JP2020068341A - Light receiving and emitting sensor and sensor device using the same - Google Patents

Light receiving and emitting sensor and sensor device using the same Download PDF

Info

Publication number
JP2020068341A
JP2020068341A JP2018201481A JP2018201481A JP2020068341A JP 2020068341 A JP2020068341 A JP 2020068341A JP 2018201481 A JP2018201481 A JP 2018201481A JP 2018201481 A JP2018201481 A JP 2018201481A JP 2020068341 A JP2020068341 A JP 2020068341A
Authority
JP
Japan
Prior art keywords
light
light receiving
light emitting
substrate
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018201481A
Other languages
Japanese (ja)
Inventor
山田 智也
Tomoya Yamada
智也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018201481A priority Critical patent/JP2020068341A/en
Publication of JP2020068341A publication Critical patent/JP2020068341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

To provide a light receiving and emitting sensor that can detect distance information and angle information, and a sensor device using the same.SOLUTION: A light receiving and emitting sensor 1 according to the present invention comprises: a substrate 2; a light emitting element 3 that is arranged on a top face of the substrate 2 to irradiate an object with light; a light receiving element 4 that is arranged on the top face of the substrate 2 separate from the light emitting element 3 and receives reflected light reflected on the object; and a lens member 5 that is arranged above the substrate 2 and passes the light from the light emitting element 3 toward the object and passes the reflected light reflected on the object toward the light receiving element 4. The light receiving element 4 has a central part light receiving area 41, and annular peripheral part light receiving areas 42 surrounding the central part light receiving area 41 and being divided into plurality at some points. A light receiving and emitting sensor and a sensor device that can detect distance information and angle information on an object can be achieved.SELECTED DRAWING: Figure 1

Description

本発明は、1つの基板の上面に配置された受光素子と発光素子とを備え、対象物の距離情報および角度情報を検出するのに好適な受発光センサおよびこれを用いたセンサ装置に関する。   The present invention relates to a light emitting / receiving sensor including a light receiving element and a light emitting element arranged on the upper surface of one substrate and suitable for detecting distance information and angle information of an object, and a sensor device using the same.

従来、検出対象の物体である対象物(被検出物)へ発光素子から光を照射し、その対象物からの反射光を受光素子で受光することによって、対象物の距離情報を検出し、また対象物の角度情報を検出するための受発光センサおよびそれを用いたセンサ装置が種々提案されている。   Conventionally, light is emitted from a light emitting element to an object (object to be detected) which is an object to be detected, and reflected light from the object is received by a light receiving element to detect distance information of the object, and Various light emitting and receiving sensors for detecting angle information of an object and various sensor devices using the same have been proposed.

このセンサ装置は広い分野で利用されており、例えば、フォトインタラプタ、フォトカプラ、リモートコントロールユニット、IrDA(Infrared Data Association)通信デ
バイス、光ファイバ通信用装置、さらには原稿サイズセンサなど多岐にわたるアプリケーションで用いられている。
This sensor device is used in a wide variety of fields, and is used in various applications such as photo interrupters, photo couplers, remote control units, IrDA (Infrared Data Association) communication devices, optical fiber communication devices, and document size sensors. Has been.

このセンサ装置のうち角度情報を検出する傾き角検出用のものとして、例えば、実開平4−131712号公報には、発光素子と受光素子とを備え、発光素子から被検出物体に投光し、被検出物体からの反射光が受光素子に入射する位置から被検出物体の傾き角を検出する傾き角検出センサであって、受光素子が、その両端から得られる光電流が光の入射位置に比例するよう構成された半導体位置検出素子から成るものが開示されている(特許文献1を参照)。また、特開平10−82626号公報には、発光素子と、受光面に複数の受光領域と非受光領域とを有する受光素子とを備え、発光素子からの光が被検出物で反射されて受光素子に入射したときに各受光領域から被検出物の傾きに応じた信号を出力する光結合装置において、受光素子の受光面の非受光領域に発光素子が搭載された、傾き検出用光結合装置が開示されている(特許文献2を参照)。   As a tilt angle detecting device for detecting angle information of this sensor device, for example, Japanese Utility Model Laid-Open No. 4-131712 discloses a light emitting element and a light receiving element, and the light emitting element projects light onto a detected object. A tilt angle detection sensor that detects the tilt angle of a detected object from the position where the reflected light from the detected object enters the light receiving element, where the photocurrent obtained from both ends of the light receiving element is proportional to the light incident position. A semiconductor position detecting element configured to do so is disclosed (see Patent Document 1). Further, Japanese Patent Laid-Open No. 10-82626 includes a light emitting element and a light receiving element having a plurality of light receiving areas and non-light receiving areas on a light receiving surface, and the light from the light emitting element is reflected by an object to be detected and is received. In an optical coupling device that outputs a signal according to the inclination of an object to be detected from each light receiving area when incident on an element, an optical coupling device for tilt detection, in which a light emitting element is mounted in a non-light receiving area of a light receiving surface of the light receiving element Is disclosed (see Patent Document 2).

実開平4−131712号公報Japanese Utility Model Publication No. 4-131712 特開平10−82626号公報JP 10-82626 A

しかしながら、これら傾き角検出センサおよび傾き検出用光結合装置においては、対象物の距離情報を検出することは考慮されておらず、距離情報を検出するためには別のセンサを併用する必要があった。   However, in the tilt angle detection sensor and the tilt detection optical coupling device, the detection of the distance information of the object is not considered, and it is necessary to use another sensor together in order to detect the distance information. It was

本発明は、上記問題点に鑑みてなされたものであり、対象物の距離情報および角度情報の両方を検出することができる受発光センサおよびそれを用いたセンサ装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitting and receiving sensor capable of detecting both distance information and angle information of an object and a sensor device using the same. .

本発明に係る受発光センサは、基板と、該基板の上面に配置された、対象物に光を照射するための発光素子と、前記基板の上面に前記発光素子から離して配置された、前記対象物で反射した反射光を受光する受光素子と、前記基板の上方に配置された、前記発光素子からの光を前記対象物に向けて通過させるとともに該対象物で反射した反射光を前記受光
素子に向けて通過させるレンズ部材とを備えており、前記受光素子は、中央部受光領域と、該中央部受光領域を取り囲む、途中で複数に分割された環状の周辺部受光領域とを有している。
The light emitting and receiving sensor according to the present invention includes a substrate, a light emitting element for irradiating an object with light, which is disposed on an upper surface of the substrate, and an upper surface of the substrate, which is disposed apart from the light emitting element. A light receiving element for receiving the reflected light reflected by the object, and a light receiving element arranged above the substrate for passing the light from the light emitting element toward the object and receiving the reflected light reflected by the object. The light receiving element has a central light receiving region and a peripheral light receiving region that is divided into a plurality of portions and surrounds the central light receiving region. ing.

本発明に係るセンサ装置は、上述した本発明の受発光センサを用いたセンサ装置であって、前記発光素子から前記レンズ部材を通過した光を前記対象物に照射し、該対象物で反射して前記レンズ部材を通過した反射光を前記受光素子で受光して、前記反射光に応じて前記中央部受光領域および環状の前記周辺部受光領域から出力される出力電流によって、前記対象物の距離情報および角度情報の少なくとも一方を検出する。   A sensor device according to the present invention is a sensor device using the light emitting and receiving sensor of the present invention described above, irradiating the light passing through the lens member from the light emitting element to the object and reflecting the light on the object. The reflected light that has passed through the lens member is received by the light receiving element, and the output current output from the central light receiving region and the annular peripheral light receiving region according to the reflected light causes the distance of the object At least one of the information and the angle information is detected.

本発明に係る受発光センサによれば、基板の上面に発光素子から離して配置された、対象物で反射した反射光を受光する受光素子が、中央部受光領域と、この中央部受光領域を取り囲む、途中で複数に分割された環状の周辺部受光領域とを有していることから、対象物までの距離および対象物の角度によって受光素子が受光する反射光の分布が変化したときに、その変化を中央部受光領域と複数に分割された環状の周辺部受光領域とで受光する反射光の分布によって検出することができるので、距離情報および角度情報を検出することができる。また、発光素子および受光素子が基板の上面に一体的に配置されていることから、小型化に有利である。   According to the light emitting / receiving sensor of the present invention, the light receiving element, which is arranged on the upper surface of the substrate away from the light emitting element and receives the reflected light reflected by the object, has the central light receiving area and the central light receiving area. Surrounding, since it has an annular peripheral light receiving region divided into a plurality in the middle, when the distribution of the reflected light received by the light receiving element changes depending on the distance to the object and the angle of the object, Since the change can be detected by the distribution of the reflected light received by the central light receiving area and the annular peripheral light receiving area divided into a plurality, the distance information and the angle information can be detected. Moreover, since the light emitting element and the light receiving element are integrally arranged on the upper surface of the substrate, it is advantageous for downsizing.

本発明に係るセンサ装置によれば、上記の受発光センサを備えることから、対象物の距離情報および角度情報を良好に検出することができる。   According to the sensor device of the present invention, since the light emitting and receiving sensor is provided, it is possible to excellently detect the distance information and the angle information of the object.

本発明に係る受発光センサの実施の形態の一例を示す図であり、(a)は上面図であり、(b)は断面図である。It is a figure which shows an example of embodiment of the light emitting / receiving sensor which concerns on this invention, (a) is a top view, (b) is sectional drawing. 本発明に係る受発光センサの実施の形態の一例における検出の様子を説明する図であり、(a)は距離情報の検出の様子の例を示す断面図であり、(b)は受光素子による出力電流の変化の例を示すグラフである。It is a figure explaining the mode of detection in an example of an embodiment of a light emitting and receiving sensor concerning the present invention, (a) is a sectional view showing an example of a mode of detection of distance information, and (b) by a light sensing element. It is a graph which shows the example of a change of output current. 本発明に係る受発光センサの実施の形態の一例における検出の様子を説明する図であり、(a)は角度情報の検出の様子の例を示す断面図であり、(b)は受光素子による出力電流の変化の例を示すグラフであり、(c)は受光素子における受光の様子の例を示す上面図である。It is a figure explaining the mode of detection in an example of an embodiment of a light emitting and receiving sensor concerning the present invention, (a) is a sectional view showing an example of the mode of detection of angle information, and (b) is with a light sensing element. It is a graph which shows the example of a change of an output current, and (c) is a top view which shows the example of a mode of light reception in a light receiving element. (a)は発光素子の構成の一例を示す断面図であり、(b)は受光素子の構成の一例を示す断面図である。(A) is a sectional view showing an example of the configuration of a light emitting element, and (b) is a sectional view showing an example of the configuration of a light receiving element.

以下、本発明に係る受発光センサおよびこれを用いたセンサ装置の実施の形態の例について、図面を参照しつつ説明する。なお、以下の例は本発明の実施の形態を例示するものであって、本発明はこれらの実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で種々の変更が可能である。   Hereinafter, an example of an embodiment of a light emitting / receiving sensor according to the present invention and a sensor device using the same will be described with reference to the drawings. It should be noted that the following examples exemplify the embodiments of the present invention, and the present invention is not limited to these embodiments. Various modifications can be made without departing from the scope of the present invention.

図1は、本発明に係る受発光センサ1の実施の形態の一例を示す図であり、図1(a)は上面図、図1(b)は断面図である。この受発光センサ1は、測定対象の面が平面で、その表面が比較的平滑な面である物体であれば、各種の対象物の距離情報(対象物までの距離に関する情報)および角度情報(対象物の反射面の角度に関する情報)を検出するセンサとして機能する。   1A and 1B are views showing an example of an embodiment of a light emitting and receiving sensor 1 according to the present invention, FIG. 1A is a top view, and FIG. 1B is a sectional view. In the light emitting and receiving sensor 1, if the object to be measured is a flat surface and the surface is a relatively smooth surface, the distance information (information about the distance to the object) and the angle information (the information about the distance to the object) are obtained. It functions as a sensor that detects information regarding the angle of the reflection surface of the object.

受発光センサ1は、基板2と、基板2の上面に配置された、対象物に光を照射するための発光素子3と、基板2の上面に発光素子3から離して配置された、対象物で反射した反
射光を受光する受光素子4とを備えている。また、基板2の上方に配置された、発光素子2からの光を対象物に向けて通過させるとともに対象物で反射した反射光を受光素子4に向けて通過させるレンズ部材5を備えている。そして、受光素子4は、中央部受光領域41と、中央部受光領域41を取り囲む、途中で複数に分割された環状の周辺部受光領域42とを有している。本例の周辺部受光領域42は、周方向に4等分された4つの周辺部受光領域421,422,423,424で構成されている。
The light emitting / receiving sensor 1 includes a substrate 2, a light emitting element 3 arranged on the upper surface of the substrate 2 for irradiating the object with light, and an object arranged on the upper surface of the substrate 2 apart from the light emitting element 3. And a light receiving element 4 for receiving the reflected light reflected by. Further, a lens member 5 disposed above the substrate 2 is provided to pass the light from the light emitting element 2 toward the object and pass the reflected light reflected by the object toward the light receiving element 4. The light receiving element 4 has a central light receiving region 41 and an annular peripheral light receiving region 42 surrounding the central light receiving region 41 and divided into a plurality of parts in the middle. The peripheral light receiving area 42 of this example is composed of four peripheral light receiving areas 421, 422, 423, 424 which are equally divided into four in the circumferential direction.

レンズ部材5は、本例では発光素子3側のレンズ部材51と、受光素子4側のレンズ部材52とで構成されていて、レンズ部材51は、発光素子3からの光を対象物に向けてビーム状に絞る機能を有し、レンズ部材52は、対象物からの反射光を受光素子4に向けて焦点を絞る機能を有している。なお、レンズ部材5は、このように2つの部材からなる必要は特になく、1つのレンズ部材5で発光素子3側の機能と受光素子4側の機能とを併せ持つものであってもよい。レンズ部材5は、球面レンズであっても非球面レンズであってもよく、対象物および受光素子4の仕様などに応じて、通過する光を等倍で通過させても、拡大あるいは縮小して通過させてもよい。レンズ部材5には、対象物の大きさおよび距離に応じて、また受光素子4への反射光の進入の状況に応じて、種々の大きさおよび形状、ならびに通過波長域、焦点距離および焦点深度などの特性のものを適宜選択して用いればよい。   In this example, the lens member 5 includes a lens member 51 on the light emitting element 3 side and a lens member 52 on the light receiving element 4 side. The lens member 51 directs the light from the light emitting element 3 toward an object. The lens member 52 has a function of focusing in a beam shape, and has a function of focusing the reflected light from the object toward the light receiving element 4. The lens member 5 does not need to be composed of two members in this way, and one lens member 5 may have both the light emitting element 3 side function and the light receiving element 4 side function. The lens member 5 may be a spherical lens or an aspherical lens, and depending on the specifications of the object and the light receiving element 4, the light passing therethrough may be passed at equal magnification or may be enlarged or reduced. You may let it pass. The lens member 5 has various sizes and shapes depending on the size and distance of the object and the situation of reflected light entering the light receiving element 4, as well as the passing wavelength range, the focal length, and the depth of focus. Those having such characteristics may be appropriately selected and used.

レンズ部材5は、図示しない適当な構造によって、基板2、発光素子3および受光素子4に対して所定の相対位置に保持される。また、この保持構造は、外部からの迷光を遮断して検出の精度を高めるために、基板2の全体を覆うような構造として、レンズ部材5に対応した開口部以外の部分が遮光性の材料で形成されることが好ましい。   The lens member 5 is held at a predetermined relative position with respect to the substrate 2, the light emitting element 3 and the light receiving element 4 by an appropriate structure (not shown). In addition, this holding structure is a structure that covers the entire substrate 2 in order to block stray light from the outside and improve detection accuracy, and is a material having a light-shielding property except for the opening corresponding to the lens member 5. Is preferably formed.

図1において、6は発光素子3を発光させるための電力を供給する発光側電極であり、7は受光素子4からの出力電流を取り出すための受光側電極である。本例の受光側電極7は、受光素子4の中央部受光領域41および周辺部受光領域42(421,422,423,424)のそれぞれに対応して複数個が配置されている。   In FIG. 1, 6 is a light emitting side electrode for supplying electric power for causing the light emitting element 3 to emit light, and 7 is a light receiving side electrode for taking out an output current from the light receiving element 4. A plurality of light-receiving side electrodes 7 of this example are arranged corresponding to the central light-receiving region 41 and the peripheral light-receiving region 42 (421, 422, 423, 424) of the light-receiving element 4.

発光素子3は、基板2の上面に配置された、例えば発光ダイオード(Light Emitting Diode:LED)あるいは半導体レーザ(Laser Diode:LD)である。一方、受光素子4
は、同じく基板2の上面に配置された、例えばフォトダイオード(Photo Diode:PD)
である。
The light emitting element 3 is, for example, a light emitting diode (LED) or a semiconductor laser (laser diode: LD) arranged on the upper surface of the substrate 2. On the other hand, the light receiving element 4
Is, for example, a photo diode (PD) disposed on the upper surface of the substrate 2 as well.
Is.

発光素子3は、例えば、図4(a)に断面図で示すように、基板2の上面に積層した複数の半導体層3a〜3fを有するものとして、基板2と一体的に形成される。一方、受光素子4は、例えば、図4(b)にその一部を断面図で示すように、一導電型(n型またはp型)の半導体材料からなる基板2の上面に形成された逆導電型の不純物を含む逆導電型半導体領域4aを含むものとして、基板2と一体的に形成される。すなわち、同一の基板2に発光素子3と受光素子4とが作り込まれて、一体的に形成されている。本例の受発光センサ1は、これらが一体的に形成されていることにより、発光素子3,受光素子4を高い位置精度で所望の位置関係に配置することができるので、正確な位置調整ができ、距離情報および角度情報を精度よく測定することができ、高いセンシング性能を備えるものとなる。   The light emitting element 3 is formed integrally with the substrate 2, for example, as having a plurality of semiconductor layers 3a to 3f stacked on the upper surface of the substrate 2, as shown in the sectional view of FIG. On the other hand, the light-receiving element 4 is formed on the upper surface of the substrate 2 made of a semiconductor material of one conductivity type (n-type or p-type), for example, as shown in the sectional view of FIG. It is integrally formed with the substrate 2 so as to include the opposite conductivity type semiconductor region 4a containing conductivity type impurities. That is, the light emitting element 3 and the light receiving element 4 are formed on the same substrate 2 and are integrally formed. Since the light emitting and receiving sensor 1 of the present example is integrally formed, the light emitting element 3 and the light receiving element 4 can be arranged in a desired positional relationship with high positional accuracy, so that accurate position adjustment is possible. Therefore, the distance information and the angle information can be accurately measured, and high sensing performance is provided.

図4に示す例では、基板2として一導電型の半導体材料を用い、発光素子3をその上面に積層した複数の半導体層を有するものとし、受光素子4を基板2の上面に逆導電型の不純物がドーピングされた逆導電型半導体領域4aを有するものとしている。受光素子4(41,42(421〜424))は、それぞれ基板2の上面から続く一部に作り込まれた逆導電型半導体領域4aとそれに隣接する基板2の一導電型の領域とでpn接合を形成して、フォトダイオードを構成している。このように構成することで、基板2に発光素子3と受光素子4とを一体的に作り込むことができる。   In the example shown in FIG. 4, a semiconductor material of one conductivity type is used as the substrate 2, the light emitting element 3 has a plurality of semiconductor layers laminated on the upper surface thereof, and the light receiving element 4 is provided on the upper surface of the substrate 2 of the opposite conductivity type. It is assumed to have an opposite conductivity type semiconductor region 4a doped with impurities. Each of the light receiving elements 4 (41, 42 (421 to 424)) includes a reverse conductivity type semiconductor region 4a formed in a part continuing from the upper surface of the substrate 2 and a region of one conductivity type of the substrate 2 adjacent thereto. A photodiode is formed by forming a junction. With this structure, the light emitting element 3 and the light receiving element 4 can be integrally formed on the substrate 2.

なお、発光素子3と受光素子4とは、基板2に一体的に形成されて上面に配置されていればよいので、全ての構成要素が基板2の上面に配置されていてもよく、構成要素の一部または全部が基板2の内部に作り込まれていてもよい。後者の場合には、少なくとも発光素子3の発光面および受光素子4の受光面が基板2の上面に露出した状態にする。   It is sufficient that the light emitting element 3 and the light receiving element 4 are integrally formed on the substrate 2 and are arranged on the upper surface. Therefore, all the constituent elements may be arranged on the upper surface of the substrate 2, and the constituent elements may be arranged. A part or all of the above may be formed inside the substrate 2. In the latter case, at least the light emitting surface of the light emitting element 3 and the light receiving surface of the light receiving element 4 are exposed on the upper surface of the substrate 2.

基板2は、一導電型の半導体材料からなる。一導電型の不純物濃度に限定はない。本例では、シリコン(Si)基板に一導電型の不純物としてリン(P)を例えば1×1017〜2×1017atoms/cmの濃度で含むものを用いている。n型不純物としては、Pの他に、例えば窒素(N)、砒素(As)、アンチモン(Sb)およびビスマス(Bi)などを用いてもよく、ドーピング濃度は1×1016〜1×1020atoms/cmとされる。また、基板2は、その上面に発光素子3を構成する半導体層を成長させる結晶構造を備える。 The substrate 2 is made of one conductivity type semiconductor material. There is no limitation on the impurity concentration of one conductivity type. In this example, a silicon (Si) substrate containing phosphorus (P) as an impurity of one conductivity type at a concentration of, for example, 1 × 10 17 to 2 × 10 17 atoms / cm 3 is used. As the n-type impurity, besides P, for example, nitrogen (N), arsenic (As), antimony (Sb), bismuth (Bi), or the like may be used, and the doping concentration is 1 × 10 16 to 1 × 10 20. It is set to atoms / cm 3 . Further, the substrate 2 has a crystal structure on the upper surface of which a semiconductor layer forming the light emitting element 3 is grown.

本例では、長方形状の基板2の上面の第1端側に、発光素子3が配置されている。また、同じ基板2の第2端側に、発光素子3から離して受光素子4が配置されている。発光素子3は対象物に照射する光の光源として機能する。発光素子3が発した光が、レンズ部材5(51)を通過して対象物に入射し、対象物で反射された反射光が、レンズ部材5(52)を通過して受光素子4に入射する。受光素子4は、反射光の入射を検出する光検出部として機能する。発光素子3の発光面と受光素子4の受光面とは、基板2の上面に平行な面となっている。   In this example, the light emitting element 3 is arranged on the first end side of the upper surface of the rectangular substrate 2. Further, the light receiving element 4 is arranged on the second end side of the same substrate 2 apart from the light emitting element 3. The light emitting element 3 functions as a light source of the light with which the object is irradiated. The light emitted from the light emitting element 3 passes through the lens member 5 (51) and enters the object, and the reflected light reflected by the object passes through the lens member 5 (52) and enters the light receiving element 4. To do. The light receiving element 4 functions as a light detection unit that detects the incidence of reflected light. The light emitting surface of the light emitting element 3 and the light receiving surface of the light receiving element 4 are parallel to the upper surface of the substrate 2.

基板2の形状は、本例では細長い矩形状であるが、それに限られるものではなく、種々の形状を採用することができる。例えば、受光素子4側の幅を広くした細長い台形状であってもよく、その場合には受光素子4の面積(中央部受光領域41および周辺部受光領域42の面積)を大きくとることができ、検出の感度および精度を高めることが可能となる。   The shape of the substrate 2 is an elongated rectangular shape in this example, but the shape is not limited to this, and various shapes can be adopted. For example, it may be an elongated trapezoidal shape in which the width on the light receiving element 4 side is wide, and in that case, the area of the light receiving element 4 (the area of the central light receiving region 41 and the peripheral light receiving region 42) can be made large. It is possible to improve the sensitivity and accuracy of detection.

発光素子3が発する光は、所定の大きさに絞られたビーム状の光として対象物に入射する。そのビーム状の光の形状およびビーム径などは、レンズ部材5(51)によって好適に調整される。そして、対象物の表面で反射した反射光が、レンズ部材5(52)によって好適に調整された状態で、ビーム状の光あるいは変形した形状の光として受光素子4に入射して受光される。このとき、受光素子4が中央部受光領域41と複数に分割された周辺部受光領域42(421〜424)とを有していることから、それらの領域が受光して出力する出力電流の分布などに基づいて、対象物の距離情報および角度情報を検出することができる。   The light emitted by the light emitting element 3 is incident on the object as a beam of light that is narrowed to a predetermined size. The shape and beam diameter of the beam-like light are suitably adjusted by the lens member 5 (51). Then, the reflected light reflected on the surface of the object is incident on the light receiving element 4 and received as beam-shaped light or light having a deformed shape in a state where it is adjusted appropriately by the lens member 5 (52). At this time, since the light receiving element 4 has the central light receiving region 41 and the peripheral light receiving regions 42 (421 to 424) divided into a plurality of regions, the distribution of the output current received and output by these regions. Based on the above, the distance information and the angle information of the object can be detected.

発光素子3は、図4(a)に示すように、n型の半導体材料からなる基板2の上面に複数の半導体層3a〜3fが積層されて形成されている。   As shown in FIG. 4A, the light emitting element 3 is formed by stacking a plurality of semiconductor layers 3a to 3f on the upper surface of a substrate 2 made of an n-type semiconductor material.

まず、n型の基板2の上面には、n型の半導体材料からなる基板2と基板2の上面に積層される半導体層(本例の場合はn型コンタクト層3b)との格子定数の差を緩衝するバッファ層3aが形成されている。バッファ層3aは、基板2と基板2の上面に形成される半導体層との格子定数の差を緩和することによって、基板2と発光素子3を構成する半導体層との間に発生する格子歪などの格子欠陥を少なくする機能を有する。その結果、基板2の上面に形成される発光素子3を構成する半導体層全体の格子欠陥または結晶欠陥を少なくする。   First, on the upper surface of the n-type substrate 2, a difference in lattice constant between the substrate 2 made of an n-type semiconductor material and a semiconductor layer (n-type contact layer 3b in this example) laminated on the upper surface of the substrate 2 is provided. A buffer layer 3a for buffering is formed. The buffer layer 3a relaxes a difference in lattice constant between the substrate 2 and the semiconductor layer formed on the upper surface of the substrate 2, thereby causing a lattice strain or the like generated between the substrate 2 and the semiconductor layer forming the light emitting element 3. It has the function of reducing the number of lattice defects. As a result, lattice defects or crystal defects in the entire semiconductor layer forming the light emitting element 3 formed on the upper surface of the substrate 2 are reduced.

本例におけるバッファ層3aは、不純物を含まないガリウム砒素(GaAs)からなり、その厚さが2〜3μm程度とされる。なお、基板2とn型の基板2の上面に積層される発光素子3を構成する半導体層との格子定数の差が大きくない場合には、バッファ層3aは省略することができる。   The buffer layer 3a in this example is made of gallium arsenide (GaAs) containing no impurities and has a thickness of about 2 to 3 μm. The buffer layer 3a can be omitted if the difference in lattice constant between the substrate 2 and the semiconductor layer forming the light emitting element 3 stacked on the upper surface of the n-type substrate 2 is not large.

バッファ層3aの上面には、n型コンタクト層3bが形成されている。n型コンタクト層3bは、GaAsにn型不純物であるSiまたはセレン(Se)などがドーピングされ、ドーピング濃度は1×1016〜1×1020atoms/cm程度とされるとともに、その厚さが0.8〜1μm程度とされる。 An n-type contact layer 3b is formed on the upper surface of the buffer layer 3a. The n-type contact layer 3b is formed by doping GaAs with n-type impurities such as Si or selenium (Se) and has a doping concentration of about 1 × 10 16 to 1 × 10 20 atoms / cm 3 and a thickness thereof. Is about 0.8 to 1 μm.

本例では、n型不純物としてSiが1×1018〜2×1018atoms/cmのドーピング濃度でドーピングされている。n型コンタクト層3bの上面の一部は露出しており、この露出している部分は発光素子側第1電極3gを介して、発光側電極6に接続されている。本例では、図示はしないが、金(Au)線によるワイヤボンディングによって発光側電極6と外部電源とが接続されている。ワイヤボンディングには、Au線の代わりにアルミニウム(Al)線または銅(Cu)線などのワイヤを選択することも可能である。 In this example, Si is doped as an n-type impurity at a doping concentration of 1 × 10 18 to 2 × 10 18 atoms / cm 3 . A part of the upper surface of the n-type contact layer 3b is exposed, and this exposed part is connected to the light emitting side electrode 6 through the light emitting element side first electrode 3g. In this example, although not shown, the light emitting side electrode 6 and the external power source are connected by wire bonding with a gold (Au) wire. For wire bonding, a wire such as an aluminum (Al) wire or a copper (Cu) wire may be selected instead of the Au wire.

また、本例ではワイヤボンディングによって発光側電極6と外部電源とを接続しているが、ワイヤボンディングの代わりに、電気配線をはんだなどによって発光側電極6に接合してもよいし、発光側電極6の上面に金スタッドバンプを形成して、電気配線をはんだなどによってこの金スタッドバンプに接合してもよい。   Further, in this example, the light emitting side electrode 6 and the external power source are connected by wire bonding, but instead of wire bonding, electric wiring may be joined to the light emitting side electrode 6 by soldering or the like. A gold stud bump may be formed on the upper surface of 6 and an electric wiring may be joined to the gold stud bump by soldering or the like.

n型コンタクト層3bは、このn型コンタクト層3bに接続される発光素子側第1電極3gとの接触抵抗を下げる機能を有している。   The n-type contact layer 3b has a function of lowering the contact resistance with the light emitting element side first electrode 3g connected to the n-type contact layer 3b.

発光素子側第1電極3gおよび発光側電極6は、例えば金(Au)アンチモン(Sb)合金、金(Au)ゲルマニウム(Ge)合金またはNi系合金などを用いて、その厚さが0.5〜5μm程度で形成される。それとともに、発光素子側第1電極3gおよび発光側電
極6は、基板2の上面からn型コンタクト層3bの上面を覆うように形成される絶縁層8の上に配置されているため、基板2およびn型コンタクト層3b以外の半導体層とは電気的に絶縁される。
The light emitting element side first electrode 3g and the light emitting side electrode 6 are made of, for example, a gold (Au) antimony (Sb) alloy, a gold (Au) germanium (Ge) alloy or a Ni-based alloy, and have a thickness of 0.5 to 5 μm. Formed in degrees. At the same time, the light emitting element side first electrode 3g and the light emitting side electrode 6 are arranged on the insulating layer 8 formed so as to cover the upper surface of the substrate 2 and the upper surface of the n-type contact layer 3b. And the semiconductor layers other than the n-type contact layer 3b are electrically insulated.

絶縁層8は、例えば窒化シリコン(SiN)または酸化シリコン(SiO)などの無機絶縁膜、あるいはポリイミドなどの有機絶縁膜などで形成され、その厚さが0.1〜1
μm程度とされる。
The insulating layer 8 is formed of, for example, an inorganic insulating film such as silicon nitride (SiN x ) or silicon oxide (SiO 2 ), or an organic insulating film such as polyimide, and has a thickness of 0.1 to 1
It is about μm.

n型コンタクト層3bの上面には、n型クラッド層3cが形成されており、活性層3dに正孔を閉じ込める機能を有している。n型クラッド層3cは、アルミニウムガリウム砒素(AlGaAs)にn型不純物であるSiまたはSeなどがドーピングされており、ドーピング濃度は1×1016〜1×1020atoms/cm程度とされるとともに、その厚さが0.2〜0.5μm程度とされる。本例では、n型不純物としてSiが1×1017〜5×1017atoms/cmのドーピング濃度でドーピングされている。 An n-type clad layer 3c is formed on the upper surface of the n-type contact layer 3b and has a function of confining holes in the active layer 3d. The n-type cladding layer 3c is formed by doping aluminum gallium arsenide (AlGaAs) with n-type impurities such as Si or Se, and has a doping concentration of about 1 × 10 16 to 1 × 10 20 atoms / cm 3. The thickness is about 0.2 to 0.5 μm. In this example, Si is doped as an n-type impurity at a doping concentration of 1 × 10 17 to 5 × 10 17 atoms / cm 3 .

n型クラッド層3cの上面には、活性層3dが形成されており、電子や正孔などのキャリアが集中して、それらキャリアが再結合することによって光を発する発光層として機能する。活性層3dは、不純物を含まないAlGaAsであるとともに、その厚さが0.1〜0.5μm程度とされる。なお、本例の活性層3dは、不純物を含まない層であるが、p型不純物を含むp型活性層であっても、n型不純物を含むn型活性層であってもよく、活性層のバンドギャップがn型クラッド層3cおよびp型クラッド層3eのバンドギャップよりも小さくなっていればよい。   An active layer 3d is formed on the upper surface of the n-type clad layer 3c, and carriers such as electrons and holes are concentrated, and the carriers recombine to function as a light emitting layer that emits light. The active layer 3d is AlGaAs containing no impurities and has a thickness of about 0.1 to 0.5 μm. Although the active layer 3d in this example is a layer containing no impurities, it may be a p-type active layer containing p-type impurities or an n-type active layer containing n-type impurities. It suffices that the band gap is smaller than the band gaps of the n-type cladding layer 3c and the p-type cladding layer 3e.

活性層3dの上面には、p型クラッド層3eが形成されており、活性層3dに電子を閉じ込める機能を有している。p型クラッド層3eは、AlGaAsにp型不純物である亜
鉛(Zn)、マグネシウム(Mg)または炭素(C)などがドーピングされており、ドーピング濃度は1×1016〜1×1020atoms/cm程度とされるとともに、その厚さが0.2〜0.5μm程度とされる。本例では、p型不純物としてMgが1×1019〜5×1020atoms/cmのドーピング濃度でドーピングされている。
A p-type clad layer 3e is formed on the upper surface of the active layer 3d and has a function of confining electrons in the active layer 3d. The p-type cladding layer 3e is formed by doping AlGaAs with p-type impurities such as zinc (Zn), magnesium (Mg), or carbon (C), and has a doping concentration of 1 × 10 16 to 1 × 10 20 atoms / cm 3. The thickness is about 3 and the thickness is about 0.2 to 0.5 μm. In this example, Mg is doped as a p-type impurity at a doping concentration of 1 × 10 19 to 5 × 10 20 atoms / cm 3 .

p型クラッド層3eの上面には、p型コンタクト層3fが形成されている。p型コンタクト層3fは、AlGaAsにp型不純物であるZn、MgまたはCなどがドーピングされており、ドーピング濃度は1×1016〜1×1020atoms/cm程度とされるとともに、その厚さが0.2〜0.5μm程度とされる。 A p-type contact layer 3f is formed on the upper surface of the p-type cladding layer 3e. The p-type contact layer 3f is formed by doping AlGaAs with p-type impurities such as Zn, Mg or C, and has a doping concentration of about 1 × 10 16 to 1 × 10 20 atoms / cm 3 and a thickness thereof. Is about 0.2 to 0.5 μm.

p型コンタクト層3fは、発光素子側第2電極3hを介して、別の発光側電極6に接続されている。この発光側電極6も同様に、ワイヤボンディングによって外部電源に電気的に接続されている。接続方法および接合形態のバリエーションは前述の通りである。p型コンタクト層3fは、このp型コンタクト層3fに接続される発光素子側第2電極3hとの接触抵抗を下げる機能を有している。   The p-type contact layer 3f is connected to another light emitting side electrode 6 via the light emitting element side second electrode 3h. Similarly, the light emitting side electrode 6 is also electrically connected to an external power source by wire bonding. The variations of the connection method and the joining form are as described above. The p-type contact layer 3f has a function of lowering the contact resistance with the light emitting element side second electrode 3h connected to the p-type contact layer 3f.

なお、p型コンタクト層3fの上面には、p型コンタクト層3fの酸化を防止する機能を有するキャップ層(図示せず)を形成してもよい。キャップ層は、例えば不純物を含まないGaAsで形成して、その厚さを0.01〜0.03μm程度とすればよい。   A cap layer (not shown) having a function of preventing oxidation of the p-type contact layer 3f may be formed on the upper surface of the p-type contact layer 3f. The cap layer may be formed of, for example, GaAs containing no impurities and have a thickness of about 0.01 to 0.03 μm.

発光素子側第2電極3hおよび発光側電極6は、例えばAuやAlと、密着層であるニッケル(Ni)、クロム(Cr)またはチタン(Ti)とを組み合わせたAuNi、AuCr、AuTiまたはAlCr合金などで形成され、その厚さが0.5〜5μm程度とされる。そして、基板2の上面からp型コンタクト層3fの上面を覆うように形成される絶縁層8の上に配置されているため、基板2およびp型コンタクト層3f以外の半導体層とは電気的に絶縁される。   The light emitting element side second electrode 3h and the light emitting side electrode 6 are, for example, AuNi, AuCr, AuTi or AlCr alloy in which Au or Al is combined with nickel (Ni), chromium (Cr) or titanium (Ti) which is an adhesion layer. Etc., and its thickness is about 0.5 to 5 μm. Since it is arranged on the insulating layer 8 formed so as to cover the upper surface of the substrate 2 and the upper surface of the p-type contact layer 3f, it is electrically connected to the semiconductor layers other than the substrate 2 and the p-type contact layer 3f. Insulated.

このようにして構成された発光素子3は、発光側電極6と発光側電極6との間にバイアスを印加することによって、活性層3dが発光して、光源として機能する。   In the light emitting element 3 configured in this manner, when a bias is applied between the light emitting side electrode 6 and the light emitting side electrode 6, the active layer 3d emits light and functions as a light source.

本発明に係る受発光センサ1における受光素子4は、受光素子4の中央部に位置する中央部受光領域41と、この中央部受光領域41の周囲を取り囲む、半径方向に隙間を設けるようにして、周方向の途中で複数に分割された環状の周辺部受光領域42とを有している。   The light receiving element 4 in the light emitting and receiving sensor 1 according to the present invention is provided with a central light receiving area 41 located in the central portion of the light receiving element 4 and a radial gap surrounding the central light receiving area 41. , And an annular peripheral light-receiving region 42 divided into a plurality in the middle of the circumferential direction.

中央部受光領域41は、その形状が本例では円形状であるが、この他にも楕円形状、四角形状、三角形状、六角形状など、用途に応じて種々の形状を採用し得る。中央部受光領域41の大きさは、発光素子3から対象物に入射して反射するビーム状の反射光の大きさ(ビーム径あるいは面積)よりも小さい大きさ(径、寸法あるいは面積)とされ、仕様に応じて適宜設定される。中央部受光領域41の大きさがビーム状の反射光の大きさよりも小さいことによって、検出に当たっての基準となる反射光を中央部受光領域41内に位置させることができ、距離情報および角度情報の基準となる出力電流を中央部受光領域41から得ることができるものになる。   The central light receiving region 41 has a circular shape in this example, but other various shapes such as an elliptical shape, a quadrangular shape, a triangular shape, and a hexagonal shape can be adopted depending on the application. The size of the central light receiving region 41 is set to a size (diameter, size or area) smaller than the size (beam diameter or area) of the beam-like reflected light that enters the object from the light emitting element 3 and is reflected. , Is appropriately set according to the specifications. Since the size of the central light receiving region 41 is smaller than the size of the beam-like reflected light, the reflected light serving as a reference for detection can be positioned in the central light receiving region 41, and the distance information and the angle information It becomes possible to obtain the reference output current from the central light receiving region 41.

周辺部受光領域42は、中央部受光領域41の周囲を取り囲むように環状に配置され、周方向で複数の領域に分割されている。本例では円形状の中央部受光領域41に対して4つに分割された円環状の周辺部受光領域42(421〜424)を配置しているが、中央部受光領域41の形状に対応させて例えば楕円環状、四角環状、三角環状、六角環状などの形状としてもよい。また、多角形状の中央部受光領域41に対して、内周側を中央部受光領域41の外形に沿うような多角形状とし、外周側を円形状とするような異形状のものとしてもよい。周辺部受光領域42の大きさは、配置された全体の大きさがビーム状の反射光の大きさ(ビーム径
あるいは面積)よりも大きい大きさ(全体の径または寸法)とされ、仕様に応じて適宜設定される。周辺部受光領域42の分割数は、検出しようとする対象物の距離情報および角度情報に仕様に応じて、また周辺部受光領域42を配置するスペースの制約も考慮して、適宜設定すればよい。通常は3つから8つに分割すればよく、基本的には等間隔(等分)に分割すればよいが、仕様および目的に応じて、寸法および大きさが異なるものを配置してもよい。また、分割した周辺部受光領域42の配置についても、仕様および目的に応じて適宜設定すればよい。
The peripheral light receiving region 42 is annularly arranged so as to surround the central light receiving region 41, and is divided into a plurality of regions in the circumferential direction. In this example, the annular peripheral light receiving region 42 (421 to 424) divided into four is arranged for the circular central light receiving region 41, but the shape is made to correspond to the shape of the central light receiving region 41. For example, the shape may be an elliptical ring, a square ring, a triangular ring, a hexagonal ring, or the like. Further, with respect to the polygonal central light-receiving region 41, the inner peripheral side may be a polygonal shape along the outer shape of the central light-receiving region 41, and the outer peripheral side may be a circular shape. The size of the peripheral light receiving region 42 is set such that the size of the entire arranged light receiving region is larger than the size of the beam-like reflected light (beam diameter or area) (total diameter or size). Is set appropriately. The number of divisions of the peripheral light-receiving region 42 may be appropriately set in accordance with the specifications of the distance information and the angle information of the object to be detected, and also in consideration of the space limitation for arranging the peripheral light-receiving region 42. . Normally, it is sufficient to divide into three to eight, and basically it may be divided into equal intervals (equal divisions), but those having different sizes and sizes may be arranged according to specifications and purposes. . Also, the arrangement of the divided peripheral light receiving regions 42 may be set appropriately according to the specifications and purposes.

中央部受光領域41と周辺部受光領域42との間隔には、反射光の検出の上では特に制限または制限はないので、各領域の間を通して、各領域からの出力電流を受光側電極7に送るための配線を配置するスペースを確保することなどを考慮して設定すればよい。   The distance between the central light receiving region 41 and the peripheral light receiving region 42 is not particularly limited or limited in the detection of reflected light. Therefore, the output current from each region is passed to the light receiving side electrode 7 through each region. It may be set in consideration of securing a space for arranging the wiring for sending.

なお、中央部受光領域41および周辺部受光領域42(421〜424)のそれぞれから出力電流を取り出すために各領域に接続される受光側電極7は、受光素子4での受光の妨げにならないように、受光素子4の外側に配置する。これら受光側電極7をどのように配置するかについては特に制限はなく、受発光センサ1の仕様に応じて適宜設定すればよい。   The light-receiving side electrode 7 connected to each of the central light-receiving region 41 and the peripheral light-receiving region 42 (421 to 424) in order to extract the output current does not hinder the light-receiving element 4 from receiving light. Then, it is arranged outside the light receiving element 4. There is no particular limitation on how to arrange these light-receiving side electrodes 7, and they may be appropriately set according to the specifications of the light emitting and receiving sensor 1.

このような受光素子4は、発光素子3に近接して配置されると、対象物からの反射光が対象物の距離や角度に応じて変化するのを精度よく検出するのが困難になる傾向があり、また発光素子3が発する光の一部が受光素子4に直接入射したりする不具合を招きやすくなる傾向があるため、所定の距離をとって、発光素子3から離して配置される。その設定は、対象物との距離あるいは受発光センサ1の寸法などに応じて適宜設定される。   When such a light receiving element 4 is arranged close to the light emitting element 3, it tends to be difficult to accurately detect that the reflected light from the target object changes according to the distance or the angle of the target object. In addition, since a part of the light emitted from the light emitting element 3 tends to directly enter the light receiving element 4, the light emitting element 3 is disposed apart from the light emitting element 3 with a predetermined distance. The setting is appropriately set according to the distance to the object or the size of the light emitting and receiving sensor 1.

受光素子4は、図4(b)に示すように、n型の半導体材料からなる基板2の上面に逆導電型半導体領域4a(以下、p型半導体領域4aともいう)を設けることによって、この領域とn型の基板2とでpn接合を形成して構成される。p型半導体領域4aは、n型の基板2にp型不純物を高濃度に拡散させて形成される。p型不純物としては、例えばZn、Mg、C、B、InまたはSeなどが挙げられ、ドーピング濃度は1×1016〜1×1020atoms/cmとされる。本例では、p型半導体領域4aの厚さが0.5〜3μ
m程度となるように、Bがp型不純物として拡散されている。
As shown in FIG. 4B, the light receiving element 4 is provided with an opposite conductivity type semiconductor region 4a (hereinafter, also referred to as p type semiconductor region 4a) on the upper surface of the substrate 2 made of an n type semiconductor material. A pn junction is formed by the region and the n-type substrate 2. The p-type semiconductor region 4a is formed by diffusing p-type impurities into the n-type substrate 2 at a high concentration. Examples of the p-type impurities include Zn, Mg, C, B, In, and Se, and the doping concentration is 1 × 10 16 to 1 × 10 20 atoms / cm 3 . In this example, the thickness of the p-type semiconductor region 4a is 0.5 to 3 μm.
B is diffused as a p-type impurity so as to be about m.

p型半導体領域4aは、受光素子側電極4bを介して受光側電極7に電気的に接続されている。受光素子側電極4bおよび受光側電極7は、n基板2の上面に絶縁層8を介して配置されているため、基板2とは電気的に絶縁される。受光素子側電極4bおよび受光側電極7は、例えばAuSb合金、AuGe合金またはNi系合金などを用いて、その厚さが0.5〜5μm程度で形成される。   The p-type semiconductor region 4a is electrically connected to the light-receiving side electrode 7 via the light-receiving element side electrode 4b. The light-receiving element side electrode 4b and the light-receiving side electrode 7 are arranged on the upper surface of the n substrate 2 with the insulating layer 8 interposed therebetween, and thus are electrically insulated from the substrate 2. The light-receiving element side electrode 4b and the light-receiving side electrode 7 are formed of, for example, AuSb alloy, AuGe alloy, or Ni-based alloy, and have a thickness of about 0.5 to 5 μm.

このように構成された受光素子4は、p型半導体領域4aに光が入射すると、光起電力効果によって光電流が発生して、この光電流を受光側電極7を介して出力電流として取り出すことによって、光検出部として機能する。   When light is incident on the p-type semiconductor region 4a in the light-receiving element 4 configured in this manner, a photocurrent is generated by the photovoltaic effect, and this photocurrent is extracted as an output current via the light-receiving side electrode 7. Functions as a photodetector.

次に、本例の受発光センサ1がどのようにして対象物の距離情報および角度情報を検出するセンサとして機能するかを説明する。図2は、本例の受発光センサ1における検出の様子を説明する図であり、図2(a)は距離情報の検出の様子の例を示す、図1(b)と同様の断面図であり、図2(b)は受光素子による出力電流の変化の例を示すグラフである。   Next, how the light emitting and receiving sensor 1 of this example functions as a sensor for detecting distance information and angle information of an object will be described. FIG. 2 is a diagram for explaining a detection state in the light emitting and receiving sensor 1 of the present example, and FIG. 2A is a sectional view similar to FIG. 1B showing an example of a state of detecting distance information. Yes, FIG. 2B is a graph showing an example of changes in the output current due to the light receiving element.

図2(a)において、上方に記載した破線は対象物の位置を示す仮想線であり、Bは距離の基準となる位置を、Nは距離が近い場合の位置を、Fは距離が遠い場合の位置を示している。また、一点鎖線は光の進むおよその方向を示す仮想線であり、発光素子3からレ
ンズ部材51を通過する光は対象物に照射される光の全体の様子を示しており、レンズ部材52を通過する光は、対象物の距離に応じて受光素子4に入射する光の中心部分の様子を示している。
In FIG. 2A, the broken line described above is an imaginary line indicating the position of the object, B is the position that serves as the reference of the distance, N is the position when the distance is short, and F is the case where the distance is long. Shows the position of. In addition, the alternate long and short dash line is an imaginary line that indicates the approximate direction of light travel, and the light passing from the light emitting element 3 through the lens member 51 shows the entire state of the light radiated to the object, and the lens member 52 is The passing light shows the state of the central portion of the light incident on the light receiving element 4 according to the distance of the object.

図2(b)における3つのグラフは、上から順に、対象物が[F](距離が遠い)の場合、対象物が[B](距離が基準)の場合、対象物が[N](距離が近い)の場合について、それぞれ左側の棒が中央部受光領域41からの出力電流を、中央の棒が周辺部受光領域42のうち発光素子3に近い側に位置する2つの領域423,424からの出力電流を、右側の棒が周辺部受光領域42のうち発光素子3から遠い側に位置する2つの領域421,422からの出力電流を、その信号強度Sの大きさに応じて相対的に示したものである。   In the three graphs in FIG. 2B, from the top, when the object is [F] (distance is long), when the object is [B] (distance is the reference), the object is [N] ( In the case where the distance is close), the left bar indicates the output current from the central light receiving region 41, and the central bar indicates two regions 423, 424 located on the side closer to the light emitting element 3 in the peripheral light receiving region 42. Relative to the output current from the two regions 421 and 422 of the peripheral light receiving region 42, which are located on the side farther from the light emitting element 3, by the right side bar. It is shown in.

まず、対象物がBの位置にある場合は、発光素子3からレンズ部材51を通して対象物に照射された光は、距離が基準となる位置Bの対象物で反射し、その反射光はレンズ部材52を通して受光素子4の主に中央部受光領域41に入射し、その周囲の周辺部受光領域423,424および421,422にもいくらかが同程度に入射する。この結果、図4(b)の[B]に示すように、出力電流は中央部受光領域41からのものが大きくなり、周辺部受光領域423,424および421,422からの出力電流はいずれも小さいものとなる。   First, when the target object is at the position B, the light emitted from the light emitting element 3 to the target object through the lens member 51 is reflected by the target object at the position B whose distance is the reference, and the reflected light is the lens member. The light is mainly incident on the central light receiving region 41 of the light receiving element 4 through 52, and some of the light is also incident on the peripheral light receiving regions 423, 424 and 421, 422 around it. As a result, as shown in [B] of FIG. 4B, the output current from the central light receiving region 41 becomes large, and the output currents from the peripheral light receiving regions 423, 424 and 421, 422 are all. It will be small.

次に、対象物がFの位置にある場合は、発光素子3からレンズ部材51を通して対象物に照射された光は、距離が遠い位置Fの対象物で反射し、その反射光はレンズ部材52を通して受光素子4の中央部受光領域41から周辺部受光領域421,422側にずれた部分に入射する。また、発光素子3に近い側の周辺部受光領域423,424にはほとんど入射しなくなる。この結果、図4(b)の[F]に示すように、出力電流は中央部受光領域41からのものが[B]の場合よりも小さくなり、周辺部受光領域421,422からの出力電流が[B]の場合よりも大きくなり、周辺部受光領域423,424からの出力電流がほとんどなくなる。   Next, when the target object is at the position F, the light emitted from the light emitting element 3 to the target object through the lens member 51 is reflected by the target object at the position F whose distance is far, and the reflected light is the lens member 52. The light is incident on the light-receiving element 4 from the central light-receiving area 41 to the peripheral light-receiving areas 421 and 422. Further, the light hardly enters the peripheral light receiving regions 423 and 424 on the side close to the light emitting element 3. As a result, as shown in [F] of FIG. 4B, the output current from the central light receiving region 41 is smaller than that in the case of [B], and the output currents from the peripheral light receiving regions 421 and 422 are small. Is larger than in the case of [B], and the output currents from the peripheral light receiving regions 423 and 424 are almost eliminated.

次に、対象物がNの位置にある場合は、発光素子3からレンズ部材51を通して対象物に照射された光は、距離が近い位置Nの対象物で反射し、その反射光はレンズ部材52を通して受光素子4の中央部受光領域41から周辺部受光領域423,424側にずれた部分に入射する。また、発光素子3から遠い側の周辺部受光領域421,422にはほとんど入射しなくなる。この結果、図4(b)の[N]に示すように、出力電流は中央部受光領域41からのものが[B]の場合よりも小さくなり、周辺部受光領域423,424からの出力電流が[B]の場合よりも大きくなり、周辺部受光領域421,422からの出力電流がほとんどなくなる。   Next, when the target object is at the position N, the light emitted from the light emitting element 3 to the target object through the lens member 51 is reflected by the target object at the position N at a short distance, and the reflected light is the lens member 52. The light is incident on the portion of the light receiving element 4 which is shifted from the central light receiving region 41 toward the peripheral light receiving regions 423 and 424. Further, the light hardly enters the peripheral light receiving regions 421 and 422 on the side far from the light emitting element 3. As a result, as shown in [N] of FIG. 4B, the output current from the central light receiving region 41 is smaller than that in the case of [B], and the output currents from the peripheral light receiving regions 423 and 424. Is larger than in the case of [B], and the output currents from the peripheral light receiving regions 421 and 422 are almost eliminated.

このように、本発明に係る受発光センサ1によれば、対象物の距離に応じて受光素子4の中央部受光領域41および周辺部受光領域42(421,422,423,424)からの出力電流が変化するので、その変化を例えば演算処理部などで処理し、出力電流の比率などを求めることによって、対象物までの距離を求めることができ、距離情報を検出することができる。   As described above, according to the light emitting and receiving sensor 1 of the present invention, the output from the central light receiving area 41 and the peripheral light receiving area 42 (421, 422, 423, 424) of the light receiving element 4 according to the distance of the object. Since the current changes, the change can be processed by, for example, an arithmetic processing unit or the like, and the ratio of the output current can be calculated to obtain the distance to the object, and the distance information can be detected.

次に、図3は、本例の受発光センサ1における検出の様子を説明する図であり、図3(a)は角度情報の検出の様子の例を示す、図2(a)と同様の断面図であり、図3(b)は受光素子による出力電流の変化の例を示すグラフであり、図3(c)は受光素子における受光の様子の例を示す上面図である。   Next, FIG. 3 is a diagram for explaining a state of detection in the light emitting and receiving sensor 1 of this example, and FIG. 3A shows an example of a state of detection of angle information, similar to FIG. 2A. FIG. 3B is a cross-sectional view, FIG. 3B is a graph showing an example of changes in output current by the light receiving element, and FIG. 3C is a top view showing an example of how light is received by the light receiving element.

図3(a)において、上方に記載した破線は対象物の位置および傾きを示す仮想線であり、B’は、図2(a)に示した距離の基準となる位置Bにおいて、右側に傾いている場合を示している。また、一点鎖線は光の進むおよその方向を示す仮想線であり、発光素子3からレンズ部材51を通過する光は対象物に照射される光の中心部分の様子を示しており、レンズ部材52を通過する光は、対象物の角度に応じて受光素子4に入射する光の中心部分の様子を示している。   In FIG. 3A, the broken line described above is an imaginary line indicating the position and inclination of the object, and B ′ is inclined to the right at the position B that is the reference of the distance shown in FIG. 2A. It shows the case. Further, the alternate long and short dash line is an imaginary line that indicates the approximate direction of light travel, and the light passing from the light emitting element 3 through the lens member 51 shows the state of the central portion of the light irradiated to the object, and the lens member 52. The light passing through shows the state of the central portion of the light incident on the light receiving element 4 according to the angle of the object.

図3(b)のグラフは、対象物が[B’](距離が基準で傾いている)の場合について、図2(b)と同様に出力電流の信号強度Sの大きさを相対的に示したものである。   In the graph of FIG. 3B, the magnitude of the signal intensity S of the output current is relatively set in the same manner as in FIG. 2B when the object is [B ′] (distance is inclined with reference). It is shown.

図3(c)の上面図は、図1(a)の上面図のうち受光素子4周辺の部分を示すものである。一点鎖線の円および楕円は、受光素子4に入射したビーム状の反射光のおよその形状を示しており、Bは対象物がBの位置にあって傾いていないときの、B’は対象物がBの位置にあって傾いているときの反射光の位置および形状を示している。   The top view of FIG. 3C shows a portion around the light receiving element 4 in the top view of FIG. The circles and ellipses of alternate long and short dash lines show the approximate shape of the beam-like reflected light that has entered the light-receiving element 4, where B is the object at the position of B and is not tilted, and B ′ is the object. Shows the position and shape of the reflected light when is tilted at position B.

図3(c)におけるBの一点鎖線の円の形状は、図2(a)および図2(b)に示したBの場合の反射光に相当する。これに対し、図3(a)に示すように対象物が傾いている場合には、図3(c)におけるB’の一点鎖線の楕円のように、反射光の位置はこの場合には発光素子3側にずれるとともに、その形状は対象物の傾きに応じて歪んだ形状となるので、その位置および形状の変化に応じて受光素子4の各領域からの出力電流の分布が、図2(b)の[B]に示す分布から、図3(b)の[B’]に示す分布に変化することになる。その分布の変化によって、対象物の傾きから角度情報を検出することができる。   The shape of the dashed-dotted circle of B in FIG. 3C corresponds to the reflected light in the case of B shown in FIGS. 2A and 2B. On the other hand, when the object is tilted as shown in FIG. 3A, the position of the reflected light is the light emission in this case, as in the ellipse of the dashed line B ′ in FIG. 3C. Since the shape shifts to the element 3 side and the shape becomes distorted in accordance with the inclination of the object, the distribution of the output current from each region of the light receiving element 4 in accordance with the change in the position and shape is shown in FIG. The distribution shown in [B] of FIG. 3B changes to the distribution shown in [B ′] of FIG. The angle information can be detected from the inclination of the object based on the change in the distribution.

なお、角度情報の検出を精度よく行なうためには、対象物が傾いていない場合に対象物からの反射光の形状が円形状になり、対象物の傾きに応じて反射光の形状が偏りなく変形するように、レンズ部材5(51,52)には、通過させた光が対称な形状になるように設計された非球面レンズを用いることが好ましい。   In order to detect the angle information with high accuracy, the shape of the reflected light from the object becomes circular when the object is not tilted, and the shape of the reflected light is not biased according to the tilt of the object. In order to deform, it is preferable to use an aspherical lens for the lens member 5 (51, 52), which is designed so that the transmitted light has a symmetrical shape.

このように、本発明に係る受発光センサ1によれば、対象物の傾きに応じた反射光の変形によって受光素子4の中央部受光領域41および周辺部受光領域42(421,422,423,424)からの出力電流が変化するので、その変化を例えば演算処理部などで処理し、出力電流の比率などを求めることによって、対象物の傾きを求めることができ、角度情報を検出することができる。   As described above, according to the light emitting / receiving sensor 1 of the present invention, the central light receiving region 41 and the peripheral light receiving region 42 (421, 422, 423, 424), the output current changes, so that the change in the output current is processed by, for example, an arithmetic processing unit, and the ratio of the output current is calculated to obtain the inclination of the object, and the angle information can be detected. it can.

また、角度については、図3(a)に示した左右方向の傾きの角度の他にも、発光素子3と受光素子4とを結ぶ方向を軸とした、前後方向の傾きの角度についても検出が可能である。   Regarding the angle, in addition to the angle of inclination in the left-right direction shown in FIG. 3A, the angle of inclination in the front-rear direction about the direction connecting the light emitting element 3 and the light receiving element 4 is also detected. Is possible.

本例の受発光センサ1によって求められる対象物の距離情報および角度情報としては、対象物との距離および角度ならびにそれらの変化、また受発光センサ1の仕様によっても異なるが、例えば、距離情報としては、レンズ部材5からの距離が5〜6mm程度を基準として設計される場合に、距離の基準が5mmで、照射するビームの対象物に対する角度を5°、ビーム径を0.5mm(5倍レンズ)としたときには、距離で±2mm程度、角度
で±2°程度の範囲の変化を検出することができる。
The distance information and the angle information of the object obtained by the light emitting and receiving sensor 1 of the present example may vary depending on the distance and angle to the object and their changes, and the specifications of the light emitting and receiving sensor 1, but for example, as the distance information. When the distance from the lens member 5 is designed to be about 5 to 6 mm as a reference, the distance reference is 5 mm, the angle of the irradiation beam with respect to the object is 5 °, and the beam diameter is 0.5 mm (5x lens). ), It is possible to detect a change within a range of about ± 2 mm in distance and about ± 2 ° in angle.

そして、本発明に係る受発光センサ1を用いたセンサ装置は、発光素子3からレンズ部材5(51)を通過した光を対象物に照射し、この対象物で反射してレンズ部材5(52)を通過した反射光を受光素子4で受光して、反射光に応じて中央部受光領域41および環状の周辺部受光領域42(421〜424)から出力される出力電流によって、対象物の距離情報および角度情報の少なくとも一方を検出する。このような本発明に係るセンサ装置によれば、上記したような対象物の距離情報および角度情報を良好に検出することができる。   Then, the sensor device using the light emitting and receiving sensor 1 according to the present invention irradiates the object with the light that has passed through the lens member 5 (51) from the light emitting element 3 and is reflected by this object to reflect the lens member 5 (52). ). The reflected light that has passed through the light receiving element 4 is received by the light receiving element 4, and the output current output from the central light receiving region 41 and the annular peripheral light receiving region 42 (421 to 424) according to the reflected light causes At least one of the information and the angle information is detected. With such a sensor device according to the present invention, it is possible to favorably detect the distance information and the angle information of the target object as described above.

なお、このようなセンサ装置は、出力電流に基づいて距離情報および角度情報を求めるための演算処理部などの処理部、および発光素子3を制御するための制御部などを備えるが、これらには種々の公知のものを採用すればよい。   Note that such a sensor device includes a processing unit such as an arithmetic processing unit for obtaining distance information and angle information based on the output current, a control unit for controlling the light emitting element 3, and the like. Various publicly known ones may be adopted.

1 受発光センサ
2 基板
3 発光素子
4 受光素子
41 中央部受光領域
42,421,422,423,424 周辺部受光領域
5,51,52 レンズ部材
1 light emitting / receiving sensor 2 substrate 3 light emitting element 4 light receiving element
41 Center light receiving area
42,421,422,423,424 Peripheral light receiving area 5,51,52 Lens member

Claims (4)

基板と、
該基板の上面に配置された、対象物に光を照射するための発光素子と、
前記基板の上面に前記発光素子から離して配置された、前記対象物で反射した反射光を受光する受光素子と、
前記基板の上方に配置された、前記発光素子からの光を前記対象物に向けて通過させるとともに該対象物で反射した反射光を前記受光素子に向けて通過させるレンズ部材とを備えており、
前記受光素子は、中央部受光領域と、該中央部受光領域を取り囲む、途中で複数に分割された環状の周辺部受光領域とを有している、受発光センサ。
Board,
A light emitting element arranged on the upper surface of the substrate for irradiating an object with light;
A light-receiving element that is disposed apart from the light-emitting element on the upper surface of the substrate, and receives the reflected light reflected by the object,
A lens member disposed above the substrate, which allows light from the light emitting element to pass toward the object and which allows reflected light reflected by the object to pass toward the light receiving element,
The light receiving and emitting sensor, wherein the light receiving element has a central light receiving region and an annular peripheral light receiving region that surrounds the central light receiving region and is divided into a plurality of parts in the middle.
前記中央部受光領域は円形状であり、前記周辺部受光領域は、等分に分割された、前記中央部受光領域と同心の円環状である、請求項1に記載の受発光センサ。   The light emitting and receiving sensor according to claim 1, wherein the central light receiving region is circular, and the peripheral light receiving region is an annular ring that is concentric with the central light receiving region. 前記基板は、一導電型の半導体からなり、前記受光素子の前記中央部受光領域および前記周辺部受光領域は、前記基板に形成された他導電型の半導体を有している、請求項1に記載の受発光センサ。   2. The substrate according to claim 1, wherein the substrate is made of one conductivity type semiconductor, and the central light receiving region and the peripheral light receiving region of the light receiving element have another conductivity type semiconductor formed on the substrate. The light emitting and receiving sensor described. 請求項1〜3のいずれかに記載の受発光センサを用いたセンサ装置であって、
前記発光素子から前記レンズ部材を通過した光を前記対象物に照射し、該対象物で反射して前記レンズ部材を通過した反射光を前記受光素子で受光して、前記反射光に応じて前記中央部受光領域および環状の前記周辺部受光領域から出力される出力電流によって、前記対象物の距離情報および角度情報の少なくとも一方を検出する、センサ装置。
A sensor device using the light emitting and receiving sensor according to claim 1,
The light passing through the lens member from the light emitting element is irradiated to the target object, the reflected light reflected by the target object and passing through the lens member is received by the light receiving element, and the light is reflected according to the reflected light. A sensor device for detecting at least one of distance information and angle information of the object by an output current output from a central light receiving area and an annular light receiving area.
JP2018201481A 2018-10-26 2018-10-26 Light receiving and emitting sensor and sensor device using the same Pending JP2020068341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201481A JP2020068341A (en) 2018-10-26 2018-10-26 Light receiving and emitting sensor and sensor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201481A JP2020068341A (en) 2018-10-26 2018-10-26 Light receiving and emitting sensor and sensor device using the same

Publications (1)

Publication Number Publication Date
JP2020068341A true JP2020068341A (en) 2020-04-30

Family

ID=70390580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201481A Pending JP2020068341A (en) 2018-10-26 2018-10-26 Light receiving and emitting sensor and sensor device using the same

Country Status (1)

Country Link
JP (1) JP2020068341A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155203A (en) * 1987-12-14 1989-06-19 Sharp Corp Photointerruptor
JPH0436609A (en) * 1990-05-31 1992-02-06 Mitsutoyo Corp Displacement detector
JPH07311084A (en) * 1994-05-20 1995-11-28 Nippondenso Co Ltd Solar radiation sensor
JP2005214714A (en) * 2004-01-28 2005-08-11 Stanley Electric Co Ltd Position detection device
US20090225330A1 (en) * 2008-03-06 2009-09-10 Hong Kong Applied Science and Technology Research Institute Company Limited Optoelectronic distance sensor
US20110297831A1 (en) * 2010-06-08 2011-12-08 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Small Low-Profile Optical Proximity Sensor
JP2014127684A (en) * 2012-12-27 2014-07-07 Kyocera Corp Light emitting/receiving element and sensor device using the same
JP2016018820A (en) * 2014-07-04 2016-02-01 京セラ株式会社 Sensor, sensor device and optical operating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155203A (en) * 1987-12-14 1989-06-19 Sharp Corp Photointerruptor
JPH0436609A (en) * 1990-05-31 1992-02-06 Mitsutoyo Corp Displacement detector
JPH07311084A (en) * 1994-05-20 1995-11-28 Nippondenso Co Ltd Solar radiation sensor
JP2005214714A (en) * 2004-01-28 2005-08-11 Stanley Electric Co Ltd Position detection device
US20090225330A1 (en) * 2008-03-06 2009-09-10 Hong Kong Applied Science and Technology Research Institute Company Limited Optoelectronic distance sensor
US20110297831A1 (en) * 2010-06-08 2011-12-08 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Small Low-Profile Optical Proximity Sensor
JP2014127684A (en) * 2012-12-27 2014-07-07 Kyocera Corp Light emitting/receiving element and sensor device using the same
JP2016018820A (en) * 2014-07-04 2016-02-01 京セラ株式会社 Sensor, sensor device and optical operating device

Similar Documents

Publication Publication Date Title
JP6495988B2 (en) Light emitting / receiving element and sensor device using the same
US9535157B2 (en) Proximity sensor including reference detector for stray radiation detection
JP6420423B2 (en) Light emitting / receiving element module and sensor device using the same
JP5404026B2 (en) Light receiving / emitting integrated element array and sensor device
US10128222B2 (en) Light-emitting-and-receiving element module and sensor device using the same
JP5882720B2 (en) Light emitting / receiving element module and sensor device using the same
WO2013065731A1 (en) Sensor device
JP5744204B2 (en) Light emitting / receiving element and sensor device including the same
JP2002083995A (en) Multi-wavelength photodiode
JP6165298B2 (en) Photoelectric sensor
JPH02271586A (en) Semiconductor laser device
US4605943A (en) Composite optical semiconductor device
JP2015223404A (en) Sensor and skin information detection method
JP2020068341A (en) Light receiving and emitting sensor and sensor device using the same
JP2018046314A (en) Light receiving/emitting element and sensor device using the same
JP2022035262A (en) Photodetector, photodetection system, lidar device and vehicle
JP5822688B2 (en) Light emitting / receiving element
JP6426202B2 (en) Measuring device and measuring method
JP3427125B2 (en) Semiconductor device with optical lens function
CN115315865A (en) Surface emitting laser element and distance measuring device having the same
KR102191820B1 (en) Optical sensor
JP2015008256A (en) Light receiving/emitting element and sensor device using the same
JP2016225623A (en) Light receiving/emitting element module and measuring device
JP6117604B2 (en) Light emitting / receiving element and sensor device using the same
KR102165216B1 (en) Radiation image detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301