JP2020069412A - Distilled water production device - Google Patents

Distilled water production device Download PDF

Info

Publication number
JP2020069412A
JP2020069412A JP2018203441A JP2018203441A JP2020069412A JP 2020069412 A JP2020069412 A JP 2020069412A JP 2018203441 A JP2018203441 A JP 2018203441A JP 2018203441 A JP2018203441 A JP 2018203441A JP 2020069412 A JP2020069412 A JP 2020069412A
Authority
JP
Japan
Prior art keywords
water
distilled water
raw water
tray
solid body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018203441A
Other languages
Japanese (ja)
Inventor
近藤 義和
Yoshikazu Kondo
義和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018203441A priority Critical patent/JP2020069412A/en
Publication of JP2020069412A publication Critical patent/JP2020069412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Abstract

To provide a distilled water production device of a low-cost, high efficiency, and good design, which is a relatively small scale water production device particularly suitable for a personal use, for a family use or for a small community use, without requiring energy such as an electric or thermal power, or a large scale device such as a solar tracking device, is collapsible and can easily be stored when not in use, and can be installed and carried without a trouble.SOLUTION: The distilled water production device utilizing solar heat, comprising a transparent dome 7 constituted of a plurality of curved ribs 1 fastened at the top 2 of the dome, with the tips 3 of the ribs each fixed to a corresponding receiving hole 5 provided on the periphery of a pan 4, and of a transparent plastic sheet or film 6 surrounding the upper or the lower part of the ribs, is characterized in that a solid body of a pillar and/or pyramid shape whose surface is covered with black fabric and/or a carbon material, and an inner pan whereon the solid body is placed, are provided inside the dome.SELECTED DRAWING: Figure 1

Description

本発明は太陽光(熱)により河川水、汚染水或いは海水を蒸発・凝縮させて飲料水、純水が得られる低価格で設置や移動が簡便な蒸留水造水装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distilled water desalination apparatus that can be easily installed and moved at low cost by obtaining river water, contaminated water or seawater by sunlight (heat) to obtain drinking water or pure water.

地球温暖化や人口増加、経済発展により、現在でも多くの地域で水不足が問題であり、将来は、人口増加や経済発展で更に多くの地域で水不足が指摘されている。特に、地下水や河川水のない島嶼国、上水設備の整備されていない地域、難民キャンプ等では毎日消費する水を確保することは極めて重要な課題である。こうした地域では人道的観点から1人当たり1日1ガロン(約3.8L/日)の飲料水を供給される。従って、飲料水を必要とする難民に1日1ガロンを供給するだけでも毎日22万トン(年率8030万トン)以上の水が必要となる。 Due to global warming, population increase, and economic development, water shortage is still a problem in many areas, and it is pointed out that water shortage will occur in more areas in the future due to population increase and economic development. In particular, securing water to be consumed daily is an extremely important issue in island countries with no groundwater or river water, in areas without water supply facilities, and in refugee camps. From the humanitarian perspective, 1 gallon (about 3.8 L / day) of drinking water is supplied per person per day in these areas. Therefore, even supplying only 1 gallon a day to refugees who need drinking water requires more than 220,000 tons of water daily (80.3 million tons per year).

この水を従来の蒸発法で作るとしたら、毎日14万トンのA重油が必要となり、これによってCO2が毎日45万トン(年率1億6500万トン)発生する。その他に島嶼国や上水道が整備されていない地域へ同様の方法で上水を供給すると、更に膨大な量のCO2が発生し地球温暖化を加速し、更に水不足を引き起こし、悪循環に陥る。上述した水問題は水資源がない地域は勿論であるが、上水設備がなく汚染水しかない地域でも深刻な問題であり、化石エネルギーを消費せず(CO2を発生させず)に上水を供給する方法が切に求められている。 If this water were produced by the conventional evaporation method, 140,000 tons of heavy oil A would be required every day, which would generate 450,000 tons of CO2 daily (165 million tons per year). In addition, if water is supplied to island countries or areas where water supply is not developed in the same way, a huge amount of CO2 is generated, global warming is accelerated, water shortage is caused, and a vicious cycle is created. The above-mentioned water problem is of course a serious problem not only in areas where there are no water resources but also in areas where there is no water supply facility and only contaminated water, and it is possible to supply water without fossil energy consumption (CO2 generation). There is an urgent need for a supply method.

これまでも、人工的エネルギー(オイル、電力、薪等)を使用せず太陽熱を利用して、汚染水や海水を蒸発させて、飲料水を製造する多くの提案がなされている(特許文献1〜4)。しかし、このタイプの造水器の問題は、四季や一日の時刻によって太陽の方向や角度が刻々変化しており、常に最大効率で太陽熱を吸収することは出来ず、一日当たりの集熱・造水効率が大幅に低くなる。 Until now, many proposals have been made to produce drinking water by using solar heat without using artificial energy (oil, electric power, firewood, etc.) to evaporate contaminated water or seawater (Patent Document 1). ~ 4). However, the problem with this type of water maker is that the direction and angle of the sun change every moment depending on the seasons and the time of day, and it is not possible to absorb the solar heat at the maximum efficiency at all times, and the heat collection per day Water production efficiency is significantly reduced.

また、平板型造水器では太陽熱を吸収し熱水の温度が上がったとしても、平板表面や下部からの放熱によって温度が下がり、十分な蒸気圧が出ずに、水の蒸発量が少なく、造水量も少ない(特許文献1〜3)。或いは、大面積な水面の上に水蒸気を凝縮し回収する傾斜の屋根を付けた提案(特許文献4〜6)でも、やはり季節や時刻によって太陽の高度や方向が変化し、効果的な蒸発が得られない。上述したように平板型は構造が簡単でコストも比較的安価な為に色々と提案されているが、造水効率が低く、実用化は困難である。 Also, in the flat plate type water generator, even if the temperature of the hot water rises due to absorption of solar heat, the temperature drops due to heat radiation from the flat plate surface and the lower part, sufficient vapor pressure does not come out, and the evaporation amount of water is small, The amount of water produced is also small (Patent Documents 1 to 3). Alternatively, even with a proposal with a sloping roof for condensing and collecting water vapor on a large surface of water (Patent Documents 4 to 6), the altitude and direction of the sun also change depending on the season and time, and effective evaporation is achieved. I can't get it. As described above, the flat plate type has been proposed variously because of its simple structure and relatively low cost, but it is difficult to put it into practical use because of its low efficiency of water production.

そこで、太陽熱を集める部分は平板型とし、蒸発した蒸気が凝縮した時の凝縮熱を再利用し、更に海水を蒸発させる多重効用法が提案(特許文献7〜15)されているが、真空ポンプや圧縮機、冷却装置及びそれらを連結するパイプが必要となり、装置が複雑に過大になり、装置コストや運転する為の電力や燃料が必要となり、実際には採算が合わない。 Therefore, a multi-effect method has been proposed (Patent Documents 7 to 15) in which the portion for collecting solar heat is a flat plate type, the condensation heat when vaporized vapor is condensed is reused, and seawater is further vaporized (Patent Documents 7 to 15). A compressor, a cooling device, and a pipe connecting them are required, the device becomes complicated and excessive, and the cost of the device and electric power and fuel for operation are required, which is not profitable in practice.

又、太陽熱をパラボラ式集光器やミラーで集中させ温度を上げて、高沸点物を加熱してその熱を蓄熱して海水などを蒸発させる方法(特許文献16〜19)も提案されているが、大面積の装置や多数のパラボラ型の集光器やミラーを太陽の動きに沿って動かす(太陽追尾:ソーラートレッキング)設備が必要であり、装置が過大になり、また製造コストや運転コストも過大となり、実用性は非常に低い。詰まり、これまで太陽光(熱)を利用して海水を蒸発させて純水を造水する多くの提案がなされているが、単純な装置では太陽熱の利用効率が低く、大きな設置面積が必要であったり、効率を上げる為には、太陽の向きや高度に合わせて、装置の向きを最適化させる太陽追随装置(ソーラートラッキング)やその制御装置が必要となり、装置コストや運転コストが過大となったり、真に、容易に且つ安価に造水できる装置は実現していないのが現実である。 Further, a method (Patent Documents 16 to 19) in which solar heat is concentrated by a parabolic concentrator or a mirror to raise the temperature, a high-boiling substance is heated to store the heat, and seawater or the like is evaporated has been proposed. However, a large area device and a large number of parabolic concentrators and mirrors that move along with the movement of the sun (solar tracking: solar trekking) are required, which makes the device too large, and the manufacturing cost and operating cost. Is too large, and its practicality is very low. Although many proposals have been made to block water and use the sunlight (heat) to evaporate seawater to create pure water, simple devices have low solar heat utilization efficiency and require a large installation area. In order to increase efficiency, a solar tracking device (solar tracking) that optimizes the orientation of the device according to the direction and altitude of the sun and its control device are required, resulting in excessive device costs and operating costs. However, the reality is that a device that can truly, easily and inexpensively produce water has not been realized.

特許4687928Patent 4687928 特表2001−514573Special table 2001-514573 特開昭56−144702JP-A-56-144702 特開昭56−76203JP-A-56-76203 特開平4−141287JP-A-4-141287 特開平2−284686JP-A-2-284686 特開2000−279944Japanese Patent Laid-Open No. 2000-279944 再公表W001/072638Republished W001 / 072638 再公表W097/48646Republication W097 / 48646 特開平6−158685JP-A-6-158685 特開昭64−34486JP-A-64-34486 特開昭62−129192JP 62-129192 特開昭60−110388Japanese Patent Laid-Open No. 60-110388 特開昭58−20286JP-A-58-20286 特開2016-223696JP, 2016-223696, A 特開平2−71891Japanese Patent Laid-Open No. 2-71891 特開昭60−61088JP-A-60-61088 特開昭56−129081JP-A-56-129081 特開昭53−43678JP-A-53-43678

本提案は、従来技術の課題を解決し、十分な地下水や河川水がない地域や河川水があっても造水用の電力等のエネルギーがない地域において、或いは大雨や地震等の災害で一時的に断水した地域の生活に最低必要限の上水(3.8L/人/日)を、太陽エネルギーのみで、電力・火力等のエネルギーを一切必要とせず、且つ、太陽エネルギーのみしか利用せず、且つ、太陽追随装置(ソーラートラッキング)等の大掛かりな装置を必要とせず、安価で高効率で、且つ、デザイン性に優れた造水装置であり、特に個人用或いは家庭用、或いは小集落用の比較的小型の造水装置を提案することを目的とする。更に、ビニール傘やテントと同様の構造を利用して、安価で、軽量で、かつ使用しない場合は折り畳んで簡単に片づけられ、移動でき、設置できる蒸留水造水装置を提案することを目的とする。 This proposal solves the problems of the prior art, and in areas where there is insufficient groundwater or river water, in areas where there is no energy such as electric power for desalination even if there is river water, or when there is a disaster such as heavy rain or an earthquake, The minimum necessary amount of clean water (3.8 L / person / day) for the daily life of the area that has been temporarily cut off is solar energy only, no energy such as electric power or thermal power is required, and only solar energy is used. In addition, it is a water desalination device that is inexpensive, highly efficient, and excellent in design, and does not require large-scale equipment such as solar tracking equipment (solar tracking), especially for individuals, homes, or small settlements. The purpose of the present invention is to propose a relatively small-sized desalination device for water. Furthermore, it aims to propose a distilled water desalination apparatus that is inexpensive, lightweight, and can be folded and easily put away when not in use, movable, and installable by using the same structure as a vinyl umbrella or a tent. To do.

(第1の発明)
即ち、本発明は、湾曲した複数の骨材(リブ)1、該骨材は頂点部2で固定され、且つ、骨材の先端部3は受け皿4の周辺部に設けられている受け穴5で固定され、骨材の上部或いは下部に透明なプラスチックシート或いはフィルム6を有する透明ドーム7、及び該ドームの内部に、表面を黒色の布帛及び/又は炭素材料8で覆った柱状及び/又は錘状の立体9、及び該立体を設置する内部の受け皿10を有することを特徴とする太陽熱を利用した蒸留水造水装置である。
(First invention)
That is, according to the present invention, a plurality of curved aggregates (ribs) 1, the aggregates are fixed at the apexes 2, and the tips 3 of the aggregates are receiving holes 5 provided in the peripheral portion of the tray 4. , A transparent dome 7 having a transparent plastic sheet or film 6 on the upper or lower part of the aggregate, and a columnar and / or weight whose inside is covered with a black cloth and / or carbon material 8 A distilled water desalination apparatus using solar heat, characterized in that it has a three-dimensional solid 9 and an internal tray 10 for installing the solid.

(第2の発明)
また、本発明は、前記骨材1の構造がテント構造或いはビニール傘の骨材の構造を有することを特徴とする蒸留水造水装置である。
(Second invention)
Further, the present invention is a distilled water desalination apparatus, wherein the structure of the aggregate 1 is a tent structure or a structure of a vinyl umbrella aggregate.

(第3の発明)
また、本発明は、前記受け皿4が円錐状11、半球状12、楕円球状13、多角錘状14の一部、或いは平面盆状15であることを特徴とする請求項1記載の蒸留水造水装置である。
(Third invention)
Further, according to the present invention, the saucer 4 is a conical shape 11, a hemispherical shape 12, an elliptic shape 13, a part of a polygonal pyramid shape 14, or a flat tray-like shape 15. It is a water device.

(第4の発明)
また、本発明は、前記受け皿4の底部に貯まった蒸留水を抜出す為の管16を有することを特徴とする請求項1又は3のいずれかに記載の蒸留水造水装置である。
(Fourth invention)
Further, the present invention is the distilled water desalination apparatus according to claim 1 or 3, further comprising a pipe 16 for withdrawing the distilled water stored in the bottom portion of the tray 4.

(第5の発明)
また、本発明は、前記立体9が複数個であることを特徴とする請求項1記載の蒸留水造水装置である。
(Fifth invention)
Further, the present invention is the distilled water desalination apparatus according to claim 1, wherein the solid body 9 is plural.

(第6の発明)
また、本発明は、前記立体9が、該立体の内部に原水の貯槽17を有することを特徴とする請求項1又は5記載のいずれかに記載の蒸留水造水装置である。
(Sixth invention)
Further, the present invention is the distilled water desalination apparatus according to any one of claims 1 and 5, wherein the solid body 9 has a raw water storage tank 17 inside the solid body.

(第7の発明)
また、本発明は、前記原水の貯槽17の内部に毛細管現象で、立体を覆う黒色の布及び/または炭素材料7まで原水を供給する給水材18を有することを特徴とする請求項1又は6のいずれかに記載の蒸留水造水装置である。
(Seventh invention)
Further, the present invention is characterized in that a black cloth covering a solid body and / or a water supply material 18 for supplying the raw water up to the carbon material 7 is provided inside the raw water storage tank 17 by a capillary phenomenon. The distilled water demineralizer according to any one of 1.

(第8の発明)
また、本発明は、前記原水の貯槽17に原水を透明ドーム7の外から供給するパイプ19、原水供給槽20、及び該原水供給槽を設置する治具21を有する請求項1から7記載のいずれかに記載の蒸留水造水装置である。
(Eighth invention)
Further, the present invention has a pipe 19 for supplying raw water from the outside of the transparent dome 7 to the raw water storage tank 17, a raw water supply tank 20, and a jig 21 for installing the raw water supply tank. The distilled water desalination apparatus according to any one of the claims.

本発明の蒸留水造水装置は、太陽光追随装置を必要とせず、同じ状態に設置しても世界のどの地点でも、一年中、一日中、常に最大の日射を受けることができる装置であり、河川水、海水や汚染水等の原水の太陽熱による蒸留・造水効率が従来の造水装置に比べてはるかに高い装置である。また、構造や使用材料が従来の平型装置(過大な断熱材や枠材が必要)に比べて極めて高性能、高機能であり、又、太陽追随型の装置(多数のミラーやパラボラ型のミラーをそれぞれ最適の向きに制御するコンピューター制御のソーラートレッキング装置が必要)に比べて、極めて簡単で、軽量・安価であり、設置、移動させるのに全く障害のない装置である。本発明の装置を用いることによって、1m2程度の設置面積で、一家(4〜5名程度)が一日に必要な飲料水(12−20L)を供給可能である。 INDUSTRIAL APPLICABILITY The distilled water desalination apparatus of the present invention is a device that does not need a solar tracking device and can receive maximum solar radiation all year round, all day long even if installed in the same state at any point in the world. This is a device with much higher efficiency of distillation / salting by raw water such as river water, sea water, and contaminated water by solar heat compared with the conventional desalination device. In addition, the structure and materials used are extremely high-performance and high-performance compared to the conventional flat type device (which requires excessive heat insulating material and frame material), and the sun-following type device (many mirrors and parabolic type devices). It requires a computer-controlled solar trekking device to control the mirrors in their optimal orientations), and is extremely simple, lightweight and inexpensive, and has no obstacles for installation and movement. By using the device of the present invention, a household (about 4 to 5 people) can supply drinking water (12-20 L) necessary for one day with an installation area of about 1 m 2.

本発明の透明ドームの概略図(但し、内部に含む立体9等は省いて記載)Schematic diagram of the transparent dome of the present invention (however, the solid 9 included in the inside is omitted) 本発明の透明ドーム7の骨材1の先端部3、受け皿4、受け皿の周辺部5(先端部の受け穴)の概略図、A:受け皿の内側で受け穴が止まっている。B:受け穴が受け皿を貫通している。C:受け穴が受け皿の上部に出ている。A schematic view of the tip portion 3 of the aggregate 1 of the transparent dome 7 of the present invention, the receiving tray 4, the peripheral portion 5 of the receiving tray (receiving hole of the tip portion), A: The receiving hole is stopped inside the receiving tray. B: The receiving hole penetrates the tray. C: The receiving hole is on the upper part of the tray. 受け皿4の平面図の例示、A:円形の受け皿、B:六角形の受け皿Example of plan view of the saucer 4, A: circular saucer, B: hexagonal saucer 受け皿4の斜視図。11:円錐状の受け皿、12:半球状の受け皿、12:半楕円球状の受け皿、14:多角錘状の受け皿、15:平面盆状の受け皿。The perspective view of the saucer 4. 11: conical saucer, 12: hemispherical saucer, 12: semi-elliptical spherical saucer, 14: polygonal pyramidal saucer, 15: flat tray saucer. 透明ドーム7内部の立体9の一例。A:1個の立体の例、B:複数個の立体の例。An example of the solid 9 inside the transparent dome 7. A: Example of one solid, B: Example of multiple solids. 立体9の断面図の例示。A:立体の上部に原水の貯槽17を持つ例、B:立体の上部に原水を入れたビンを持つ例。An example of the sectional view of solid 9. A: An example in which a raw water storage tank 17 is provided at the upper part of the solid, B: An example in which a raw water bottle is placed at the upper part of the solid. 立体9の内部の原水の貯槽17、及び原水を吸い上げる吸水材18及び黒色の布帛8の配置の一例。An example of the arrangement of the raw water storage tank 17 inside the three-dimensional body 9, the water absorbing material 18 for sucking the raw water, and the black cloth 8. 透明ドーム7の外部の原水供給槽20からドーム内の立体の原水の貯槽17への原水の自動供給システムの一例。A:概略図、B:原水の供給パイプ19と立体の原水の貯槽17との関係の一例。An example of an automatic supply system of raw water from a raw water supply tank 20 outside the transparent dome 7 to a three-dimensional raw water storage tank 17 inside the dome. A: Schematic diagram, B: An example of the relationship between the raw water supply pipe 19 and the three-dimensional raw water storage tank 17.

本発明の造水装置での、透明ドーム7は、湾曲した複数の骨材(リブ)1の組合せによりドーム構造を形成する。骨材はプラスチック、竹材、サトウキビの硬皮、金属等歪曲させることが出来る材料であれば、素材の種類は問わない。骨材の断面形状は、円形、楕円形、多角形、扁平等の構造が好ましく、又、中空でも中実でも良い。コスト、加工性、耐久性などの観点から最適化する。例えば、プラスチックでは、ポリプロピレン(PP),ポリエチレン(PE)、ポリシクロオレフィン(COC、COP)等のポリオレフィン類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ナイロン6、ナイロン66、ナイロン12、ナイロン11等のポリアミド類、ポリオキキメチレン(POM)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)等が使用できる。プラスチック骨材の色は無色・有色使用可能であるが、淡色或いは無色透明の方が日射の透過率を高める点で好ましい。 The transparent dome 7 in the water producing apparatus of the present invention forms a dome structure by combining a plurality of curved aggregates (ribs) 1. The aggregate may be of any type as long as it is a material that can be distorted, such as plastic, bamboo, hard cane of sugar cane, and metal. The cross-sectional shape of the aggregate is preferably circular, elliptical, polygonal, flat, etc., and may be hollow or solid. Optimize from the viewpoint of cost, workability, durability, etc. For example, in plastics, polyolefins such as polypropylene (PP), polyethylene (PE), polycycloolefin (COC, COP), polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon 6, nylon 66. Polyamides such as nylon 12, nylon 11 and the like, polyoxymethylene (POM), polystyrene (PS), polycarbonate (PC), polyvinyl chloride (PVC) and the like can be used. Although the color of the plastic aggregate can be colorless or colored, a light color or a colorless and transparent color is preferable in terms of increasing the transmittance of solar radiation.

湾曲した骨材1は、永久歪により湾曲させたもの或いは力を加えて歪曲させたものでもよい。骨材はほぼ中央部(天頂部)22で固定して、ドーム形状を形成させる。固定法は、接着剤固定、ピン留め、ネジ留め、針金留め、クリップ留め、ソケット留め、或いはビニール傘の様なろくろで留める方法などがある。目的や用途によって選定できる。 The curved aggregate 1 may be curved by permanent set or may be bent by applying force. The aggregate is fixed at a substantially central portion (zenith portion) 22 to form a dome shape. The fixing method includes an adhesive fixing method, a pin fixing method, a screw fixing method, a wire fixing method, a clip fixing method, a socket fixing method, and a method of fixing with a lathe like a vinyl umbrella. It can be selected according to the purpose and application.

ドーム形状をした骨材1の上部或いは下部に透明なプラスチックシート或いはフィルム、或いはガラス板6を設置して透明ドーム7を作ることが出来る。フィルム或いはシートの骨材への固定はピン、ネジ、クリップ、針金、プラスチック紐等で可能である。 The transparent dome 7 can be made by installing a transparent plastic sheet or film or a glass plate 6 on the upper or lower part of the dome-shaped aggregate 1. The film or sheet can be fixed to the aggregate with pins, screws, clips, wires, plastic strings, or the like.

湾曲した骨材1により形成した透明なドーム7は、より簡単には透明のテント構造物或いはビニール傘構造物を転用・応用することにより、軽量・安価・折り畳みが可能な透明ドームを形成でき、且つ、デザインが多種多様に可能となり、利用者にとって個性のある装置とすることができ、田舎においても、都会においても、山間部においても、海岸部においても、周囲にマッチするデザインが可能になり、好ましい。 The transparent dome 7 formed by the curved aggregate 1 can be formed into a lightweight, inexpensive, and foldable transparent dome by diverting and applying a transparent tent structure or a vinyl umbrella structure. In addition, a wide variety of designs are possible, and it is possible to make the device unique to the user, and it is possible to design that matches the surroundings in the countryside, the city, the mountains, and the coast. ,preferable.

本発明の透明ドーム1のシート或いはフィルム6の内側は親水性の方が、蒸発した水による水滴が出来にくく、太陽光透過性を維持できるので好ましい。内側で凝縮した水は常にドームの下方に流れ落ちる。親水化は、親水化処理剤(例えば、シリコーン系親水化剤,光触媒によるコーティング)による処理,酸化チタンやシリカ等のコーティング,プラズマ処理,オゾン処理,或いはコロナ放電処理、或いは水への親和性の高いシート或いはフィルム材料等を使うことによって行うことができる。例えば、裏面にポリ塩化ビニル(PVC),ポリビニルアルコール(PVA),ポリ(エチレン・ビニルアルコール)(EVA)、ポリアミド(PA)、ポリ乳酸(PLA)を使用し、表面をポリエチレンテレフタレート(PET),ポリエチレン(PE),ポリプロピレン(PP),ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)を使用した多層化フィルムやシートとする事によって、蒸発した水分が透明ドームの内側に水滴にならず、自然と流れ落ち、より効果が高められる。 It is preferable that the inner side of the sheet or film 6 of the transparent dome 1 of the present invention is hydrophilic, because water droplets due to evaporated water are less likely to be formed and sunlight transparency can be maintained. Water condensed inside will always run down below the dome. Hydrophilization includes treatment with a hydrophilic treatment agent (for example, silicone-based hydrophilizing agent, photocatalytic coating), coating with titanium oxide or silica, plasma treatment, ozone treatment, corona discharge treatment, or affinity for water. This can be done by using high sheet or film material or the like. For example, polyvinyl chloride (PVC), polyvinyl alcohol (PVA), poly (ethylene vinyl alcohol) (EVA), polyamide (PA), polylactic acid (PLA) are used for the back surface, and polyethylene terephthalate (PET) is used for the surface. By using polyethylene (PE), polypropylene (PP), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT) as a multi-layered film or sheet, the evaporated water does not become water drops inside the transparent dome. , It naturally flows away, and the effect is enhanced.

透明ドーム1に使用する透明フィルムとしては、通常、透明プラスチックの無延伸フィルム、一軸延伸フィルム、二軸延伸フィルム或いはブロー延伸フィルムが利用でき、厚さは通常10μm以上、好ましくは20μm以上、更に好ましくは30−100μmである。また、透明シートとしては押し出しシート或いはキャスト法シート或いは真空成形シートが使用でき、厚さは通常50μm以上、好ましくは70μm以上、更に好ましくは100μm〜3mmである。プラスチック成形体としては射出成形法或いは押し出し成型法で成形される成形体であり、通常厚さ0.3mm以上、好ましくは0.5〜3mmである。多層化シート或いはフィルムは、通常行われている多軸成型機や張り合わせ法等の製造方法で造ることが出来る。また、こうしたフィルムやシートは目の粗い平織物との貼り合わせ(マルティング)も好ましい。また、平面部分などではガラス板も採用できる。ドーム形状や受け皿の形状は本発明の目的に合致するものであれば、特に限定されない。 As the transparent film used for the transparent dome 1, a transparent plastic non-stretched film, a uniaxially stretched film, a biaxially stretched film or a blown stretched film can be used, and the thickness thereof is usually 10 μm or more, preferably 20 μm or more, more preferably Is 30-100 μm. Further, as the transparent sheet, an extruded sheet, a cast sheet or a vacuum formed sheet can be used, and the thickness thereof is usually 50 μm or more, preferably 70 μm or more, more preferably 100 μm to 3 mm. The plastic molded product is a molded product molded by an injection molding method or an extrusion molding method, and usually has a thickness of 0.3 mm or more, preferably 0.5 to 3 mm. The multi-layered sheet or film can be produced by a commonly used manufacturing method such as a multi-axis molding machine or a laminating method. In addition, such a film or sheet is also preferably laminated with a plain weave fabric (malting). In addition, a glass plate can be used for the flat portion. The dome shape and the shape of the tray are not particularly limited as long as they meet the object of the present invention.

本発明の透明ドーム7は実質的に密閉していることが好ましい。実質的に密閉しているとは、完全な密閉構造でなくても、多量の風が入らない程度に閉じた空間を有すればよく、例えば、数mm程度の隙間は許容できる。その為には、テント構造或いは傘構造の骨材1の先端部(露先)3を固定する穴5を周辺部に有するプラスチック製の受け皿4を置いて、ドーム構造の骨材1を固定する。穴は単なる穴でも良いし或いは穴に相当するパイプを設置してもよい。穴の大きさ(直径)は露先が入ればよいが、余り大きいと固定が緩くなり、傘構造物が不安定になるので、好ましくは露先の最大長の高々1.5倍、好ましくは1.1〜1.3倍である。穴の深さは露先の少なくとも5mm入ればよく、好ましくは7mm以上入ることである。また、穴は通常受け皿を突き抜けないが、突き抜けていてもよい。 The transparent dome 7 of the present invention is preferably substantially sealed. The term “substantially closed” means that the closed space does not have to be a completely closed structure as long as it has a closed space that does not allow a large amount of air to enter. For example, a gap of about several mm is acceptable. For that purpose, a plastic tray 4 having a hole 5 for fixing the tip portion (dew point) 3 of the aggregate 1 having a tent structure or an umbrella structure is placed, and the aggregate 1 having a dome structure is fixed. .. The hole may be a simple hole or a pipe corresponding to the hole may be installed. As for the size (diameter) of the hole, the dew tip may be inserted, but if it is too large, the fixing becomes loose and the umbrella structure becomes unstable. Therefore, it is preferably at most 1.5 times the maximum length of the dew tip, preferably It is 1.1 to 1.3 times. The depth of the hole should be at least 5 mm in the dew point, and preferably 7 mm or more. Also, the holes do not normally penetrate the saucer, but they may penetrate.

前記、受け皿4は、プラスチックや防錆機能のある金属板、木板で通常はつくられるが、コスト、軽量性、防錆性、成形性の点でプラスチックの方が好ましい。例えば、プラスチックの射出成型、押し出し成型、圧空成形、真空成形、或いは接着成形で製造できる。受け皿の形状は、円錐状11、半球状12、楕円球状13、及び、多角錘状14の一部、或いは平面盆状15であることが好ましい。好ましくは平面盆状15や半球状12、楕円球状13が好ましい。こうした形状は植木鉢の受け皿、地球儀、各種看板や照明器具或いは広告看板のカバーなどに多くの製造実績があり、より低コストで製造ができる。更に低コストで大型の受け皿製造の為には、周辺部に枠22を有し、上記受け皿の形状の形状を有するプラスチックシート或いはプラスチックフィルムでも構わない。この受け皿は、その底部に貯まった蒸留水を外部に抜き出す為に排水パイプ16を付けることも好ましい。プラスチックの材料は、通常の熱可塑性樹脂や硬化性樹脂のいずれも使用可能であるが、一般的には、成形性やコストの点で優れているポリエチレン(PE)、ポリプロピレン(PP),ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ABS樹脂、フェノール系樹脂、等がより好ましい。こうしたプラスチックの成形法は、通常の成型法で良く、例えば、射出成型、押し出し成型、真空成形、圧空成形、鋳型成形、等の方法が用いられる。 The tray 4 is usually made of plastic, a metal plate having a rust preventive function, or a wooden plate, but plastic is preferable in terms of cost, lightness, rust preventability, and moldability. For example, it can be manufactured by injection molding, extrusion molding, pressure molding, vacuum molding, or adhesive molding of plastic. The shape of the tray is preferably a conical shape 11, a hemispherical shape 12, an elliptic shape 13, a part of a polygonal pyramid shape 14, or a flat tray shape 15. A flat tray 15, a hemisphere 12, and an ellipsoid 13 are preferable. Such a shape has a lot of manufacturing results for a saucer of a flower pot, a globe, various signs, covers of lighting equipment or advertising signs, and can be manufactured at a lower cost. In order to manufacture a large-sized saucer at a lower cost, a plastic sheet or plastic film having a frame 22 in the peripheral portion and having the shape of the saucer may be used. It is also preferable to attach a drain pipe 16 to the outside of the tray to draw out the distilled water stored at the bottom thereof. As the plastic material, any of ordinary thermoplastic resin and curable resin can be used, but in general, polyethylene (PE), polypropylene (PP), polychlorinated resin, which is excellent in moldability and cost, is used. Vinyl (PVC), polyethylene terephthalate (PET), polystyrene (PS), ABS resin, phenolic resin and the like are more preferable. The molding method of such a plastic may be an ordinary molding method, and for example, a method such as injection molding, extrusion molding, vacuum molding, pressure molding, mold molding, or the like is used.

また、受け皿を固定する為に、受け皿の下部に支持台や支柱を付けることも好ましい。 Further, in order to fix the tray, it is also preferable to attach a support or a column to the bottom of the tray.

この透明ドーム1の中には、柱状及び/または錘状の立体9を有する。この立体の存在が、従来の造水装置と異なる本発明の新規な点であり、錘状の立体としては、円錐、三角錐、四角錘等の多角錘などや、柱状の立体として円柱、楕円柱、三角柱、四角柱、五角柱、六角柱等の多角柱が好ましく使用できる。立体の形状は、上述した立体であれば特に制限されないが、なるべく立体間の間隔が一定になるように、異種の立体を組み合わせることも好ましく採用できる。例えば、柱状と錘状の特徴を併せ持った立体、例えば、柱状の下部が幾分広がった形状の立体や錘状体の上部が切れて上面が平面になったような立体も利用できる。該立体は1個でもいいし、複数個でもよいが、複数個の方が太陽熱の吸収が効率的で造水能も改善し、且つ大型化も容易である。該立体は透明な容器の中の下記受け皿10の上に設置する。大きな1個の立体でもよいし(図5A)、複数個(図5B)、例えば、少なくとも4個、好ましくは少なくとも9個、更に好ましくは12〜25個の立体を設置してもよい。立体の間隔は立体の底辺の長さの約1割程度の距離を開けておけばよいが、最大でも50mm程度にする方が、装置のコンパクト化、コストや太陽熱の効率的吸収及び効率的な蒸発に好ましい。 The transparent dome 1 has a columnar and / or conical solid body 9. The existence of this solid is a novel point of the present invention which is different from the conventional water-producing device, and as the solid of a cone, a cone, a triangular pyramid, a polygonal pyramid such as a quadrangular pyramid, etc. Polygonal columns such as columns, triangular columns, quadrangular columns, pentagonal columns, and hexagonal columns can be preferably used. The shape of the three-dimensional shape is not particularly limited as long as it is the above-mentioned three-dimensional shape, but it is also preferable to combine different kinds of three-dimensional shapes so that the distance between the three-dimensional shapes is as constant as possible. For example, a solid body having both columnar and conical features, for example, a solid body in which the lower portion of the columnar body is somewhat widened, or a solid body in which the upper portion of the conical body is cut to form a flat upper surface can be used. The number of the three-dimensional bodies may be one or more, but a plurality of the three-dimensional bodies are more efficient in absorbing solar heat, have improved water-making ability, and can be easily enlarged. The solid is placed on the following tray 10 in a transparent container. There may be one large solid (FIG. 5A) or a plurality (FIG. 5B), for example, at least 4, preferably at least 9, more preferably 12 to 25 solids. The distance between the solids should be about 10% of the length of the bottom of the solids, but a maximum of about 50 mm makes the device compact, cost efficient, and efficient absorption of solar heat and efficient. Preferred for evaporation.

前記立体9は一定の高さがあることが本発明の造水効果を上げる為には必要であり、例えば、高さがない平板の場合(従来技術)は、太陽高度が低い場合(冬の期間、或いは一日の朝夕の時間)では、太陽の入射角が小さく太陽熱を十分に吸収できず、一年を通じて或いは一日を通じて造水効率は低く、実用上の価値は低い。一方、本発明の装置では、一定の高さ以上の立体9を有する。例えば、高さ/(底辺の長さ)を高さパラメーター(H-値)とすると、この値は、通常、0.2以上、好ましくは、0.4以上あれば、季節や日中の時刻によらず、立体の表面を覆っている黒布或いは炭素材料が太陽エネルギーを良く吸収でき、その結果、蒸留効果・造水効果が大きくなる。例えば、太陽熱の吸収は、太陽高度が低い場合は、立体の側面部で吸収し、太陽高度が高くなるにつれて、立体の側面と上面で吸収する。つまり、太陽高度がどの程度であっても、十分に太陽熱を吸収できる。この場合、H-値は大きいほど、太陽高度が低い場合であっても、太陽熱利用による造水効率は向上し、一日当たりの造水量も大きくなる。しかし、H-値は7より大きくなると、装置自体の高さが高くなり、設置が不安定になる。従って、H-値は通常、0.2以上、好ましくは0.4以上、更に好ましくは0.5〜8である。尚、H-値の定義は立体の高さ/(立体の底辺の長さ)であり、底辺の長さは底辺の形状が円であれば直径、或いは楕円であれば(短径+長径)/2であり、三角形、四角形であれば各辺の長さの平均値、五角形以上の多角形であれば、最大・最小の対角線の長さの平均値で定義する。 It is necessary for the solid body 9 to have a certain height in order to improve the water producing effect of the present invention. For example, in the case of a flat plate having no height (prior art), when the solar altitude is low (in winter). During the period, or in the morning and evening hours of the day), the incident angle of the sun is small and the solar heat cannot be sufficiently absorbed, and the water production efficiency is low throughout the year or throughout the day, and its practical value is low. On the other hand, the device of the present invention has a solid body 9 having a certain height or more. For example, if height / (base length) is the height parameter (H-value), this value is usually 0.2 or more, preferably 0.4 or more Regardless of the type, the black cloth or carbon material that covers the surface of the three-dimensional surface can absorb solar energy well, and as a result, the distillation and water-making effects are increased. For example, the absorption of solar heat is absorbed by the side surface of the solid when the altitude of the sun is low, and is absorbed by the side and upper surfaces of the solid as the altitude of the sun increases. That is, the solar heat can be sufficiently absorbed regardless of the altitude of the sun. In this case, the larger the H-value, the higher the efficiency of water production by utilizing solar heat and the greater the amount of water produced per day even when the altitude of the sun is low. However, when the H-value is larger than 7, the height of the device itself becomes high, and the installation becomes unstable. Therefore, the H-value is usually 0.2 or more, preferably 0.4 or more, more preferably 0.5 to 8. The definition of the H-value is the height of the solid / (the length of the bottom of the solid), and the length of the bottom is the diameter if the shape of the base is a circle, or the ellipse (minor axis + major axis). / 2, which is defined as the average value of the length of each side in the case of a triangle or a quadrangle, and the average value of the lengths of the maximum and minimum diagonal lines in the case of a pentagon or larger polygon.

前記立体9の形状は、本発明の目的に合致した形状であれば、それを作る材料は特に限定されない。例えば、発泡スチロール、発泡フェノール、発泡ウレタン等の発泡プラスチック、ポリエチレン、ポリスチレンやポリプロピレン等の汎用プラスチックの成形体、プラスチックシートの成形体、木材の成形体、金属板での成形体、等であるが、軽量性、コスト、製造する容易さ耐腐食性、断熱性などを考慮すると発泡プラスチックやプラスチック成型体或いは木材成形体が好ましい。発泡プラスチックは発泡成型法で一体成型する方法や通常3mm以上、好ましくは5mm以上の厚みの発泡板状物を裁断し・組み合わせ接着させる方法等が採用できる。この方法は、特別の金型が不要で、小ロットの生産に適している。ただ、比較的大ロットの生産では、射出成型、押し出し成型などの通常のプラスチック成型法が好ましい。また、プラスチックシートでは、通常、厚み1mm以上、好ましくは1.5mm以上、更に好ましくは2〜3mmであり、シートの折り曲げ、融着、接着により成型する方法、或いは押し出し成型、射出成型によって一体成型することで製造できる。この方法は小ロットにも、大ロットにも対応でき、又、実際のユーザーの場所で必要に応じて組み立てることが出来る特徴がある。いずれの方法も採用可能であり、ロット数、目的、ユーザーへの輸送などの面から最適の製造方法を選択できる。 The shape of the three-dimensional body 9 is not particularly limited as long as it is in conformity with the object of the present invention. For example, foamed polystyrene, foamed phenol, foamed plastics such as urethane foam, molded products of general-purpose plastics such as polyethylene, polystyrene and polypropylene, molded products of plastic sheets, molded products of wood, molded products of metal plates, etc., In consideration of lightness, cost, easiness of manufacturing, corrosion resistance, heat insulation, etc., foamed plastic, a plastic molded product or a wood molded product is preferable. For the foamed plastic, a method of integrally molding by a foam molding method, a method of cutting and combining and adhering a foamed plate having a thickness of usually 3 mm or more, preferably 5 mm or more can be adopted. This method does not require a special mold and is suitable for small lot production. However, for production of a relatively large lot, ordinary plastic molding methods such as injection molding and extrusion molding are preferable. The thickness of the plastic sheet is usually 1 mm or more, preferably 1.5 mm or more, more preferably 2 to 3 mm. The sheet is formed by bending, fusing, adhering, or by extrusion or injection molding. Can be manufactured. This method is applicable to both small lots and large lots, and can be assembled at an actual user's place as needed. Either method can be adopted, and the optimum manufacturing method can be selected in terms of the number of lots, purpose, transportation to users, and the like.

前記立体9は、その受け皿10の上に設置する。これは立体から流れ落ちる原水を受ける為に必要である。受け皿の大きさは使用する立体を全て並べて置けるだけの面積があればよく、形状には特に制限されない。円形でも良いし、四角形、五角形等の多角形でもよい。ただし、受け皿には貯まった原水がこぼれ落ちない程度の内容積が必要であり、例えば、一定の高さまで受け皿の周辺部に縁がある必要がある。受け皿の形状は水平盆状や中央部がややへこんだ水平盆状が立体を設置する点で好ましく、盆の形状は円形、楕円形、多角形等であり、透明ドームの受け皿4と同形状の方が設置し易く、好ましい。 The solid body 9 is installed on the tray 10. This is necessary to receive the raw water that falls from the solid. The size of the tray is not particularly limited as long as it has an area that allows all the three-dimensional objects to be used to be placed side by side. It may be circular or polygonal such as quadrangular or pentagonal. However, the saucer needs to have an internal volume that does not allow the stored raw water to spill, and for example, the circumference of the saucer must have a rim up to a certain height. The shape of the saucer is preferably a horizontal tray shape or a horizontal tray shape with a slight depression in the center in terms of installing a solid body, and the tray shape is circular, elliptical, polygonal, etc., and has the same shape as the tray 4 of the transparent dome. This is preferable because it is easier to install.

前記立体9の表面は黒色の布及び/或いは炭素材料8で覆われている。この黒色の布及び/或いは炭素材料は、良好な太陽熱(光)吸収材料であり、また、本発明の目的の為には水を十分に含むことができることが必要である。詰まり、立体の表面を覆う黒色の布或いは炭素材料に原水を含ませて、そこに太陽光が照射することによって、黒色の布或いは炭素材料の温度が上昇し、その熱が水を直接加熱し、水が蒸発して透明な容器の内面で凝結して水滴となり、該内面を通じて下方に落下し、容器の底面部に集められて、蒸留水を得ることができる。本発明で、黒色の布や炭素材料に必要な吸水率は、通常好ましくは200%以上、更に好ましくは300〜700%である。吸水率が200%未満では、黒色の布或いは炭素材料全体に均一に吸水・濡れにくくなり、造水効率にも幾分影響することがある。また、700%を超えると、吸水ムラの発現が懸念され、熱容量の増加による造水効率の低下も心配される。吸水性は、乾燥重量:w0の試料を十分に水に浸し、10mm程度の網目の上に30分放置し、湿潤重量:w1を測定し、吸水率(%)=(w1−w0)/w0×100にて計算する。 The surface of the solid body 9 is covered with a black cloth and / or a carbon material 8. This black cloth and / or carbon material is a good solar heat (light) absorbing material, and for the purposes of the present invention it must be sufficiently water-containing. The black cloth or carbon material covering the surface of the solid body is impregnated with raw water, and the sunlight irradiates the water, which raises the temperature of the black cloth or carbon material, which heats the water directly. The water evaporates and condenses on the inner surface of the transparent container to form water drops, which drop downward through the inner surface and are collected on the bottom surface of the container to obtain distilled water. In the present invention, the water absorption required for a black cloth or carbon material is usually preferably 200% or more, more preferably 300 to 700%. If the water absorption rate is less than 200%, it becomes difficult to uniformly absorb and wet the black cloth or the entire carbon material, and the water-making efficiency may be somewhat affected. On the other hand, if it exceeds 700%, uneven water absorption may occur, and water production efficiency may decrease due to an increase in heat capacity. For the water absorption, a sample having a dry weight: w0 was sufficiently immersed in water, allowed to stand on a mesh of about 10 mm for 30 minutes, and a wet weight: w1 was measured. Water absorption rate (%) = (w1-w0) / w0 Calculate with x100.

本発明に使用する黒色の布帛や炭素材料としては、通常市販されている黒色の布帛や炭素材料が使用可能である。例えば、黒色の布帛としては、綿、麻、ウール等の天然繊維の黒染色物やポリエステル、アクリル、レーヨン、ナイロンなどの化合成繊維を染色したもの、或いは、カーボンブラックや黒色顔料を練り込んだ原着繊維を用いることが出来、それを織物にしたもの、編み物にしたもの、フェルト、モケット、綿状物等の繊維構造物が使用できる。また、炭素材料としては、木炭、竹炭、おがくずの炭化物、バガス炭、紙の炭化物、等のバイオマス炭、ピッチ系炭素、石油系炭素、等の材料があり、それを織物にしたもの、編み物にしたもの、フェルト、綿状物にしたもの、或いは、シート状に成型体にした形状で使用できる。 As the black cloth or carbon material used in the present invention, a commercially available black cloth or carbon material can be used. For example, as the black fabric, a black dyed product of a natural fiber such as cotton, hemp, or wool, a dyed product of a synthetic fiber such as polyester, acrylic, rayon, or nylon, or a carbon black or a black pigment is kneaded. Sown fibers can be used, and fiber structures such as woven fabrics, knitted fabrics, felts, moquettes, and cotton-like products can be used. Further, as carbon materials, there are materials such as charcoal, bamboo charcoal, sawdust charcoal, bagasse charcoal, paper charcoal, biomass charcoal, pitch-based carbon, petroleum-based carbon, etc., which are woven or knitted. It can be used in the form of a sheet, a felt, a cotton-like material, or a sheet-shaped molded body.

前記黒色の布や炭素材料の厚さは、通常0.3mm以上、好ましくは0.5〜5mm、更に好ましくは、1〜3mmである。0.3mmより薄いと太陽光の吸収にムラが生じ、ト−タルとしての造水性能が低下する。また、3mmより厚いと装置自体の重量が増加し、装置の耐久性に問題がでる可能性があり、造水性能には殆ど影響がない。フェルト或いは織編物の目付け(1m2面積当たりの質量)は、好ましくは50g以上,より好ましくは100g以上,更に好ましくは150〜400gである。こうした材料で立体を覆う方法は、特に制限されないが、例えば、対象となる立体の形に縫製したり、或いは編み上げたりしたものを立体に被せる方法や、立体表面に接着剤や両面テープで接着させる方法、ステープラー、ピン、ネジなどで点状に或いは線状に留める方法、点状或いは線状に熱融着させる方法等、組み合わせる材料によって最適の方法が採用でき、また、用途、目的に応じて適宜選択する。 The thickness of the black cloth or carbon material is usually 0.3 mm or more, preferably 0.5 to 5 mm, and more preferably 1 to 3 mm. If the thickness is less than 0.3 mm, the absorption of sunlight will be uneven, and the water-making performance of the total will be deteriorated. On the other hand, if it is thicker than 3 mm, the weight of the device itself increases, which may cause a problem in the durability of the device, and there is almost no effect on the water production performance. The basis weight (mass per 1 m2 area) of the felt or woven or knitted material is preferably 50 g or more, more preferably 100 g or more, and further preferably 150 to 400 g. The method of covering the three-dimensional object with such a material is not particularly limited, but for example, a method of covering the three-dimensional object with a target three-dimensional shape, or a method of covering the three-dimensional object with an adhesive or a double-sided tape on the three-dimensional surface The best method can be adopted depending on the materials to be combined, such as a method, a stapler, a pin, a screw, etc., a method of fixing in a dot shape or a line shape, a method of heat fusion in a dot shape or a line shape, etc. Select as appropriate.

前記立体9の内部に原水を貯める貯槽17を有することが出来る。この貯槽は発泡材や木材の場合では上部から穴を設けることで作ることが出来る。或いは、プラスチックであれば図6Aの様に上部に貯槽17を設置した立体を一体成型することができる。又、立体がプラスチックシートや金属板、木材等で作られていれば、内部にビンやプラスチック容器などを入れておくことで貯槽とすることできる(図6B)。この原水の貯槽17或いは22によって、一日〜数日間に亘る蒸発に必要な原水を常にこの貯槽から供給できることになり、効率アップと手間の削減が両立できる。 A storage tank 17 for storing raw water may be provided inside the solid body 9. In the case of foam or wood, this storage tank can be made by making a hole from the top. Alternatively, if it is made of plastic, a solid body having a storage tank 17 installed on the upper portion as shown in FIG. 6A can be integrally molded. If the three-dimensional object is made of plastic sheet, metal plate, wood, etc., it can be used as a storage tank by putting a bottle, a plastic container, etc. inside (FIG. 6B). The raw water storage tank 17 or 22 can always supply the raw water necessary for evaporation for one day to several days from this storage tank, so that both efficiency improvement and labor reduction can be achieved.

この原水の貯槽17から立体9の表面を覆う黒色の布帛或いは炭素材料(即ち、太陽熱吸収材)8に原水を供給する為に、毛細管現象に優れる給水・透水材18を利用することができる。この給水・透水材としては、綿、シルク、レーヨン、紙の天然繊維・半合成繊維、等や、アクリル,ナイロン,ポリエステル,レーヨン等の合成繊維,或いは炭素繊維等の良好な吸水性を有する材料から作った織物、編み物、紐状物,短冊布状物,綿状物,不織布状物,又はチューブ状物から選択される1種以上を使用できる。この給水・透水材によって、原水が常時、貯槽から太陽熱吸収材に常時供給される。毛細管現象を利用して水を輸送する為に、吸水・透水材自体を、公知の方法(プラズマ処理、コロナ処理、アルカリ処理、酸処理)で親水化することも好ましい。給水速度は吸水材の幅、厚さ、数などで任意に調製できる。繊維製品や紙製品の毛細管現象を定量的に表現する方法としてJISL1907(バイレックス法)があるが、本発明でいう適度の吸水性を有するとは、この定義では、通常、好ましくは少なくとも2cm(/10分)、更に好ましくは少なくとも3cm(/10分)である。例えば、綿布は約10cm程度、アクリル繊維布は8cm程度、紙製品は10cm以上、ポリエステルやナイロンなどの合成繊維も親水化すれば8〜10cm程度になり、本発明の給水材に好ましく使用できる。この給水・透水材18は黒い布帛や炭素材料8と一体化されていることお好ましい。一体化とはどこかの部分(材料8の中央部が好ましい)で接着、密着、縫い合わせ、或いは編み物(好ましくは筒編み物)では、一部で編みこまれているものである。この事によって、材料8と材料18が一体として取り扱われ、設置や設定が容易になる。 In order to supply the raw water from the raw water storage tank 17 to the black cloth or the carbon material (that is, the solar heat absorbing material) 8 that covers the surface of the solid body 9, it is possible to use the water supply / water permeable material 18 excellent in the capillary phenomenon. As the water / water-permeable material, natural fibers / semi-synthetic fibers such as cotton, silk, rayon, paper, etc., synthetic fibers such as acrylic, nylon, polyester, rayon, etc., or carbon fiber etc. having a good water absorption property. One or more kinds selected from woven fabrics, knitted fabrics, string-shaped products, strip-shaped fabrics, cotton-shaped products, non-woven fabrics, or tubular products can be used. By this water supply / permeable material, raw water is always supplied from the storage tank to the solar heat absorbing material. In order to transport water by utilizing the capillary phenomenon, it is also preferable to hydrophilize the water absorbing / permeable material itself by a known method (plasma treatment, corona treatment, alkali treatment, acid treatment). The water supply rate can be arbitrarily adjusted depending on the width, thickness and number of the water absorbing material. JISL1907 (Baylex method) is a method for quantitatively expressing the capillarity phenomenon of textile products and paper products, but having a proper water absorption in the present invention is usually preferably at least 2 cm (in this definition). / 10 minutes), more preferably at least 3 cm (/ 10 minutes). For example, a cotton cloth is about 10 cm, an acrylic fiber cloth is about 8 cm, a paper product is 10 cm or more, and synthetic fibers such as polyester and nylon can be made hydrophilic to about 8 to 10 cm, which can be preferably used for the water supply material of the present invention. It is preferable that the water supply / permeable material 18 is integrated with the black cloth or the carbon material 8. Integral means that some part (preferably the central part of the material 8) is bonded, adhered, sewn, or knitted (preferably tubular knitting), partly knitted. By this, the material 8 and the material 18 are handled as one body, and installation and setting are facilitated.

前記原水の貯槽17或いは22の容量は、多角柱の底面積の合計:S(m2)に関係するが、少なくとも20×Sリットル(L)、好ましくは30×S(L)以上である。20×S(L)より少ないと、一日中造水する場合、途中で消費されて、なくなる可能性があり、原水を供給しないと造水が持続しない。更に、多角柱に有する原水の貯槽に外部から原水を自動的に給水する為に、外部の原水タンクからパイプやチューブを通じてサイホン現象を利用して原水を供給することもできる(図8)。詰まり、外部の原水の貯槽20に原水を一定のレベルまで蓄えておくと、内部の立体中の原水貯槽17へと繋がった配管19によるサイホン作用によって、立体中の水も一定量まで常に保持される。従って、原水の貯槽から立体の側面の布地等8への原水の供給も常に一定となり、安定した水の蒸発を可能にする。また、夜間等、この装置を運転しない場合には、外部に通じる配管によって、内部の立体中の原水を抜いておくことも可能である。こうした事が全てエネルギー無しで可能であることも本発明装置の特徴の一つである。 The capacity of the raw water storage tank 17 or 22 is related to the total area of the bottoms of the polygonal columns: S (m2), but is at least 20 × S liter (L), preferably 30 × S (L) or more. If it is less than 20 × S (L), it may be consumed in the middle of the process of making water all day long, and the water may be lost, and if the raw water is not supplied, the water making will not continue. Further, in order to automatically supply the raw water from the outside to the raw water storage tank of the polygonal column, the raw water can be supplied from the external raw water tank through a pipe or tube by using the siphon phenomenon (FIG. 8). If the raw water is clogged and stored in the external raw water storage tank 20 to a certain level, the siphon action by the pipe 19 connected to the internal three-dimensional raw water storage tank 17 keeps a certain amount of water in the three-dimensional body. It Therefore, the supply of raw water from the raw water storage tank to the fabric 8 or the like on the three-dimensional side is always constant, and stable water evaporation is possible. Further, when the apparatus is not operated at night or the like, it is possible to drain the raw water in the solid inside by using a pipe communicating with the outside. It is one of the features of the device of the present invention that all of these things can be done without energy.

本発明の目的の個人或いは1家族(4−5名)が1日に必要な飲料水(国連の緊急給水量は1ガロン/人/日)を得る為には、立体の低面積の合計が1m2あれば、十分である。実際の装置の大きさとしては、曇りの日や故障のメンテナンス等の予備品も考慮しても、透明な容器内の立体の低面積の合計が1m2の装置1台或いは2台あれば十分である。この性能は、従来提案されている装置の性能の通常3-5倍以上の性能である。又、該装置の性能最大化の為には、例えば、底辺が20cmで高さが0.5〜2mの四角柱を20〜30個並べたものが好ましい例として考えられる。更に、本発明の装置の規模を比例的に拡大することによって、100名〜数100名からなる小集落にも、容易に対応できる。 For the purpose of the present invention, an individual or one family (4-5 people) obtains the drinking water required for one day (the UN emergency water supply is 1 gallon / person / day). 1 m2 is enough. As for the actual size of the device, one or two devices with a total cubic area of 1 m2 in a transparent container are enough, even when considering spare parts such as cloudy days and maintenance for breakdowns. is there. This performance is usually 3-5 times higher than that of the conventionally proposed device. Further, in order to maximize the performance of the device, it is considered that a preferable example is one in which 20 to 30 square pillars having a base of 20 cm and a height of 0.5 to 2 m are arranged. Furthermore, by proportionally expanding the scale of the device of the present invention, it is possible to easily deal with a small village consisting of 100 to several hundred people.

従来の装置では効率を最大化する際には造水器面に日射が直射するように装置を太陽の向き、動きに応じて動かす(太陽追随:ソーラートラッキング)機構が必要であり、装置の大型化や高コスト化になったが、本発明では単に静置(固定)しておくだけで、装置を太陽の方向に動かさなくても、最大の造水効果が得られる非常に簡単・安価な装置である。又、軽量の為に、組み立て・移動も容易であり、且つ、運転の手間も必要ないことが本発明装置の最大の特徴である。 To maximize efficiency, conventional equipment requires a mechanism that moves the equipment in accordance with the direction and movement of the sun (solar tracking: solar tracking) so that solar radiation directly hits the surface of the fresh water generator. However, in the present invention, by simply leaving it stationary (fixed), the maximum water producing effect can be obtained without moving the device in the direction of the sun. Very simple and inexpensive. It is a device. Further, since the device is lightweight, it is easy to assemble and move, and the greatest feature of the device of the present invention is that no labor is required for driving.

以下、実施例を示して本発明を具体的に説明するが、本発明はこれに何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

実施例1
予め熱を加えて歪曲させた直径2mmの竹ヒゴで造ったリブを4本使い、直径40cm、高さ40cmのドーム状物を作成した。リブの頂点は針金で固定した。リブの端面は直径45cm、厚さ2cmの発泡フェノール樹脂の周辺部に開けた直径2.1mm、深さ1.8mmの穴に固定した。リブ構造物の上部全部及びお盆の周辺部まで厚さ30μmのポリエチレンテレフタレートフィルムを接着剤でしわが出来ないように貼り付け、透明なドームを形成した。次いで、厚みが2mmのポリプロピレン板を用いて、一辺が5cmで高さが10cmで一方に底面を有する正四角柱と一辺が5cmで高さが5cmで一方に底面を有する正四角柱をお互いの底面を両面テープで接着して、内部に原水の貯槽を持つ本発明に使用する立体(四角柱)を作成する。この四角柱を、周辺部に2cmの高さの縁を有する直径30cmのポリプロピレン製のお盆の上に9個並べた。四角柱(立体)の原水の貯槽には塩分濃度3.5%の食塩水(疑似海水)を上部から1cm迄、注水し、該貯槽の内部に吸水材としてガーゼ布の一端を浸して、他端を該四角柱の側面に沿って上部から10cmまで垂らした。該吸水材の上に、立体の外面に沿って太陽熱吸収材・水分蒸発材として、黒色の布帛としては綿のモケット(立毛の長さ3mm、目付250g、吸水率450%)を使用した。この布帛を四角柱の上面及び側面の大きさに切断し、それを各側面に接着剤で点状に付け、接着した。次いで塩分濃度3.5%の原水をモケットに満遍なく十分に浸透させた。試験中、原水は貯槽から吸い上げられて途切れることなく、モケットを濡らしていた。本装置の性能評価は、原水及び布帛を含む四角柱(立体)及びそれ載せているポリプロピレン製のお盆の重量(w1)、及び、太陽の照射強度(W)を一定時間毎に測定した。四角柱+受け皿の重量(w1)の変化を測定し、水の蒸発速度は下式にて規定面積、時間の値に規格化した。
蒸発速度(g/m2/hr)=蒸発量(g)/面積(m2)/時間(hr)
ここで面積は四角柱の底面の面積を示す。日射量(太陽エネルギー)(w)は照度計(佐藤商事製SPM−SD)を地面に置き、実験時間中の平均値を使用した。また、この時の太陽の日射エネルギーがすべて完全に原水の蒸発に利用されるとした場合の理論蒸発速度は下記式で計算できる。860はワットからカロリーへの単位変換定数である。水の蒸発潜熱は測定中の温度での蒸発潜熱を用いる。
理論蒸発速度(g/m2/hr)=日射強度(w/m2/hr)×860(cal/w)/水の蒸発潜熱(cal/g)
太陽エネルギー利用効率(%)は下記式で計算するが、これは太陽エネルギーがどれだけ有効に原水の蒸発に利用できたかを示す目安になる。この効率が大きい程、装置の造水性能が高いということになる。
太陽エネルギー利用効率(%)=蒸発速度(g/m2/hr)/理論蒸発速度(g/m2/hr)×100
実験は、8月の晴れた日の午後に行った。日射強度(平均値)は751.7w/Hr/m2であり、蒸発量は650.2gであった。この値から、造水に掛かる太陽熱利用効率は266%(数字の確認)となり、従来の造水性能(最大約40%程度)と比べてはるかに高い値となった。蒸発した水は透明なドームの内側で凝縮・液滴化し、それが下方に集まり、蒸留水として回収される。原水中の塩分は四角柱の原水貯槽の中に濃縮され、残るが、外部への排水パイプ16を通じて、任意に外部へ排出することもできる。
Example 1
Four ribs made of bamboo higo with a diameter of 2 mm that had been preheated and distorted were used to form a dome-shaped object having a diameter of 40 cm and a height of 40 cm. The top of the rib was fixed with wire. The end surface of the rib was fixed to a hole having a diameter of 2.1 mm and a depth of 1.8 mm formed in the peripheral portion of a foamed phenol resin having a diameter of 45 cm and a thickness of 2 cm. A polyethylene terephthalate film having a thickness of 30 μm was adhered to the entire upper part of the rib structure and the peripheral part of the tray with an adhesive so as to prevent wrinkles from forming a transparent dome. Then, using a polypropylene plate having a thickness of 2 mm, a regular square column having a side of 5 cm and a height of 10 cm and a bottom surface on one side and a regular square column having a side of 5 cm and a height of 5 cm and a bottom surface on one side are placed on each other. Bonding with a double-sided tape to form a solid body (quadratic prism) used in the present invention having a storage tank for raw water inside. Nine square pillars were arranged on a polypropylene tray having a diameter of 30 cm and a rim having a height of 2 cm at the periphery. Salt water with a salt concentration of 3.5% (pseudo seawater) was poured into the storage tank of raw water of a square column (3D) up to 1 cm from the top, and one end of the gauze cloth was dipped into the storage tank as a water absorbent material. The end was hung from the upper part to 10 cm along the side surface of the square pole. On the water-absorbent material, along the outer surface of the solid body, as a solar heat-absorbing material / water-evaporating material, as a black cloth, cotton moquette (standing length: 3 mm, basis weight: 250 g, water absorption rate: 450%) was used. This cloth was cut into the size of the upper surface and side surface of a quadrangular prism, and it was adhered to each side surface in a dot shape with an adhesive. Then, raw water having a salinity of 3.5% was thoroughly and thoroughly permeated into the moquette. During the test, the raw water was sucked up from the storage tank and wet the moquette without interruption. In the performance evaluation of this device, the weight (w1) of a quadrangular prism (three-dimensional) containing raw water and cloth and the polypropylene tray mounted on it, and the irradiation intensity (W) of the sun were measured at regular intervals. The change in the weight (w1) of the square pole + saucer was measured, and the evaporation rate of water was standardized to the values of the specified area and time by the following formula.
Evaporation rate (g / m2 / hr) = evaporation amount (g) / area (m2) / hour (hr)
Here, the area indicates the area of the bottom surface of the square pole. For the amount of solar radiation (solar energy) (w), an illuminance meter (SPM-SD manufactured by Sato Corporation) was placed on the ground, and the average value during the experiment time was used. The theoretical evaporation rate can be calculated by the following equation, assuming that the solar radiation energy of the sun at this time is completely utilized for evaporation of raw water. 860 is a unit conversion constant from watts to calories. The latent heat of vaporization of water uses the latent heat of vaporization at the temperature during measurement.
Theoretical evaporation rate (g / m2 / hr) = solar radiation intensity (w / m2 / hr) × 860 (cal / w) / evaporation latent heat of water (cal / g)
The solar energy utilization efficiency (%) is calculated by the following formula, which is a measure of how effectively solar energy can be used for evaporation of raw water. The higher this efficiency is, the higher the desalination performance of the device is.
Solar energy utilization efficiency (%) = evaporation rate (g / m2 / hr) / theoretical evaporation rate (g / m2 / hr) x 100
The experiment was conducted on a sunny afternoon in August. The solar radiation intensity (average value) was 751.7 w / Hr / m2, and the evaporation amount was 650.2 g. From this value, the solar heat utilization efficiency for water production was 266% (confirmation of the figure), which was far higher than the conventional water production performance (about 40% at maximum). The evaporated water condenses and drops inside the transparent dome, collects below, and is collected as distilled water. Although the salt content in the raw water is concentrated and remains in the raw water storage tank in the shape of a square pole, it can be optionally discharged to the outside through the drain pipe 16 to the outside.

従来の太陽熱を利用した蒸留水造水装置は、従来の装置では効率を最大化する際に、造水器に日射が直射するように装置を太陽の向き、動きに応じて動かす(太陽追随:ソーラートラッキング)機構が必要となり、装置の大型化や高コスト化が必須で、性能の点や製造コスト、運転コスト・運転技術の点で実用化は困難であった。ソーラートレッキングなしでは造水能力は微々たるものであった。一方、本発明の装置は、方向を気にせずに単に静置(固定)しておくだけでよく、装置を太陽の方向に動かさなくても最大の造水効果が得られ、産業上及び人道上において大きな価値がある。つまり、本発明の主要な目的である個人或いは1家族(4〜5名)が1日に必要な飲料水(国連の緊急給水量は1ガロン/人/日)を得る為に、低面積が1m2程度の装置であれば、十分であり(従来の装置では4m2あっても不十分であった)、製造コスト、設置コスト或いは運転コスト的にも、運転技術的にも非常に優位であり、また、軽量で折り畳み容易の為に移動運搬も極めて容易である。従って、十分な飲料水が確保できないサンゴ礁の国々、飲料水製造に十分な設備やエネルギーを持たない国々、地域、難民キャンプ、或いは小型船舶での遭難時等の非常用装置、或いは先進国であっても洪水や地震等の大規模災害で一時的に電力・飲料水がストップしている地域での、個人用、家族用、小集団用の利用には大きな価値がある。 A conventional distilled water desalination system using solar heat moves the device according to the direction and movement of the sun so that the solar radiation directly hits the water maker when maximizing the efficiency of the conventional device. A solar tracking mechanism was required, and it was essential to increase the size and cost of the device, making it difficult to put into practical use in terms of performance, manufacturing cost, operating cost, and operating technology. Without solar trekking, the water production capacity was insignificant. On the other hand, the device of the present invention need only be left stationary (fixed) regardless of the direction, and the maximum water producing effect can be obtained without moving the device in the direction of the sun. Great value on top. In other words, in order to obtain the drinking water (the emergency water supply of the United Nations is 1 gallon / person / day) required for one day by one person or one family (4 to 5 persons), which is the main purpose of the present invention, a small area is required. A device of about 1 m2 is sufficient (4 m2 was insufficient with the conventional device), and it is very advantageous in terms of manufacturing cost, installation cost or operation cost, and operation technology. In addition, because it is lightweight and easy to fold, it is extremely easy to move and transport. Therefore, it is a coral reef country that does not have sufficient drinking water, a country that does not have enough facilities and energy for drinking water production, an area, a refugee camp, an emergency device such as a small boat in an emergency, or a developed country. However, in areas where electricity and drinking water are temporarily stopped due to large-scale disasters such as floods and earthquakes, there is great value for personal, family, and small group use.

1.ドームの骨材
2.骨材の固定部
3.骨材の先端部
4.受け皿
5.骨材先端部の受け穴
6.透明なプラスチックシート或いはフィルム
7.透明ドーム(全体)
8.黒色の布帛及び/又は炭素材料
9.柱状及び/又は錘状の立体
10.内部の受け皿
11.円錐状の受け皿
12.半球状の受け皿
13.楕円球状の受け皿
14.多角錘状の受け皿
15.平面盆状の受け皿
16.蒸留水の抜出し管
17.立体内部の原水の貯槽
18.給水材
19.原水をドームの外から供給するパイプ
20.ドームの外の原水貯槽
を示す。
1. Dome aggregate 2. Aggregate fixing part 3. Aggregate tip 4. Saucer 5. Receiving hole at the tip of aggregate 6. Transparent plastic sheet or film 7. Transparent dome (whole)
8. Black fabric and / or carbon material 9. Columnar and / or conical solid 10. Internal saucer 11. Conical saucer 12. Hemispherical saucer 13. Oval spherical saucer 14. Polygonal-shaped saucer 15. Flat tray tray 16. Distilled water withdrawal pipe 17. Storage tank for raw water inside the solid 18. Water supply material 19. Pipe for supplying raw water from outside the dome 20. The raw water reservoir outside the dome is shown.

Claims (8)

湾曲した複数の骨材(リブ)1、該骨材は頂点部2で固定され、且つ、骨材の先端部3は、受け皿4の周辺部に設けられている受け穴5で固定され、骨材の上部或いは下部に透明なプラスチックシート或いはフィルム6を有する透明ドーム7、及び該ドームの内部に、表面を黒色の布帛及び/又は炭素材料8で覆った柱状及び/又は錘状の立体9、及び該立体を設置する内部の受け皿10を有することを特徴とする太陽熱を利用した蒸留水造水装置。 A plurality of curved aggregates (ribs) 1, the aggregates are fixed at apexes 2, and the tips 3 of the aggregates are fixed at receiving holes 5 provided in the peripheral portion of the tray 4, A transparent dome 7 having a transparent plastic sheet or film 6 on the upper or lower part of the material, and a columnar and / or weight-shaped solid body 9 whose inside is covered with a black fabric and / or a carbon material 8; Also, a distilled water demineralizer using solar heat, characterized in that it has an internal tray 10 for installing the solid body. 前記骨材1の構造がテント構造或いはビニール傘の骨材の構造を有することを特徴とする蒸留水造水装置。 A distilled water desalination apparatus, wherein the structure of the aggregate 1 has a tent structure or a structure of a vinyl umbrella aggregate. 前記受け皿4が円錐状11、半球状12、楕円球状13、多角錘状14の一部、或いは平面盆状15であることを特徴とする請求項1記載の蒸留水造水装置。 The distilled water desalination apparatus according to claim 1, wherein the tray 4 is a conical shape 11, a hemispherical shape 12, an elliptic shape 13, a part of a polygonal cone shape 14, or a flat tray shape 15. 前記受け皿4の底部に貯まった蒸留水を抜出す為の管16を有することを特徴とする請求項1又は3のいずれかに記載の蒸留水造水装置。 The distilled water desalination apparatus according to any one of claims 1 and 3, further comprising a pipe 16 for withdrawing distilled water stored in a bottom portion of the saucer 4. 前記立体9が複数個であることを特徴とする請求項1記載の蒸留水造水装置。 The distilled water desalination apparatus according to claim 1, wherein a plurality of the solids 9 are provided. 前記立体9が、該立体の内部に原水の貯槽17を有することを特徴とする請求項1又は5記載のいずれかに記載の蒸留水造水装置。 The distilled water desalination apparatus according to claim 1, wherein the solid body 9 has a raw water storage tank 17 inside the solid body. 前記原水の貯槽17内に、毛細管現象で、立体を覆う黒色の布及び/または炭素材料8まで原水を供給する給水材18を有することを特徴とする請求項1又は6のいずれかに記載の蒸留水造水装置。 7. The raw water storage tank 17 comprises a black cloth covering a solid and / or a water supply material 18 for supplying raw water to the carbon material 8 by a capillarity phenomenon, according to claim 1 or 6. Distilled water demineralizer. 前記原水の貯槽17に原水を透明ドーム7の外から供給するパイプ19、原水供給槽20、及び該原水供給槽を設置する治具21を有する請求項1から7記載のいずれかに記載の蒸留水造水装置。 The distillation according to any one of claims 1 to 7, further comprising: a pipe 19 for supplying raw water to the raw water storage tank 17 from outside the transparent dome 7, a raw water supply tank 20, and a jig 21 for setting the raw water supply tank. Water desalination equipment.
JP2018203441A 2018-10-30 2018-10-30 Distilled water production device Pending JP2020069412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203441A JP2020069412A (en) 2018-10-30 2018-10-30 Distilled water production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203441A JP2020069412A (en) 2018-10-30 2018-10-30 Distilled water production device

Publications (1)

Publication Number Publication Date
JP2020069412A true JP2020069412A (en) 2020-05-07

Family

ID=70548816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203441A Pending JP2020069412A (en) 2018-10-30 2018-10-30 Distilled water production device

Country Status (1)

Country Link
JP (1) JP2020069412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260612A (en) * 2022-06-17 2022-11-01 中国科学院青岛生物能源与过程研究所 Wood fiber-based foam material with high photo-thermal conversion efficiency, and preparation and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260612A (en) * 2022-06-17 2022-11-01 中国科学院青岛生物能源与过程研究所 Wood fiber-based foam material with high photo-thermal conversion efficiency, and preparation and application thereof

Similar Documents

Publication Publication Date Title
Ni et al. A salt-rejecting floating solar still for low-cost desalination
Wang et al. Recent advances in atmosphere water harvesting: Design principle, materials, devices, and applications
Shi et al. Solar-thermal conversion and steam generation: a review
US11318414B2 (en) Systems for water extraction from air
Das et al. Solar still distillate enhancement techniques and recent developments
Mohan et al. A review on solar still: a simple desalination technology to obtain potable water
US5628879A (en) Sun actuated automated distillation apparatus
US7008515B1 (en) Solar water still
MX2010011629A (en) Solar stills.
CN111547802A (en) Multistage ladder-shaped distiller and method for solar photo-thermal evaporation seawater desalination
CN114735777A (en) Portable solar high-light-heat-conversion seawater desalination distiller and method
JP2020069412A (en) Distilled water production device
KR20130086836A (en) Mobile homes available for drinking water production using solar power
Sun et al. Optimal design for floating solar still by structural modification: A review
Begum et al. Effect of top cover material on productivity of solar distillation unit
JP2019171368A (en) Water purification device and water purification method
KR20140078264A (en) Tents having a apparatus of generating distilled water
JP2020022937A (en) Distilled water generator
CN110655135A (en) Water collecting device integrating sea water desalination and atmospheric water collection and using method thereof
CN204530853U (en) Solar energy fresh water and rainwater-collecting unit and device
DE20312656U1 (en) Sea water desalination plant has floating polymer dome over black water-adsorbent body releasing water vapor and condensate to side-trap
CN107986360A (en) Simple structure for producing distilled water
JP2022152562A (en) water generator
Sun et al. Radiolabeling and biodistribution of a nasopharyngeal carcinoma-targeting peptide identified by in vivo phage display
KR102071320B1 (en) Apparatus for evaporative desalinating salt water using solar energy