン1.0gと5−フルオロ−2−ニトロトルエン2.2gと炭酸カリウム1.2gとDMF20mLと撹拌用マグネットを仕込んだ後加熱し、反応温度150℃を保ちながら6時間反応を行った。反応終了後、冷却し、蒸留水100mLを加えた。析出した固体を濾過し、洗浄及び乾燥して、1,4−ビス(3−メチル−4−ニトロフェノキシ)−2,3,5−トリメチルベンゼン2.5gを得た。HPLCで測定した純度は99.9%であり、mp.は163−169℃であった。
該実施例5で製造した化合物のH−NMRスペクトルのチャートを図9に示し、13C−NMRスペクトルのチャートを図10に示す。IR、及びGC−MSの結果は以下の通り。
IR(KBr,cm−1):3448,1614,1574,1476,1342,1280,1239,1216,1086.
GC−MS:m/z=422(M
[Example 5]
Synthesis of 1,4-bis (3-methyl-4-nitrophenoxy) -2,3,5-trimethylbenzene In a 100 mL three-necked flask, 1.0 g of trimethylhydroquinone, 2.2 g of 5-fluoro-2-nitrotoluene and 1 of potassium carbonate were added. After charging 0.2 g, 20 mL of DMF and a stirring magnet, the mixture was heated and reacted for 6 hours while maintaining the reaction temperature of 150 ° C. After completion of the reaction, the mixture was cooled and 100 mL of distilled water was added. The precipitated solid was filtered, washed and dried to obtain 2.5 g of 1,4-bis (3-methyl-4-nitrophenoxy) -2,3,5-trimethylbenzene. The purity measured by HPLC is 99.9%, mp. Was 163-169 ° C.
The 1 H-NMR spectrum chart of the compound produced in Example 5 is shown in FIG. 9, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and GC-MS are as follows.
IR (KBr, cm −1 ): 3448, 1614, 1574, 1476, 1342, 1280, 1239, 1216, 1086.
GC-MS: m / z = 422 (M + ).

[実施例6]
1,4−ビス(4−アミノ―3−メチルフェノキシ)−2,3,5−トリメチルベンゼンの合成
冷却管を取り付けた30mL二口フラスコに実施例5で得た1,4−ビス(3−メチル−4−ニトロフェノキシ)−2,3,5−トリメチルベンゼン1.0gと2−メトキシエタノール10mL、5%Pd/C 0.13gを仕込み80℃まで昇温した。ヒドラジン水溶液2.8mLを加え35時間保温して反応させた。触媒を除去した後、溶媒を留去し、乾燥して、1,4−ビス(4−アミノ―3−メチルフェノキシ)−2,3,5−トリメチルベンゼンの粗生成物を得た。これを酢酸エチルに溶解させた後、塩酸を加えて酸析させ、析出した固体を濾別した。この固体を酢酸エチルに加え、さらにアルカリ水溶液を加え、水層を除去した。得られた油層に活性体を加え脱色し、濾過し、濾液を濃縮し、減圧乾燥して精製された1,4−ビス(4−アミノ―3−メチルフェノキシ)−2,3,5−トリメチルベンゼン0.6gを得た。HPLCで測定した純度は97.0%であった。
該実施例6で製造した化合物のH−NMRスペクトルのチャートを図11に示し、13C−NMRスペクトルのチャートを図12に示す。IR、GC−MS、及びHRMSの結果は以下の通り。
IR(KBr,cm−1):3446,3365,3024,2924,1610,1500,1472,1405,1277,1223,1154,1081,858.
GC−MS:m/z=362(M
HRMS(ESI):363.2046(M+H)
[Example 6]
Synthesis of 1,4-bis (4-amino-3-methylphenoxy) -2,3,5-trimethylbenzene The 1,4-bis (3-obtained in Example 5 was placed in a 30 mL two-necked flask equipped with a cooling tube. Methyl-4-nitrophenoxy) -2,3,5-trimethylbenzene (1.0 g), 2-methoxyethanol (10 mL) and 5% Pd / C (0.13 g) were charged and the temperature was raised to 80 ° C. 2.8 mL of an aqueous hydrazine solution was added and the mixture was kept warm for 35 hours for reaction. After removing the catalyst, the solvent was distilled off and the residue was dried to obtain a crude product of 1,4-bis (4-amino-3-methylphenoxy) -2,3,5-trimethylbenzene. This was dissolved in ethyl acetate, hydrochloric acid was added to cause acid precipitation, and the precipitated solid was separated by filtration. This solid was added to ethyl acetate, an aqueous alkaline solution was further added, and the aqueous layer was removed. An active substance was added to the obtained oil layer for decolorization, filtration, and the filtrate was concentrated and dried under reduced pressure to purify 1,4-bis (4-amino-3-methylphenoxy) -2,3,5-trimethyl. 0.6 g of benzene was obtained. The purity measured by HPLC was 97.0%.
The 1 H-NMR spectrum chart of the compound produced in Example 6 is shown in FIG. 11, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR, GC-MS, and HRMS are as follows.
IR (KBr, cm < -1 >): 3446, 3365, 3024, 2924, 1610, 1500, 1472, 1405, 1277, 1223, 1154, 1081, 858.
GC-MS: m / z = 362 (M + ).
HRMS (ESI): 363.2046 (M + H) +

[実施例7]
1,3−ビス(2−メチル−4−ニトロフェノキシ)−5−メチルベンゼンの合成
200mL三口フラスコに5−メチルレゾルシノール無水物2.0gと2−フルオロ−5−ニトロトルエン5.3gと炭酸カリウム3.0gとDMF40mLと撹拌用マグネットを仕込んだ後加熱し、反応温度150℃を保ちながら11時間反応を行った。反応終了後、冷却し、蒸留水200mLを加えた。析出した固体を濾過し、洗浄及び乾燥し、これをアセトンに溶解し、溶媒留去して、1,3−ビス(2−メチル−4−ニトロフェノキシ)−5−メチルベンゼン6.2gを得た。HPLCで測定した純度は97.5%であり、mp.は104−108℃であった。
該実施例7で製造した化合物のH−NMRスペクトルのチャートを図13に示し、13C−NMRスペクトルのチャートを図14に示す。IR、及びGC−MSの結果は以下の通り。
IR(KBr,cm−1):3434,3077,2961,1615,1576,1515,487,1458,1342,1297,1239,1092,969,882,746,647.
GC−MS:m/z=394(M
[Example 7]
Synthesis of 1,3-bis (2-methyl-4-nitrophenoxy) -5-methylbenzene In a 200 mL three-necked flask, 2.0 g of 5-methylresorcinol anhydride, 5.3 g of 2-fluoro-5-nitrotoluene and 3 g of potassium carbonate were added. After charging 0.0 g, 40 mL of DMF and a stirring magnet, the mixture was heated and allowed to react for 11 hours while maintaining the reaction temperature of 150 ° C. After completion of the reaction, the mixture was cooled and 200 mL of distilled water was added. The precipitated solid was filtered, washed and dried, dissolved in acetone, and the solvent was distilled off to obtain 6.2 g of 1,3-bis (2-methyl-4-nitrophenoxy) -5-methylbenzene. It was The purity measured by HPLC is 97.5%, mp. Was 104-108 ° C.
The 1 H-NMR spectrum chart of the compound produced in Example 7 is shown in FIG. 13, and the 13 C-NMR spectrum chart is shown in FIG. The results of IR and GC-MS are as follows.
IR (KBr, cm < -1 >): 3434, 3077, 2961, 1615, 1576, 1515, 487, 1458, 1342, 1297, 1239, 1092, 969, 882, 746, 647.
GC-MS: m / z = 394 (M + ).

[実施例8]
1,3−ビス(4−アミノ−2−メチルフェノキシ)−5−メチルベンゼンの合成
冷却管を取り付けた30mL二口フラスコに実施例7で得た1,3−ビス(2−メチル−4−ニトロフェノキシ)−5−メチルベンゼン2.0gと2−メトキシエタノール10mL、5%Pd/C 0.22gを仕込み80℃まで昇温した。ヒドラジン水溶液2.5mLを加え4時間保温して反応させた。触媒を除去した後、溶媒を留去し、乾燥して、1,3−ビス(4−アミノ−2−メチルフェノキシ)−5−メチルベンゼンの粗生成物を得た。これを酢酸エチルに溶解させた後、塩酸を加えて酸析させ、析出した固体を濾別した。この固体を酢酸エチルに加え、さらにアルカリ水溶液を加え、水層を除去した。得られた油層に活性炭を加え脱色し、濾過し、濾液を濃縮し、減圧乾燥して精製された1,3−ビス(4−アミノ−2−メチルフェノキシ)−5−メチルベンゼン1.6gを得た。HPLCで測定した純度は97.7%であった。
該実施例8で製造した化合物のH−NMRスペクトルのチャートを図15に示し、13C−NMRスペクトルのチャートを図16に示す。IR、GC−MS、及びHRMSの結果は以下の通り。
IR(KBr,cm−1):3436,3367,3220,2920,1614,1594,1498,1463,1211,1129,976,822.
GC−MS:m/z=334(M
HRMS(ESI):335.1724(M+H)
[Example 8]
Synthesis of 1,3-bis (4-amino-2-methylphenoxy) -5-methylbenzene 1,3-bis (2-methyl-4-) obtained in Example 7 in a 30 mL two-necked flask equipped with a cooling tube. Nitrophenoxy) -5-methylbenzene (2.0 g) and 2-methoxyethanol (10 mL) and 5% Pd / C (0.22 g) were charged and the temperature was raised to 80 ° C. 2.5 mL of an aqueous hydrazine solution was added, and the mixture was kept warm for 4 hours for reaction. After removing the catalyst, the solvent was evaporated and the residue was dried to obtain a crude product of 1,3-bis (4-amino-2-methylphenoxy) -5-methylbenzene. This was dissolved in ethyl acetate, hydrochloric acid was added to cause acid precipitation, and the precipitated solid was separated by filtration. This solid was added to ethyl acetate, an aqueous alkaline solution was further added, and the aqueous layer was removed. Activated carbon was added to the obtained oil layer for decolorization, filtration, the filtrate was concentrated, and 1.6 g of 1,3-bis (4-amino-2-methylphenoxy) -5-methylbenzene purified by drying under reduced pressure was added. Obtained. The purity measured by HPLC was 97.7%.
The 1 H-NMR spectrum chart of the compound produced in Example 8 is shown in FIG. 15, and the 13 C-NMR spectrum chart is shown in FIG. 16. The results of IR, GC-MS, and HRMS are as follows.
IR (KBr, cm < -1 >): 3436, 3367, 3220, 2920, 1614, 1594, 1498, 1463, 1211, 1129, 976, 822.
GC-MS: m / z = 334 (M + ).
HRMS (ESI): 335.1724 (M + H) +

本発明のビス(アミノフェノキシ)ベンゼン化合物は、新規なジアミン化合物として好適に使用することができ、該化合物から誘導されるポリイミド分野の可能性を大きく広げ、優れた高耐熱性と電気特性を有する材料としての可能性が期待できる。また、ビス(ニトロフェノキシ)ベンゼン化合物及び(アミノフェノキシ)(ニトロフェノキシ)ベンゼン化合物は、上記ビス(アミノフェノキシ)ベンゼン化合物の前駆体となり、ジアミン化合物と同様にポリイミド分野の可能性を大きく広げることが期待できる。   INDUSTRIAL APPLICABILITY The bis (aminophenoxy) benzene compound of the present invention can be suitably used as a novel diamine compound, greatly expands the potential of the polyimide field derived from the compound, and has excellent high heat resistance and electrical characteristics. It can be expected as a material. Further, the bis (nitrophenoxy) benzene compound and the (aminophenoxy) (nitrophenoxy) benzene compound serve as precursors of the above bis (aminophenoxy) benzene compound, and like the diamine compound, can greatly expand the potential of the polyimide field. Can be expected.

Claims (14)

下記式(1)で表される化合物
(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、互いに独立に、水素原子、又は、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基から選ばれる置換基であり、R、R、R及びRの少なくとも一つは前記置換基であり、R1’、R2’、R3’及びR4’の少なくとも一つは前記置換基であり、且つ、R、R、R及びRの少なくとも一つは前記置換基であり、A及びBは、互いに独立に、ニトロ基又はアミノ基である)
但し、1,4−ビス(4−アミノ−2−メチルフェノキシ)−2,3,5−トリメチルベンゼンを除く。
Compound represented by the following formula (1)
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are each independently hydrogen. An atom or a substituent selected from an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, and at least one of R 1 , R 2 , R 3 and R 4 . One is the substituent, at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ is the substituent, and at least one of R 5 , R 6 , R 7 and R 8 Is a substituent, and A and B are each independently a nitro group or an amino group.)
However, 1,4-bis (4-amino-2-methylphenoxy) -2,3,5-trimethylbenzene is excluded.
前記式(1)において、R、R、R及びRのうち1つ又は2つが前記置換基であり、R、R、R及びRのうち残りは水素原子である、請求項1記載の化合物。 In the formula (1), one or two of R 5 , R 6 , R 7 and R 8 are the substituents, and the rest of R 5 , R 6 , R 7 and R 8 are hydrogen atoms. The compound according to claim 1. 下記式(1a’)又は(1b’)で表される、請求項2記載の化合物
(上記各式において、R、R’及びR’’は、互いに独立に、炭素数1〜6の置換されていてよいアルキル基又は炭素原子数1〜3のアルコキシ基であり、A、及びBは上記の通りである)。
The compound according to claim 2, which is represented by the following formula (1a ′) or (1b ′).
(In the above formulas, R, R ′ and R ″ are each independently an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and A and B Is as above).
、R、R及びRのうち3つが前記置換基であり、残る1つは水素原子であり、R、R、R、又はRで表される置換基のうち少なくとも1つはAで示される基に対するオルト位にあり、且つ、R1’、R2’、R3’、又はR4’ で表される置換基のうち少なくとも1つはBで示される基に対するオルト位にある、請求項1記載の化合物。 Three of R 5 , R 6 , R 7 and R 8 are the substituents, the remaining one is a hydrogen atom, and among the substituents represented by R 1 , R 2 , R 3 or R 4. At least one is in the ortho position with respect to the group represented by A, and at least one of the substituents represented by R 1 ′ , R 2 ′ , R 3 ′ , or R 4 ′ is a group represented by B. The compound of claim 1 in the ortho position relative to. 下記式(1c)で表される、請求項4記載の化合物
(上記において、R、R’及びR’’は、互いに独立に、炭素数1〜6の置換されていてよいアルキル基又は炭素原子数1〜3のアルコキシ基であり、A及びBは上記の通りであり、R’はAで示される基に対するオルト位にあり、R’’はBで示される基に対するオルト位にある)。
The compound according to claim 4, which is represented by the following formula (1c).
(In the above, R, R ′, and R ″ are, independently of each other, an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, and A and B are as described above. And R'is in the ortho position to the group represented by A and R '' is in the ortho position to the group represented by B).
AおよびBが共にアミノ基である、請求項1〜5のいずれか1項記載の化合物。   The compound according to any one of claims 1 to 5, wherein both A and B are amino groups. 下記式(1−a)で表される化合物の製造方法であって、
[(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、互いに独立に、水素原子、又は、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基から選ばれる置換基であり、R、R、R及びRの少なくとも一つは前記置換基であり、R1’、R2’、R3’及びR4’の少なくとも一つは前記置換基であり、且つ、R、R、R及びRの少なくとも一つは前記置換基である)
但し、1,4−ビス(4−アミノ−2−メチルフェノキシ)−2,3,5−トリメチルベンゼンを除く]
下記式(1−b)又は式(1−c)で表される化合物
(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、上記の通りである)
のニトロ基を還元して上記式(1−a)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-a),
[Wherein R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are each independently, A hydrogen atom or a substituent selected from an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, at least R 1 , R 2 , R 3 and R 4 ; One is the substituent, at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ is the substituent, and at least one of R 5 , R 6 , R 7 and R 8 One is the above substituent)
However, 1,4-bis (4-amino-2-methylphenoxy) -2,3,5-trimethylbenzene is excluded]
A compound represented by the following formula (1-b) or formula (1-c)
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are as described above. )
The method for producing as described above, comprising the step of reducing the nitro group to obtain the compound represented by the formula (1-a).
下記式(1−b)で表される化合物の製造方法であって、
(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、互いに独立に、水素原子、又は、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基から選ばれる置換基であり、R、R、R及びRの少なくとも一つは前記置換基であり、R1’、R2’、R3’及びR4’の少なくとも一つは前記置換基であり、且つ、R、R、R及びRの少なくとも一つは前記置換基である)
下記式(2)で表される化合物の1以上と
(式中、R、R、R及びRは上記の通りであり、Xはハロゲン原子である)
と下記式(3)で表される化合物の1以上と
(式中、R、R、R及びRは上記の通りであり、Yは水素原子、アルカリ金属またはアルカリ土類金属である)
とを反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b),
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are independently hydrogen. An atom or a substituent selected from an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, and at least one of R 1 , R 2 , R 3 and R 4 . One is the substituent, at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ is the substituent, and at least one of R 5 , R 6 , R 7 and R 8 Is the above substituent)
One or more compounds represented by the following formula (2)
(In the formula, R 1 , R 2 , R 3 and R 4 are as described above, and X is a halogen atom.)
And one or more compounds represented by the following formula (3):
(In the formula, R 5 , R 6 , R 7 and R 8 are as described above, and Y is a hydrogen atom, an alkali metal or an alkaline earth metal.)
The said manufacturing method including the process of reacting with and obtaining the compound represented by said Formula (1-b).
下記式(1−b)で表される化合物の製造方法であって、
(式中、R、R、R、R、R1’、R2’、R3’、R4’、R、R、R及びRは、互いに独立に、水素原子、又は、炭素原子数1〜6の置換されていてよいアルキル基及び炭素原子数1〜3のアルコキシ基から選ばれる置換基であり、R、R、R及びRの少なくとも一つは前記置換基であり、R1’、R2’、R3’及びR4’の少なくとも一つは前記置換基であり、且つ、R、R、R及びRの少なくとも一つは前記置換基である)
下記式(4)で表される化合物の1以上と
(式中、R、R、R及びRは上記の通りであり、Yは水素原子、アルカリ金属またはアルカリ土類金属である)
と下記式(5)で表される化合物の1以上と
(式中、R、R、R及びRは上記の通りであり、Xはハロゲン原子である。)とを反応させて上記式(1−b)で表される化合物を得る工程を含む、前記製造方法。
A method for producing a compound represented by the following formula (1-b),
(In the formula, R 1 , R 2 , R 3 , R 4 , R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 , R 6 , R 7 and R 8 are each independently hydrogen. An atom or a substituent selected from an optionally substituted alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, and at least one of R 1 , R 2 , R 3 and R 4 . One is the substituent, at least one of R 1 ′ , R 2 ′ , R 3 ′ and R 4 ′ is the substituent, and at least one of R 5 , R 6 , R 7 and R 8 Is the above substituent)
One or more compounds represented by the following formula (4)
(In the formula, R 1 , R 2 , R 3 and R 4 are as described above, and Y is a hydrogen atom, an alkali metal or an alkaline earth metal.)
And one or more compounds represented by the following formula (5):
(In the formula, R 5 , R 6 , R 7 and R 8 are as described above, and X is a halogen atom), and a step of obtaining a compound represented by the above formula (1-b) The manufacturing method, including:
請求項6に記載のジアミン化合物と酸無水物との反応物である、ポリイミド化合物。   A polyimide compound, which is a reaction product of the diamine compound according to claim 6 and an acid anhydride. 前記酸無水物が、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、2,2−ビス〔3−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物およびオキシ−4,4’−ジフタル酸二無水物からなる群から選択される少なくとも1である、請求項10に記載のポリイミド化合物。   The acid anhydride is pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, benzophenone-3,4,3 ′, 4′-tetracarboxylic dianhydride, 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride, 2,2-bis [3- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride and oxy-4,4′-diphthalic dianhydride The polyimide compound according to claim 10, which is at least one selected from the group consisting of: 数平均分子量2,000〜200,000を有する、請求項10または11に記載のポリイミド化合物。   The polyimide compound according to claim 10 or 11, which has a number average molecular weight of 2,000 to 200,000. 請求項6記載の化合物と、酸無水物と、請求項6記載の化合物以外の任意のジアミン化合物との反応物であるポリイミド化合物であって、請求項6記載の化合物と前記任意的ジアミン化合物の合計モルに対する請求項6記載の化合物の割合が、10モル%〜100モル%である、請求項10〜12のいずれか1項記載のポリイミド化合物。   A polyimide compound, which is a reaction product of the compound according to claim 6, an acid anhydride, and any diamine compound other than the compound according to claim 6, wherein the compound according to claim 6 and the optional diamine compound. The polyimide compound according to any one of claims 10 to 12, wherein the ratio of the compound according to claim 6 to the total moles is 10 mol% to 100 mol%. 請求項10〜13のいずれか1項に記載のポリイミド化合物からなる成型物。   A molded article comprising the polyimide compound according to claim 10.
JP2018205308A 2018-10-31 2018-10-31 Bis(amino or nitrophenoxy) benzene compound, method for producing the same, and polyimide Active JP7315135B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018205308A JP7315135B2 (en) 2018-10-31 2018-10-31 Bis(amino or nitrophenoxy) benzene compound, method for producing the same, and polyimide
JP2022177771A JP7390754B2 (en) 2018-10-31 2022-11-07 Bis(amino or nitrophenoxy)benzene compound, method for producing the same, and polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205308A JP7315135B2 (en) 2018-10-31 2018-10-31 Bis(amino or nitrophenoxy) benzene compound, method for producing the same, and polyimide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022177771A Division JP7390754B2 (en) 2018-10-31 2022-11-07 Bis(amino or nitrophenoxy)benzene compound, method for producing the same, and polyimide

Publications (2)

Publication Number Publication Date
JP2020070255A true JP2020070255A (en) 2020-05-07
JP7315135B2 JP7315135B2 (en) 2023-07-26

Family

ID=70547024

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018205308A Active JP7315135B2 (en) 2018-10-31 2018-10-31 Bis(amino or nitrophenoxy) benzene compound, method for producing the same, and polyimide
JP2022177771A Active JP7390754B2 (en) 2018-10-31 2022-11-07 Bis(amino or nitrophenoxy)benzene compound, method for producing the same, and polyimide

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022177771A Active JP7390754B2 (en) 2018-10-31 2022-11-07 Bis(amino or nitrophenoxy)benzene compound, method for producing the same, and polyimide

Country Status (1)

Country Link
JP (2) JP7315135B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106503A (en) * 1996-08-29 1999-04-20 Mitsui Chem Inc Organic optical parts
CN102796015A (en) * 2012-08-24 2012-11-28 常州大学 Double trifluoromethyl substituent-containing asymmetric aromatic diamine monomer and preparation method thereof
CN102816327A (en) * 2012-08-28 2012-12-12 常州大学 Polyimides containing ditrifluoromethyl group and unsymmetrical structure and preparation method thereof
CN103044916A (en) * 2012-12-24 2013-04-17 南京依麦德光电材料科技有限公司 Flexible transparent polyimide thin film and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106503A (en) * 1996-08-29 1999-04-20 Mitsui Chem Inc Organic optical parts
CN102796015A (en) * 2012-08-24 2012-11-28 常州大学 Double trifluoromethyl substituent-containing asymmetric aromatic diamine monomer and preparation method thereof
CN102816327A (en) * 2012-08-28 2012-12-12 常州大学 Polyimides containing ditrifluoromethyl group and unsymmetrical structure and preparation method thereof
CN103044916A (en) * 2012-12-24 2013-04-17 南京依麦德光电材料科技有限公司 Flexible transparent polyimide thin film and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED POLYMER SCIENCE, vol. 132, no. 17, JPN6022002402, 2015, pages 1 - 9, ISSN: 0004844139 *
SYNTHESIS, vol. 1998, no. 6, JPN6022002403, 1998, pages 894 - 898, ISSN: 0004844138 *

Also Published As

Publication number Publication date
JP7315135B2 (en) 2023-07-26
JP7390754B2 (en) 2023-12-04
JP2023015209A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
Ghaemy et al. Synthesis of soluble and thermally stable polyimides from unsymmetrical diamine containing 2, 4, 5-triaryl imidazole pendent group
Yan et al. Soluble polyimides based on a novel pyridine-containing diamine m, p-PAPP and various aromatic dianhydrides
Ma et al. Synthesis and characterization of soluble polyimides based on a new fluorinated diamine: 4-Phenyl-2, 6-bis [3-(4′-amino-2′-trifluoromethyl-phenoxy) phenyl] pyridine
US11608310B1 (en) Bis(aniline) compounds containing multiple substituents with carbon-carbon triple-bonded groups
Wu et al. Novel soluble and optically active polyimides containing axially asymmetric 9, 9′-spirobifluorene units: synthesis, thermal, optical and chiral properties
Sheng et al. Synthesis and properties of novel aromatic polyamides with xanthene cardo groups
WO2022239534A1 (en) Meta-ester aromatic diamines, method for producing same, and polyimide having said meta-ester aromatic diamines as raw material
JP7390754B2 (en) Bis(amino or nitrophenoxy)benzene compound, method for producing the same, and polyimide
Ghaemy et al. Organosoluble and thermally stable polyimides derived from a new diamine containing bulky-flexible triaryl pyridine pendent group
WO2006085493A1 (en) Aromatic diamine and process for producing the same
JP7150335B2 (en) Diamino or dinitrobenzene compound having four aromatic rings, method for producing the same, and polyimide
JP7345158B2 (en) Diamino or dinitrobenzene compound having five aromatic rings, method for producing the same, and polyimide
US8981038B2 (en) Dinitro monomer, diamine monomer, polyimide and modified polyimide
Rafiee et al. Synthesis and characterization of highly soluble and thermally stable new polyimides based on 3, 5-diamino benzoyl amino phenyl-14H-dibenzo [a, j] xanthene
Ghaemy et al. Synthesis of organosoluble polyamides with bulky triaryl imidazole pendent group
JPH10298150A (en) Aromatic diamine compound
JP2022176085A (en) Meta-type ester-based aromatic diamine and method for producing the same, and polyimide made using said meta-type ester-based aromatic diamine as raw material
Behniafar et al. Preparation and properties of aromatic poly (amide-imide) s derived from N-[3, 5-bis (3, 4-dicarboxybenzamido) phenyl] phthalimide dianhydride
JP2006193434A (en) 4,4&#39;-diaminobiphenyl compound
US7282553B2 (en) Flexible isopropylidene and tetramethyl-containing fluoropolyamide and fluoropolymide and preparation method thereof
JP6603035B2 (en) Benzoxazol-2-yl-diphenyl ether having amino group and / or nitro group and derivatives thereof, and production method thereof
Liu et al. Synthesis and characterization of novel aromatic poly (ester amide) s containing pendant trifluoromethylphenoxy groups
JP6603043B2 (en) Aromatic diamines and intermediates thereof, and methods for producing them
JP2023183140A (en) Polyimide produced from meta-type ester-based aromatic diamine
Ghaemy et al. Synthesis and Characterization of High Performance Poly (amide-imide) s based on a New Diimide-diacide and Various Diamines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220808

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221107

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20221117

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221117

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20221215

C126 Written invitation by the chief administrative judge to file intermediate amendments

Free format text: JAPANESE INTERMEDIATE CODE: C126

Effective date: 20221222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221219

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230124

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20230127

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230213

C28A Non-patent document cited

Free format text: JAPANESE INTERMEDIATE CODE: C2838

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230629

R150 Certificate of patent or registration of utility model

Ref document number: 7315135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150