JP2020065824A - Cardiac potential simulation method and apparatus - Google Patents

Cardiac potential simulation method and apparatus Download PDF

Info

Publication number
JP2020065824A
JP2020065824A JP2018201516A JP2018201516A JP2020065824A JP 2020065824 A JP2020065824 A JP 2020065824A JP 2018201516 A JP2018201516 A JP 2018201516A JP 2018201516 A JP2018201516 A JP 2018201516A JP 2020065824 A JP2020065824 A JP 2020065824A
Authority
JP
Japan
Prior art keywords
potential
body surface
signal source
electric signal
simulation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018201516A
Other languages
Japanese (ja)
Other versions
JP7097554B2 (en
Inventor
孝弘 伊藤
Takahiro Ito
孝弘 伊藤
晃正 平田
Akimasa Hirata
晃正 平田
辰仁 中根
Tatsuhito Nakane
辰仁 中根
伸昭 松浦
Nobuaki Matsuura
伸昭 松浦
浩芳 都甲
Hiroyoshi Toko
浩芳 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Nagoya Institute of Technology NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nagoya Institute of Technology NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018201516A priority Critical patent/JP7097554B2/en
Publication of JP2020065824A publication Critical patent/JP2020065824A/en
Application granted granted Critical
Publication of JP7097554B2 publication Critical patent/JP7097554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

To provide a cardiac potential simulation method that makes it possible to easily perform cardiac potential simulation using a commercially available computer or the like.SOLUTION: In step S101, an electric signal source is disposed on a three-dimensional human body model imitating a human body at a predetermined location of a part of the heart of this model. The electric signal source is an electric dipole, for instance. Next, in step S102, a body surface potential derived from the electric signal source is obtained. The body surface potential is obtained through electromagnetic field simulation. Steps S101 and S102 are repeated by sequentially changing a position of the electric signal source to a set measurement location at each set time (step S104). After having obtained the body surface potential at every measurement location (yes in step S103), the operation is ended.SELECTED DRAWING: Figure 1

Description

本発明は、心臓の状態をシミュレーションして心電位を再現する心電位模擬方法および装置に関する。   The present invention relates to an electrocardiographic potential simulation method and apparatus for simulating a state of a heart to reproduce an electrocardiographic potential.

心拍変動を測定することは、心肺機能の負荷強度のコントロールに有用である。昨今では、シャツなどの衣服に電極が組み込まれ、心電を計測できるウエアラブルデバイスが開発され、様々な場面において心拍変動の監視・観察が行われるようになっている。このような心電位を計測するウエアラブルデバイスの開発では、電極を配置する箇所が重要となる。心電位の計測のための電極配置の決定方法として、例えば、心臓シミュレータを用いた技術がある。近年、計算機性能の向上により、分子・細胞レベルの挙動から血圧・心電図までを再現する心臓シミュレータが開発されている。心臓シミュレータを用いて心電図波形を再現(模擬)することで、最適な電極の設置箇所が決定できるようになる。 Measuring heart rate variability is useful for controlling the load intensity of cardiopulmonary function. In recent years, wearable devices have been developed that can measure electrocardiogram by incorporating electrodes into clothes such as shirts, and heart rate variability is monitored and observed in various situations. In the development of wearable devices that measure such cardiac potentials, the location of the electrodes is important. As a method for determining the electrode arrangement for measuring the cardiac potential, for example, there is a technique using a heart simulator. In recent years, with the improvement of computer performance, a heart simulator that reproduces behaviors at the molecular / cellular level to blood pressure / electrocardiogram has been developed. By reproducing (simulating) the electrocardiogram waveform using a heart simulator, it becomes possible to determine the optimum electrode installation location.

研究紹介 心臓シミュレータの概要、UT-Heart Laboratory、国立大学法人東京大学、[平成30年8月13日検索]、(http://www.sml.k.u-tokyo.ac.jp/report/report01a.html)。Introduction of research Outline of heart simulator, UT-Heart Laboratory, University of Tokyo, [Search on August 13, 2018], (http://www.sml.ku-tokyo.ac.jp/report/report01a. html). 高精度な暴露評価技術に関する研究−数値人体モデルの開発−、生体EMC、[平成30年8月15日検索]、(http://emc.nict.go.jp/bio/model/model01_1.html)。Study on high-precision exposure assessment technology-Development of numerical human body model-, living body EMC, [August 15, 2018 search], (http://emc.nict.go.jp/bio/model/model01_1.html ). J. Malmivuo and R. Plonsey, Bioelectromagnetism : principles and applications of bioelectric and biomagnetic fields, Oxford University Press, pp. 188-191, 1995.J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Oxford University Press, pp. 188-191, 1995. R. E. Klabunde, Cardiovascular physiology concepts, Second Edition, Philadelphia: Lippincott Williams & Wilkins/Wolters Kluwer, pp. 21-23, 2012.R. E. Klabunde, Cardiovascular physiology concepts, Second Edition, Philadelphia: Lippincott Williams & Wilkins / Wolters Kluwer, pp. 21-23, 2012.

しかしながら、上述した心臓シミュレータには、いわゆるスーパーコンピュータと呼ばれるレベルの大がかりな計算機が必要となり、心電位を再現することが容易ではない等問題がある。   However, the above-described heart simulator requires a large-scale computer called a so-called super computer, and there is a problem that it is not easy to reproduce the cardiac potential.

本発明は、以上のような問題点を解消するためになされたものであり、心電位のシミュレーションが市販されている計算機などでも容易に実施できるようにすることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to easily carry out a simulation of an electrocardiographic potential with a commercially available computer or the like.

本発明に係る心電位模擬方法は、人体を模した3次元の人体モデルの心臓の部分に配置する電気信号源の位置を設定されている時間毎に変更する第1ステップと、設定されている時間毎に変更されている電気信号源の位置毎に、電気信号源に由来する体表面電位を求める第2ステップと、時間毎に求めた複数の体表面電位の分布より心電位を模擬した波形を求める第3ステップとを備える。   The cardiac potential simulation method according to the present invention is set with the first step of changing the position of the electric signal source arranged at the heart portion of the three-dimensional human body model simulating the human body at every set time. The second step of obtaining the body surface potential derived from the electric signal source for each position of the electric signal source changed with time, and a waveform simulating the cardiac potential from the distribution of a plurality of body surface potentials obtained with time And a third step of

上記心電位模擬方法において、第2ステップは、例えば、胸部誘導における体表面電位を求める。   In the above cardiac potential simulation method, the second step is, for example, to obtain a body surface potential in the chest lead.

上記心電位模擬方法において、第1ステップでは、電気信号源の位置の変更距離を、心房と心室とで変化させるようにしてもよい。   In the above-described cardiac potential simulation method, in the first step, the change distance of the position of the electric signal source may be changed between the atrium and the ventricle.

上記心電位模擬方法において、電気信号源は、電気双極子である。また、第2ステップでは、電磁界シミュレーションにより体表面電位を求める。   In the above cardiac potential simulation method, the electric signal source is an electric dipole. Further, in the second step, the body surface potential is obtained by electromagnetic field simulation.

本発明に係る心電位模擬装置は、上述した心電位模擬方法を実装したものである。   A cardiac potential simulation device according to the present invention is an implementation of the cardiac potential simulation method described above.

以上説明したことにより、本発明によれば、心電位のシミュレーションが市販されている計算機などでも容易に実施できるという優れた効果が得られる。   As described above, according to the present invention, it is possible to obtain an excellent effect that the simulation of the cardiac potential can be easily carried out by a commercially available computer or the like.

図1は、本発明の実施の形態おける心電位模擬方法を説明するフローチャートである。FIG. 1 is a flow chart for explaining a cardiac potential simulation method according to the embodiment of the present invention. 図2は、人体モデルを例示する説明図である。FIG. 2 is an explanatory diagram illustrating a human body model. 図3は、図2に示す胸部誘導V1〜V6での標準的な心電図波形を示す波形図である。FIG. 3 is a waveform diagram showing standard electrocardiographic waveforms in the chest leads V1 to V6 shown in FIG. 図4は、電気双極子の配置箇所の例を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an example of the location of the electric dipole. 図5Aは、図4に示すように電気双極子の位置を順次変えながら算出した一連の体表面電位分布を示す説明図である。FIG. 5A is an explanatory diagram showing a series of body surface potential distributions calculated while sequentially changing the position of the electric dipole as shown in FIG. 図5Bは、図4に示すように電気双極子の位置を順次変えながら算出した一連の体表面電位分布を示す説明図である。FIG. 5B is an explanatory diagram showing a series of body surface potential distributions calculated while sequentially changing the position of the electric dipole as shown in FIG. 図5Cは、図4に示すように電気双極子の位置を順次変えながら算出した一連の体表面電位分布を示す説明図である。FIG. 5C is an explanatory diagram showing a series of body surface potential distributions calculated while sequentially changing the position of the electric dipole as shown in FIG. 図6は、伝搬時間の算出を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining the calculation of the propagation time. 図7は、図4に示した電気双極子の配置箇所により本発明の心電位模擬方法により求めた心電位を模擬した波形の例を示す特性図である。FIG. 7 is a characteristic diagram showing an example of a waveform simulating an electrocardiographic potential obtained by the electrocardiographic potential simulating method of the present invention by the location of the electric dipole shown in FIG. 図8は、電気双極子の配置箇所の他の例を説明するための説明図である。FIG. 8: is explanatory drawing for demonstrating the other example of the location where an electric dipole is arrange | positioned. 図9は、図8に示した電気双極子の配置箇所により本発明の心電位模擬方法により求めた心電位を模擬した波形の例を示す特性図である。FIG. 9 is a characteristic diagram showing an example of a waveform simulating an electrocardiographic potential obtained by the electrocardiographic potential simulating method of the present invention by the location of the electric dipole shown in FIG. 図10は、図8に示すように電気双極子の位置を順次変えながら算出した一連の体表面電位分布を示す説明図である。FIG. 10 is an explanatory diagram showing a series of body surface potential distributions calculated while sequentially changing the position of the electric dipole as shown in FIG.

以下、本発明の実施の形態おける心電位模擬方法について図1を参照して説明する。まず、ステップS101で、人体を模した3次元の人体モデル上で、このモデルの心臓の部分の所定の箇所に、電気信号源を配置する。電気信号源は、例えば、電気双極子である。次に、ステップS102で、電気信号源に由来する体表面電位を求める。体表面電位は、電磁界シミュレーションにより求める。   Hereinafter, the cardiac potential simulation method according to the embodiment of the present invention will be described with reference to FIG. First, in step S101, an electric signal source is arranged on a three-dimensional human body model imitating a human body at a predetermined position of the heart of the model. The electric signal source is, for example, an electric dipole. Next, in step S102, the body surface potential derived from the electric signal source is obtained. The body surface potential is obtained by electromagnetic field simulation.

上述したステップS101,S102を、電気信号源の位置を設定されている時間毎に、設定されている測定箇所に逐次に変更して繰り返す(ステップS104)。すべての測定箇所における体表面電位を求めたら(ステップS103のyes)、動作を終了する。   The above-described steps S101 and S102 are sequentially changed and repeated at the set measurement location every time the position of the electric signal source is set (step S104). When the body surface potentials at all the measurement points are obtained (yes in step S103), the operation ends.

上述したように、本発明の心電位模擬方法は、人体を模した3次元の人体モデルの心臓の部分に配置する電気信号源の位置を設定されている時間毎に変更し(第1ステップ)、設定されている時間毎に変更されている電気信号源の位置毎に、電気信号源に由来する体表面電位を求める(第2ステップ)、時間毎に求めた複数の体表面電位の分布より心電位を模擬した波形を求める(第3ステップ)ようにしたものである。   As described above, according to the electrocardiographic potential simulation method of the present invention, the position of the electric signal source arranged in the heart portion of the three-dimensional human body model imitating the human body is changed every set time (first step). , The body surface potential derived from the electric signal source is obtained for each position of the electric signal source changed at each set time (second step). From the distribution of the plurality of body surface potentials obtained at each time This is to obtain a waveform simulating the cardiac potential (third step).

また、本発明の心電位模擬装置は、上述した心電位模擬方法を実装した計算機から構成されたものである。計算機は、CPU(Central Processing Unit;中央演算処理装置)と主記憶装置と外部記憶装置となどを備えたコンピュータ機器であり、主記憶装置に展開されたプログラムによりCPUが動作することで、上述した各機能が実現される。また、各機能は、ネットワーク接続装置を用いることで複数のコンピュータ機器に分散させるようにしてもよい。   Further, the electrocardiographic potential simulation device of the present invention is configured by a computer that implements the above-described electrocardiographic potential simulation method. The computer is a computer device that includes a CPU (Central Processing Unit), a main storage device, an external storage device, and the like. Each function is realized. Further, each function may be distributed to a plurality of computer devices by using a network connection device.

例えば、図2に例示するような人体モデルを用いる。この人体モデルは、皮膚、筋肉、心臓など、51種類の組織で構成されており、2mmの分解能を有するボクセルモデルである(非特許文献2参照)。体表面電位を電磁界シミュレーションにより求めるときに用いる各組織の導電率等の物性値は、実際に即した値を用いるべきものであり、計算の実施者において適宜設定することができる。以下に、計算に用いる生体組織毎の導電率を示す。   For example, a human body model as illustrated in FIG. 2 is used. This human body model is a voxel model that is composed of 51 types of tissues such as skin, muscle, and heart, and has a resolution of 2 mm (see Non-Patent Document 2). Physical properties such as conductivity of each tissue used when the body surface potential is obtained by electromagnetic field simulation should be values that actually match, and can be appropriately set by the person who performs the calculation. The conductivity of each living tissue used for the calculation is shown below.

図2に示すV1〜V6は、よく知られているように、心電図を測定する際の胸部誘導(電極)の位置である。これら胸部誘導V1〜V6での標準的な心電図波形を、図3に示す。V1からV6にかけて、心電波形の中のQRS波のおもな向きがマイナスからプラスへと変化している。後述する計算例では、この位置で観測される波形を求める。なお、後述する計算例の計算に用いた計算機は、CPUに、インテル株式会社製の「Xeon(登録商標) Gold 5120 (2.2GHz)」を2個用い、主記憶装置は96GBとしている。   As well known, V1 to V6 shown in FIG. 2 are positions of the chest lead (electrode) when measuring an electrocardiogram. Typical electrocardiographic waveforms for these chest leads V1-V6 are shown in FIG. From V1 to V6, the main direction of the QRS wave in the electrocardiographic waveform changes from minus to plus. In the calculation example described later, the waveform observed at this position is obtained. The computer used for the calculation of the calculation example described later uses two "Xeon (registered trademark) Gold 5120 (2.2 GHz)" manufactured by Intel Corporation for the CPU, and the main memory is 96 GB.

次に、電気信号源(電気双極子)の配置箇所について、図4を用いて説明する。なお、図4の(a)は、心臓の断面図を示しており、(b)、(a)の断面図に対応する形で計算モデルの心臓部分を抜き出したものを示している。また、図4の(b)において、「◆」により電気双極子を順次配置する位置を示している。電気双極子を配置することによって発生する微小電流を入力源とし、電磁界解析により、体表面電位を計算する。電磁界解析は、例えばSPFD(Scalar−Potential Finite−Difeference)法などを用いればよい。電気双極子の電荷量などは、発生させようとしている電位量等を勘案して、計算の実施者において設定する。本計算例では、電荷量を0.1mCとした。なお、複数の電気双極子を同時に心臓内に配置することもあるが、この場合、電荷量の合計が0.1mCとなるように設定する。   Next, the location of the electric signal source (electric dipole) will be described with reference to FIG. It should be noted that FIG. 4A shows a cross-sectional view of the heart, and shows the extracted heart portion of the calculation model in a form corresponding to the cross-sectional views of FIGS. 4B and 4A. Further, in FIG. 4B, the positions where the electric dipoles are sequentially arranged are indicated by "◆". The body surface potential is calculated by electromagnetic field analysis using a minute current generated by placing an electric dipole as an input source. The electromagnetic field analysis may use, for example, the SPFD (scalar-potential fine-difference) method. The amount of electric charge of the electric dipole is set by the person who performs the calculation in consideration of the amount of electric potential to be generated. In this calculation example, the charge amount was set to 0.1 mC. Note that a plurality of electric dipoles may be placed in the heart at the same time, but in this case, the total charge amount is set to 0.1 mC.

心電図の構成として、まず、人体モデルの心臓部分の表面のある位置に配置した単体の電気双極子を入力源とした際の体表面電位をSPFD法で算出する。図4を用いて説明したように、電気双極子の位置を順次変えながら算出した一連の体表面電位分布を図5A,図5B,図5Cに示す。   As the configuration of the electrocardiogram, first, the body surface potential when a single electric dipole arranged at a position on the surface of the heart portion of the human body model is used as an input source is calculated by the SPFD method. As described with reference to FIG. 4, a series of body surface potential distributions calculated by sequentially changing the position of the electric dipole are shown in FIGS. 5A, 5B, and 5C.

ここで、電気的興奮の伝搬時間を、電気的興奮の伝搬速度と電気双極子間の移動距離を用いて求める。電気的興奮の伝搬速度に関しては、以下の表に示すように設定した(非特許文献3、非特許文献4参照)。   Here, the propagation time of the electric excitement is obtained by using the propagation speed of the electric excitement and the moving distance between the electric dipoles. The propagation speed of electrical excitement was set as shown in the following table (see Non-Patent Document 3 and Non-Patent Document 4).

計算した体表面電位分布上で、対象とする胸部誘導(V1〜V6)に該当する電位を、図6に示すように後処理で求めた伝搬時間に対応させて時間軸上で統合することで、心電図の構成を行う。   By integrating the potentials corresponding to the target chest leads (V1 to V6) on the calculated body surface potential distribution on the time axis in correspondence with the propagation time obtained by the post-processing as shown in FIG. , Configure the electrocardiogram.

伝搬時間の算出について説明すると、時間(時系列)的に連続する2つの電気双極子の位置を、順にx1、x2とし、各々の入力源とした対象とする誘導位置での体表面電位を、φ1、φ2とする。体表面電位がφ1である時刻をt1、移動した電気双極子間の距離|x2−x1|を、伝搬時間で除した値(時間)をΔtとすると、体表面電位がφ2となる時刻t2は、t2=t1+Δtで与えられる。このように、各々の電気双極子について求めた体表面電位を時系列にプロットすることで、心電位を模擬した波形が得られる。   Explaining the calculation of the propagation time, the positions of two electric dipoles that are continuous in time (time series) are set to x1 and x2, respectively, and the body surface potential at the target induction position as each input source is expressed as φ1 and φ2. Letting t1 be the time when the body surface potential is φ1, and Δt be the value (time) obtained by dividing the distance | x2-x1 | between the moved electric dipoles by the propagation time, the time t2 when the body surface potential becomes φ2 is , T2 = t1 + Δt. Thus, by plotting the body surface potentials obtained for each electric dipole in time series, a waveform simulating the cardiac potential can be obtained.

図4の(b)に「◆」で示す電気双極子の位置を、矢印に沿って移動させ、電磁界シミュレーションにより求めた胸部誘導V1〜V6における体表面電位を、上述したように時間軸上で整列させて得られた波形を図7に示す。まず、心電図波形におけるP波の概形に近い形が模擬できている。また、V4〜V6においては、図3に示したような、QRS波の特徴である急峻な電位変化に近い形を模擬できている。   The position of the electric dipole indicated by “◆” in FIG. 4B is moved along the arrow, and the body surface potentials in the chest leads V1 to V6 obtained by the electromagnetic field simulation are calculated on the time axis as described above. The waveform obtained by aligning with is shown in FIG. First, a shape close to the approximate shape of the P wave in the electrocardiogram waveform can be simulated. Further, in V4 to V6, the shape close to the abrupt potential change, which is the characteristic of the QRS wave, can be simulated as shown in FIG.

次に、他の計算結果例について説明する。ここでは、図8に示すように、電気双極子の位置「◆」を移動させている。また、ここでは、電気双極子間の移動距離を、心房と心室とで変化させている。電気双極子間の移動距離は、心房では平均3.2mm、心室では平均24mmとしている。   Next, another calculation result example will be described. Here, as shown in FIG. 8, the position "◆" of the electric dipole is moved. Further, here, the moving distance between the electric dipoles is changed between the atrium and the ventricle. The movement distance between electric dipoles is 3.2 mm on average in the atrium and 24 mm on average in the ventricle.

図8に「◆」で示す電気双極子の位置を、矢印に沿って上述したように移動させ、電磁界シミュレーションにより求めた胸部誘導V1〜V6における体表面電位を、前述したように時間軸上で整列させて得られた波形を図9に示す。V1〜V6のすべての誘導において、図3に示したQRS波のおもな向きが、S波からR波へ移行する形を模擬できていることが分かる。なお、図8を用いて説明したように、電気双極子の位置を順次変えながら算出した一連の体表面電位分布を図10示す。   The position of the electric dipole indicated by “◆” in FIG. 8 is moved along the arrow as described above, and the body surface potentials in the chest leads V1 to V6 obtained by the electromagnetic field simulation are set on the time axis as described above. FIG. 9 shows the waveform obtained by aligning with. It can be seen that the main direction of the QRS wave shown in FIG. 3 can simulate the transition from the S wave to the R wave in all the leads V1 to V6. As described with reference to FIG. 8, FIG. 10 shows a series of body surface potential distributions calculated by sequentially changing the position of the electric dipole.

なお、上述した計算例では、胸部誘導における体表面電位を求めるようにしたが、これに限るものではなく、体表面電位を求める箇所は、3次元の人体モデル上のいずれの箇所であってもよい。例えば、四肢誘導における体表面電位を求めるようにしてもよい。   In the above-described calculation example, the body surface potential in the chest lead is obtained, but the invention is not limited to this, and the body surface potential is obtained at any place on the three-dimensional human body model. Good. For example, the body surface potential in limb guidance may be obtained.

以上に説明したように、本発明では、人体を模した3次元の人体モデルの心臓の部分に配置する電気信号源の位置を設定されている時間毎に変更し、変更されている電気信号源の位置毎に電気信号源に由来する体表面電位を求め、時間毎に求めた複数の体表面電位の分布より心電位を模擬した波形を求めるようにした。この結果、本発明によれば、心電位のシミュレーションが市販されている計算機などでも容易に実施できるようになる。また、本発明によれば、全身にわたって体表面電位の分布が計算でき、全身にわたる心電位模擬が可能となる。   As described above, according to the present invention, the position of the electric signal source arranged in the heart part of the three-dimensional human body model imitating the human body is changed every set time, and the electric signal source is changed. The body surface potential derived from the electric signal source was obtained for each position, and the waveform simulating the cardiac potential was obtained from the distribution of the plurality of body surface potentials obtained for each time. As a result, according to the present invention, the simulation of the electrocardiographic potential can be easily performed by a commercially available computer or the like. Further, according to the present invention, the distribution of the body surface potential can be calculated over the whole body, and the cardiac potential simulation over the whole body becomes possible.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiments described above, and many modifications and combinations can be implemented by a person having ordinary knowledge in the field within the technical idea of the present invention. That is clear.

Claims (6)

人体を模した3次元の人体モデルの心臓の部分に配置する電気信号源の位置を設定されている時間毎に変更する第1ステップと、
設定されている時間毎に変更されている前記電気信号源の位置毎に、前記電気信号源に由来する体表面電位を求める第2ステップと、
時間毎に求めた複数の体表面電位の分布より心電位を模擬した波形を求める第3ステップと
を備えることを特徴とする心電位模擬方法。
A first step of changing the position of an electric signal source arranged at the heart part of a three-dimensional human body model simulating a human body at preset times;
A second step of obtaining a body surface potential derived from the electric signal source for each position of the electric signal source which is changed every set time;
And a third step of obtaining a waveform simulating an electrocardiographic potential from a distribution of a plurality of body surface potentials obtained for each time.
請求項1記載の心電位模擬方法において、
前記第2ステップは、胸部誘導における体表面電位を求めることを特徴とする心電位模擬方法。
The cardiac potential simulation method according to claim 1,
The second step is a method of simulating an electrocardiographic potential characterized in that a body surface potential in chest lead is obtained.
請求項1または2記載の心電位模擬方法において、
前記第1ステップは、前記電気信号源の位置の変更距離を、心房と心室とで変化させることを特徴とする心電位模擬方法。
The cardiac potential simulation method according to claim 1 or 2,
The said 1st step is a cardiac potential simulation method characterized by changing the change distance of the position of the said electric signal source between an atrium and a ventricle.
請求項1〜3のいずれか1項に記載の心電位模擬方法において、
前記電気信号源は、電気双極子であることを特徴とする心電位模擬方法。
The cardiac potential simulation method according to any one of claims 1 to 3,
The cardiac potential simulating method, wherein the electric signal source is an electric dipole.
請求項4記載の心電位模擬方法において、
前記第2ステップでは、電磁界シミュレーションにより体表面電位を求めることを特徴とする心電位模擬方法。
The cardiac potential simulation method according to claim 4,
In the second step, a cardiac potential simulation method is characterized in that the body surface potential is obtained by electromagnetic field simulation.
請求項1〜5のいずれか1項に記載の心電位模擬方法を実装した心電位模擬装置。   An electrocardiographic device which implements the electrocardiographic simulation method according to claim 1.
JP2018201516A 2018-10-26 2018-10-26 Electrocardiographic simulation method and device Active JP7097554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201516A JP7097554B2 (en) 2018-10-26 2018-10-26 Electrocardiographic simulation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201516A JP7097554B2 (en) 2018-10-26 2018-10-26 Electrocardiographic simulation method and device

Publications (2)

Publication Number Publication Date
JP2020065824A true JP2020065824A (en) 2020-04-30
JP7097554B2 JP7097554B2 (en) 2022-07-08

Family

ID=70389017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201516A Active JP7097554B2 (en) 2018-10-26 2018-10-26 Electrocardiographic simulation method and device

Country Status (1)

Country Link
JP (1) JP7097554B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663026A (en) * 1992-08-21 1994-03-08 Nippon Koden Corp Simulator of electric phenomenon of heart
US20170068796A1 (en) * 2014-02-18 2017-03-09 Siemens Healthcare Gmbh System and method for real-time simulation of patient-specific cardiac electrophysiology including the effect of the electrical conduction system of the heart

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663026A (en) * 1992-08-21 1994-03-08 Nippon Koden Corp Simulator of electric phenomenon of heart
US20170068796A1 (en) * 2014-02-18 2017-03-09 Siemens Healthcare Gmbh System and method for real-time simulation of patient-specific cardiac electrophysiology including the effect of the electrical conduction system of the heart

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中根辰仁ほか: "電気双極子を用いた心電図生成モデルの構築に関する一検討", 信学技報, vol. 118, no. 42, JPN6021048273, 11 May 2018 (2018-05-11), JP, pages 1 - 6, ISSN: 0004661562 *

Also Published As

Publication number Publication date
JP7097554B2 (en) 2022-07-08

Similar Documents

Publication Publication Date Title
JP2012179352A (en) System and method for constructing current dipole
EP3209197B1 (en) Simultaneous impedance testing method and apparatus
Dolinský et al. Model for generating simple synthetic ECG signals
CN106999086B (en) In vivo signal source position detection method and in vivo signal source position detection device
Kawala-Janik et al. Innovative approach in analysis of EEG and EMG signals—Comparision of the two novel methods
JP7097554B2 (en) Electrocardiographic simulation method and device
Rossi et al. Bioimpedance sensing in wearable systems: From hardware integration to model development
JP2021013677A (en) Biological equivalent phantom and cardiac potential simulation method
Wangmo et al. Two electrode ECG and EOG system for monitoring applications
Geselowitz et al. Is accurate recording of the ECG surface Laplacian feasible?
Nakane et al. Forward electrocardiogram modeling by small dipoles based on whole-body electric field analysis
Cho et al. Designing a novel ECG simulator: multi-modality electrocardiography into a three-dimensional wire cube network
Derganc et al. Teaching the basic principles of electrocardiography experimentally
Mirizzi et al. A model of extracellular waveshape of the gastric electrical activity
RU2009142646A (en) ELECTRODE MONITORING DEVICE INSIDE THE PATIENT'S BODY AND METHOD FOR ITS IMPLEMENTATION
Irimia et al. Theoretical ellipsoidal model of gastric electrical control activity propagation
Morega et al. The brachial electrical bioimpedance as a localized cardiovascular investigation technique
Makeyev et al. Finite element method modeling to confirm the results of comprehensive optimization of the tripolar concentric ring electrode based on its finite dimensions model
Sun et al. A volume conduction antenna for implantable devices
Morega et al. Electrical Cardiometry simulation for the assessment of circulatory parameters
Cheng Non-invasive electrical imaging of the heart
Makeyev et al. Analysis of variance to assess statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes
Biasi et al. Combining physics-based simulation and machine learning for EIT-based tactile sensing
Abeysekera Some physiologically meaningful features obtained from the vectorcardiography
Wu et al. Epicardial inverse solutions from body surface Laplacian maps: A model study

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220616

R150 Certificate of patent or registration of utility model

Ref document number: 7097554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150