JP2020067360A - Measurement device, method for measuring distance, program, and recording medium - Google Patents

Measurement device, method for measuring distance, program, and recording medium Download PDF

Info

Publication number
JP2020067360A
JP2020067360A JP2018199928A JP2018199928A JP2020067360A JP 2020067360 A JP2020067360 A JP 2020067360A JP 2018199928 A JP2018199928 A JP 2018199928A JP 2018199928 A JP2018199928 A JP 2018199928A JP 2020067360 A JP2020067360 A JP 2020067360A
Authority
JP
Japan
Prior art keywords
light
distance
light receiving
signal
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2018199928A
Other languages
Japanese (ja)
Inventor
佐藤 充
Mitsuru Sato
充 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2018199928A priority Critical patent/JP2020067360A/en
Publication of JP2020067360A publication Critical patent/JP2020067360A/en
Ceased legal-status Critical Current

Links

Abstract

To provide a measurement device which can measure an accurate distance regardless of the distance to an object.SOLUTION: The present invention includes: a division unit for dividing a light which has been emitted to a predetermined region and has been reflected by an object in the predetermined region into a first reflected light RL1 and a second reflected light RL2; a first light collecting lens 22A on the optical path for the first reflected light; a first light receiving unit 23A on the optical path for the first reflected light having traveled through the first light collecting lens; a second light collecting lens 22B on the optical path for the second reflected light; a second light receiving unit 23B on the optical path for the second reflected light having traveled through the second light collecting lens; and a distance calculating unit 33 for calculating the distance to the object on the basis of at least one of the result of light reception by the first receiving unit and the result of light reception by the second receiving unit, the numerical aperture of the first collecting lens being larger than that of the second light collecting unit.SELECTED DRAWING: Figure 1

Description

本発明は、測距装置に関する。   The present invention relates to a distance measuring device.

レーザ光を対象物に照射し、当該対象物によって反射されたレーザ光を受光して解析することにより、対象物までの距離を計測する測距装置が知られている(例えば、特許文献1)。かかる測距装置では、例えば対象物によって反射されたレーザ光をレンズによって集光し、集光したレーザ光を受光素子で受光する。   There is known a distance measuring device that measures a distance to an object by irradiating the object with laser light and receiving and analyzing laser light reflected by the object (for example, Patent Document 1). . In such a distance measuring device, for example, laser light reflected by an object is condensed by a lens, and the condensed laser light is received by a light receiving element.

特開2015−129646号公報JP, 2005-129646, A

上記のような測距装置では、通常、遠距離にある対象物からの反射光が受光素子上に集光するように受光光学系が設定されているため、近距離にある対象物からの反射光を集光する場合にはデフォーカスや球面収差が発生してしまう。そのため、受光素子では近距離の対象物からの反射光を十分に集光した状態で受光することができず、対象物までの正確な距離を得ることができないという問題があった。   In the distance measuring device as described above, the light receiving optical system is usually set so that the reflected light from the object at a long distance is condensed on the light receiving element. When focusing light, defocus and spherical aberration occur. Therefore, the light receiving element cannot receive the reflected light from the object at a short distance in a sufficiently condensed state, and there is a problem that an accurate distance to the object cannot be obtained.

特に、ライン形状のレーザ光(ラインビーム)を出射し、複数の受光素子がライン状に配列されたラインセンサを用いて反射光を受光する場合、近距離の対象物からの反射光をレンズで集光する際に発生する収差により、各々の受光素子で受光すべき光が隣の受光素子にはみ出してしまうという問題点があった。   In particular, when a line-shaped laser beam (line beam) is emitted and a reflected light is received using a line sensor in which a plurality of light receiving elements are arranged in a line, reflected light from an object at a short distance is reflected by a lens. There is a problem in that the light to be received by each light receiving element is projected to the adjacent light receiving element due to the aberration generated when converging.

このように、対象物が近距離に存在する場合、受光素子は十分に集光した状態の反射光を受光できず、対象物までの距離を正確に算出することができないということが課題の一例として挙げられる。   As described above, when the target object exists at a short distance, the light receiving element cannot receive the reflected light in a sufficiently condensed state, and the distance to the target object cannot be accurately calculated. As.

本発明は上記した点に鑑みてなされたものであり、対象物までの距離にかかわらず、正確に測距を行うことが可能な測距装置を提供することを目的の一つとしている。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a distance measuring device capable of performing accurate distance measurement regardless of the distance to an object.

請求項1に記載の発明は、測距装置であって、所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させる分岐部と、前記第1の反射光の光路上に設けられた第1の集光レンズと、前記第1の集光レンズを経た前記第1の反射光の光路上に設けられた第1の受光部と、前記第2の反射光の光路上に設けられた第2の集光レンズと、前記第2の集光レンズを経た前記第2の反射光の光路上に設けられた第2の受光部と、前記第1の受光部の受光結果及び前記第2の受光部の受光結果の少なくとも一方に基づいて前記対象物までの距離を算出する距離算出部と、を有し、前記第1の集光レンズの開口数は、前記第2の集光レンズの開口数よりも大きいことを特徴とする。   The invention according to claim 1 is a distance measuring device, wherein light emitted toward a predetermined area and reflected by an object in the predetermined area is converted into first reflected light and second reflected light. A branching portion for branching, a first condenser lens provided on the optical path of the first reflected light, and a first condenser lens provided on the optical path of the first reflected light that has passed through the first condenser lens. No. 1 light receiving section, a second condenser lens provided on the optical path of the second reflected light, and a second condenser lens provided on the optical path of the second reflected light that has passed through the second condenser lens. And a distance calculation unit that calculates a distance to the object based on at least one of the light reception result of the first light reception unit and the light reception result of the second light reception unit. The numerical aperture of the first condenser lens is larger than the numerical aperture of the second condenser lens.

請求項7に記載の発明は、光を分岐させる分岐部と、前記分岐部により分岐した光の一方の光路上に設けられた第1の集光レンズと、前記第1の集光レンズを経た光の光路上に設けられた第1の受光部と、前記分岐部により分岐した光の他方の光路上に設けられた前記第1の集光レンズよりも開口数が小さい第2の集光レンズと、前記第2の集光レンズを経た光の光路上に設けられた第2の受光部と、前記第1の受光部又は前記第2の受光部の受光結果に基づいて前記対象物までの距離を算出する距離算出部と、を有する測距装置が実行する測距方法であって、前記分岐部が、所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させるステップと、前記第1の集光レンズが、前記第1の反射光を集光するステップと、前記第2の集光レンズが、前記第2の反射光を集光するステップと、前記第1の受光部が、前記第1の集光レンズにより集光された前記第1の反射光を受光して第1の受光信号を生成するステップと、前記第2の受光部が、前記第2の集光レンズにより集光された前記第2の反射光を受光して第2の受光信号を生成するステップと、前記距離算出部が、前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定するステップと、前記距離算出部が、前記概算処理が閾値以上である場合には、前記第1の受光信号と前記第2の受光信号とを合算した合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出するステップと、を含むことを特徴とする。   The invention according to claim 7 includes a branching part for branching the light, a first condenser lens provided on one optical path of the light branched by the branching portion, and the first condenser lens. A first light receiving portion provided on an optical path of light, and a second condenser lens having a numerical aperture smaller than that of the first condenser lens provided on the other optical path of the light branched by the branching portion. A second light receiving portion provided on the optical path of the light passing through the second condenser lens, and up to the object based on the light receiving result of the first light receiving portion or the second light receiving portion. A distance calculating unit that calculates a distance, and a distance measuring method executed by a distance measuring device, wherein the branching unit emits light toward a predetermined region and reflects light reflected by an object in the predetermined region, Branching into a first reflected light and a second reflected light; A step of collecting the first reflected light; a step of collecting the second reflected light by the second collecting lens; and a step of collecting the first light receiving part by the first collecting lens. Receiving the condensed first reflected light and generating a first received light signal; and the second light receiving section collecting the second reflected light condensed by the second condenser lens. Receiving light and generating a second light receiving signal; and determining the approximate distance to the object based on the first light receiving signal or the second light receiving signal by the distance calculation unit. The distance calculation unit calculates the distance to the object based on a summed signal obtained by summing the first received light signal and the second received light signal, when the approximation process is equal to or more than a threshold value. , If the estimated distance is less than the threshold value, based on the second received light signal, Characterized in that it comprises the steps of: calculating a distance to the object Te.

請求項8に記載の発明は、プログラムであって、所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させる分岐部と、前記第1の反射光を集光する第1の集光レンズと、前記第1の集光レンズを経た前記第1の反射光を受光して第1の受光信号を生成する第1の受光部と、前記第1の集光レンズよりも小さい開口数を有し前記第2の反射光を集光する第2の集光レンズと、前記第2の集光レンズを経た前記第2の反射光を受光して第2の受光信号を生成する第2の受光部と、を有する測距装置に搭載されたコンピュータに、前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定するステップと、前記概算処理が閾値以上である場合には、前記第1の受光信号と前記第2の受光信号とを合算した合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出するステップと、を実行させることを特徴とする。   The invention according to claim 8 is a program, which splits light emitted toward a predetermined region and reflected by an object in the predetermined region into first reflected light and second reflected light. A diverging section, a first condenser lens that condenses the first reflected light, and a first condensing lens that receives the first reflected light that has passed through the first condensing lens and generates a first received light signal. One light receiving portion, a second condenser lens having a numerical aperture smaller than that of the first condenser lens and condensing the second reflected light, and the second condenser lens that passes through the second condenser lens. A computer mounted on a distance measuring device having a second light receiving section that receives two reflected lights and generates a second light receiving signal, based on the first light receiving signal or the second light receiving signal. And a step of determining an approximate distance to the object, and if the approximate processing is equal to or more than a threshold, The distance to the object is calculated based on a summed signal obtained by adding the first received light signal and the second received light signal, and based on the second received light signal when the estimated distance is less than the threshold value. And calculating a distance to the target object.

請求項9に記載の発明は、記録媒体であって、所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させる分岐部と、前記第1の反射光を集光する第1の集光レンズと、前記第1の集光レンズを経た前記第1の反射光を受光して第1の受光信号を生成する第1の受光部と、前記第1の集光レンズよりも小さい開口数を有し前記第2の反射光を集光する第2の集光レンズと、前記第2の集光レンズを経た前記第2の反射光を受光して第2の受光信号を生成する第2の受光部と、を有する測距装置に搭載されたコンピュータに、前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定するステップと、前記概算処理が閾値以上である場合には、前記第1の受光信号と前記第2の受光信号とを合算した合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出するステップと、を実行させるプログラムを記録することを特徴とする。   The invention according to claim 9 is a recording medium, wherein light emitted toward a predetermined region and reflected by an object in the predetermined region is branched into first reflected light and second reflected light. A branching portion, a first condensing lens that condenses the first reflected light, and the first reflected light that has passed through the first condensing lens to receive a first light reception signal. A first light receiving portion, a second light collecting lens that has a numerical aperture smaller than that of the first light collecting lens and collects the second reflected light, and the second light collecting lens that passes through the second light collecting lens. A computer mounted on a distance measuring device having a second light receiving section for receiving a second reflected light and generating a second light receiving signal, and applying the first light receiving signal or the second light receiving signal to the computer. Determining an approximate distance to the object based on the above, and if the approximate processing is a threshold value or more, Of the received light signal and the second received light signal are combined to calculate a distance to the object, and when the estimated distance is less than the threshold value, based on the second received light signal. And a step of calculating a distance to the object, a program for executing the step is recorded.

実施例1の測距装置の構成を示すブロック図である。3 is a block diagram showing the configuration of the distance measuring apparatus according to the first embodiment. FIG. 対象物が遠距離にある場合の反射光の受光を示す模式図である。It is a schematic diagram which shows reception of the reflected light when a target object is in a long distance. 対象物が近距離にある場合の反射光の受光を示す模式図である。It is a schematic diagram which shows the light reception of the reflected light when a target object is in a short distance. 対象物が遠距離にある場合の受光信号の波形を示す図である。It is a figure which shows the waveform of the light reception signal when a target object is in a long distance. 対象物が近距離にある場合の受光信号の波形を示す図である。It is a figure which shows the waveform of the light reception signal when a target object is in a short distance. 遠距離にある複数の対象物からの反射光の受光の様子を示す模式図である。It is a schematic diagram which shows the mode of light reception of the reflected light from the several target object in a long distance. 複数の対象物が遠距離にある場合の受光信号の波形を示す図である。It is a figure which shows the waveform of the light reception signal in case a some object is in a long distance. 近距離にある複数の対象物からの反射光を第1の受光部で受光した場合を示す模式図である。It is a schematic diagram which shows the case where the 1st light-receiving part received the reflected light from the some target object in a short distance. 複数の対象物が近距離にある場合の第1の受光信号の例を示す図である。It is a figure which shows the example of the 1st received light signal when a some object is in a short distance. 近距離にある複数の対象物からの反射光を第2の受光部で受光した場合を示す模式図である。It is a schematic diagram which shows the case where the reflected light from the some target object in a short distance is received by the 2nd light-receiving part. 複数の対象物が近距離にある場合の第2の受光信号の例を示す図である。It is a figure which shows the example of the 2nd light reception signal when a some object is in a short distance. 実施例2のビームスプリッタの例を示す図である。FIG. 7 is a diagram showing an example of a beam splitter of the second embodiment. 実施例2における遠距離の対象物からの反射光の受光を示す模式図である。7 is a schematic diagram showing reception of reflected light from a long-distance object in Embodiment 2. FIG. 実施例2における近距離の対象物からの反射光の受光を示す模式図である。7 is a schematic diagram showing reception of reflected light from an object at a short distance in Embodiment 2. FIG.

以下に本発明の好適な実施例を詳細に説明する。なお、以下の各実施例における説明及び添付図面においては、実質的に同一または等価な部分には同一の参照符号を付している。   Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description of each embodiment and the accompanying drawings, substantially the same or equivalent parts are designated by the same reference numerals.

図1は、本実施例の測距装置100の構成を示すブロック図である。測距装置100は、レーザ光を所定領域に向けて出射し、所定領域内の対象物OJTによって反射されたレーザ光を受光して、受光結果に基づいて対象物OJTまでの距離を計測する測距装置である。測距装置100は、投光部11、ビームスプリッタ20、第1受光処理部21A、第2受光処理部21B、及び測距部30を有する。   FIG. 1 is a block diagram showing the configuration of the distance measuring device 100 of this embodiment. The distance measuring device 100 emits laser light toward a predetermined area, receives the laser light reflected by the object OJT in the predetermined area, and measures the distance to the object OJT based on the light reception result. It is a distance device. The distance measuring device 100 includes a light projecting unit 11, a beam splitter 20, a first light receiving processing unit 21A, a second light receiving processing unit 21B, and a distance measuring unit 30.

投光部11は、レーザ光を出射する光源12、光源12を駆動する発光駆動部13、及び光源12から出射されたレーザ光の光路上に設けられた投光レンズ14を含む。光源12は、例えばライン状に配された複数のエミッタ(マルチエミッタ)から構成され、当該複数のエミッタから出射されたレーザ光が合わさったライン形状のレーザ光(すなわち、ラインビーム)を出射する。透光部11は、光源12から出射されたレーザ光を所定領域に向けて出射する。   The light projecting unit 11 includes a light source 12 that emits laser light, a light emission driving unit 13 that drives the light source 12, and a light projecting lens 14 that is provided on the optical path of the laser light emitted from the light source 12. The light source 12 is composed of, for example, a plurality of emitters (multi-emitters) arranged in a line shape, and emits a line-shaped laser light (that is, a line beam) obtained by combining the laser lights emitted from the plurality of emitters. The light transmitting unit 11 emits the laser light emitted from the light source 12 toward a predetermined area.

ビームスプリッタ20は、所定領域内の対象物OJTによって反射されたレーザ光である反射光RLの光路上に設けられている。ビームスプリッタ20は、例えばハーフミラーから構成され、反射光RLの一部を反射させるとともに他の一部を透過させることにより、反射光RLを第1の反射光RL1と第2の反射光RL2とに分岐させる。例えば、本実施例では、反射光RLの一部を反射させたものを第1の反射光RL1とし、反射光RLの他の一部を透過させたものを第2の反射光RL2とする。   The beam splitter 20 is provided on the optical path of the reflected light RL that is the laser light reflected by the object OJT in the predetermined area. The beam splitter 20 is composed of, for example, a half mirror, and reflects a part of the reflected light RL and transmits another part of the reflected light RL so that the reflected light RL becomes a first reflected light RL1 and a second reflected light RL2. Branch to. For example, in the present embodiment, a part of the reflected light RL is reflected as the first reflected light RL1, and another part of the reflected light RL is transmitted as the second reflected light RL2.

第1受光処理部21Aは、第1の反射光RL1を受光し、第1の受光信号RS1を生成する信号処理部である。第1受光処理部21Aは、第1の受光レンズ22A及び第1の受光部23Aを含む。   The first light reception processing unit 21A is a signal processing unit that receives the first reflected light RL1 and generates a first light reception signal RS1. The first light receiving processing unit 21A includes a first light receiving lens 22A and a first light receiving unit 23A.

第1の受光レンズ22Aは、入射された光を集光する集光レンズであり、例えば凸レンズとして構成されている。第1の受光レンズ22Aは、ビームスプリッタ20によって反射された反射光RLの一部である第1の反射光RL1の光路上に設けられている。第1の受光レンズ22Aは、開口数NA1(NA:Numerical Aperture)を有する。   The first light receiving lens 22A is a condensing lens that condenses the incident light, and is configured as, for example, a convex lens. The first light receiving lens 22A is provided on the optical path of the first reflected light RL1 which is a part of the reflected light RL reflected by the beam splitter 20. The first light receiving lens 22A has a numerical aperture NA1 (NA: Numerical Aperture).

第1の受光部23Aは、受光した光の強度を電気信号に変換する受光素子がライン状に複数配列されたラインセンサとして構成されている。第1の受光部23Aを構成する受光素子の各々は、例えばAPD(Avalanche Photodiode)から構成されている。第1の受光部23Aは、第1の受光レンズ22Aを透過した第1の反射光RL1の光路上に設けられており、第1の反射光RL1を受光して電気信号に変換することにより、第1の受光信号RS1を生成する。なお、第1の受光部22Aの各受光素子は、第1の受光レンズ22Aの開口数NA1を考慮して、第1の受光レンズ22Aから見て無限遠とみなせる距離から第1の受光レンズ22Aに入射した光が集光する位置に配置されている。   The first light receiving unit 23A is configured as a line sensor in which a plurality of light receiving elements that convert the intensity of the received light into an electric signal are arranged in a line. Each of the light receiving elements forming the first light receiving section 23A is formed of, for example, an APD (Avalanche Photodiode). The first light receiving unit 23A is provided on the optical path of the first reflected light RL1 that has passed through the first light receiving lens 22A, and receives the first reflected light RL1 and converts it into an electrical signal. The first received light signal RS1 is generated. Each of the light receiving elements of the first light receiving unit 22A takes into consideration the numerical aperture NA1 of the first light receiving lens 22A and the first light receiving lens 22A from a distance that can be regarded as infinity as viewed from the first light receiving lens 22A. It is arranged at a position where the light incident on is condensed.

第2受光処理部21Bは、第2の反射光RL2を受光し、第2の受光信号RS2を生成する信号処理部である。第2受光処理部21Bは、第2の受光レンズ22B及び第2の受光部23Bを含む。   The second light reception processing unit 21B is a signal processing unit that receives the second reflected light RL2 and generates a second light reception signal RS2. The second light receiving processing unit 21B includes a second light receiving lens 22B and a second light receiving unit 23B.

第2の受光レンズ22Bは、入射された光を集光する集光レンズであり、例えば凸レンズとして構成されている。第2の受光レンズ22Bは、ビームスプリッタ20によって透過された反射光RLの一部である第2の反射光RL2の光路上に設けられている。第2の受光レンズ22Bは、第1の受光レンズ22Aの開口数NA1よりも小さな開口数である開口数NA2を有する。すなわち、本実施例の測距装置100において、第1の受光レンズ22Aの開口数NA1は、第2の受光レンズNA2の開口数NA2よりも大きい
第2の受光部23Bは、受光素子がライン状に複数配列されたラインセンサとして構成されている。第2の受光部23Bを構成する受光素子の各々は、例えばAPDから構成されている。第2の受光部23Bは、第2の受光レンズ22Bを透過した第2の反射光RL2の光路上に設けられており、第2の反射光RL2を受光して電気信号に変換することにより、第2の受光信号RS2を生成する。なお、第2の受光部22Bの各受光素子は、第2の受光レンズ22Bの開口数NA2を考慮して、無限遠とはみなせない程度の近距離の位置から第1の受光レンズ22Aに入射した光が集光する位置に配置されている。
The second light receiving lens 22B is a condensing lens that condenses the incident light, and is configured as, for example, a convex lens. The second light receiving lens 22B is provided on the optical path of the second reflected light RL2 which is a part of the reflected light RL transmitted by the beam splitter 20. The second light receiving lens 22B has a numerical aperture NA2 that is smaller than the numerical aperture NA1 of the first light receiving lens 22A. That is, in the distance measuring apparatus 100 of the present embodiment, the numerical aperture NA1 of the first light receiving lens 22A is larger than the numerical aperture NA2 of the second light receiving lens NA2, and the second light receiving section 23B has a linear light receiving element. Are arranged as a plurality of line sensors. Each of the light receiving elements forming the second light receiving section 23B is formed of, for example, an APD. The second light receiving unit 23B is provided on the optical path of the second reflected light RL2 that has passed through the second light receiving lens 22B, and receives the second reflected light RL2 and converts it into an electric signal. The second received light signal RS2 is generated. Each light receiving element of the second light receiving portion 22B is incident on the first light receiving lens 22A from a position at a short distance that cannot be regarded as infinity, in consideration of the numerical aperture NA2 of the second light receiving lens 22B. It is arranged at a position where the collected light is condensed.

測距部30は、第1の受光信号RS1又は第2の受光信号RS2に基づいて、対象物OJTまでの距離を算出する処理演算を行う信号処理部である。測距部30は、概算距離判定部31、使用受光素子判定部32及び距離算出部33を含む。   The distance measuring unit 30 is a signal processing unit that performs processing calculation for calculating the distance to the object OJT based on the first light receiving signal RS1 or the second light receiving signal RS2. The distance measuring section 30 includes an approximate distance determining section 31, a used light receiving element determining section 32, and a distance calculating section 33.

概算距離判定部31は、第1の受光部23Aから第1の受光信号RS1、第2の受光部23Bから第2の受光信号RS2の供給をそれぞれ受け、第1の受光信号RS1及び第2の受光信号RS2のうちの少なくとも一方に基づいて、対象物OJTまでの概算距離を判定する。例えば、概算距離判定部31は、対象物OJTが第1の受光レンズ22Aから見て無限遠とみなせる所定以上の遠距離(例えば10m以上)に位置しているか否かを判定する。   The approximate distance determining unit 31 receives the first light receiving signal RS1 from the first light receiving unit 23A and the second light receiving signal RS2 from the second light receiving unit 23B, and receives the first light receiving signal RS1 and the second light receiving signal RS2. The approximate distance to the object OJT is determined based on at least one of the light reception signals RS2. For example, the approximate distance determination unit 31 determines whether or not the object OJT is located at a long distance (e.g., 10 m or more) that is equal to or larger than a predetermined distance that can be regarded as infinity when viewed from the first light receiving lens 22A.

使用受光素子判定部32は、概算距離判定部31により判定された概算距離に基づいて、第1の受光部23A又は第2の受光部23Bのいずれによる受光結果を用いて対象物OJTまでの距離を算出するかを判定する。例えば、使用受光素子判定部32は、概算距離が所定以上の遠距離である場合には、第1の受光部23Aによる受光結果である第1の受光信号RS1と第2の受光部23Bによる受光結果である第2の受光信号RS2とを合算した合算信号に基づいて、対象物OJTまでの距離を算出すると判定する。一方、使用受光素子判定部32は、概算距離が所定未満の近距離である場合には、第2の受光部23Bによる受光結果である第2の受光信号RS2に基づいて、対象物OJTまでの距離を算出すると判定する。   Based on the approximate distance determined by the approximate distance determining unit 31, the used light receiving element determining unit 32 uses the light receiving result of either the first light receiving unit 23A or the second light receiving unit 23B to reach the object OJT. Is calculated. For example, when the approximate distance is a predetermined distance or more, the used light receiving element determination unit 32 determines that the first light receiving signal RS1 and the second light receiving unit 23B which are the light receiving results of the first light receiving unit 23A. It is determined that the distance to the object OJT is calculated based on the summed signal obtained by summing the resulting second light reception signal RS2. On the other hand, when the estimated distance is a short distance less than the predetermined value, the used light receiving element determination unit 32 determines the object OJT based on the second light reception signal RS2 which is the light reception result by the second light reception unit 23B. It is determined to calculate the distance.

距離算出部33は、使用受光素子判定部32による判定結果に応じて、第1の受光信号RS1と第2の受光信号RS2とを合算した合算信号、又は第2の受光信号RS2に基づいて、対象物OJTまでの距離を算出する。   The distance calculation unit 33, based on the summed signal obtained by summing the first light receiving signal RS1 and the second light receiving signal RS2, or the second light receiving signal RS2, according to the determination result by the used light receiving element determination unit 32, The distance to the object OJT is calculated.

次に、本実施例の測距装置100による反射光RLの受光(すなわち、第1の反射光RL1及び第2の反射光RL2の受光)について説明する。所定領域内の対象物OJTによって反射されたレーザ光である反射光RLは、ビームスプリッタ20で一部が反射し、他の一部がビームスプリッタ20を透過することにより、第1の反射光RL1及び第2の反射光RL2に分岐される。第1の反射光RL1は第1の受光レンズ22Aによって集光され、第2の反射光RL2は第2の受光レンズ22Bによって集光される。その際、第1の反射光RL1の集光の態様は、第1の受光レンズ22Aから見た反射光RL及び第1の反射光RL1の光路の長さ(すなわち、対象物OJTまでの距離)によって異なる。   Next, the reception of the reflected light RL (that is, the reception of the first reflected light RL1 and the second reflected light RL2) by the distance measuring apparatus 100 of the present embodiment will be described. The reflected light RL, which is the laser light reflected by the object OJT in the predetermined region, is partially reflected by the beam splitter 20 and the other part is transmitted through the beam splitter 20, whereby the first reflected light RL1. And the second reflected light RL2. The first reflected light RL1 is condensed by the first light receiving lens 22A, and the second reflected light RL2 is condensed by the second light receiving lens 22B. At this time, the manner of condensing the first reflected light RL1 is such that the reflected light RL seen from the first light receiving lens 22A and the length of the optical path of the first reflected light RL1 (that is, the distance to the object OJT). Depends on

図2Aは、反射光RL及び反射光RL1の光路の長さが第1の受光レンズ22Aから見て無限遠とみなせる距離である場合、すなわち反射光RLが無限遠とみなせるような遠距離に存在している対象物OJTからの反射光RLである場合の集光の態様を模式的に示す図である。ここでは、第1の受光部23Aを構成する受光素子の1つとして受光素子24A、第2の受光部23Bを構成する受光素子の1つとして受光素子24Bを示している。   FIG. 2A shows a case where the lengths of the optical paths of the reflected light RL and the reflected light RL1 are distances that can be regarded as infinity as viewed from the first light receiving lens 22A, that is, the reflected light RL exists at a long distance that can be regarded as infinity. It is a figure which shows typically the aspect of condensing when it is the reflected light RL from the target object OJT which is doing. Here, the light receiving element 24A is shown as one of the light receiving elements forming the first light receiving section 23A, and the light receiving element 24B is shown as one of the light receiving elements forming the second light receiving section 23B.

無限遠とみなせる距離からの反射光RLは、平行光に近い状態、すなわち光束の径がほぼ一定となった状態でビームスプリッタ20に入射する。このため、第1の反射光RL1は、光束の径がほぼ一定の状態で第1の受光レンズ22Aに入射し、集光される。従って、受光素子24Aは、第1の受光レンズ22Aによって十分に集光された状態の第1の反射光RL1を受光する。また、第2の反射光RL2も、光束の径がほぼ一定の状態で第2の受光レンズ22Bに入射し、集光される。従って、受光素子24Bは、第2の受光レンズ22Bによって十分に集光された状態の第2の反射光RL2を受光する。   The reflected light RL from a distance that can be regarded as infinity enters the beam splitter 20 in a state close to parallel light, that is, in a state in which the diameter of the light flux is substantially constant. For this reason, the first reflected light RL1 enters the first light receiving lens 22A and is condensed with the diameter of the light flux being substantially constant. Therefore, the light receiving element 24A receives the first reflected light RL1 which is sufficiently condensed by the first light receiving lens 22A. Further, the second reflected light RL2 also enters the second light receiving lens 22B and is condensed with the diameter of the light flux being substantially constant. Therefore, the light receiving element 24B receives the second reflected light RL2 that is sufficiently condensed by the second light receiving lens 22B.

一方、図2Bは、反射光RL及び第1の反射光RL1の光路の長さが第1の受光レンズ22Aから見て無限遠とはみなせないような近距離である場合、すなわち反射光RLが比較的近距離に存在している対象物OJTからの反射光である場合の集光の態様を模式的に示す図である。   On the other hand, FIG. 2B shows that the lengths of the optical paths of the reflected light RL and the first reflected light RL1 are such a short distance that they cannot be regarded as infinity when viewed from the first light receiving lens 22A, that is, the reflected light RL is It is a figure which shows typically the aspect of condensing when it is the reflected light from the object OJT which exists in a comparatively short distance.

無限遠とはみなせないような近距離からの反射光RLは、光束の径が広がるような状態でビームスプリッタ20に入射する。このため、第1の反射光RL1は、光束の径が広がるような状態で第1の受光レンズ22Aに入射する。第1の受光レンズ22Aは、無限遠からの光が受光素子上に集光するように設定されているため、第1の反射光RL1は、球面収差とデフォーカスの影響により十分に集光されない状態で受光素子24Aに入射する。   The reflected light RL from a short distance, which cannot be regarded as infinity, is incident on the beam splitter 20 in such a state that the diameter of the light beam spreads. Therefore, the first reflected light RL1 is incident on the first light receiving lens 22A in such a state that the diameter of the light beam spreads. Since the first light receiving lens 22A is set so that light from infinity is condensed on the light receiving element, the first reflected light RL1 is not sufficiently condensed due to the influence of spherical aberration and defocus. Is incident on the light receiving element 24A.

これに対し、第2の反射光RL2も光束の径が広がるような状態で第2の受光レンズ22Bに入射するが、第2の受光レンズ22Bは、開口数NA2が小さく設定されている。一般的にデフォーカスによる波面収差(以下、デフォーカス収差と呼ぶ)と球面収差があると集光スポットの径は大きくなり、結像性能の低下につながる。しかしこれらの波面収差は開口数の増加に伴い大きくなる性質があり、十分に小さな開口数の下では結像性能の低下を最小限にとどめることができる。なお、ピンホール写真でボケのない鮮明な像が得られるのも開口数が十分に小さいことによるものである。第2の反射光RL2は、小さい開口数のレンズにより集光されるため、十分に集光された状態で受光素子24Bに入射する。   On the other hand, the second reflected light RL2 also enters the second light receiving lens 22B in such a state that the diameter of the light beam spreads, but the second light receiving lens 22B has a small numerical aperture NA2. Generally, if there is a wavefront aberration due to defocus (hereinafter referred to as defocus aberration) and a spherical aberration, the diameter of the focused spot becomes large, which leads to deterioration of the imaging performance. However, these wavefront aberrations have the property of becoming larger as the numerical aperture increases, and under a sufficiently small numerical aperture, the deterioration of the imaging performance can be minimized. The pinhole photograph produces a clear image without blurring because the numerical aperture is sufficiently small. The second reflected light RL2 is condensed by a lens having a small numerical aperture, and therefore enters the light receiving element 24B in a sufficiently condensed state.

このため、本実施例の測距装置100は、無限遠とみなせるような遠距離の対象物OJTからの反射光RLについては、第1の受光部23Aによる受光結果と第2の受光部23Bによる受光結果との双方を用いて対象物OJTまでの距離を算出する。一方、無限遠とはみなせないような近距離の対象物OJTからの反射光RLについては、第2の受光部23Bによる受光結果のみを用いて対象物OJTまでの距離を算出する。   Therefore, in the distance measuring apparatus 100 of the present embodiment, regarding the reflected light RL from the object OJT at a long distance that can be regarded as infinity, the light receiving result by the first light receiving unit 23A and the second light receiving unit 23B are used. The distance to the object OJT is calculated using both the light reception result. On the other hand, for the reflected light RL from the object OJT at a short distance that cannot be considered to be infinity, the distance to the object OJT is calculated using only the light reception result by the second light receiving unit 23B.

具体的には、まず概算距離判定部31が、第1の受光部23Aからの受光信号RS1又は第2の受光部23Bからの受光信号RS2に基づいて、対象物OJTまでの概算距離を判定する。例えば、反射光RLが無限遠とみなせるような遠距離にある対象物OJTからの反射光である場合、受光信号RS2は図3Aに示すような信号波形となる。ここで、横軸は出射光OLが出射されてからの経過時間、縦軸は受光信号RS2の信号レベルを示している。遠距離からの反射光RLに基づく受光信号RS2は、基準タイミングRTよりも遅く立ち上がる信号波形となる。このため、概算距離判定部31は、無限遠とみなせるような所定以上の遠距離に対象物OJTが位置していると判定する。   Specifically, first, the approximate distance determining unit 31 determines the approximate distance to the object OJT based on the light receiving signal RS1 from the first light receiving unit 23A or the light receiving signal RS2 from the second light receiving unit 23B. . For example, when the reflected light RL is the reflected light from the object OJT at such a long distance that it can be regarded as infinity, the light reception signal RS2 has a signal waveform as shown in FIG. 3A. Here, the horizontal axis represents the elapsed time after the emission light OL is emitted, and the vertical axis represents the signal level of the light reception signal RS2. The received light signal RS2 based on the reflected light RL from a long distance has a signal waveform that rises later than the reference timing RT. Therefore, the approximate distance determination unit 31 determines that the object OJT is located at a long distance that is equal to or greater than a predetermined value and can be regarded as infinity.

一方、反射光RLが無限遠とはみなせないような近距離にある対象物OJTからの反射光である場合、受光信号RS2は図3Bに示すような信号波形となる。近距離からの反射光RLに基づく受信信号RS2は、基準タイミングRTよりも早く立ち上がる信号波形となる。このため、概算距離判定部31は、反射光RLが無限遠とはみなせないような近距離に象物OJTが位置していると判定する。   On the other hand, when the reflected light RL is the reflected light from the object OJT at a short distance that cannot be regarded as infinity, the light reception signal RS2 has a signal waveform as shown in FIG. 3B. The reception signal RS2 based on the reflected light RL from a short distance has a signal waveform that rises earlier than the reference timing RT. Therefore, the approximate distance determination unit 31 determines that the elephant OJT is located at such a short distance that the reflected light RL cannot be regarded as infinity.

使用受光素子判定部32は、判定された概算距離に基づいて、距離算出部33による対象物OJTまでの距離の算出に、第1の受光信号RS1と第2の受光信号RS2とを合算した合算信号を用いるか、第2の受光信号RS2のみを用いるかを判定する。例えば概算距離が遠距離である場合には、使用受光素子判定部32は、第1の受光信号RS1と第2の受光信号RS2とを合算した合算信号を用いて距離を算出すると判定する。概算距離が近距離である場合には、使用受光素子判定部32は、第2の受光信号RS2のみを用いて距離を算出すると判定する。   The used light receiving element determination unit 32 adds up the first light reception signal RS1 and the second light reception signal RS2 in the calculation of the distance to the object OJT by the distance calculation unit 33 based on the determined approximate distance. It is determined whether the signal is used or only the second light receiving signal RS2 is used. For example, when the approximate distance is a long distance, the used light receiving element determination unit 32 determines to calculate the distance using the summed signal obtained by adding the first light receiving signal RS1 and the second light receiving signal RS2. When the approximate distance is a short distance, the used light receiving element determination unit 32 determines to calculate the distance using only the second light receiving signal RS2.

距離算出部33は、使用受光素子判定部32の判定結果に基づいて、第2の受光信号RS2又は合算信号に基づいて、対象物OJTまでの距離を算出する。すなわち、対象物OJTが遠距離にある場合、距離算出部33は、合算信号を用いて距離の算出を行う。対象物OJTが近距離にある場合、距離算出部33は、第2の受光信号RS2のみを用いて距離の算出を行う。   The distance calculation unit 33 calculates the distance to the object OJT based on the determination result of the used light receiving element determination unit 32 and based on the second light reception signal RS2 or the summed signal. That is, when the object OJT is at a long distance, the distance calculation unit 33 calculates the distance using the summed signal. When the object OJT is in the short distance, the distance calculation unit 33 calculates the distance using only the second light reception signal RS2.

図4Aは、無限遠とみなせるような遠距離にある複数の対象物OJA、OJB及びOJCからの反射光の受光の様子を示す模式図である。遠距離からの反射光は、開口数の大きい第1の受光レンズ22Aによっても十分に集光されるため、対象物OJA、OJB及びOJCからの反射光は、第1の受光部23Aを構成する複数の受光素子の各々によって受光される。   FIG. 4A is a schematic diagram showing how reflected light is received from a plurality of objects OJA, OJB, and OJC at a long distance that can be regarded as infinity. Since the reflected light from a long distance is sufficiently condensed by the first light receiving lens 22A having a large numerical aperture, the reflected light from the objects OJA, OJB, and OJC constitutes the first light receiving portion 23A. The light is received by each of the plurality of light receiving elements.

図4Bは、第1の受光部23Aの各受光素子で受光された遠距離からの反射光の受光信号の波形を示す図である。上記の通り、遠距離からの反射光は第1の受光レンズ22Aによって集光された状態で第1の受光部23Aの各受光素子によって受光されるため、それぞれの受光信号を区別することが容易である。   FIG. 4B is a diagram showing a waveform of a light reception signal of reflected light received from each light receiving element of the first light receiving unit 23A from a long distance. As described above, since the reflected light from a long distance is received by each light receiving element of the first light receiving unit 23A in a state of being collected by the first light receiving lens 22A, it is easy to distinguish each light receiving signal. Is.

従って、対象物が遠距離にある場合、第1の受光部23Aの受光結果及び第2の受光部23Bの受光結果の双方を用いることにより、十分な受信信号を得ることができるため、正確に距離の算出を行うことが可能となる。   Therefore, when the object is at a long distance, it is possible to obtain a sufficient reception signal by using both the light reception result of the first light receiving unit 23A and the light reception result of the second light receiving unit 23B, so that it is possible to accurately obtain It is possible to calculate the distance.

一方、図5Aは、無限遠とはみなせないような近距離にある複数の対象物OJA、OJB及びOJCからの反射光を第1の受光部23Aで受光した場合を示す模式図である。近距離からの反射光は、開口数の大きい第1の受光レンズ22Aの球面収差の影響により、第1の受光部23Aの各受光素子上では十分に集光されず、スポットが大きくなり、隣接する受光素子にはみ出してしまう。   On the other hand, FIG. 5A is a schematic diagram showing a case where reflected light from a plurality of objects OJA, OJB, and OJC at a short distance that cannot be regarded as infinity is received by the first light receiving unit 23A. The reflected light from a short distance is not sufficiently condensed on each light receiving element of the first light receiving portion 23A due to the influence of the spherical aberration of the first light receiving lens 22A having a large numerical aperture, the spot becomes large, and the adjacent light The light-receiving element is exposed.

図5Bは、第1の受光部23Aの各受光素子で受光された近距離からの反射光の受光信号の波形を示す図である。上記の通り、近距離からの反射光は第1の受光部23Aの各受光素子上では十分に集光されず、隣接する受光素子にはみ出してしまうため、それぞれの受光信号を区別することが困難である。従って、対象物が近距離にある場合には、第1の受光部23Aの受光結果を用いて正確に対象物OJTまでの距離を判定することができない。   FIG. 5B is a diagram showing a waveform of a received light signal of reflected light from a short distance received by each light receiving element of the first light receiving unit 23A. As described above, the reflected light from a short distance is not sufficiently condensed on each light receiving element of the first light receiving section 23A and protrudes to the adjacent light receiving element, so that it is difficult to distinguish each light receiving signal. Is. Therefore, when the target object is at a short distance, it is not possible to accurately determine the distance to the target object OJT using the light reception result of the first light receiving unit 23A.

図6Aは、図5Aの場合と同様の近距離にある複数の対象物OJA、OJB及びOJCからの反射光を、第2の受光部23Bで受光した場合を示す模式図である。第2の受光レンズ22Bの開口数NA2は小さいため、近距離からの反射光であっても第2の受光レンズ22Bによって集光され、第2の受光部23Bの各受光素子によって受光される。   FIG. 6A is a schematic diagram showing a case where reflected light from a plurality of objects OJA, OJB, and OJC at a short distance similar to the case of FIG. 5A is received by the second light receiving unit 23B. Since the numerical aperture NA2 of the second light receiving lens 22B is small, even reflected light from a short distance is condensed by the second light receiving lens 22B and received by each light receiving element of the second light receiving section 23B.

図6Bは、第2の受光部23Bの各受光素子で受光された近距離からの反射光の受光信号の波形を示す図である。上記の通り、近距離からの反射光は第2の受光レンズ22Bによって集光された状態で第2の受光部23Bの各受光素子によって受光されるため、それぞれの受光信号を区別することが可能である。   FIG. 6B is a diagram showing a waveform of a light reception signal of reflected light from a short distance received by each light receiving element of the second light receiving section 23B. As described above, since the reflected light from a short distance is received by each light receiving element of the second light receiving unit 23B in a state of being collected by the second light receiving lens 22B, it is possible to distinguish each light receiving signal. Is.

従って、対象物が近距離にある場合、第2の受光部23Bの受光結果のみを用いることにより、第1の受光レンズ22Aの球面収差及びデフォーカスの影響を受けることなく、距離の算出を行うことが可能となる。   Therefore, when the object is at a short distance, the distance is calculated without being affected by the spherical aberration and defocus of the first light receiving lens 22A by using only the light receiving result of the second light receiving unit 23B. It becomes possible.

以上のように、本実施例の測距装置100は、対象物OJTが無限遠とみなせるような遠距離にある場合には第1の受光部23Aによる受光結果及び第2の受光部23Bによる受光結果の双方を用いて距離の算出を行い、対象物OJTが無限遠とはみなせないような近距離にある場合には第2の受光部23Bによる受光結果の双方を用いて距離の算出を行う。かかる構成によれば、対象物OJTまでの距離にかかわらず、正確に測距をすることが可能となる。   As described above, in the distance measuring apparatus 100 of the present embodiment, when the object OJT is at such a long distance that it can be regarded as infinity, the light receiving result by the first light receiving unit 23A and the light receiving by the second light receiving unit 23B are received. The distance is calculated using both of the results, and when the object OJT is at a short distance that cannot be regarded as infinity, the distance is calculated using both of the light reception results of the second light receiving unit 23B. . With such a configuration, it is possible to accurately measure the distance regardless of the distance to the object OJT.

また、本実施例の測距装置100では、ハーフミラーからなるビームスプリッタ20が反射光RLを第1の反射光RL1と第2の反射光RL2とに分岐し、分岐された反射光を第1の受光部23A及び第2の受光部23Bの各々で受光するように構成されている。従って、近距離からの反射光RLについては光量を落として受光することができるため、第1の受光部23A及び第2の受光部23Bの受光素子の感度を下げることが可能となる。   Further, in the distance measuring apparatus 100 of the present embodiment, the beam splitter 20 formed of a half mirror splits the reflected light RL into the first reflected light RL1 and the second reflected light RL2, and the branched reflected light is the first reflected light RL1. The light receiving section 23A and the second light receiving section 23B are configured to receive light. Therefore, the reflected light RL from a short distance can be received with a reduced amount of light, and the sensitivity of the light receiving elements of the first light receiving unit 23A and the second light receiving unit 23B can be reduced.

次に、本発明の実施例2の測距装置について説明する。本実施例の測距装置は、ビームスプリッタ20がハーフミラーではなく穴あきミラーから構成されている点で、実施例1の測距装置100と異なる。また、本実施例の測距装置においては、第1の受光レンズ22Aの開口数NA1及び第2の受光レンズ22Bの開口数NA2は、同じ値であってもよい。   Next, a distance measuring device according to a second embodiment of the present invention will be described. The distance measuring apparatus according to the present embodiment is different from the distance measuring apparatus 100 according to the first embodiment in that the beam splitter 20 is formed of a holed mirror instead of a half mirror. Further, in the distance measuring apparatus of the present embodiment, the numerical aperture NA1 of the first light receiving lens 22A and the numerical aperture NA2 of the second light receiving lens 22B may be the same value.

図7は、本実施例のビームスプリッタ20の表面の例を示す図である。本実施例のビームスプリッタ20は、中央部付近に開口部APを有する。また、開口部APの周縁には所定の反射率を有する反射領域RPが形成されている。   FIG. 7 is a diagram showing an example of the surface of the beam splitter 20 of this embodiment. The beam splitter 20 of this embodiment has an opening AP near the center. Further, a reflection region RP having a predetermined reflectance is formed on the periphery of the opening AP.

図1に示すようにビームスプリッタ20に入射した反射光RLは、その一部が開口部APを通って反射光RL2となる。一方、反射光RLの他の一部は反射領域RPによって反射されて反射光RL1となる。これにより、反射光RLは、第1の反射光RL1と、第1の反射光RL1よりも外縁が小さい第2の反射光RL2とに分岐される。   As shown in FIG. 1, a part of the reflected light RL incident on the beam splitter 20 passes through the opening AP and becomes the reflected light RL2. On the other hand, another part of the reflected light RL is reflected by the reflection region RP to become the reflected light RL1. As a result, the reflected light RL is branched into the first reflected light RL1 and the second reflected light RL2 having an outer edge smaller than that of the first reflected light RL1.

図8Aは、反射光RL及び反射光RL1の光路の長さが第1の受光レンズ22Aから見て無限遠とみなせる距離である場合、すなわち反射光RLが無限遠とみなせるような遠距離に存在している対象物OJTからの反射光である場合の集光の態様を模式的に示す図である。ここでは、第1の受光部23Aを構成する受光素子の1つとして受光素子24A、第2の受光部23Bを構成する受光素子の1つとして受光素子24Bを示している。   FIG. 8A shows a case where the lengths of the optical paths of the reflected light RL and the reflected light RL1 are distances that can be regarded as infinity as viewed from the first light receiving lens 22A, that is, the reflected light RL exists at a long distance that can be regarded as infinity. It is a figure which shows typically the aspect of condensing when it is the reflected light from the object OJT which is doing. Here, the light receiving element 24A is shown as one of the light receiving elements forming the first light receiving section 23A, and the light receiving element 24B is shown as one of the light receiving elements forming the second light receiving section 23B.

無限遠とみなせる距離からの反射光RLは、平行光に近い状態、すなわち光束の径がほぼ一定となった状態でビームスプリッタ20に入射する。このため、第1の反射光RL1は、光束の径がほぼ一定の状態で第1の受光レンズ22Aに入射し、集光される。従って、受光素子24Aは、第1の受光レンズ22Aによって十分に集光された状態の第1の反射光RL1を受光する。また、第2の反射光RL2も、光束の径がほぼ一定の状態で第2の受光レンズ22Bに入射し、集光される。従って、受光素子24Bは、第2の受光レンズ22Bによって十分に集光された状態の第2の反射光RL2を受光する。   The reflected light RL from a distance that can be regarded as infinity enters the beam splitter 20 in a state close to parallel light, that is, in a state in which the diameter of the light flux is substantially constant. For this reason, the first reflected light RL1 enters the first light receiving lens 22A and is condensed with the diameter of the light flux being substantially constant. Therefore, the light receiving element 24A receives the first reflected light RL1 which is sufficiently condensed by the first light receiving lens 22A. Further, the second reflected light RL2 also enters the second light receiving lens 22B and is condensed with the diameter of the light flux being substantially constant. Therefore, the light receiving element 24B receives the second reflected light RL2 that is sufficiently condensed by the second light receiving lens 22B.

一方、図8Bは、反射光RL及び反射光RL1の光路の長さが第1の受光レンズ22Aから見て無限遠とはみなせないような近距離である場合、すなわち反射光RLが比較的近距離に存在している対象物OJTからの反射光である場合の集光の態様を模式的に示す図である。   On the other hand, FIG. 8B shows that the lengths of the optical paths of the reflected light RL and the reflected light RL1 are such a short distance that they cannot be regarded as infinity when viewed from the first light receiving lens 22A, that is, the reflected light RL is relatively close. It is a figure which shows typically the aspect of condensing when it is the reflected light from the object OJT which exists in the distance.

無限遠とはみなせないような近距離からの反射光RLは、光束の径が広がるような状態でビームスプリッタ20に入射する。このため、第1の反射光RL1は、光束の径が広がるような状態で第1の受光レンズ22Aに入射する。第1の受光レンズ22Aは、無限遠からの光が受光素子上に集光するように設定されているため、第1の反射光RL1は、球面収差とデフォーカスの影響により十分に集光されない状態で受光素子24Aに入射する。   The reflected light RL from a short distance, which cannot be regarded as infinity, is incident on the beam splitter 20 in such a state that the diameter of the light beam spreads. Therefore, the first reflected light RL1 is incident on the first light receiving lens 22A in such a state that the diameter of the light beam spreads. Since the first light receiving lens 22A is set so that light from infinity is condensed on the light receiving element, the first reflected light RL1 is not sufficiently condensed due to the influence of spherical aberration and defocus. Is incident on the light receiving element 24A.

これに対し、第2の反射光RL2も光束の径が広がるような状態で第2の受光レンズ22Bに入射するが、第2の受光レンズ22Bは、開口数NA2が小さく設定されているため、第2の反射光RL2は、十分に集光された状態で受光素子24Bに入射する。   On the other hand, the second reflected light RL2 also enters the second light receiving lens 22B in such a state that the diameter of the light beam spreads, but the second light receiving lens 22B is set to have a small numerical aperture NA2. The second reflected light RL2 is incident on the light receiving element 24B in a sufficiently condensed state.

本実施例の第1の受光レンズ22A及び第2の受光レンズ22Bは、例えば同じ値の開口数を有するが、入射する反射光の外縁の大きさ(すなわち、光束の径の大きさ)が異なる。本実施例の測距装置100では、反射光RLは、ビームスプリッタ20により、外縁が比較的大きく実質的な開口数が大きな第1の反射光RL1と外縁が比較的小さく実質的な開口数が小さな第2の反射光RL2とに分岐される。すなわち、第2の受光レンズ22Bには、外縁が小さい第2の反射信号RL2が入射し、実質的な開口数が小さい状態となる。このため、第2の反射光RL2は、ほぼ集光した状態で受光素子24Bによって受光される。   The first light receiving lens 22A and the second light receiving lens 22B of the present embodiment have the same numerical aperture, for example, but the size of the outer edge of the incident reflected light (that is, the size of the diameter of the light beam) is different. . In the distance measuring apparatus 100 of the present embodiment, the reflected light RL has the first reflected light RL1 having a relatively large outer edge and a large substantial numerical aperture, and the reflected light RL having a relatively small outer edge and a substantial numerical aperture. It is split into a small second reflected light RL2. That is, the second reflected signal RL2 having a small outer edge is incident on the second light receiving lens 22B, and the substantial numerical aperture is reduced. Therefore, the second reflected light RL2 is received by the light receiving element 24B in a substantially condensed state.

一方、第1の受光レンズ22Aには、外縁が大きい第1の反射信号RL1が入射し、実質的な開口数が大きい状態となる。このため、第1の反射光RL1は、デフォーカスや球面収差の影響により十分に集光されない状態で受光素子24A上に入射する。ですなわち、受光素子24Aに入射した第1の反射光RL1は、隣接する受光素子にはみ出してしまう。   On the other hand, the first reflected signal RL1 having a large outer edge is incident on the first light receiving lens 22A, and the substantial numerical aperture is increased. Therefore, the first reflected light RL1 is incident on the light receiving element 24A in a state where it is not sufficiently condensed due to the influence of defocus and spherical aberration. That is, the first reflected light RL1 incident on the light receiving element 24A overflows to the adjacent light receiving element.

本実施例の概算距離判定部31は、実施例1と同様、概算距離判定部31が、第1の受光部23Aからの受光信号RS1又は第2の受光部23Bからの受光信号RS2に基づいて、対象物OJTまでの概算距離を判定する。   Similar to the first embodiment, the approximate distance determining unit 31 of the present embodiment is based on the light receiving signal RS1 from the first light receiving unit 23A or the light receiving signal RS2 from the second light receiving unit 23B. , The approximate distance to the object OJT is determined.

使用受光素子判定部32は、判定された概算距離に基づいて、距離算出部33による対象物OJTまでの距離の算出に、第1の受光信号RS1と第2の受光信号RS2とを合算した合算信号を用いるか、第2の受光信号RS2のみを用いるかを判定する。例えば概算距離が遠距離である場合には、使用受光素子判定部32は、第1の受光信号RS1と第2の受光信号RS2とを合算した合算信号を用いて距離を算出すると判定する。概算距離が近距離である場合には、使用受光素子判定部32は、第2の受光信号RS2のみを用いて距離を算出すると判定する。   The used light receiving element determination unit 32 adds up the first light reception signal RS1 and the second light reception signal RS2 in the calculation of the distance to the object OJT by the distance calculation unit 33 based on the determined approximate distance. It is determined whether the signal is used or only the second light receiving signal RS2 is used. For example, when the approximate distance is a long distance, the used light receiving element determination unit 32 determines to calculate the distance using the summed signal obtained by adding the first light receiving signal RS1 and the second light receiving signal RS2. When the approximate distance is a short distance, the used light receiving element determination unit 32 determines to calculate the distance using only the second light receiving signal RS2.

距離算出部33は、使用受光素子判定部32の判定結果に基づいて、第2の受光信号RS2又は合算信号に基づいて、対象物OJTまでの距離を算出する。すなわち、対象物OJTが遠距離にある場合、距離算出部33は、合算信号を用いて距離の算出を行う。対象物OJTが近距離にある場合、距離算出部33は、第2の受光信号RS2のみを用いて距離の算出を行う。   The distance calculation unit 33 calculates the distance to the object OJT based on the determination result of the used light receiving element determination unit 32 and based on the second light reception signal RS2 or the summed signal. That is, when the object OJT is at a long distance, the distance calculation unit 33 calculates the distance using the summed signal. When the object OJT is in the short distance, the distance calculation unit 33 calculates the distance using only the second light reception signal RS2.

本実施例の測距装置200では、実施例1と同様、遠距離の対象物OJTについての距離の算出には、第1の受光信号RS1及び第2の受光信号RS2の双方を用いるため、正確に距離を算出することが可能である。また、近距離の対象物OJTについての距離の算出には、外縁の小さい第2の反射光RL2の受光結果(第2の受光信号RS2)のみを用いるため、レンズの球面収差及び反射光のデフォーカスの影響を受けることなく、距離を算出することが可能である。   In the distance measuring apparatus 200 of the present embodiment, similar to the first embodiment, since both the first light receiving signal RS1 and the second light receiving signal RS2 are used for calculating the distance for the long-distance object OJT, the distance is accurately calculated. It is possible to calculate the distance. Further, since only the light reception result (second light reception signal RS2) of the second reflected light RL2 having a small outer edge is used for the calculation of the distance for the short-distance object OJT, the spherical aberration of the lens and the defocused light of the reflected light are used. It is possible to calculate the distance without being affected by the focus.

したがって、本実施例の測距装置200によれば、対象物までの距離にかかわらず、正確に測距を行うことが可能となる。   Therefore, according to the distance measuring device 200 of the present embodiment, it is possible to perform accurate distance measurement regardless of the distance to the object.

なお、本発明の実施形態は、上記実施例で示したものに限られない。例えば上記実施1では、第1の受光レンズ22Aの開口数NA1が第2の受光レンズ22Bの開口数NA2よりも大きい構成について説明した。また、上記実施例2では、穴あきミラーからなるビームスプリッタ20が反射光RLを外縁の大きい第1の反射光RL1と外縁の小さい第2の反射光RL2とに分岐させる構成について説明した。しかし、これらの構成は組み合わせることが可能である。すなわち、穴あきミラーを用いて反射光を外縁の大きさが異なるように分岐させるとともに、分岐した反射光を互いに開口数の異なる受光レンズを通して受光するように構成してもよい。   Note that the embodiment of the present invention is not limited to the one shown in the above example. For example, in the first embodiment, the configuration in which the numerical aperture NA1 of the first light receiving lens 22A is larger than the numerical aperture NA2 of the second light receiving lens 22B has been described. In addition, in the second embodiment, the configuration in which the beam splitter 20 including the perforated mirror splits the reflected light RL into the first reflected light RL1 having a large outer edge and the second reflected light RL2 having a small outer edge has been described. However, these configurations can be combined. In other words, a perforated mirror may be used to branch the reflected light so that the outer edges have different sizes, and the branched reflected light may be received through light receiving lenses having different numerical apertures.

また、上記実施例では、第1の受光部23A及び第2の受光部23Bが、それぞれ受光素子がライン状に複数配列されたラインセンサとして構成されている場合について説明したが、第1の受光部23A及び第2の受光部23Bの構成はこれに限られない。例えば、第1の受光部23A及び第2の受光部23Bは、それぞれ単一の受光素子から構成されていてもよい。また、第1の受光部23A及び第2の受光部23Bは、それぞれ2次元のアレイ状に配列された複数の受光素子から構成されていてもよい。   Further, in the above-described embodiment, the case where the first light receiving portion 23A and the second light receiving portion 23B are each configured as a line sensor in which a plurality of light receiving elements are arranged in a line has been described. The configurations of the unit 23A and the second light receiving unit 23B are not limited to this. For example, the first light receiving unit 23A and the second light receiving unit 23B may each be configured by a single light receiving element. The first light receiving unit 23A and the second light receiving unit 23B may each be composed of a plurality of light receiving elements arranged in a two-dimensional array.

また、上記実施例では、光源12がライン状に配された複数のエミッタ(マルチエミッタ)から構成され、ライン形状のレーザ光を出射する場合について説明した。しかし、光源12の構成及び出射するレーザ光の形状はこれに限られない。例えば、光源12はシングルエミッタとして構成されていてもよい。   Further, in the above embodiment, the case where the light source 12 is composed of a plurality of emitters (multi-emitters) arranged in a line and emits a line-shaped laser beam has been described. However, the configuration of the light source 12 and the shape of the emitted laser light are not limited to this. For example, the light source 12 may be configured as a single emitter.

また、上記実施例2では、中央部に円形の開口部を有する穴あきミラーを用いて、反射光RLを第1の反射光RL1と第2の反射光RL2とに分岐させる構成について説明した。しかし、反射光RLを分岐させる分岐部は、このような穴あきミラーに限られず、第1の反射光RL1の外縁が第2の反射光RL2の外縁よりも大きくなるように分岐させることが可能に構成されていればよい。   Further, in the second embodiment, the configuration in which the reflected light RL is split into the first reflected light RL1 and the second reflected light RL2 by using the perforated mirror having the circular opening in the central portion has been described. However, the branching portion for branching the reflected light RL is not limited to such a perforated mirror, and it is possible to branch so that the outer edge of the first reflected light RL1 is larger than the outer edge of the second reflected light RL2. It should be configured in.

また、上記実施例で説明した一連の処理は、例えばROMなどの記録媒体に格納されたプログラムに従ったコンピュータ処理により行うことができる。   In addition, the series of processes described in the above embodiments can be performed by computer processes according to a program stored in a recording medium such as a ROM.

100 測距装置
11 投光部
12 光源
13 発光駆動部
14 投光レンズ
20 ビームスプリッタ
21A 第1受光処理部
21B 第2受光処理部
22A 第1の受光レンズ
22B 第2の受光レンズ
23A 第1の受光部
23B 第2の受光部
24A 受光素子
24B 受光素子
30 測距部
31 概算距離判定部
32 使用受光素子判定部
33 距離算出部
100 distance measuring device 11 light emitting unit 12 light source 13 light emission drive unit 14 light emitting lens 20 beam splitter 21A first light receiving processing unit 21B second light receiving processing unit 22A first light receiving lens 22B second light receiving lens 23A first light receiving Section 23B Second light receiving section 24A Light receiving element 24B Light receiving element 30 Distance measuring section 31 Approximate distance determination section 32 Used light receiving element determination section 33 Distance calculation section

Claims (9)

所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させる分岐部と、
前記第1の反射光の光路上に設けられた第1の集光レンズと、
前記第1の集光レンズを経た前記第1の反射光の光路上に設けられた第1の受光部と、
前記第2の反射光の光路上に設けられた第2の集光レンズと、
前記第2の集光レンズを経た前記第2の反射光の光路上に設けられた第2の受光部と、
前記第1の受光部の受光結果及び前記第2の受光部の受光結果の少なくとも一方に基づいて前記対象物までの距離を算出する距離算出部と、
を有し、
前記第1の集光レンズの開口数は、前記第2の集光レンズの開口数よりも大きいことを特徴とする測距装置。
A branching unit for branching the light emitted toward the predetermined region and reflected by the object in the predetermined region into first reflected light and second reflected light;
A first condenser lens provided on the optical path of the first reflected light;
A first light receiving portion provided on the optical path of the first reflected light that has passed through the first condenser lens;
A second condenser lens provided on the optical path of the second reflected light;
A second light receiving portion provided on the optical path of the second reflected light that has passed through the second condenser lens;
A distance calculation unit that calculates a distance to the object based on at least one of a light reception result of the first light receiving unit and a light reception result of the second light receiving unit;
Have
The distance measuring device, wherein the numerical aperture of the first condenser lens is larger than the numerical aperture of the second condenser lens.
前記第1の集光レンズの口径は、前記第2の集光レンズの口径よりも大きいことを特徴とする請求項1に記載の測距装置。   The distance measuring device according to claim 1, wherein an aperture of the first condenser lens is larger than an aperture of the second condenser lens. 前記第1の集光レンズの焦点距離は、前記第2の集光レンズの焦点距離よりも小さいことを特徴とする請求項1又は2に記載の測距装置。   The focal length of the said 1st condensing lens is smaller than the focal length of the said 2nd condensing lens, The ranging device of Claim 1 or 2 characterized by the above-mentioned. 前記第1の受光部は、前記第1の集光レンズを経た前記第1の反射光を受光して第1の受光信号を生成し、
前記第2の受光部は、前記第2の集光レンズを経た前記第2の反射光を受光して第2の受光信号を生成し、
前記距離算出部は、前記第1の受光信号と前記第2の受光信号とを合算した合算信号、又は前記第2の受光信号に基づいて、前記対象物までの距離を算出する、
ことを特徴とする請求項1乃至3のいずれか1に記載の測距装置。
The first light receiving unit receives the first reflected light that has passed through the first condenser lens and generates a first received light signal,
The second light receiving unit receives the second reflected light that has passed through the second condenser lens to generate a second light receiving signal,
The distance calculation unit calculates a distance to the object based on a summed signal obtained by summing the first light reception signal and the second light reception signal, or the second light reception signal.
The distance measuring device according to any one of claims 1 to 3, wherein:
前記距離算出部は、前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定し、前記概算距離が閾値以上である場合には前記合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出することを特徴とする請求項4に記載の測距装置。   The distance calculation unit determines an approximate distance to the object based on the first received light signal or the second received light signal, and based on the combined signal when the estimated distance is equal to or greater than a threshold value. The distance to the target object is calculated, and when the approximate distance is less than the threshold value, the distance to the target object is calculated based on the second light reception signal. Ranging device. ライン状の前記光を出射する出射部を有し、
前記第1の受光部及び前記第2の受光部の各々は、複数の受光素子がライン状に配列されたラインセンサであることを特徴とする請求項1乃至5のいずれか1に記載の測距装置。
It has an emission part for emitting the line-shaped light,
The measuring device according to claim 1, wherein each of the first light receiving unit and the second light receiving unit is a line sensor in which a plurality of light receiving elements are arranged in a line. Distance device.
光を分岐させる分岐部と、前記分岐部により分岐した光の一方の光路上に設けられた第1の集光レンズと、前記第1の集光レンズを経た光の光路上に設けられた第1の受光部と、前記分岐部により分岐した光の他方の光路上に設けられた前記第1の集光レンズよりも開口数が小さい第2の集光レンズと、前記第2の集光レンズを経た光の光路上に設けられた第2の受光部と、前記第1の受光部又は前記第2の受光部の受光結果に基づいて前記対象物までの距離を算出する距離算出部と、を有する測距装置が実行する測距方法であって、
前記分岐部が、所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させるステップと、
前記第1の集光レンズが、前記第1の反射光を集光するステップと、
前記第2の集光レンズが、前記第2の反射光を集光するステップと、
前記第1の受光部が、前記第1の集光レンズにより集光された前記第1の反射光を受光して第1の受光信号を生成するステップと、
前記第2の受光部が、前記第2の集光レンズにより集光された前記第2の反射光を受光して第2の受光信号を生成するステップと、
前記距離算出部が、前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定するステップと、
前記距離算出部が、前記概算処理が閾値以上である場合には、前記第1の受光信号と前記第2の受光信号とを合算した合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出するステップと、
を含むことを特徴とする測距方法。
A branching part for branching the light, a first condensing lens provided on one optical path of the light branched by the branching part, and a first condensing lens provided on the optical path of the light passing through the first condensing lens. No. 1 light receiving part, a second condensing lens having a numerical aperture smaller than that of the first condensing lens provided on the other optical path of the light branched by the branching part, and the second condensing lens A second light receiving unit provided on the optical path of the light passing through, and a distance calculating unit that calculates the distance to the object based on the light receiving result of the first light receiving unit or the second light receiving unit, A distance measuring method executed by a distance measuring device having:
A step in which the branching portion branches the light emitted toward the predetermined area and reflected by the object in the predetermined area into first reflected light and second reflected light;
The first condensing lens condensing the first reflected light;
The second condensing lens condensing the second reflected light;
A step in which the first light receiving section receives the first reflected light focused by the first focusing lens to generate a first light receiving signal;
A step in which the second light receiving section receives the second reflected light focused by the second focusing lens to generate a second light receiving signal;
A step in which the distance calculation unit determines an approximate distance to the object based on the first received light signal or the second received light signal;
When the distance calculation unit is equal to or more than the threshold value, the distance calculation unit calculates a distance to the object based on a summed signal obtained by summing the first light reception signal and the second light reception signal, Calculating a distance to the object based on the second received light signal when the estimated distance is less than the threshold;
A distance measuring method comprising:
所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させる分岐部と、前記第1の反射光を集光する第1の集光レンズと、前記第1の集光レンズを経た前記第1の反射光を受光して第1の受光信号を生成する第1の受光部と、前記第1の集光レンズよりも小さい開口数を有し前記第2の反射光を集光する第2の集光レンズと、前記第2の集光レンズを経た前記第2の反射光を受光して第2の受光信号を生成する第2の受光部と、を有する測距装置に搭載されたコンピュータに、
前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定するステップと、
前記概算処理が閾値以上である場合には、前記第1の受光信号と前記第2の受光信号とを合算した合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出するステップと、
を実行させることを特徴とするプログラム。
A branching portion for branching light emitted toward a predetermined area and reflected by an object in the predetermined area into first reflected light and second reflected light, and condensing the first reflected light. A first condenser lens, a first light receiving section that receives the first reflected light that has passed through the first condenser lens, and generates a first received light signal; And a second condenser lens having a small numerical aperture for condensing the second reflected light, and the second reflected light passed through the second condenser lens to receive a second received light signal. A second light receiving unit for generating, and a computer mounted on the distance measuring device,
Determining an approximate distance to the object based on the first received light signal or the second received light signal,
When the approximate processing is equal to or more than a threshold value, the distance to the object is calculated based on a summed signal obtained by adding the first received light signal and the second received light signal, and the approximate distance is the threshold value. If it is less than, a step of calculating a distance to the object based on the second received light signal,
A program characterized by causing to execute.
所定領域に向けて出射され前記所定領域内の対象物によって反射された光を、第1の反射光と第2の反射光とに分岐させる分岐部と、前記第1の反射光を集光する第1の集光レンズと、前記第1の集光レンズを経た前記第1の反射光を受光して第1の受光信号を生成する第1の受光部と、前記第1の集光レンズよりも小さい開口数を有し前記第2の反射光を集光する第2の集光レンズと、前記第2の集光レンズを経た前記第2の反射光を受光して第2の受光信号を生成する第2の受光部と、を有する測距装置に搭載されたコンピュータに、
前記第1の受光信号又は前記第2の受光信号に基づいて前記対象物までの概算距離を判定するステップと、
前記概算処理が閾値以上である場合には、前記第1の受光信号と前記第2の受光信号とを合算した合算信号に基づいて前記対象物までの距離を算出し、前記概算距離が前記閾値未満である場合には前記第2の受光信号に基づいて前記対象物までの距離を算出するステップと、
を実行させるプログラムを記録する記録媒体。
A branching portion for branching light emitted toward a predetermined area and reflected by an object in the predetermined area into first reflected light and second reflected light, and condensing the first reflected light. A first condenser lens, a first light receiving section that receives the first reflected light that has passed through the first condenser lens, and generates a first received light signal; And a second condenser lens having a small numerical aperture for condensing the second reflected light, and the second reflected light passed through the second condenser lens to receive a second received light signal. A second light receiving unit for generating, and a computer mounted on the distance measuring device,
Determining an approximate distance to the object based on the first received light signal or the second received light signal,
When the approximate processing is equal to or more than a threshold value, the distance to the object is calculated based on a summed signal obtained by adding the first received light signal and the second received light signal, and the approximate distance is the threshold value. If it is less than, a step of calculating a distance to the object based on the second received light signal,
A recording medium for recording a program for executing.
JP2018199928A 2018-10-24 2018-10-24 Measurement device, method for measuring distance, program, and recording medium Ceased JP2020067360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018199928A JP2020067360A (en) 2018-10-24 2018-10-24 Measurement device, method for measuring distance, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199928A JP2020067360A (en) 2018-10-24 2018-10-24 Measurement device, method for measuring distance, program, and recording medium

Publications (1)

Publication Number Publication Date
JP2020067360A true JP2020067360A (en) 2020-04-30

Family

ID=70390120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018199928A Ceased JP2020067360A (en) 2018-10-24 2018-10-24 Measurement device, method for measuring distance, program, and recording medium

Country Status (1)

Country Link
JP (1) JP2020067360A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213477A (en) * 1997-01-28 1998-08-11 Nitto Kogaku Kk Photometer for camera and camera
JPH1141521A (en) * 1997-05-20 1999-02-12 Matsushita Electric Ind Co Ltd Image pickup device, instrument and method for measuring distance between vehicles
JP2000338393A (en) * 1999-05-26 2000-12-08 Olympus Optical Co Ltd Image pickup unit
JP2001124984A (en) * 1999-10-28 2001-05-11 Canon Inc Focus detecting device and image-pickup device
JP2008241693A (en) * 2007-01-30 2008-10-09 Sick Ag Method of sensing object and optoelectronic device
JP2009216600A (en) * 2008-03-11 2009-09-24 Funai Electric Co Ltd Distance measuring device
JP2010127918A (en) * 2008-12-01 2010-06-10 Mitsubishi Electric Corp Light wave radar apparatus
JP2012007906A (en) * 2010-06-22 2012-01-12 Ricoh Co Ltd Distance measuring device and imaging device
JP2013222109A (en) * 2012-04-17 2013-10-28 Mitsutoyo Corp Autofocus mechanism
JP2017003490A (en) * 2015-06-12 2017-01-05 三菱電機株式会社 Laser radar device
JP2017208595A (en) * 2016-05-16 2017-11-24 コニカミノルタ株式会社 Monitoring system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213477A (en) * 1997-01-28 1998-08-11 Nitto Kogaku Kk Photometer for camera and camera
JPH1141521A (en) * 1997-05-20 1999-02-12 Matsushita Electric Ind Co Ltd Image pickup device, instrument and method for measuring distance between vehicles
JP2000338393A (en) * 1999-05-26 2000-12-08 Olympus Optical Co Ltd Image pickup unit
JP2001124984A (en) * 1999-10-28 2001-05-11 Canon Inc Focus detecting device and image-pickup device
JP2008241693A (en) * 2007-01-30 2008-10-09 Sick Ag Method of sensing object and optoelectronic device
JP2009216600A (en) * 2008-03-11 2009-09-24 Funai Electric Co Ltd Distance measuring device
JP2010127918A (en) * 2008-12-01 2010-06-10 Mitsubishi Electric Corp Light wave radar apparatus
JP2012007906A (en) * 2010-06-22 2012-01-12 Ricoh Co Ltd Distance measuring device and imaging device
JP2013222109A (en) * 2012-04-17 2013-10-28 Mitsutoyo Corp Autofocus mechanism
JP2017003490A (en) * 2015-06-12 2017-01-05 三菱電機株式会社 Laser radar device
JP2017208595A (en) * 2016-05-16 2017-11-24 コニカミノルタ株式会社 Monitoring system

Similar Documents

Publication Publication Date Title
JP5743123B1 (en) Laser dicing apparatus and dicing method
KR101985825B1 (en) Laser dicing device
CN110376573B (en) Laser radar installation and adjustment system and installation and adjustment method thereof
EP1191306A2 (en) Distance information obtaining apparatus and distance information obtaining method
KR20210099138A (en) Method and apparatus for controlled machining of workpieces
WO2020253898A8 (en) System and method for focal position control
JP6857734B2 (en) Optical device
JP2019533153A5 (en)
CN110836642A (en) Color triangular displacement sensor based on triangulation method and measuring method thereof
JP2020067360A (en) Measurement device, method for measuring distance, program, and recording medium
US20170090175A1 (en) Microscope apparatus, automatic focusing device, and automatic focusing method
JP2018040748A (en) Laser range measuring device
JP2018004512A (en) Measurement device
JP5154028B2 (en) Light wave distance meter
JP2012008431A (en) Autofocus apparatus
JP2020067361A (en) Measurement device, method for measuring distance, program, and recording medium
JP6990782B2 (en) Simulator device
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
JP6788396B2 (en) Laser rangefinder
JP2009288076A (en) Aberration measuring device
JPH1164719A (en) Microscope equipped with focus detection means and displacement measuring device
JP7306409B2 (en) Displacement measurement device and defect detection device
KR102066129B1 (en) Apparatus and method for 3d information using dot array
JP2004317480A (en) Angle measuring device, and inclination measuring instrument for optical pickup lens
JPH08304694A (en) Focus detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20230725