JP2020067591A - Pulse train generation device - Google Patents

Pulse train generation device Download PDF

Info

Publication number
JP2020067591A
JP2020067591A JP2018200964A JP2018200964A JP2020067591A JP 2020067591 A JP2020067591 A JP 2020067591A JP 2018200964 A JP2018200964 A JP 2018200964A JP 2018200964 A JP2018200964 A JP 2018200964A JP 2020067591 A JP2020067591 A JP 2020067591A
Authority
JP
Japan
Prior art keywords
splitter
wave plate
reflected
pulse
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018200964A
Other languages
Japanese (ja)
Other versions
JP7089760B2 (en
Inventor
アリセフ アレクサンダー
Aryshev Alexander
アリセフ アレクサンダー
順治 浦川
Junji Urakawa
順治 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Energy Accelerator Research Organization
Original Assignee
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Energy Accelerator Research Organization filed Critical High Energy Accelerator Research Organization
Priority to JP2018200964A priority Critical patent/JP7089760B2/en
Publication of JP2020067591A publication Critical patent/JP2020067591A/en
Application granted granted Critical
Publication of JP7089760B2 publication Critical patent/JP7089760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

To provide a pulse train generation device capable of dividing femtosecond laser pulse into 16 at arbitrary intervals.SOLUTION: After rotating the S-polarized light by 45 degrees with a half-wave plate (1/2λ plate), the light is reflected by a polarizing beam splitter (PBS) and allowed to pass therethrough to thereby the femtosecond laser pulse is divided into two. The passed S-polarized pulse is delayed by about 200 fsec (60 um when converted to spatial distance) by an optical delay line (providing a difference in optical path distance by changing the position of the moving mirror). When the P-polarized pulse and the S-polarized pulse are combined again using PBS, the femtosecond laser 2 pulse train is generated. A 16-pulse train of the femtosecond laser is generated by repeating the above 4 times. At that time, the laser may be composed of a prism and a moving mirror capable of position control so as to facilitate adjustment of optical alignment.SELECTED DRAWING: Figure 4

Description

本発明は、フェムト(10−5)秒(fs)のレーザーパルスを、任意の間隔で16分割、或いは32分割するパルス列生成装置(以下、それぞれ「16パルス列生成装置」、「32パルス列生成措置」ともいう)に関する。 The present invention relates to a pulse train generator that divides a femto (10 −5 ) second (fs) laser pulse into 16 or 32 at arbitrary intervals (hereinafter, “16 pulse train generator” and “32 pulse train generating device”, respectively). Also referred to as).

フェムト秒レーザーパルスは、数十〜数百フェムト秒の時間長(パルス幅)を有するビームである。   The femtosecond laser pulse is a beam having a time length (pulse width) of tens to hundreds of femtoseconds.

発明者等は、すでにフェムト秒レーザーパルスを、任意の間隔で4分割するパルス列生成装置(「4パルス列生成装置」ともいう)を開発し、非特許文献1,2で公開している。   The inventors have already developed a pulse train generation device (also referred to as “4 pulse train generation device”) that divides a femtosecond laser pulse into four at arbitrary intervals, and has disclosed them in Non-Patent Documents 1 and 2.

ここで、発明者がこれまで開発した4パルス列生成装置を、図1(非特許文献1のFig2),図2(非特許文献2のFig2)に掲載し、その概要を、図3にまとめ、それに沿って説明する。光路中の矢印の向きはレーザーパルスの進行方向、矢印の数はパルス列(ビームバンチ)の数を意味する。   Here, the 4-pulse train generation device that the inventor has developed so far is shown in FIG. 1 (Non-patent document 1 FIG. 2) and FIG. 2 (Non-patent document 2 FIG. 2), and its outline is summarized in FIG. I will explain along it. The direction of the arrow in the optical path means the traveling direction of the laser pulse, and the number of arrows means the number of pulse trains (beam bunches).

図3に示すように、4パルス列生成装置1は、
例えばパルス幅100fs〜200fsの線偏光レーザーパルスs(0)を透過させ、線偏光方向を45°回転させ水平波(s)と垂直波(p)が50%ずつの成分の線偏光s/p(1)にする第一半波長板2と、
s/p(1)の進行方向を反射(例えば90°)させる第一プリズム3と、
s/p(1)からs成分の進行方向を反射(例えば90°)させるとともにp成分を透過させる第一スプリッタ4と、
反射したs(1)を進行方向逆向きに反射する第一固定ミラー6と、
第一固定ミラー6と第一スプリッタ4の光路の間に配置され、s(1)をp(2)に変換する第一1/4波長板5と、
透過したp(1)の進行方向を反射(例えば90°)させる第二プリズム7と、
反射したp(1)を進行方向逆向きに反射する第一移動ミラー9と、
第一移動ミラー9と第二プリズム7の光路の間に配置され、p(1)をs(2)に変換する第二1/4波長板8と、
第一スプリッタ4に再度到達し透過したp(2)及び第一スプリッタ4で反射させられたs(2)の進行方向軸をズラし逆向きに反射する第三プリズム10と、
第一スプリッタ4と第三プリズム10の光路の間に配置され、p(2)、s(2)を一度通過させそれぞれs/p(3)に変換する第二半波長板11と、
s/p(3)の内、スプリッタ4でs(3)を第二プリズム7方向に反射させ、さらに第一移動ミラー9と異なる方向に第二プリズム7で反射したものを進行方向逆向きに反射させる第二移動ミラー13と、
第二移動ミラー13と第二プリズム7の光路の間に配置され、s(3)をp(4)に変換する第三1/4波長板12と、
s/p(3)の内、スプリッタ4を透過したp(3)を第一固定ミラー6で反射及び第一1/4波長板5を透過し変換された2つのs(4)及び2つのp(4)をそれぞれs/p(5)に変換する第三半波長板14とからなり、
フェムト秒レーザーパルスを、任意の間隔で4分割する。ここでは、第一プリズム3の後段光路に第三半波長板14を設置し、第一プリズム3で反射した後にs/p(5)調整している。
As shown in FIG. 3, the 4-pulse train generator 1 is
For example, a linearly polarized laser pulse s (0) having a pulse width of 100 fs to 200 fs is transmitted, the direction of linearly polarized light is rotated by 45 °, and the linearly polarized light s / p of which the horizontal wave (s) and the vertical wave (p) are 50% each. (1) the first half-wave plate 2 and
a first prism 3 for reflecting (for example, 90 °) the traveling direction of s / p (1),
a first splitter 4 that reflects (for example, 90 °) the traveling direction of the s component from s / p (1) and transmits the p component;
A first fixed mirror 6 that reflects the reflected s (1) in a direction opposite to the traveling direction;
A first quarter-wave plate 5 arranged between the optical paths of the first fixed mirror 6 and the first splitter 4 for converting s (1) into p (2);
A second prism 7 for reflecting (for example, 90 °) the traveling direction of the transmitted p (1),
A first moving mirror 9 that reflects the reflected p (1) in a direction opposite to the traveling direction;
A second quarter-wave plate 8 arranged between the optical paths of the first moving mirror 9 and the second prism 7 for converting p (1) into s (2),
A third prism 10 that shifts the traveling direction axis of p (2) that has reached the first splitter 4 again and transmitted therethrough and s (2) that has been reflected by the first splitter 4 and that reflects in the opposite direction;
A second half-wave plate 11 which is arranged between the optical paths of the first splitter 4 and the third prism 10 and which passes p (2) and s (2) once and converts them into s / p (3), respectively.
Of s / p (3), s (3) is reflected by the splitter 4 toward the second prism 7 and further reflected by the second prism 7 in a direction different from that of the first moving mirror 9 in the direction opposite to the traveling direction. A second moving mirror 13 for reflecting,
A third quarter-wave plate 12 arranged between the second moving mirror 13 and the optical path of the second prism 7 for converting s (3) into p (4),
Of s / p (3), two s (4) and two p (3) transmitted through the splitter 4 are reflected by the first fixed mirror 6 and transmitted through the first quarter-wave plate 5 and converted. and a third half-wave plate 14 for converting p (4) into s / p (5),
The femtosecond laser pulse is divided into four at arbitrary intervals. Here, the third half-wave plate 14 is installed in the optical path after the first prism 3, and s / p (5) is adjusted after the light is reflected by the first prism 3.

分割されるパルス間の任意の間隔は、第一移動ミラー9及び第二移動ミラー13の移動により、すなわち、第一スプリッタ4と第一固定ミラーまでの光路(L1)と、第一スプリッタ4と第一移動ミラー9までの距離(L2)との差(時間差)、さらにL1と第一スプリッタ4と第二移動ミラー13までの距離(L3)との差(時間差)を調節することで簡易に制御できる。   The arbitrary interval between the divided pulses is determined by the movement of the first moving mirror 9 and the second moving mirror 13, that is, the optical path (L1) between the first splitter 4 and the first fixed mirror, and the first splitter 4. The difference (time difference) from the distance (L2) to the first moving mirror 9 and the difference (time difference) from L1 to the distance (L3) to the first splitter 4 and the second moving mirror 13 can be easily adjusted. You can control.

なお、プリズムを用いることで光学アライメント調整が簡単になる。スプリッタ(偏光ビームスプリッタ/PBS)は、偏光方向が水平なS波を反射し、垂直なP波を通過させる光学素子であるので、レーザーパルスを成分に応じて分離できる。1/4波長板はS波の2回の通過で、S波をP波に変換する。   It should be noted that the use of the prism simplifies the optical alignment adjustment. The splitter (polarization beam splitter / PBS) is an optical element that reflects S waves having a horizontal polarization direction and allows vertical P waves to pass therethrough, so that laser pulses can be separated according to their components. The quarter-wave plate converts the S wave into the P wave by passing the S wave twice.

また、移動ミラーの位置制御に、ステッピングパルスモータとリニアセンサを使うことで、1um精度でミラー位置を位置決め制御することができる。   Further, by using the stepping pulse motor and the linear sensor for the position control of the moving mirror, the mirror position can be controlled with a precision of 1 μm.

A. Aryshev, M. Shevelev, Y. Honda, N. Terunuma, J. Urakawa, “Femtosecond response time measurements of a Cs2Te photocathode”, Applied Physics Letters 111, 033508-1, -5, 2017.A. Aryshev, M. Shevelev, Y. Honda, N. Terunuma, J. Urakawa, “Femtosecond response time measurements of a Cs2Te photocathode”, Applied Physics Letters 111, 033508-1, -5, 2017. M. Shevelev, A. Aryshev, N. Terunuma, and J. Urakawa1, “Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer”, Phys. Rev. ST Accel. Beams 20, 103401 (2017)M. Shevelev, A. Aryshev, N. Terunuma, and J. Urakawa1, “Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer”, Phys. Rev. ST Accel. Beams 20, 103401 (2017)

さらに、フェムト秒レーザーパルスを多数に分割する要請がある。そこで、フェムト秒レーザーパルスを、任意の間隔で16分割、或いは32分割するパルス列生成装置を提供することを目的とする。   Furthermore, there is a demand to divide the femtosecond laser pulse into a large number. Then, it aims at providing the pulse train production | generation apparatus which divides | segments a femtosecond laser pulse into 16 or 32 at arbitrary intervals.

発明を実現するための原理、方法論は、以下の通りでさる。半波長板(1/2λplate)によってS偏光を45度回転した後に偏光ビームスプリッター(PBS)で反射・通過させるとフェムト秒レーザーパルスが二つに分かれる。通過したS偏光パルスはOptical delay line(移動ミラーの位置を変更することによる光路距離に差を設ける)によって200fsec程度(空間距離に変換すると60um)遅らせる。再度PBSを使ってP偏光パルスとS偏光パルスを合流させると、フェムト秒レーザー2パルス列が生成できる。これを4回繰り返して、フェムト秒レーザー16パルス列生成を行うことができる。その際、光学アライメントの調整が容易になるよう、レーザーをプリズム、位置制御可能な移動ミラーで構成するとよい。   The principles and methodologies for realizing the invention are as follows. When the S-polarized light is rotated by 45 ° by a half-wave plate (1 / 2λ plate) and then reflected / passed by a polarization beam splitter (PBS), the femtosecond laser pulse is divided into two. The passed S-polarized pulse is delayed by about 200 fsec (60 um when converted into a spatial distance) by an optical delay line (providing a difference in the optical path distance by changing the position of the moving mirror). When the P-polarized pulse and the S-polarized pulse are combined again using PBS, a femtosecond laser 2 pulse train can be generated. By repeating this four times, the 16-pulse train of femtosecond laser can be generated. At this time, it is preferable that the laser is composed of a prism and a position-controllable moving mirror so that the optical alignment can be easily adjusted.

より詳しくは、
[1]
線偏光レーザーパルスs(0)を透過させ、線偏光方向を45°回転させ水平波(s)と垂直波(p)が50%ずつの成分の線偏光s/p(1)にする第一半波長板と、
s/p(1)の進行方向を反射させる第一プリズムと、
s/p(1)からs成分の進行方向を反射させるとともにp成分を透過させる第一スプリッタと、
反射したs(1)を進行方向逆向きに反射する第一固定ミラーと、
前記第一固定ミラーと前記第一スプリッタの光路の間に配置され、s(1)をp(2)に変換する第一1/4波長板と、
透過したp(1)の進行方向を反射させる第二プリズムと、
反射したp(1)を進行方向逆向きに反射する第一移動ミラーと、
前記第一移動ミラーと前記第二プリズムの光路の間に配置され、p(1)をs(2)に変換する第二1/4波長板と、
前記第一スプリッタに再度到達し透過したp(2)及び前記第一スプリッタで反射させられたs(2)を透過させ、それぞれs/p(3)に変換する第二半波長板と、
s/p(3)の内、s(3)を反射させ、p(3)を透過させる第二スプリッタと、
透過したp(3)を透過、進行方向逆向きに反射させつつp(3)をs(4)に変換する第五1/4波長板及び第二固定ミラーと、
反射したs(3)の進行方向を反射させる第四プリズムと、
反射したs(3)を進行方向逆向きに反射する第三移動ミラーと、
前記第三移動ミラーと前記第四プリズムの光路の間に配置され、s(3)をp(4)に変換する第四1/4波長板と、
前記第二スプリッタで反射したs(4)及び前記第二スプリッタを透過したp(4)を透過させ、それぞれs/p(5)に変換する第四半波長板と、
s(4)及びp(4)と進行方向軸をズラし逆向きにs/p(5)を反射する第五プリズム30と、
前記第二スプリッタを透過したp(5)を前記第四プリズムによって前記第三移動ミラーと異なる方向に反射したものを逆向きに反射させる第四移動ミラーと、
第四移動ミラーと第四プリズムの光路の間に配置され、p(5)をs(6)に変換する第六1/4波長板と、
前記第二スプリッタで反射したs(5)は前記第二固定ミラーに反射、前記第五1/4波長板を通過してp(6)に変換され、前記第二スプリッタを透過し、また、
前記第二スプリッタを透過したp(5)はs(6)に変換されたうえで、前記第二スプリッタで反射して、それぞれ前記第二半波長板に戻り、透過して、それぞれs/p(7)になり、前記第一スプリッタを透過したp(7)は、前記第一固定ミラーで進行方向逆向きに反射しつつ前記第一1/4波長板を透過してs(8)に変換され、
前記第一スプリッタで反射したs(7)は、前記第二プリズムに向かい、前記第一移動ミラーと異なる方向に反射したものを逆向きに反射させる第二移動ミラーと、
前記第二移動ミラーと前記第二プリズムの光路の間に配置され、s(7)をp(8)に変換する第三1/4波長板と、
前記第一スプリッタで反射したs(8)と、前記第一スプリッタを透過したp(8)を、8つのs(8)及び8つのp(8)とする16分割のs/p(9)に変換する第三半波長板と、
からなり、
直線偏光レーザーパルスを、16列のフェムト秒パルスに分割することを特徴とする
パルス列生成装置。
[2]
前記線偏光レーザーパルスの時間幅を拡張するパルスストレッチャーを、前記第一半波長板の前段光路に配置したことを特徴とする[1]に記載のパルス列生成装置。
[3]
目的の分割数に分割された各パルスの時間幅を短縮するパルスコンプレッサを、前記光路末端に配置したことを特徴とする[1]又は[2]に記載のパルス列生成装置。
[4]
前記第五1/4波長板及び前記第二固定ミラーを除き、当該位置に第二半波長板が位置する倍化要素を追加配置して、直線偏光レーザーパルスを、32列のフェムト秒パルスに分割することを特徴とする[1]〜[3]の何れか1に記載のパルス列生成装置。
とした。
For more details,
[1]
First to transmit the linearly polarized laser pulse s (0), rotate the linearly polarized light direction by 45 °, and make the linearly polarized light s / p (1) with 50% of horizontal wave (s) and 50% of vertical wave (p). Half-wave plate,
a first prism for reflecting the traveling direction of s / p (1),
a first splitter that reflects the traveling direction of the s component from s / p (1) and transmits the p component;
A first fixed mirror that reflects the reflected s (1) in a direction opposite to the traveling direction;
A first quarter-wave plate disposed between the first fixed mirror and the optical path of the first splitter to convert s (1) into p (2);
A second prism that reflects the traveling direction of the transmitted p (1);
A first moving mirror that reflects the reflected p (1) in the opposite direction of travel,
A second quarter-wave plate arranged between the first moving mirror and the optical path of the second prism to convert p (1) into s (2);
A second half-wave plate that transmits p (2) that has reached the first splitter again and transmitted, and s (2) that has been reflected by the first splitter, and converts each to s / p (3);
Of s / p (3), a second splitter that reflects s (3) and transmits p (3);
A fifth quarter-wave plate and a second fixed mirror for converting p (3) into s (4) while transmitting and reflecting the transmitted p (3) in the opposite direction of travel;
A fourth prism that reflects the traveling direction of the reflected s (3),
A third moving mirror that reflects the reflected s (3) in the opposite direction of travel,
A fourth quarter-wave plate disposed between the third moving mirror and the optical path of the fourth prism, for converting s (3) into p (4),
A fourth half-wave plate that transmits s (4) reflected by the second splitter and p (4) transmitted by the second splitter and converts them into s / p (5), respectively.
a fifth prism 30 which shifts the traveling direction axis from s (4) and p (4) and reflects s / p (5) in the opposite direction;
A fourth moving mirror that reflects p (5) transmitted through the second splitter in a direction different from that of the third moving mirror by the fourth prism in the opposite direction;
A sixth quarter-wave plate arranged between the fourth moving mirror and the optical path of the fourth prism for converting p (5) into s (6),
The s (5) reflected by the second splitter is reflected by the second fixed mirror, passes through the fifth quarter wavelength plate, is converted into p (6), passes through the second splitter, and
The p (5) transmitted through the second splitter is converted into s (6), reflected by the second splitter, returned to the second half-wave plate, transmitted, and respectively s / p In step (7), p (7) transmitted through the first splitter is transmitted through the first quarter-wave plate while being reflected by the first fixed mirror in the opposite traveling direction to s (8). Converted,
S (7) reflected by the first splitter is directed to the second prism, and a second moving mirror that reflects the light reflected in a direction different from the first moving mirror in the opposite direction,
A third quarter-wave plate disposed between the second moving mirror and the optical path of the second prism, for converting s (7) into p (8),
16 division s / p (9) in which s (8) reflected by the first splitter and p (8) transmitted by the first splitter are 8 s (8) and 8 p (8). A third half-wave plate that converts to
Consists of
A pulse train generation device characterized in that a linearly polarized laser pulse is divided into 16 trains of femtosecond pulses.
[2]
The pulse train generator according to [1], wherein a pulse stretcher for expanding the time width of the linearly polarized laser pulse is arranged in the front optical path of the first half-wave plate.
[3]
The pulse train generator according to [1] or [2], wherein a pulse compressor that shortens the time width of each pulse divided into a desired number of divisions is arranged at the end of the optical path.
[4]
Except for the fifth quarter-wave plate and the second fixed mirror, a doubling element in which the second half-wave plate is located is additionally arranged at the position to convert the linearly polarized laser pulse into 32 rows of femtosecond pulses. The pulse train generation device according to any one of [1] to [3], which is divided.
And

本発明は、上記構成であるので、フェムト秒レーザーパルスを、16分割、32分割することが可能になった。   Since the present invention has the above configuration, the femtosecond laser pulse can be divided into 16 and 32 divisions.

例えば、16列のレーザーパルスを光カソードに照射して、16電子ミクロバンチ列生成を行い加速後、その16電子ミクロバンチ列がアンジュレータを通過すると、比較的短いアンジュレータで自由電子レーザー発振(FEL)飽和が安定に起こる。THz放射や赤外線放射ピーク強度が従来のレーザーによる放射ピーク強度の1000倍以上になる。基礎物性研究や物の診断等に利用できる装置として非常に有用である。   For example, when 16 rows of laser pulses are irradiated to the photocathode to generate 16-electron micro-bunch rows and accelerated, and then the 16-electron micro-bunch rows pass through the undulator, free electron laser oscillation (FEL) saturation occurs with a relatively short undulator. It happens stably. The peak intensity of THz radiation or infrared radiation becomes 1000 times or more than that of the conventional laser. It is very useful as a device that can be used for basic physical property research and product diagnosis.

また、32列のレーザーパルス生成が可能になれば、放射安定性、放射ピーク強度、実用性はさらに高まりまる。以上の物理現象は共鳴現象であるので、強度と安定性は画期的に良くなる。   If 32 trains of laser pulses can be generated, radiation stability, emission peak intensity, and practicality will be further enhanced. Since the above physical phenomenon is a resonance phenomenon, the strength and stability are remarkably improved.

図1は、発明者がすでに提案した、フェムト秒レーザーパルスを4分割する、4パルス列生成装置の構成図(非特許文献1のFig2)である。FIG. 1 is a configuration diagram (FIG. 2 of Non-Patent Document 1) of a 4-pulse train generation device, which has been already proposed by the inventor, for dividing a femtosecond laser pulse into four. 図2は、発明者がすでに提案した、フェムト秒レーザーパルスを4分割する、4パルス列生成装置の構成図(非特許文献2のFig2)である。FIG. 2 is a configuration diagram (FIG. 2 of Non-Patent Document 2) of a 4-pulse train generation device for dividing a femtosecond laser pulse into four, which has been proposed by the inventor. 図3は、発明者がすでに提案した、4パルス列生成装置の説明図である。FIG. 3 is an explanatory diagram of the 4-pulse train generation device already proposed by the inventor. 図4は、本発明であるフェムト秒レーザーパルスを16分割する、16パルス列生成装置の構成図である。FIG. 4 is a configuration diagram of a 16-pulse train generator that divides a femtosecond laser pulse into 16 according to the present invention.

以下、添付の図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は下記形態例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the present invention is not limited to the following form examples.

図4に示すように、本発明であるフェムト秒レーザーパルスを任意の間隔で16分割するパルス列生成装置21は、従来の4パルス列生成装置1において、第三プリズム10及び第二半波長板11を除き、当該位置に、倍化要素34を付加したものである。   As shown in FIG. 4, a pulse train generation device 21 according to the present invention that divides a femtosecond laser pulse into 16 at arbitrary intervals includes a third prism 10 and a second half-wave plate 11 in the conventional 4-pulse train generation device 1. Except that the doubling element 34 is added to the position.

したがって、実施例1の構成については、その説明の詳細は省略する。なお、図4中において、(数字)の順にパルスは進み16列のパルスになる。   Therefore, the detailed description of the configuration of the first embodiment is omitted. In addition, in FIG. 4, the pulse advances in the order of (numeral) and becomes a pulse of 16 columns.

パルス列生成装置21は、
必要に応じて備える、例えばパルス幅100fs〜200fsの線偏光レーザーパルスを透過させ、時間幅を拡張させ、パルス幅1ピコ秒(ps)程度の線偏光レーザーパルスs(0)に調整するパルスストレッチャー22と、
線偏光レーザーパルスs(0)を透過させ、線偏光方向を45°回転させ水平波(s)と垂直波(p)が50%ずつの成分の線偏光s/p(1)にする第一半波長板2と、
s/p(1)の進行方向を反射(例えば90°)させる第一プリズム3と、
s/p(1)からs成分の進行方向を反射(例えば90°)させるとともにp成分を透過させる第一スプリッタ4と、
反射したs(1)を進行方向逆向きに反射する第一固定ミラー6と、
第一固定ミラー6と第一スプリッタ4の光路の間に配置され、s(1)をp(2)に変換する第一1/4波長板5と、
透過したp(1)の進行方向を反射(例えば90°)させる第二プリズム7と、
反射したp(1)を進行方向逆向きに反射する第一移動ミラー9と、
第一移動ミラー9と第二プリズム7の光路の間に配置され、p(1)をs(2)に変換する第二1/4波長板8と、
第一スプリッタ4に再度到達し透過したp(2)及び第一スプリッタ4で反射させられたs(2)を透過させ、それぞれs/p(3)に変換する第二半波長板11と、
s/p(3)の内、s(3)を反射させ、p(3)を透過させる第二スプリッタ23と、
透過したp(3)を透過、進行方向逆向きに反射させつつp(3)をs(4)に変換する第五1/4波長板27及び第二固定ミラー28と、
反射したs(3)の進行方向を反射させる第四プリズム24と、
反射したs(3)を進行方向逆向きに反射する第三移動ミラー26と、
第三移動ミラー26と第四プリズム24の光路の間に配置され、s(3)をp(4)に変換する第四1/4波長板25と、
第二スプリッタ23で反射したs(4)及び第二スプリッタ23を透過したp(4)を透過させ、それぞれs/p(5)に変換する第四半波長板29と、
s(4)及びp(4)と進行方向軸をズラし逆向きにs/p(5)を反射する第五プリズム30(第四半波長板29は、第五プリズム30の後段に配置しておもよい)と、
第二スプリッタ23を透過したp(5)を第四プリズム24によって第三移動ミラー26と異なる方向に反射したものを逆向きに反射させる第四移動ミラー32と、
第四移動ミラー32と第四プリズム24の光路の間に配置され、p(5)をs(6)に変換する第六1/4波長板31と、
第二スプリッタ23で反射したs(5)は第二固定ミラー28に反射、第五1/4波長板27を通過してp(6)に変換され、第二スプリッタ23を透過し、また、
第二スプリッタ23を透過したp(5)は上述したようにs(6)に変換されたうえで、第二スプリッタ23で反射して、それぞれ第二半波長板11に戻り、透過して、それぞれs/p(7)になり、第一スプリッタ4を透過したp(7)は、第一固定ミラー6で進行方向逆向きに反射しつつ第一1/4波長板5を透過してs(8)に変換され、
第一スプリッタ4で反射したs(7)は、第二プリズム7に向かい、第一移動ミラー9と異なる方向に反射したものを逆向きに反射させる第二移動ミラー13と、
第二移動ミラー13と第二プリズム7の光路の間に配置され、s(7)をp(8)に変換する第三1/4波長板12と、
第一スプリッタ4で反射したs(8)と、第一スプリッタ4を透過したp(8)を、8つのs(8)及び8つのp(8)とする16分割のs/p(9)に変換する第三半波長板14と、
必要に応じて、分割後、各パルスの時間幅を短縮するパルスコンプレッサ33を備えてなる。
The pulse train generator 21 is
A pulse strike that is provided as necessary, for example, transmits a linearly polarized laser pulse having a pulse width of 100 fs to 200 fs, extends the time width, and adjusts the linearly polarized laser pulse s (0) having a pulse width of about 1 picosecond (ps). Letcher 22 and
First to transmit the linearly polarized laser pulse s (0), rotate the linearly polarized light direction by 45 °, and make the linearly polarized light s / p (1) with 50% of horizontal wave (s) and 50% of vertical wave (p). Half-wave plate 2
a first prism 3 for reflecting (for example, 90 °) the traveling direction of s / p (1),
a first splitter 4 that reflects (for example, 90 °) the traveling direction of the s component from s / p (1) and transmits the p component;
A first fixed mirror 6 that reflects the reflected s (1) in a direction opposite to the traveling direction;
A first quarter-wave plate 5 arranged between the optical paths of the first fixed mirror 6 and the first splitter 4 for converting s (1) into p (2);
A second prism 7 for reflecting (for example, 90 °) the traveling direction of the transmitted p (1),
A first moving mirror 9 that reflects the reflected p (1) in a direction opposite to the traveling direction;
A second quarter-wave plate 8 arranged between the optical paths of the first moving mirror 9 and the second prism 7 for converting p (1) into s (2),
A second half-wave plate 11 for transmitting p (2) that has reached the first splitter 4 again and transmitted and s (2) that has been reflected by the first splitter 4, and converts each to s / p (3),
Of s / p (3), a second splitter 23 that reflects s (3) and transmits p (3),
A fifth quarter-wave plate 27 and a second fixed mirror 28 for converting p (3) into s (4) while transmitting the transmitted p (3) and reflecting it in the direction opposite to the traveling direction;
A fourth prism 24 for reflecting the traveling direction of the reflected s (3),
A third moving mirror 26 that reflects the reflected s (3) in the opposite direction of travel,
A fourth quarter wave plate 25 arranged between the third moving mirror 26 and the optical path of the fourth prism 24 to convert s (3) into p (4);
A fourth half-wave plate 29 that transmits s (4) reflected by the second splitter 23 and p (4) transmitted by the second splitter 23 and converts them into s / p (5), respectively.
The fifth prism 30 (the fourth half-wave plate 29 is disposed in the subsequent stage of the fifth prism 30) which shifts the traveling direction axis from s (4) and p (4) and reflects s / p (5) in the opposite direction. Good),
A fourth moving mirror 32 that reflects p (5) transmitted through the second splitter 23 in a direction different from that of the third moving mirror 26 by the fourth prism 24 in the opposite direction,
A sixth quarter-wave plate 31 arranged between the fourth moving mirror 32 and the optical path of the fourth prism 24 for converting p (5) into s (6),
The s (5) reflected by the second splitter 23 is reflected by the second fixed mirror 28, passes through the fifth quarter wavelength plate 27, is converted into p (6), passes through the second splitter 23, and
The p (5) transmitted through the second splitter 23 is converted into s (6) as described above, and then reflected by the second splitter 23, returned to the second half-wave plate 11 and transmitted, Each s / p (7) is transmitted through the first splitter 4, and p (7) is transmitted through the first quarter-wave plate 5 while being reflected by the first fixed mirror 6 in the direction opposite to the traveling direction. Converted to (8),
The s (7) reflected by the first splitter 4 is directed to the second prism 7, and the second moving mirror 13 that reflects the light reflected in a direction different from the first moving mirror 9 in the opposite direction,
A third quarter-wave plate 12 arranged between the optical path of the second moving mirror 13 and the second prism 7 for converting s (7) into p (8);
16 division s / p (9) in which s (8) reflected by the first splitter 4 and p (8) transmitted through the first splitter 4 are set to 8 s (8) and 8 p (8) A third half-wave plate 14 for converting into
If necessary, a pulse compressor 33 that shortens the time width of each pulse after division is provided.

これにより、フェムト秒レーザーパルスを、任意の間隔で16分割する。任意の間隔は、移動ミラーの移動を調節することで、分離されたレーザービームの光路距離差を利用して制御する。   As a result, the femtosecond laser pulse is divided into 16 at arbitrary intervals. The arbitrary interval is controlled by adjusting the movement of the moving mirror to utilize the difference in the optical path lengths of the separated laser beams.

パルスストレッチャー22は、必要に応じて、第一半波長板2の前段光路に配置され、線偏光レーザーパルスの時間幅(パルス幅)を拡張する、概ね1ps。これにより、パルスストレッチャーを備えることで、レーザーパルスのピークパワーを低くでき、ミラー損傷を低減できる。このことにより、16パルス列生成が安定に行える。   The pulse stretcher 22 is arranged in the front optical path of the first half-wave plate 2 as necessary to extend the time width (pulse width) of the linearly polarized laser pulse, which is approximately 1 ps. Therefore, by providing the pulse stretcher, the peak power of the laser pulse can be lowered and the mirror damage can be reduced. As a result, 16 pulse trains can be stably generated.

パルスコンプレッサ33は、必要に応じて、出射前段(光路末端)に配置され、目的の分割数に分割された各パルスの時間幅を短縮、整形する。これにより、パルス列間の分離性(分解能)を高めることができる。短い時間幅(fs)において、多数のパルス列、16,32列に分割にすると、パルス同士の重なりが問題になってくるため、パルスコンプレッサ33で整形することで多数分割パルス列の利用範囲を広めることができる。   The pulse compressor 33 is arranged in the preceding stage (the end of the optical path) of the emission as needed, and shortens and shapes the time width of each pulse divided into a desired number of divisions. Thereby, the separability (resolution) between pulse trains can be improved. If the pulse train is divided into a large number of pulse trains, 16 and 32 trains in a short time width (fs), overlapping of the pulses becomes a problem. Therefore, shaping by the pulse compressor 33 widens the range of use of the multi-divided pulse train. You can

フェムト秒レーザーパルスを任意の間隔で32分割するパルス列生成装置は、実施例1において、第五1/4波長板27及び第二固定ミラー28を除き、当該位置に第二半波長板11が位置する倍化要素34を追加配置してなる。   In the pulse train generation device that divides the femtosecond laser pulse into 32 at arbitrary intervals, the second half-wave plate 11 is located at the position except for the fifth quarter wave plate 27 and the second fixed mirror 28 in the first embodiment. A doubling element 34 is additionally arranged.

さらに、追加すれば、64分割のパルス列生成装置となるが、各パルス間の分離能が低いこともあるが、そもそも、そのようなパルス列の用途がない。   Further, if added, it becomes a 64-divided pulse train generation device, but the separability between each pulse may be low, but in the first place, such a pulse train is not used.

本発明は、小型電子加速器による大強度電磁波放射装置、放射線化学、非破壊分子診断、電磁波によるセキュリティー診断装置に利用でき、医療用分野において、低コスト、省スペースで、医療用高周波加速器などを提供することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a high-intensity electromagnetic wave radiation device using a small electron accelerator, radiation chemistry, non-destructive molecular diagnostics, and a security diagnostic device using electromagnetic waves, and provides a high-frequency medical accelerator for medical use in a low cost and space-saving manner. can do.

より具体的には、THz電磁波発生をFELで行う場合、従来の方法では3m近いアンジュレータ電磁石が必要であったが、本光学部品によりPre−Bunched FELを行えば、0.5m 以内のアンジュレータ電磁石によりFEL飽和状態が実現できる。これにより加速器を小型化できる。   More specifically, when the THz electromagnetic wave generation is performed by the FEL, the conventional method requires an undulator electromagnet close to 3 m, but if the Pre-Bunched FEL is performed by this optical component, the undulator electromagnet within 0.5 m is generated. FEL saturation can be realized. This can reduce the size of the accelerator.

レーザーマイクロパルストレインと電子ビームによるポンプ・プローブ実験により高速の分子反応ダイナミックス研究が可能になる。   Laser probe micro-pulse train and electron beam pump-probe experiments enable fast dynamics of molecular reaction studies.

1 4パルス列生成装置
2 第一半波長板
3 第一プリズム
4 第一スプリッタ
5 第一1/4波長板
6 第一固定ミラー
7 第二プリズム
8 第二1/4波長板
9 第一移動ミラー
10 第三プリズム
11 第二半波長板
12 第三1/4波長板
13 第二移動ミラー
14 第三半波長板
21 16パルス列生成装置
22 パルスストレッチャー
23 第二スプリッタ
24 第四プリズム
25 第四1/4波長板
26 第三移動ミラー
27 第五1/4波長板
28 第二固定ミラー
29 第四半波長板
30 第五プリズム
31 第六1/4波長板
32 第四移動ミラー
33 パルスコンプレッサ
34 倍化要素
1 4 Pulse Train Generation Device 2 First Half Wave Plate 3 First Prism 4 First Splitter 5 First Quarter Wave Plate 6 First Fixed Mirror 7 Second Prism 8 Second Quarter Wave Plate 9 First Moving Mirror 10 Third prism 11 Second half-wave plate 12 Third quarter-wave plate 13 Second moving mirror 14 Third half-wave plate 21 16 Pulse train generation device 22 Pulse stretcher 23 Second splitter 24 Fourth prism 25 Fourth 1 / Four-wave plate 26 Third moving mirror 27 Fifth quarter-wave plate 28 Second fixed mirror 29 Fourth half-wave plate 30 Fifth prism 31 Sixth quarter-wave plate 32 Fourth moving mirror 33 Pulse compressor 34 Double element

Claims (4)

線偏光レーザーパルスs(0)を透過させ、線偏光方向を45°回転させ水平波(s)と垂直波(p)が50%ずつの成分の線偏光s/p(1)にする第一半波長板と、
s/p(1)の進行方向を反射させる第一プリズムと、
s/p(1)からs成分の進行方向を反射させるとともにp成分を透過させる第一スプリッタと、
反射したs(1)を進行方向逆向きに反射する第一固定ミラーと、
前記第一固定ミラーと前記第一スプリッタの光路の間に配置され、s(1)をp(2)に変換する第一1/4波長板と、
透過したp(1)の進行方向を反射させる第二プリズムと、
反射したp(1)を進行方向逆向きに反射する第一移動ミラーと、
前記第一移動ミラーと前記第二プリズムの光路の間に配置され、p(1)をs(2)に変換する第二1/4波長板と、
前記第一スプリッタに再度到達し透過したp(2)及び前記第一スプリッタで反射させられたs(2)を透過させ、それぞれs/p(3)に変換する第二半波長板と、
s/p(3)の内、s(3)を反射させ、p(3)を透過させる第二スプリッタと、
透過したp(3)を透過、進行方向逆向きに反射させつつp(3)をs(4)に変換する第五1/4波長板及び第二固定ミラーと、
反射したs(3)の進行方向を反射させる第四プリズムと、
反射したs(3)を進行方向逆向きに反射する第三移動ミラーと、
前記第三移動ミラーと前記第四プリズムの光路の間に配置され、s(3)をp(4)に変換する第四1/4波長板と、
前記第二スプリッタで反射したs(4)及び前記第二スプリッタを透過したp(4)を透過させ、それぞれs/p(5)に変換する第四半波長板と、
s(4)及びp(4)と進行方向軸をズラし逆向きにs/p(5)を反射する第五プリズム30と、
前記第二スプリッタを透過したp(5)を前記第四プリズムによって前記第三移動ミラーと異なる方向に反射したものを逆向きに反射させる第四移動ミラーと、
第四移動ミラーと第四プリズムの光路の間に配置され、p(5)をs(6)に変換する第六1/4波長板と、
前記第二スプリッタで反射したs(5)は前記第二固定ミラーに反射、前記第五1/4波長板を通過してp(6)に変換され、前記第二スプリッタを透過し、また、
前記第二スプリッタを透過したp(5)はs(6)に変換されたうえで、前記第二スプリッタで反射して、それぞれ前記第二半波長板に戻り、透過して、それぞれs/p(7)になり、前記第一スプリッタを透過したp(7)は、前記第一固定ミラーで進行方向逆向きに反射しつつ前記第一1/4波長板を透過してs(8)に変換され、
前記第一スプリッタで反射したs(7)は、前記第二プリズムに向かい、前記第一移動ミラーと異なる方向に反射したものを逆向きに反射させる第二移動ミラーと、
前記第二移動ミラーと前記第二プリズムの光路の間に配置され、s(7)をp(8)に変換する第三1/4波長板と、
前記第一スプリッタで反射したs(8)と、前記第一スプリッタを透過したp(8)を、8つのs(8)及び8つのp(8)とする16分割のs/p(9)に変換する第三半波長板と、
からなり、
直線偏光レーザーパルスを、16列のフェムト秒パルスに分割することを特徴とする
パルス列生成装置。
First to transmit the linearly polarized laser pulse s (0), rotate the linearly polarized light direction by 45 °, and make the linearly polarized light s / p (1) with 50% of horizontal wave (s) and 50% of vertical wave (p). Half-wave plate,
a first prism for reflecting the traveling direction of s / p (1),
a first splitter that reflects the traveling direction of the s component from s / p (1) and transmits the p component;
A first fixed mirror that reflects the reflected s (1) in a direction opposite to the traveling direction;
A first quarter-wave plate disposed between the first fixed mirror and the optical path of the first splitter to convert s (1) into p (2);
A second prism that reflects the traveling direction of the transmitted p (1);
A first moving mirror that reflects the reflected p (1) in the opposite direction of travel,
A second quarter-wave plate arranged between the first moving mirror and the optical path of the second prism to convert p (1) into s (2);
A second half-wave plate that transmits p (2) that has reached the first splitter again and transmitted, and s (2) that has been reflected by the first splitter, and converts each to s / p (3);
Of s / p (3), a second splitter that reflects s (3) and transmits p (3);
A fifth quarter-wave plate and a second fixed mirror for converting p (3) into s (4) while transmitting and reflecting the transmitted p (3) in the opposite direction of travel;
A fourth prism that reflects the traveling direction of the reflected s (3),
A third moving mirror that reflects the reflected s (3) in the opposite direction of travel,
A fourth quarter-wave plate disposed between the third moving mirror and the optical path of the fourth prism, for converting s (3) into p (4),
A fourth half-wave plate that transmits s (4) reflected by the second splitter and p (4) transmitted by the second splitter and converts them into s / p (5), respectively.
a fifth prism 30 which shifts the traveling direction axis from s (4) and p (4) and reflects s / p (5) in the opposite direction;
A fourth moving mirror that reflects p (5) transmitted through the second splitter in a direction different from that of the third moving mirror by the fourth prism in the opposite direction;
A sixth quarter-wave plate arranged between the fourth moving mirror and the optical path of the fourth prism for converting p (5) into s (6),
The s (5) reflected by the second splitter is reflected by the second fixed mirror, passes through the fifth quarter wavelength plate, is converted into p (6), passes through the second splitter, and
The p (5) transmitted through the second splitter is converted into s (6), reflected by the second splitter, returned to the second half-wave plate, transmitted, and respectively s / p In step (7), p (7) transmitted through the first splitter is transmitted through the first quarter-wave plate while being reflected by the first fixed mirror in the opposite traveling direction to s (8). Converted,
S (7) reflected by the first splitter is directed to the second prism, and a second moving mirror that reflects the light reflected in a direction different from the first moving mirror in the opposite direction,
A third quarter-wave plate disposed between the second moving mirror and the optical path of the second prism, for converting s (7) into p (8),
16 division s / p (9) in which s (8) reflected by the first splitter and p (8) transmitted by the first splitter are 8 s (8) and 8 p (8). A third half-wave plate that converts to
Consists of
A pulse train generation device characterized in that a linearly polarized laser pulse is divided into 16 trains of femtosecond pulses.
前記線偏光レーザーパルスの時間幅を拡張するパルスストレッチャーを、前記第一半波長板の前段光路に配置したことを特徴とする請求項1に記載のパルス列生成装置。 2. The pulse train generation device according to claim 1, wherein a pulse stretcher for expanding the time width of the linearly polarized laser pulse is arranged in the front optical path of the first half-wave plate. 目的の分割数に分割された各パルスの時間幅を短縮するパルスコンプレッサを、前記光路末端に配置したことを特徴とする請求項1又は請求項2に記載のパルス列生成装置。 The pulse train generator according to claim 1 or 2, wherein a pulse compressor that shortens the time width of each pulse divided into a desired number of divisions is arranged at the end of the optical path. 前記第五1/4波長板及び前記第二固定ミラーを除き、当該位置に第二半波長板が位置する倍化要素を追加配置して、直線偏光レーザーパルスを、32列のフェムト秒パルスに分割することを特徴とする請求項1〜請求項3の何れか1項に記載のパルス列生成装置。 Except for the fifth quarter-wave plate and the second fixed mirror, a doubling element in which the second half-wave plate is located is additionally arranged at the position to convert the linearly polarized laser pulse into 32 rows of femtosecond pulses. The pulse train generation device according to claim 1, wherein the pulse train generation device is divided.
JP2018200964A 2018-10-25 2018-10-25 Pulse train generator Active JP7089760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200964A JP7089760B2 (en) 2018-10-25 2018-10-25 Pulse train generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200964A JP7089760B2 (en) 2018-10-25 2018-10-25 Pulse train generator

Publications (2)

Publication Number Publication Date
JP2020067591A true JP2020067591A (en) 2020-04-30
JP7089760B2 JP7089760B2 (en) 2022-06-23

Family

ID=70390280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200964A Active JP7089760B2 (en) 2018-10-25 2018-10-25 Pulse train generator

Country Status (1)

Country Link
JP (1) JP7089760B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984658A (en) * 2021-10-11 2022-01-28 中国科学院上海光学精密机械研究所 Element damage characteristic regulation and control method based on pulse sequence and damage testing system
CN114924422A (en) * 2022-04-03 2022-08-19 上海图灵智算量子科技有限公司 Ultrafast laser pulse sequence modulator and modulation method
CN115016133A (en) * 2022-06-02 2022-09-06 北京理工大学 Novel carrier modulation pulse generation device and method
CN116780325A (en) * 2023-08-18 2023-09-19 深圳市中科融光医疗科技有限公司 Optical path device for efficient laser coupling and working method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447856A (en) * 1966-10-07 1969-06-03 Bell Telephone Labor Inc Optical pulse multiplier
JP2003270551A (en) * 2002-03-15 2003-09-25 Kawasaki Heavy Ind Ltd Method and apparatus for controlling laser pulse and method and apparatus for generating x-ray
JP2012215905A (en) * 2012-07-18 2012-11-08 Japan Synchrotron Radiation Research Institute Pulse shaping device, pulse shaping method and electron gun
JP2017201697A (en) * 2011-06-13 2017-11-09 ケーエルエー−テンカー コーポレイション Semiconductor inspection and measurement system using laser pulse multiplier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447856A (en) * 1966-10-07 1969-06-03 Bell Telephone Labor Inc Optical pulse multiplier
JP2003270551A (en) * 2002-03-15 2003-09-25 Kawasaki Heavy Ind Ltd Method and apparatus for controlling laser pulse and method and apparatus for generating x-ray
JP2017201697A (en) * 2011-06-13 2017-11-09 ケーエルエー−テンカー コーポレイション Semiconductor inspection and measurement system using laser pulse multiplier
JP2012215905A (en) * 2012-07-18 2012-11-08 Japan Synchrotron Radiation Research Institute Pulse shaping device, pulse shaping method and electron gun

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. SHEVELEV ET AL: "Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson in", PHYS. REV. ST ACC EL. BEAMS, vol. 20, 103401, JPN7022002414, 2017, US, pages 1 - 103401, ISSN: 0004785979 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984658A (en) * 2021-10-11 2022-01-28 中国科学院上海光学精密机械研究所 Element damage characteristic regulation and control method based on pulse sequence and damage testing system
CN113984658B (en) * 2021-10-11 2024-04-12 中国科学院上海光学精密机械研究所 Component damage characteristic regulation and control method and damage test system based on pulse sequence
CN114924422A (en) * 2022-04-03 2022-08-19 上海图灵智算量子科技有限公司 Ultrafast laser pulse sequence modulator and modulation method
CN114924422B (en) * 2022-04-03 2023-09-29 上海图灵智算量子科技有限公司 Ultrafast laser pulse sequence modulator and modulation method
CN115016133A (en) * 2022-06-02 2022-09-06 北京理工大学 Novel carrier modulation pulse generation device and method
CN115016133B (en) * 2022-06-02 2023-03-14 北京理工大学 Novel carrier modulation pulse generation device and method
CN116780325A (en) * 2023-08-18 2023-09-19 深圳市中科融光医疗科技有限公司 Optical path device for efficient laser coupling and working method
CN116780325B (en) * 2023-08-18 2023-11-03 深圳市中科融光医疗科技有限公司 Optical path device for efficient laser coupling and working method

Also Published As

Publication number Publication date
JP7089760B2 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP2020067591A (en) Pulse train generation device
Frank et al. Invited review article: technology for attosecond science
Gebs et al. High-speed asynchronous optical sampling with sub-50fs time resolution
US11550175B2 (en) Optical pulse shaping method and system based on multi-frequency acoustic-optic deflection and retro-diffraction based multi-delay generation
Moshammer et al. Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He
Morgenweg et al. Ramsey-comb spectroscopy with intense ultrashort laser pulses
CN107078452A (en) UV visible laser systems with ultrashort high power and/or high energy pulse
Karras et al. Experimental observation of fractional echoes
Kovačev et al. Extreme ultraviolet Fourier-transform spectroscopy with high order harmonics
Ma et al. Precise pulse shaping for quantum control of strong optical transitions
Dostal et al. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti: sapphire laser system
Liontos et al. Ramsey spectroscopy of bound atomic states with extreme-ultraviolet laser harmonics
Rolles Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers
US11211762B2 (en) Generating synchronized laser pulses at variable wavelengths
WO2016079845A1 (en) Noise reduction device and detection device provided with same
JP2010267897A (en) Electromagnetic wave generating device, and electromagnetic wave generating method
Khan Ultrashort pulses from synchrotron radiation sources
Vaughan et al. Design of an optically-locked interferometer for attosecond pump-probe setups
Rublack et al. Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors
JP2016042519A (en) Light pulse synchronization device and microscope system
Harrison et al. Generation and control of non-local quantum equivalent extreme ultraviolet photons
Mustary et al. Advanced gouy phase high harmonics interferometer
JP2011029435A (en) Laser synchronizing method, laser system, and pump probe measurement system
JP2018091833A (en) Noise reduction device and detector having the same
Wikmark Spatial and temporal aspects of intense attosecond pulses for pump-probe experiments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220413

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7089760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150