JP2020069703A - Method of joining resin moldings - Google Patents

Method of joining resin moldings Download PDF

Info

Publication number
JP2020069703A
JP2020069703A JP2018204554A JP2018204554A JP2020069703A JP 2020069703 A JP2020069703 A JP 2020069703A JP 2018204554 A JP2018204554 A JP 2018204554A JP 2018204554 A JP2018204554 A JP 2018204554A JP 2020069703 A JP2020069703 A JP 2020069703A
Authority
JP
Japan
Prior art keywords
joining
resin
partial
resin molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018204554A
Other languages
Japanese (ja)
Other versions
JP7191365B2 (en
Inventor
和広 片田
Kazuhiro Katada
和広 片田
浩 野中
Hiroshi Nonaka
浩 野中
弘一朗 村松
Koichiro Muramatsu
弘一朗 村松
匡男 古屋
Masao Furuya
匡男 古屋
伸宜 土地
Nobutaka Tochi
伸宜 土地
良征 香河
Yoshiyuki Kagawa
良征 香河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahata Precision Co Ltd
Original Assignee
Takahata Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahata Precision Co Ltd filed Critical Takahata Precision Co Ltd
Priority to JP2018204554A priority Critical patent/JP7191365B2/en
Publication of JP2020069703A publication Critical patent/JP2020069703A/en
Application granted granted Critical
Publication of JP7191365B2 publication Critical patent/JP7191365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To provide a method of joining resin moldings which can achieve an improved joining strength capable of retaining a predetermined internal pressure in a resin molding by joining a plurality of partial moldings at their joining surfaces.SOLUTION: Provided is a method of joining resin moldings to produce a resin molding capable of retaining a predetermined internal pressure by joining a plurality of partial moldings at their joining surfaces, the plurality of partial moldings being made from synthetic resin and having joining surfaces, the method including simultaneously irradiating the joining surfaces with energy beams having a total energy of 1.0×10Wh or more per unit area (mm), and melting and solidifying the joining surfaces, the energy beams emitted from a plurality of light sources and projected from one side of the joining surfaces with the joining surfaces pressed against each other, such that the pressure resistance of the joining surfaces, when the resin molding is applied with an internal pressure, is 10 Mpa or more.SELECTED DRAWING: Figure 5

Description

本発明は、樹脂成形品の接合方法に関する。   The present invention relates to a method for joining resin molded products.

レーザ光に対して吸収性のある第1の樹脂材と、レーザ光に対して透過性のある第2の樹脂材とを重ね合わせると共に、レーザ光に対して透過性の材料からなる押え治具によって第1と第2の樹脂材とを互いに密着させるように押圧している状態で、第2の樹脂材に面する押え治具側によりレーザ光を照射して、第1の樹脂材を加熱して、互いに両樹脂材を溶融することで両者を溶着する樹脂材のレーザ溶着方法において、第2の樹脂材に面する押え治具の対向面に、溶着部に対応して凸条部を形成すると共に、凸条部で両樹脂材を押圧した状態で、レーザ光を凸条部を通って溶着部に照射する樹脂材のレーザ溶着方法が知られている(特許文献1)。   A holding jig made of a material that is transparent to laser light while a first resin material that absorbs laser light and a second resin material that is transparent to laser light are superposed on each other. While the first and second resin materials are being pressed so as to be in close contact with each other, the pressing jig side facing the second resin material irradiates laser light to heat the first resin material. Then, in the laser welding method of the resin material in which both the resin materials are melted to be welded to each other, in the opposing surface of the holding jig facing the second resin material, the ridge portion corresponding to the welding portion is formed. A laser welding method of a resin material is known in which, while the resin material is being formed and both resin materials are pressed by the ridge, a laser beam is irradiated to the welded portion through the ridge (Patent Document 1).

レーザ光に対して透過率の高い透過性樹脂材と吸収率の高い吸収性樹脂材とを重ね合わせて、透過性樹脂材側よりレーザを照射し、吸収性樹脂材を加熱して熱伝導により透過性樹脂材を加熱することによって互いの樹脂を溶着するレーザによる樹脂の溶着加工方法において、レーザ照射側の透過性樹脂材に、透過性樹脂材と吸収性樹脂材との界面で最小ビーム径となるようにレーザを集光するレンズ光路を形成したレーザによる樹脂の溶着加工方法も知られている(特許文献2)。   A transparent resin material with a high transmittance for laser light and an absorptive resin material with a high absorptivity are superposed, laser is irradiated from the transparent resin material side, and the absorbent resin material is heated to conduct heat. In the method of welding resin by laser that heats the translucent resin material to weld the resin to each other, the transmissive resin material on the laser irradiation side has a minimum beam diameter at the interface between the transmissive resin material and the absorbent resin material. There is also known a method for welding and processing a resin by a laser in which a lens optical path for condensing the laser is formed so as to achieve the following (Patent Document 2).

特開2005−305913号公報JP, 2005-305913, A 特開2001−334578号公報JP, 2001-334578, A

本発明は、複数の部分成形体を接合面で接合して所定の内圧を保持可能な樹脂成形品の接合強度を向上させることができる樹脂成形品の接合方法を提供することを目的とする。   It is an object of the present invention to provide a method for joining resin molded products, which is capable of improving the bonding strength of a resin molded product capable of maintaining a predetermined internal pressure by bonding a plurality of partial molded products at a bonding surface.

前記課題を解決するために、請求項1に記載の樹脂成形品の接合方法は、
合成樹脂からなり接合面を有する複数の部分成形体を前記接合面で接合して所定の内圧を保持可能な樹脂成形品を製造する樹脂成形品の接合方法であって、
前記樹脂成形品が前記内圧を受けた場合の前記接合面の耐圧強度が10Mpa以上となるように、前記接合面を互いに圧接した状態で、複数の光源から出射され前記接合面の一方から単位面積(mm)当たりのエネルギー総量が1.0×10−3Wh以上となるエネルギービームを前記接合面に同時に照射して前記接合面を溶融固化させる、
ことを特徴とする。
In order to solve the above problems, the method for joining resin molded products according to claim 1 is
A method of joining a resin molded article, comprising: manufacturing a resin molded article that is capable of holding a predetermined internal pressure by joining a plurality of partial molded bodies made of synthetic resin and having a joint surface,
A unit area is emitted from a plurality of light sources in a state in which the joint surfaces are in pressure contact with each other so that the pressure resistance of the joint surfaces when the resin molded product receives the internal pressure is 10 MPa or more. An energy beam having a total energy per (mm 2 ) of 1.0 × 10 −3 Wh or more is simultaneously irradiated to the joint surface to melt and solidify the joint surface.
It is characterized by

前記課題を解決するために、請求項2に記載の樹脂成形品の接合方法は、
合成樹脂からなり接合面を有する複数の部分成形体を前記接合面で接合して所定の内圧を保持可能な樹脂成形品を製造する樹脂成形品の接合方法であって、
前記樹脂成形品が前記内圧を受けた場合の前記接合面の耐圧強度が10Mpa以上となるように、前記接合面を互いに圧接した状態で、単一の光源から出射され前記接合面の一方から単位面積(mm)当たりのエネルギー総量が0.4×10−3Wh以上となるエネルギービームを前記接合面に移動しながら照射して前記接合面を溶融固化させる、
ことを特徴とする。
In order to solve the above problems, the method for joining resin molded products according to claim 2 is
A method of joining a resin molded article, comprising: manufacturing a resin molded article that is capable of holding a predetermined internal pressure by joining a plurality of partial molded bodies made of synthetic resin and having a joint surface,
The resin molded product is emitted from a single light source in a state where the joint surfaces are in pressure contact with each other so that the pressure resistance of the joint surfaces when the internal pressure is applied becomes 10 MPa or more An energy beam having a total energy amount per area (mm 2 ) of 0.4 × 10 −3 Wh or more is irradiated while moving to the joint surface to melt and solidify the joint surface.
It is characterized by

請求項3に記載の発明は、請求項1又は2に記載の樹脂成形品の接合方法において、
前記エネルギー総量Qは、
Q[Wh]=P×T×R/100/3600
である、
ことを特徴とする。
ここに、前記エネルギービームの光出力P[W]、前記エネルギービームの照射時間T[sec]、前記接合面の光透過率R[%]とする。
According to a third aspect of the present invention, in the method for joining resin molded products according to the first or second aspect,
The total amount of energy Q is
Q [Wh] = P × T × R / 100/3600
Is
It is characterized by
Here, the light output P [W] of the energy beam, the irradiation time T [sec] of the energy beam, and the light transmittance R [%] of the bonding surface are set.

請求項4に記載の発明は、請求項1ないし3のいずれか1項に記載の樹脂成形品の接合方法において、
前記エネルギービームが、レーザビームである、
ことを特徴とする。
The invention according to claim 4 is the method for joining resin-molded products according to any one of claims 1 to 3,
The energy beam is a laser beam,
It is characterized by

請求項5に記載の発明は、請求項1ないし4のいずれか1項に記載の樹脂成形品の接合方法において、
前記合成樹脂が、結晶性ガラス繊維強化ポリアミド樹脂である、
ことを特徴とする。
The invention according to claim 5 is the method for joining resin-molded products according to any one of claims 1 to 4,
The synthetic resin is a crystalline glass fiber reinforced polyamide resin,
It is characterized by

請求項1に記載の発明によれば、複数の部分成形体を接合面で接合して所定の内圧を保持可能な樹脂成形品の必要接合強度を得て、接合強度を向上させることができる。   According to the invention described in claim 1, it is possible to improve the bonding strength by bonding a plurality of partial molded bodies at the bonding surface to obtain the necessary bonding strength of the resin molded product capable of holding a predetermined internal pressure.

請求項2に記載の発明によれば、複数の部分成形体を接合面で接合して所定の内圧を保持可能な樹脂成形品の必要接合強度を得て、低コストで接合強度を向上させることができる。   According to the invention as set forth in claim 2, a plurality of partial molded bodies are joined at a joining surface to obtain a necessary joining strength of a resin molded product capable of holding a predetermined internal pressure, and the joining strength is improved at low cost. You can

請求項3に記載の発明によれば、樹脂成形品の安定した接合強度を得ることができる。   According to the invention described in claim 3, it is possible to obtain a stable bonding strength of the resin molded product.

請求項4記載の発明によれば、樹脂成形品の接合強度を向上させることができる。   According to the invention of claim 4, it is possible to improve the bonding strength of the resin molded product.

請求項5記載の発明によれば、樹脂成形品の耐圧強度を向上させることができる。   According to the invention of claim 5, it is possible to improve the pressure resistance of the resin molded product.

二つの部分成形体を接合面で接合した樹脂成形品を一部断面で示す斜視図である。It is a perspective view which shows a resin molded product which joined the two partial molded objects by the joining surface by a partial section. 部分成形体の射出成形を示し、(a)は第1の部分成形体の射出成形時の断面図、(b)は第2の部分成形体の射出成形時の断面図である。FIG. 3A shows injection molding of a partially molded body, FIG. 7A is a sectional view of the first partially molded body during injection molding, and FIG. 7B is a sectional view of a second partially molded body during injection molding. 第1の部分成形体および第2の部分成形体を示す断面模式図である。It is a cross-sectional schematic diagram which shows a 1st partial molded body and a 2nd partial molded body. 本実施形態に係る接合方法を概念的に示す斜視図である。It is a perspective view which shows notionally the joining method which concerns on this embodiment. 本実施形態に係る接合方法及びこれに用いる装置を説明する説明図である。It is explanatory drawing explaining the joining method which concerns on this embodiment, and the apparatus used for this. 実施例1に係る第1の部分成形体及び第2の部分成形体の各部の寸法を示す断面図である。FIG. 3 is a cross-sectional view showing dimensions of each part of a first partial molded body and a second partial molded body according to Example 1. 実施例1におけるレーザ溶着のエネルギー総量と耐圧強度の関係を示す図である。5 is a diagram showing the relationship between the total energy of laser welding and the pressure resistance strength in Example 1. FIG. 変形例に係る接合方法を概念的に示す斜視図である。It is a perspective view which shows notionally the joining method which concerns on a modification. 変形例に係る接合方法及びこれに用いる装置を説明する説明図である。It is explanatory drawing explaining the joining method which concerns on a modification, and the apparatus used for this. 実施例2におけるレーザ溶着のエネルギー総量と耐圧強度の関係を示す図である。FIG. 7 is a diagram showing a relationship between the total energy of laser welding and pressure resistance strength in Example 2.

次に図面を参照しながら、本発明の実施形態の具体例を説明するが、本発明は以下の実施形態に限定されるものではない。
尚、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, specific examples of embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
In the following description using the drawings, it should be noted that the drawings are schematic, and the ratios of the respective dimensions and the like are different from the actual ones. Illustrations other than the members are appropriately omitted.

(1)部分成形体の成形
図1は二つの部分成形体を接合面で接合した樹脂成形品を一部断面で示す斜視図、図2は部分成形体の射出成形を示し、(a)は第1の部分成形体の射出成形時の断面図、(b)は第2の部分成形体の射出成形時の断面図、図3は第1の部分成形体と第2の部分成形体を示す断面模式図である。
以下、図面を参照しながら、本実施形態に係る樹脂成形品の接合方法により製造される樹脂成形品の構成と接合強度について説明する。
(1) Molding of Partial Molded Body FIG. 1 is a perspective view showing a partial cross section of a resin molded product in which two partial molded bodies are joined together at a joint surface, FIG. 2 shows injection molding of a partially molded body, and (a) shows Sectional view of the first partial molded body during injection molding, (b) is a sectional view of the second partial molded body during injection molding, and FIG. 3 shows the first partial molded body and the second partial molded body. It is a cross-sectional schematic diagram.
Hereinafter, the configuration and the bonding strength of a resin molded product manufactured by the method for bonding a resin molded product according to the present embodiment will be described with reference to the drawings.

(1.1)樹脂成形品
樹脂成形品1は、接合面の一例としての鍔部11を有する第1の部分成形体10と、接合面の一例としての鍔部21を有する第2の部分成形体20が、それぞれの鍔部11、21で接合された中空体である。
樹脂成形品1は、第1の部分成形体10の上部に貫通孔12aが形成された膨出部12を有し、外部から膨出部12を介して液体が注入された場合は、注入された液体による所定の内圧を保持可能となっている。
(1.1) Resin Molded Product The resin molded product 1 includes a first partial molded body 10 having a collar portion 11 as an example of a joint surface and a second partial molded body having a collar portion 21 as an example of a joint surface. The body 20 is a hollow body joined by the collar portions 11 and 21.
The resin molded product 1 has a bulging portion 12 in which a through hole 12 a is formed in the upper part of the first partial molded body 10, and when a liquid is injected from the outside through the bulging portion 12, it is injected. It is possible to maintain a predetermined internal pressure due to the liquid.

第1の部分成形体10、第2の部分成形体20の成形に用いられる合成樹脂としては、ポリアミド樹脂が挙げられる。具体的には、ナイロン6、ナイロン66、ナイロン11、ナイロン12のような脂肪族ポリアミドやポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミドのような半芳香族ポリアミド樹脂が挙げられる。これらの樹脂は、単独あるいは2つ以上の共重合から成り立っていても良い。更には、ガラス繊維やカーボン繊維等で強化したものでも良く、ガラス繊維が20%ないし40%充填された結晶性ガラス繊維強化ナイロン66がより好ましい。   Examples of the synthetic resin used for molding the first partial molded body 10 and the second partial molded body 20 include polyamide resins. Specific examples thereof include aliphatic polyamides such as nylon 6, nylon 66, nylon 11 and nylon 12, and semi-aromatic polyamide resins such as polyhexamethylene terephthalamide and polyhexamethylene isophthalamide. These resins may consist of a single type or a copolymer of two or more types. Further, it may be reinforced with glass fiber, carbon fiber or the like, and crystalline glass fiber reinforced nylon 66 filled with 20% to 40% of glass fiber is more preferable.

一方、例えばガラス繊維が33%充填された結晶性ガラス繊維強化ナイロン66(以降、PA66−G30と記すことがある)は、融点が265℃と高く、溶融させるためには大きなエネルギーが必要となる。また、熱分解温度が320〜350℃であり、温度が上がり過ぎると熱分解によって諸物性の低下を引き起こし、最終的には酸素と反応して発火する虞がある。従って、後述するように、第1の部分成形体10、第2の部分成形体20をその鍔部11、21同士で溶着する場合には、接合面の樹脂温度を融点以上で熱分解温度を超えない所定の範囲に管理する必要がある。   On the other hand, for example, crystalline glass fiber reinforced nylon 66 (hereinafter sometimes referred to as PA66-G30) filled with 33% glass fiber has a high melting point of 265 ° C., and a large amount of energy is required to melt it. .. Further, the thermal decomposition temperature is 320 to 350 ° C., and if the temperature rises too much, the thermal decomposition may cause deterioration of various physical properties, and finally it may react with oxygen and ignite. Therefore, as will be described later, when the first partial molded body 10 and the second partial molded body 20 are welded to each other by the flange portions 11 and 21, the resin temperature of the joint surface is higher than the melting point and the thermal decomposition temperature is higher than the melting point. It is necessary to manage within a predetermined range that does not exceed.

このような樹脂成形品は、その用途は特に限定されないが、使用するガラス繊維強化ナイロン66(PA66−G30)の優れた射出成形性、耐熱性、強靱性、耐クリープ特性などを利用して、温水洗浄装置の熱交換タンクとして利用される。特に、熱交換タンクとして利用される場合には、第1の部分成形体10と第2の部分成形体20が鍔部11、21で接合された中空体に温水が充満した状態で加圧されることから、接合面の耐圧強度として1.3MPa以上であることが好ましい。   The use of such a resin molded article is not particularly limited, but by utilizing the excellent injection moldability, heat resistance, toughness, creep resistance, etc. of the glass fiber reinforced nylon 66 (PA66-G30) used, It is used as a heat exchange tank for hot water cleaning equipment. In particular, when it is used as a heat exchange tank, the hollow body formed by joining the first partial molded body 10 and the second partial molded body 20 at the flange portions 11 and 21 is pressurized with hot water filled therein. Therefore, the pressure resistance of the joint surface is preferably 1.3 MPa or more.

(1.2)部分成形体
第1の部分成形体10、第2の部分成形体20は、図2(a)、(b)に示すように、PA66−G30を用いて射出成形により製造されるが、係る射出成形には既知の射出成形機であればいずれも使用可能であり、特に制限されるものではない。
成形金型30、40は、PLをパーティングライン面とする固定側型31、41と可動側型32、42とからなり、固定側型31、41と可動側型32、42との間に樹脂が充填されるキャビティC1、C2が形成されている。尚、図2(a)、(b)においては、通常の成形金型に備えられている固定側の固定側取付板、ランナーストリッパープレート、樹脂が供給されるロケートリング等、及び可動側の可動側取付板、エジェクタ機構等は省略して不図示としている。
(1.2) Partial molded body The first partial molded body 10 and the second partial molded body 20 are manufactured by injection molding using PA66-G30 as shown in FIGS. 2 (a) and 2 (b). However, any known injection molding machine can be used for the injection molding and is not particularly limited.
The molding dies 30, 40 are composed of fixed-side dies 31, 41 having PL as a parting line surface and movable-side dies 32, 42, and between the fixed-side dies 31, 41 and the movable-side dies 32, 42. Cavities C1 and C2 filled with resin are formed. 2 (a) and 2 (b), the fixed side fixed plate provided on the normal molding die, the runner stripper plate, the locate ring to which the resin is supplied, and the movable side movable plate. The side mounting plate, ejector mechanism, etc. are omitted and not shown.

固定側型31、41と可動側型32、42が型締めされて形成されたキャビティC1、C2にはゲートGから溶融樹脂が充填される。PA66−G30の融点は約265℃であるので、成形材料をおよそ280〜320℃に加熱して溶融させて、所定の金型温度(100℃以下、70〜90℃)に加熱された成形金型30に充填する(射出工程)。その際、成形材料を所定の射出速度で注入してキャビティC1、C2の隅々までに充填できるようにする。   The molten resin is filled from the gate G into the cavities C1 and C2 formed by clamping the fixed molds 31 and 41 and the movable molds 32 and 42. Since the melting point of PA66-G30 is about 265 ° C., the molding material is heated to about 280 to 320 ° C. to be melted and heated to a predetermined mold temperature (100 ° C. or lower, 70 to 90 ° C.). The mold 30 is filled (injection process). At this time, the molding material is injected at a predetermined injection speed so that the cavities C1 and C2 can be filled in every corner.

その後、成形材料は徐々に固化していくため、固化に伴って成形材料が体積収縮する。そのため、体積収縮した分の成形材料を補填する必要があり、ゲートGから成形材料を一定の圧力で注入し続ける(保圧工程)。第1の部分成形体10、第2の部分成形体20の肉厚やスプルーランナー部(不図示)の太さによって、注入する圧力と時間を適宜調整する。
その後、固定側型31、41と可動側型32、42との型開きを行い、エジェクタ機構(不図示)でキャビティC1、C2内の第1の部分成形体10、第2の部分成形体20を押圧して可動側型32、42上の成形体を取り出す。
After that, since the molding material gradually solidifies, the molding material undergoes volume contraction as it solidifies. Therefore, it is necessary to supplement the volume of the molding material that has contracted, and the molding material is continuously injected from the gate G at a constant pressure (pressure holding step). The injection pressure and time are appropriately adjusted depending on the wall thickness of the first partial molded body 10 and the second partial molded body 20 and the thickness of the sprue runner portion (not shown).
After that, the fixed side molds 31, 41 and the movable side molds 32, 42 are opened, and the first partial molded body 10 and the second partial molded body 20 in the cavities C1, C2 are ejected by an ejector mechanism (not shown). Is pressed to take out the molded body on the movable molds 32, 42.

このようにして成形された第1の部分成形体10の鍔部11には、図3に示すように、第2の部分成形体20と付き合わされたときに、第2の部分成形体20の鍔部21と当接する溶着リブ部13が形成されている。
本実施形態においては、溶着リブ部13の幅をA、内径をD1とした場合、溶着リブ部13の鍔部21と当接する面積S(溶着面積Sと呼ぶ)は、S=π((D1+A)−D1)/4で表される。
As shown in FIG. 3, the flange portion 11 of the first partial molded body 10 molded in this way is provided with the second partial molded body 20 when the second partial molded body 20 is brought into contact with the flange portion 11. A welding rib portion 13 that contacts the flange portion 21 is formed.
In the present embodiment, when the width of the welding rib portion 13 is A and the inner diameter is D1, the area S (referred to as the welding area S) in contact with the collar portion 21 of the welding rib portion 13 is S = π ((D1 + A ) 2 -D1 2 ) / 4.

第1の部分成形体10と第2の部分成形体20をそれぞれの鍔部11、21で接合(溶着)して所定の内圧を保持可能な樹脂成形品を得る場合、通常は溶着面積Sが大きい程、接合強度としての耐圧強度は高くなる。
一方、溶着リブ部13に外部からエネルギービームを照射して溶融固化させることにより鍔部11、12を接合する場合には、溶着リブ部13の溶融は、エネルギービームのエネルギー総量に依存し接合強度としての耐圧強度が変化する。
When the first partial molded body 10 and the second partial molded body 20 are joined (welded) by the respective collar portions 11 and 21 to obtain a resin molded product capable of holding a predetermined internal pressure, the welding area S is usually The larger the value, the higher the pressure resistance as the bonding strength.
On the other hand, when the collar portions 11 and 12 are joined by irradiating the welding rib portion 13 with an energy beam from the outside to melt and solidify the welding rib portion 13, the melting of the welding rib portion 13 depends on the total energy of the energy beam and the joining strength. As a result, the withstand pressure strength changes.

(2)部分成形体の接合
(2.1)接合装置
図4は本実施形態に係る接合方法を概念的に示す斜視図、図5は本実施形態に係る接合方法及びこれに用いる装置を説明する説明図である。
先ず、本実施形態に係る樹脂成形品1の接合方法及びこれに用いる装置について説明する。
本実施形態における樹脂成形品1は、図4に示すように、第1の部分成形体10と第2の部分成形体20をその鍔部11、21を互いに当接させて圧接した状態で第2の部分成形体20の鍔部21の当接面と反対側である外側面から接合面となる溶着リブ部13に複数のレーザ光源から出射されるエネルギービームの一例としてのレーザLを同時に照射して溶着リブ部13を溶融固化(溶着)させる。
(2) Joining of Partially Molded Articles (2.1) Joining Device FIG. 4 is a perspective view conceptually showing the joining method according to the present embodiment, and FIG. 5 is an illustration of the joining method according to the present embodiment and an apparatus used therefor. FIG.
First, a method for joining the resin molded product 1 according to the present embodiment and an apparatus used for the method will be described.
As shown in FIG. 4, the resin molded product 1 according to the present embodiment has a first partial molded body 10 and a second partial molded body 20 in a state in which the flange portions 11 and 21 of the first partial molded body 10 are brought into contact with each other and are pressed against each other. Laser beam L, which is an example of an energy beam emitted from a plurality of laser light sources, is simultaneously irradiated to the welding rib portion 13 serving as a joint surface from the outer surface opposite to the contact surface of the flange portion 21 of the second partial molded body 20. Then, the welding rib portion 13 is melted and solidified (welded).

接合装置50は、図5に示すように、同軸線上に配置され、所定のタイミングで上側の受け台が昇降する上下一対の受け台51、52と、昇降する上側の受け台51を下側の受け台52に向かって押圧する押圧部(不図示)と、上側の受け台51の上方でエネルギービームの一例としてのレーザLを出射するレーザ光源53からなる。
上側の受け台51には、互いに突き合わされた第1の部分成形体10と第2の部分成形体20の溶着部に照射されるようにレーザLを反射させながら導く導光孔54が形成されている。
As shown in FIG. 5, the joining device 50 includes a pair of upper and lower pedestals 51 and 52 which are arranged on a coaxial line and whose upper pedestal moves up and down at a predetermined timing, and an upper pedestal 51 which moves up and down. A pressing portion (not shown) that presses toward the receiving table 52, and a laser light source 53 that emits a laser L as an example of an energy beam above the upper receiving table 51.
The upper pedestal 51 is provided with a light guide hole 54 for guiding the laser L while reflecting the laser L so that the welded portions of the first partial molded body 10 and the second partial molded body 20 that are butted against each other are irradiated. ing.

レーザ光源53は、図5(b)に示すように、導光孔54に沿って複数のレーザ発光素子55が千鳥配置されている。本実施形態におけるそれぞれのレーザ発光素子55は、それぞれの出力が2.5w、出射されるレーザLのビーム径(1/e)は2.2mmで、総数で180個配置されているためにレーザ光源53のレーザ出力は450Wである。 As shown in FIG. 5B, the laser light source 53 has a plurality of laser light emitting elements 55 arranged in a staggered pattern along the light guide holes 54. Each laser light emitting element 55 in the present embodiment has an output of 2.5 w, the beam diameter (1 / e 2 ) of the emitted laser L is 2.2 mm, and a total of 180 laser light emitting elements 55 are arranged. The laser output of the laser light source 53 is 450W.

第1の部分成形体10は、鍔部11の外側(溶着リブ部13と反対側)を下側の受け台52で支持された状態で下側の受け台52に軸線方向が位置決めされる。
第1の部分成形体10は、光に対して透過性のない合成樹脂の一例としてのPA66−G30で成形されている。
第2の部分成形体20は、上側の受け台51に軸線方向が位置決めされた状態で鍔部21の外側(鍔部11と当接する面の反対側)を上側の受け台51で押圧されて下降し鍔部21の内側面が第1の部分成形体10の鍔部11に形成された溶着リブ部13に当接する。
第2の部分成形体20は、光に対して透過性のある合成樹脂の一例としてのPA66−G30で成形されている。ここで、本実施形態に係る第2の部分成形体20の鍔部21のレーザLに対する光透過率は46%である。
The first partial molded body 10 is axially positioned on the lower pedestal 52 while the outer side of the collar portion 11 (the side opposite to the welding rib portion 13) is supported by the lower pedestal 52.
The first partial molded body 10 is molded of PA66-G30, which is an example of a synthetic resin impermeable to light.
The second partially molded body 20 is pressed by the upper pedestal 51 on the outer side of the collar portion 21 (the side opposite to the surface in contact with the collar portion 11) in a state where the axial direction is positioned on the upper pedestal 51. It descends and the inner side surface of the collar portion 21 abuts on the welding rib portion 13 formed on the collar portion 11 of the first partially molded body 10.
The second partial molded body 20 is molded of PA66-G30, which is an example of a synthetic resin that is transparent to light. Here, the light transmittance of the collar portion 21 of the second partially molded body 20 according to the present embodiment with respect to the laser L is 46%.

(2.2)レーザ溶着の作用
本実施形態においては、接合装置50の受け台51、52に第1の部分成形体10、第2の部分成形体20を位置決めして鍔部11、21を当接させた状態で、レーザ光源53を発光させて溶着部にレーザLを照射する。
レーザLは、樹脂成形品1が内圧を受けた場合の溶着部における接合面の耐圧強度が10Mpa以上となるように、接合面としての鍔部11、21を互いに圧接した状態で第2の部分成形体20の鍔部21の外側から単位面積(mm)当たりのエネルギー総量が1.0×10−3Wh以上となるように照射して溶着リブ部13を溶融固化(溶着)させる。
(2.2) Effect of laser welding
In the present embodiment, the laser light source is used in a state in which the first partial molded body 10 and the second partial molded body 20 are positioned on the pedestals 51 and 52 of the joining device 50 and the collar portions 11 and 21 are in contact with each other. 53 is emitted to irradiate the welded portion with laser L.
The laser L has a second portion in a state in which the flange portions 11 and 21 as the joint surfaces are in pressure contact with each other so that the pressure resistance of the joint surface in the welded portion when the resin molded product 1 receives an internal pressure is 10 MPa or more. Irradiation is performed from the outside of the flange portion 21 of the molded body 20 so that the total energy amount per unit area (mm 2 ) is 1.0 × 10 −3 Wh or more, and the welding rib portion 13 is melted and solidified (welded).

具体的には、レーザLの光出力P[W]、レーザLの照射時間T[sec]、接合面の光透過率R[%]としたときに、エネルギー総量Qは、
Q[Wh]=P×T×R/100/3600・・・(1)
となり、レーザ光源53の各レーザ発光素子55を全てレーザ照射密度100%で発光させて、レーザLの照射時間Tとして10sec以上照射すると、エネルギー総量Qは0.8Whとなる。これを、溶着リブ部13が、内径D1=78mmの位置に幅A=3mmで形成されている場合(図6参照)、溶着面積Sは763.4mmであり、単位面積(mm)当たりのエネルギー総量は、1.0×10−3Whとなる。
これにより、複数の部分成形体10、20を接合面で接合して所定の内圧を保持可能な樹脂成形品1の必要接合強度を得て、接合強度を向上させることができる。
Specifically, when the light output P [W] of the laser L, the irradiation time T [sec] of the laser L, and the light transmittance R [%] of the bonding surface are set, the total energy amount Q is
Q [Wh] = P × T × R / 100/3600 (1)
Therefore, when all the laser light emitting elements 55 of the laser light source 53 are made to emit light at the laser irradiation density of 100% and the laser L is irradiated for 10 seconds or more as the irradiation time T, the total energy amount Q becomes 0.8 Wh. This, welding rib portion 13, when it is formed with a width A = 3 mm at the position of the inside diameter D1 = 78mm (see FIG. 6), the welding area S is 763.4Mm 2, unit area (mm 2) per The total amount of energy is 1.0 × 10 −3 Wh.
As a result, it is possible to improve the bonding strength by obtaining the necessary bonding strength of the resin molded product 1 capable of bonding the plurality of partial molded bodies 10 and 20 at the bonding surface and holding a predetermined internal pressure.

「実施例1」
図6は実施例1に係る第1の部分成形体10、第2の部分成形体20の各部の寸法を示す断面図である。
本実施例においては、第1の部分成形体10を黒色の結晶性ガラス繊維強化ナイロン66(レオナ1300G(商標):旭化成)を用いて成形し、第2の部分成形体20を自然色の結晶性ガラス繊維強化ナイロン66(レオナ1300G(商標):旭化成)を用いて成形した。
それぞれの代表寸法は、図6に示すとおりであり、基本肉厚は3mm、鍔部11、21の肉厚も3mmとなるように成形した。
また、自然色の結晶性ガラス繊維強化ナイロン66(レオナ1300G(商標):旭化成)は、光吸収係数が0.33であり、レーザLを照射する第1の部分成形体10の鍔部11は、肉厚3mmで光透過率Rは46%となる。
"Example 1"
FIG. 6 is a cross-sectional view showing the dimensions of each part of the first partial molded body 10 and the second partial molded body 20 according to the first embodiment.
In this embodiment, the first partial molded body 10 is molded using black crystalline glass fiber reinforced nylon 66 (Leona 1300G (trademark): Asahi Kasei), and the second partial molded body 20 is a natural crystal. A glass fiber reinforced nylon 66 (Leona 1300G (trademark): Asahi Kasei) was used for molding.
The representative dimensions of each are as shown in FIG. 6, and the basic thickness was 3 mm, and the flanges 11 and 21 were also molded to have a thickness of 3 mm.
In addition, the natural color crystalline glass fiber reinforced nylon 66 (Leona 1300G (trademark): Asahi Kasei) has a light absorption coefficient of 0.33, and the collar portion 11 of the first partial molded body 10 irradiated with the laser L is The light transmittance R is 46% when the thickness is 3 mm.

このような第1の部分成形体10及び第2の部分成形体20を接合装置50の受け台51、52に位置決めして、レーザ出力P=450Wでレーザ照射時間をT=10〜20secの範囲で変化させて溶着した樹脂成形品1の接合部における耐圧強度を測定した。
耐圧強度は、第1の部分成形体10と第2の部分成形体20を溶着した樹脂成形品1内に水を満たした状態で、貫通孔12aが形成された膨出部12から水を加圧注入し、破壊時の圧力を測定することにより測定した。
The first partial compact 10 and the second partial compact 20 as described above are positioned on the pedestals 51 and 52 of the joining device 50, and the laser irradiation time is in the range of T = 10 to 20 sec with the laser output P = 450 W. The pressure resistance strength at the joint portion of the resin molded product 1 which was changed and welded was measured.
The compressive strength is measured by adding water from the bulging portion 12 in which the through hole 12a is formed while the resin molded product 1 in which the first partial molded body 10 and the second partial molded body 20 are welded is filled with water. It was measured by injecting pressure and measuring the pressure at break.

図7に実施例1におけるレーザ溶着のエネルギー総量[Wh]と耐圧強度[MPa]の関係を示す。耐圧強度1.3MPa(溶着された接合面の強度としては10MPa)以上の接合強度を安定的に得るためには、エネルギー総量Qは0.8[Wh]以上が必要であるとの結果になった。ここに、エネルギー総量Q=0.8[Wh]は、接合(溶着)部の単位面積(mm)当たり1.0×10−3[Wh]となる。 FIG. 7 shows the relationship between the total energy [Wh] of laser welding and the pressure resistance [MPa] in Example 1. This results in that the total energy amount Q needs to be 0.8 [Wh] or more in order to stably obtain the joining strength of 1.3 MPa or more of the pressure resistance strength (10 MPa as the strength of the welded joint surface). It was Here, the total energy amount Q = 0.8 [Wh] is 1.0 × 10 −3 [Wh] per unit area (mm 2 ) of the bonded (welded) portion.

「変形例」
図8は変形例に係る接合方法を概念的に示す斜視図、図9は変形例に係る接合方法及びこれに用いる装置を説明する説明図である。
変形例に係る接合方法で接合される樹脂成形品1は、図8に示すように、第1の部分成形体10と第2の部分成形体20をその鍔部11、21を互いに当接させて圧接した状態で第2の部分成形体20の鍔部21の当接面と反対側である外側面から接合面となる溶着リブ部13に単一のレーザ光源56(不図示)から出射されるエネルギービームの一例としてのレーザLを移動しながら照射して溶着リブ部13を溶融固化(溶着)させる。
"Modification"
FIG. 8 is a perspective view conceptually showing the joining method according to the modified example, and FIG. 9 is an explanatory diagram for explaining the joining method according to the modified example and an apparatus used therefor.
As shown in FIG. 8, the resin molded product 1 to be bonded by the bonding method according to the modified example has the first partial molded body 10 and the second partial molded body 20 with their flange portions 11 and 21 abutting each other. From a single laser light source 56 (not shown) to the welding rib portion 13 serving as a joint surface from the outer surface opposite to the contact surface of the flange portion 21 of the second partial molded body 20 in a state of being pressed against each other. A laser L, which is an example of an energy beam, is irradiated while moving to melt and solidify (weld) the welding rib portion 13.

図9に示すように、接合装置50Aは、同軸線上に配置され、所定のタイミングで上側の受け台が昇降する上下一対の受け台51A、52と、昇降する上側の受け台51Aを下側の受け台52に向かって押圧する押圧部(不図示)と、上側の受け台51Aの上方でエネルギービームの一例としてのレーザLを出射するレーザ光源56とレーザLを走査するガルバノスキャニングミラー57(不図示)からなる。
上側の受け台51Aは、レーザ光源56から出射して接合部に照射されるレーザLが透過するように透明ガラスで形成されている。
As shown in FIG. 9, the joining device 50A is arranged on a coaxial line, and a pair of upper and lower pedestals 51A and 52, in which the upper pedestal moves up and down at a predetermined timing, and an upper pedestal 51A that moves up and down. A pressing portion (not shown) that presses toward the receiving table 52, a laser light source 56 that emits a laser L as an example of an energy beam above the upper receiving table 51A, and a galvano-scanning mirror 57 (not shown) that scans the laser L. (Shown).
The pedestal 51A on the upper side is formed of transparent glass so that the laser L emitted from the laser light source 56 and applied to the bonding portion is transmitted.

樹脂成形品1が内圧を受けた場合の接合部における接合面の耐圧強度が10MPa以上となるように、接合面としての鍔部11、21を互いに圧接した状態で第2の部分成形体20の鍔部21の外側からレーザ光源56から出射されるレーザLを所定の走査速度で接合部に対して複数回周回移動しながら単位面積(mm)当たりのエネルギー総量が0.4×10−3Wh以上となるように照射して、溶着リブ部13を溶融固化(溶着)させる。 When the resin molded product 1 is subjected to internal pressure, the flange portions 11 and 21 as the joint surface are pressed against each other so that the pressure resistance of the joint surface at the joint portion becomes 10 MPa or more. The total amount of energy per unit area (mm 2 ) is 0.4 × 10 −3 while moving the laser L emitted from the laser light source 56 from the outside of the flange portion 21 a plurality of times around the joint portion at a predetermined scanning speed. The welding rib portion 13 is melted and solidified (welded) by irradiating so as to be Wh or more.

具体的には、レーザ光源56を光出力200Wで発光させて、走査速度300mm/secで15周回以上照射すると照射時間Tは12.7secに達し、エネルギー総量Qは0.3Wh以上となる。これを、溶着リブ部13が、内径D1=78mmの位置に幅A=3mmで形成されている場合、溶着面積Sは763.4mmであり、単位面積(mm)当たりのエネルギー総量は、0.4×10−3Whとなる。
これにより、複数の部分成形体を接合面で接合して所定の内圧を保持可能な樹脂成形品1の必要接合強度を得て、低コストで接合強度を向上させることができる。
Specifically, when the laser light source 56 is caused to emit light with an optical output of 200 W and is irradiated for 15 revolutions or more at a scanning speed of 300 mm / sec, the irradiation time T reaches 12.7 sec and the total energy amount Q becomes 0.3 Wh or more. This, welding rib portion 13, when it is formed with a width A = 3 mm at the position of the inside diameter D1 = 78mm, welding area S is 763.4Mm 2, the total energy per unit area (mm 2), It becomes 0.4 * 10 < -3 > Wh.
As a result, it is possible to obtain a required joining strength of the resin molded product 1 capable of holding a predetermined internal pressure by joining a plurality of partial molded bodies at the joining surface, and to improve the joining strength at low cost.

「実施例2」   "Example 2"

第1の部分成形体10及び第2の部分成形体20を接合装置50Aの上側の受け台51A、下側の受け台52に位置決めした後、押圧力0.5MPaで押圧した状態で、レーザ出力P=160W、180W、200W、レーザ照射時間をT=8.5sec、12.7sec、17sec、21.2secと変化させて溶着した樹脂成形品1の接合部における耐圧強度を測定した。
耐圧強度は、第1の部分成形体10と第2の部分成形体20を溶着した樹脂成形品1内に水を満たした状態で、貫通孔12aが形成された膨出部12から水を加圧注入し、破壊時の圧力を測定することにより測定した。
After the first partial molded body 10 and the second partial molded body 20 are positioned on the upper pedestal 51A and the lower pedestal 52 of the joining device 50A, laser output is performed with pressing force of 0.5 MPa. P = 160 W, 180 W, 200 W, laser irradiation time was changed to T = 8.5 sec, 12.7 sec, 17 sec, 21.2 sec, and the pressure resistance strength of the welded portion of the resin molded product 1 was measured.
The compressive strength is measured by adding water from the bulging portion 12 in which the through hole 12a is formed while the resin molded product 1 in which the first partial molded body 10 and the second partial molded body 20 are welded is filled with water. It was measured by injecting pressure and measuring the pressure at break.

図10に実施例2におけるレーザ溶着のエネルギー総量[Wh]と耐圧強度[MPa]の関係を示す。耐圧強度1.3MPa(接合された接合面の強度としては10MPa)以上の接合強度を安定的に得るためには、エネルギー総量Qは0.3[Wh]以上が必要であるとの結果になった。エネルギー総量Q=0.3[Wh]は、接合部の単位面積(mm)当たり0.4×10−3[Wh]となる。 FIG. 10 shows the relationship between the total energy of laser welding [Wh] and the pressure resistance [MPa] in Example 2. This results in that the total energy amount Q needs to be 0.3 [Wh] or more in order to stably obtain the bonding strength of 1.3 MPa or more of the withstand pressure strength (10 MPa as the strength of the bonded joint surface). It was The total energy amount Q = 0.3 [Wh] is 0.4 × 10 −3 [Wh] per unit area (mm 2 ) of the joint.

1・・・樹脂成形品
10・・・第1の部分成形体
11・・・鍔部
13・・・溶着リブ部
20・・・第2の部分成形体
21・・・鍔部
50、50A・・・接合装置
51、51A・・・受け台(上側)
52・・・受け台(下側)
53、56・・・レーザ光源
57・・・ガルバノスキャニングミラー
DESCRIPTION OF SYMBOLS 1 ... Resin molded product 10 ... 1st partial molded body 11 ... Collar part 13 ... Welding rib part 20 ... 2nd partial molded body 21 ... Collar part 50, 50A. ..Joining devices 51, 51A ... pedestal (upper side)
52 ... Cradle (lower side)
53, 56 ... Laser light source 57 ... Galvano scanning mirror

Claims (5)

合成樹脂からなり接合面を有する複数の部分成形体を前記接合面で接合して所定の内圧を保持可能な樹脂成形品を製造する樹脂成形品の接合方法であって、
前記樹脂成形品が前記内圧を受けた場合の前記接合面の耐圧強度が10Mpa以上となるように、前記接合面を互いに圧接した状態で、複数の光源から出射され前記接合面の一方から単位面積(mm)当たりのエネルギー総量が1.0×10−3Wh以上となるエネルギービームを前記接合面に同時に照射して前記接合面を溶融固化させる、
ことを特徴とする樹脂成形品の接合方法。
A method of joining a resin molded article, comprising: manufacturing a resin molded article that is capable of holding a predetermined internal pressure by joining a plurality of partial molded bodies made of synthetic resin and having a joint surface,
A unit area is emitted from a plurality of light sources in a state in which the joint surfaces are in pressure contact with each other so that the pressure resistance of the joint surfaces when the resin molded product receives the internal pressure is 10 MPa or more. An energy beam having a total energy per (mm 2 ) of 1.0 × 10 −3 Wh or more is simultaneously irradiated to the joint surface to melt and solidify the joint surface.
A method for joining resin molded products, which is characterized in that
合成樹脂からなり接合面を有する複数の部分成形体を前記接合面で接合して所定の内圧を保持可能な樹脂成形品を製造する樹脂成形品の接合方法であって、
前記樹脂成形品が前記内圧を受けた場合の前記接合面の耐圧強度が10Mpa以上となるように、前記接合面を互いに圧接した状態で、単一の光源から出射され前記接合面の一方から単位面積(mm)当たりのエネルギー総量が0.4×10−3Wh以上となるエネルギービームを前記接合面に移動しながら照射して前記接合面を溶融固化させる、
ことを特徴とする樹脂成形品の接合方法。
A method of joining a resin molded article, comprising: manufacturing a resin molded article that is capable of holding a predetermined internal pressure by joining a plurality of partial molded bodies made of synthetic resin and having a joint surface,
The resin molded product is emitted from a single light source in a state where the joint surfaces are in pressure contact with each other so that the pressure resistance of the joint surfaces when the internal pressure is applied becomes 10 MPa or more An energy beam having a total energy amount per area (mm 2 ) of 0.4 × 10 −3 Wh or more is irradiated while moving to the joint surface to melt and solidify the joint surface.
A method for joining resin molded products, which is characterized in that
前記エネルギー総量Qは、
Q[Wh]=P×T×R/100/3600
である、
ことを特徴とする請求項1又は2に記載の樹脂成形品の接合方法。
ここに、前記エネルギービームの光出力P[W]、前記エネルギービームの照射時間T[sec]、前記接合面の光透過率R[%]とする。
The total amount of energy Q is
Q [Wh] = P × T × R / 100/3600
Is
The method for joining resin molded products according to claim 1 or 2, characterized in that.
Here, the light output P [W] of the energy beam, the irradiation time T [sec] of the energy beam, and the light transmittance R [%] of the bonding surface are set.
前記エネルギービームが、レーザビームである、
ことを特徴とする請求項1ないし3のいずれか1項に記載の樹脂成形品の接合方法。
The energy beam is a laser beam,
The method for joining resin-molded articles according to any one of claims 1 to 3, wherein:
前記合成樹脂が、結晶性ガラス繊維強化ポリアミド樹脂である、
ことを特徴とする請求項1ないし4のいずれか1項に記載の樹脂成形品の接合方法。
The synthetic resin is a crystalline glass fiber reinforced polyamide resin,
The method for joining resin-molded products according to any one of claims 1 to 4, wherein:
JP2018204554A 2018-10-31 2018-10-31 Method for joining resin molded products Active JP7191365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018204554A JP7191365B2 (en) 2018-10-31 2018-10-31 Method for joining resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204554A JP7191365B2 (en) 2018-10-31 2018-10-31 Method for joining resin molded products

Publications (2)

Publication Number Publication Date
JP2020069703A true JP2020069703A (en) 2020-05-07
JP7191365B2 JP7191365B2 (en) 2022-12-19

Family

ID=70549040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204554A Active JP7191365B2 (en) 2018-10-31 2018-10-31 Method for joining resin molded products

Country Status (1)

Country Link
JP (1) JP7191365B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116933A (en) * 2009-10-26 2011-06-16 Japan Polypropylene Corp Propylene-based resin composition for laser beam welding and application thereof
JP2011240626A (en) * 2010-05-19 2011-12-01 Polyplastics Co Method of deciding welding condition
JP2014177051A (en) * 2013-03-15 2014-09-25 Denso Corp Method for laser welding weld material
JP2018122567A (en) * 2017-02-03 2018-08-09 ポリプラスチックス株式会社 Method for bonding resin molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116933A (en) * 2009-10-26 2011-06-16 Japan Polypropylene Corp Propylene-based resin composition for laser beam welding and application thereof
JP2011240626A (en) * 2010-05-19 2011-12-01 Polyplastics Co Method of deciding welding condition
JP2014177051A (en) * 2013-03-15 2014-09-25 Denso Corp Method for laser welding weld material
JP2018122567A (en) * 2017-02-03 2018-08-09 ポリプラスチックス株式会社 Method for bonding resin molded article

Also Published As

Publication number Publication date
JP7191365B2 (en) 2022-12-19

Similar Documents

Publication Publication Date Title
JP5462107B2 (en) Method and apparatus for manufacturing hollow molded article
KR100814056B1 (en) Method and apparatus for laser welding thermoplastic resin members
KR100783676B1 (en) Method and apparatus for laser welding thermoplastic resin members
KR100870812B1 (en) Method for producing welded resin material and welded resin material
US7824173B2 (en) Apparatus for molding a hollow molded article
KR20070042883A (en) Method and apparatus for laser welding thermoplastic resin members
JP2005119050A (en) Resin molded product and its manufacturing method
JP2008524014A (en) Method for producing multilayer hollow body including at least one weld
KR920016211A (en) Method for manufacturing plastic blown articles using water soluble resin
JP4740028B2 (en) Hollow body forming equipment
JP3551157B2 (en) Laser welding method for resin parts
CN102950766B (en) Laser transmission welding method for thermoplastic plastics
JP2009220429A (en) Molding method for blow-molded article, blow-molded article and manufacturing apparatus therefor
JP2020069703A (en) Method of joining resin moldings
WO2010047269A1 (en) Resin molding rubber mold, resin molding device, and resin molding method
JP2010277870A (en) Method for manufacturing resin mold assembly
JP2729900B2 (en) Molding method and molding die for hollow product
US20050000618A1 (en) Method for joining plastic structural component parts by means of laser radiation
JP4897756B2 (en) Method and apparatus for molding hollow molded article
JP2003251699A (en) Welding method of resin component by laser
JP2005119051A (en) Resin molded product and its manufacturing method
JP2011005704A (en) Laser welding method of resin material and resin molded article
JP5073704B2 (en) Method and apparatus for forming hollow molded product
CN104999661A (en) Synchronous laser welding process and device
JP4032862B2 (en) Laser welding method for resin parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7191365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150