JP2020065482A - Parkinson's disease diagnostic agent and model animal - Google Patents

Parkinson's disease diagnostic agent and model animal Download PDF

Info

Publication number
JP2020065482A
JP2020065482A JP2018200039A JP2018200039A JP2020065482A JP 2020065482 A JP2020065482 A JP 2020065482A JP 2018200039 A JP2018200039 A JP 2018200039A JP 2018200039 A JP2018200039 A JP 2018200039A JP 2020065482 A JP2020065482 A JP 2020065482A
Authority
JP
Japan
Prior art keywords
mutation
psap
gene
disease
parkinson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200039A
Other languages
Japanese (ja)
Inventor
信孝 服部
Nobutaka Hattori
信孝 服部
琢 波田野
Taku Hatano
琢 波田野
悠 王子
Yu Oji
悠 王子
松田 純子
Junko Matsuda
純子 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Kawasaki Gakuen Educational Foundation
Original Assignee
Juntendo University
Kawasaki Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University, Kawasaki Gakuen Educational Foundation filed Critical Juntendo University
Priority to JP2018200039A priority Critical patent/JP2020065482A/en
Publication of JP2020065482A publication Critical patent/JP2020065482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To provide novel causative genes for Parkinson's disease and to provide novel model animals.SOLUTION: Provided is a genetic testing method for Parkinson's disease, which detects a prosaposin gene mutation in a subject-derived sample.SELECTED DRAWING: None

Description

本発明は、パーキンソン病診断薬及びパーキンソン病モデル非ヒト動物に関する。   The present invention relates to a diagnostic agent for Parkinson's disease and a non-human animal model for Parkinson's disease.

パーキンソン病(以下PD)は我が国で2番目に多い神経変性疾患である。PDは中脳黒質ドパミン神経細胞脱落を主病態とする疾患であり、振戦、無動、筋固縮および姿勢反射障害を主症状とした運動障害が中高年を好発年齢として発症し経年的に進行する。治療法は主に内服治療によるドパミン補充療法を中心とした対症療法に留まり根本治療は未だ開発されていない。疾患進行に伴い対症療法の効果は損なわれることも多く、重度進行例では歩行困難や転倒により寝たきり状態に至ってしまうことも多い。   Parkinson's disease (PD) is the second most common neurodegenerative disease in Japan. PD is a disease whose main condition is mesencephalic dopaminergic neuron loss, and movement disorders with tremor, akinesia, muscular rigidity, and postural reflex disorder as the main symptoms develop in middle-aged and older people as the prevalent age Proceed to. The treatment is limited to symptomatic treatment, mainly dopamine replacement therapy by oral administration, and the fundamental treatment has not been developed yet. The effect of symptomatic treatment is often impaired as the disease progresses, and in severely advanced cases, patients often become bedridden due to difficulty walking or falling.

PDはその大部分が家族歴のない孤発性発症であるが、5〜10%には明らかな家族歴を有する遺伝性PDが存在する。これまで遺伝性PDの原因遺伝子産物の機能解析により黒質ドパミン神経細胞死におけるミトコンドリア障害、酸化ストレス、ユビキチン・プロテアーゼ系の障害、オートファジー・リソソーム系の障害など様々な病態の関与が示された(特許文献1)。   Most of the PDs are sporadic onsets with no family history, although 5-10% have hereditary PD with a clear family history. Until now, functional analyzes of the causative gene product of hereditary PD have shown the involvement of various pathological conditions such as mitochondrial disorder, oxidative stress, ubiquitin / protease system disorder, and autophagy / lysosomal system disorder in nigral dopamine neuronal cell death. (Patent Document 1).

Annu Rev Pathol 2011.6;193-222.Annu Rev Pathol 2011.6; 193-222. J Biol Chem 2010.285;20423-20427J Biol Chem 2010.285; 20423-20427 J Biol Chem 2003.24; 25009-25013J Biol Chem 2003.24; 25009-25013

本発明の課題は、遺伝性PDの新たな原因遺伝子の提供及び新たなモデル動物の提供にある。   An object of the present invention is to provide a new causative gene of hereditary PD and a new model animal.

そこで本発明者は、リソソーム機能に着目し、リソソーム機能に関与するプロサポシン(PSAP)遺伝子に注目し、PD患者のPSAP遺伝子を検討してきたところ、常染色体優性遺伝性PD患者にPSAP遺伝子変異が存在すること、さらに当該PSAP遺伝子変異を有するPD患者の臨床症状が孤発性PDの臨床症状に酷似していることも見出した。さらに、マウスにPSAP遺伝子変異を導入したところ、PD患者と同様の運動障害とドパミン神経脱落を生じることを見出した。   Therefore, the present inventor has focused on the lysosomal function, focused on the prosaposin (PSAP) gene involved in the lysosomal function, and examined the PSAP gene of PD patients. As a result, the PSAP gene mutation is present in autosomal dominant PD patients. It was also found that the clinical symptoms of PD patients having the PSAP gene mutation are very similar to those of sporadic PD. Furthermore, it was found that when the PSAP gene mutation was introduced into mice, the same motor disorders and dopaminergic nerve loss as those in PD patients were caused.

すなわち、本発明は、次の〔1〕〜〔8〕を提供するものである。   That is, the present invention provides the following [1] to [8].

〔1〕パーキンソン病の遺伝子検査方法であって、被験者由来の試料におけるプロサポシン遺伝子変異を検出する方法。
〔2〕プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である〔1〕記載の検出方法。
〔3〕プロサポシン遺伝子変異検出試薬を含有するパーキンソン病診断薬。
〔4〕プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である〔3〕記載の診断薬。
〔5〕プロサポシン遺伝子変異を有するパーキンソン病モデル非ヒト動物。
〔6〕プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である〔5〕記載のモデル非ヒト動物。
〔7〕プロサポシン遺伝子変異を有するパーキンソン病モデル非ヒト動物を用いるパーキンソン病予防治療薬のスクリーニング方法。
〔8〕プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である〔7〕記載のスクリーニング方法。
[1] A genetic test method for Parkinson's disease, which comprises detecting a prosaposin gene mutation in a sample derived from a subject.
[2] The detection method according to [1], wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain.
[3] A diagnostic agent for Parkinson's disease containing a prosaposin gene mutation detection reagent.
[4] The diagnostic agent according to [3], wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain.
[5] A Parkinson's disease model non-human animal having a prosaposin gene mutation.
[6] The model non-human animal according to [5], wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain.
[7] A method for screening a preventive / therapeutic drug for Parkinson's disease using a non-human animal model of Parkinson's disease having a prosaposin gene mutation.
[8] The screening method according to [7], wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain.

本発明に従い、被験者のプロサポシン遺伝子変異を検出すればプロサポシン遺伝子変異陽性PDと診断できる。また、本発明のモデル動物を用いれば、新たなPD予防治療薬の探索に用いることができる。   According to the present invention, a prosaposin gene mutation-positive PD can be diagnosed by detecting a prosaposin gene mutation in a subject. Further, by using the model animal of the present invention, it can be used for searching for a new drug for preventing or treating PD.

3家系の常染色体優性遺伝性PD病におけるプロサポシン遺伝子変異を示す。3家系のプロサポシン遺伝子変異はいずれもサポシンD領域をコードする部位のヘテロ接合体変異である。II−2の配列を配列番号1に、II−1の配列を配列番号2に、II−3の配列を配列番号3に示した。3 shows prosaposin gene mutations in autosomal dominant PD disease in 3 families. All three gene mutations in the prosaposin gene are heterozygous mutations in the site encoding the saposin D region. The sequence of II-2 is shown in SEQ ID NO: 1, the sequence of II-1 is shown in SEQ ID NO: 2, and the sequence of II-3 is shown in SEQ ID NO: 3. プロサポシン遺伝子変異を持つPD病患者の皮膚線維芽細胞の電子顕微鏡像を示す。弱拡大像(上、スケールバーは5.0μm)と強拡大(下、スケールバーは1.0μm)を示す。Nは核を示す。リソソーム様構造物は二重膜小胞を含有する。The electron microscopic image of the skin fibroblast of a PD disease patient who has a prosaposin gene mutation is shown. Weakly magnified image (upper scale bar 5.0 μm) and strong magnification (lower scale bar 1.0 μm) are shown. N indicates a nucleus. Lysosomal-like structures contain bilayer vesicles. iPS細胞由来中脳ドパミン神経細胞のautophagic flux assay結果を示す。The autophagic flux assay result of iPS cell-derived midbrain dopamine neurons is shown. PSAP−PDではiPS細胞由来中脳ドパミン神経細胞のTriton X−100不溶性画分のα−シヌクレインが増加することを示す。It is shown that PSAP-PD increases α-synuclein in the Triton X-100 insoluble fraction of midbrain dopamine neurons derived from iPS cells. サポシンDドメインの遺伝子変異(C509S)導入マウスは加齢に伴う運動障害を呈することを示す。It is shown that mice introduced with a gene mutation (C509S) in the saposin D domain exhibit movement disorders associated with aging. サポシンDドメインの遺伝子変異(C509S)導入マウスにおける黒質チロシンヒドロキシラーゼ陽性神経細胞の脱落を示す。Fig. 7 shows the loss of substantia nigra tyrosine hydroxylase-positive neurons in mice introduced with a gene mutation for the saposin D domain (C509S).

本発明におけるプロサポシン遺伝子変異陽性PDの診断においては、被験者由来の試料におけるプロサポシン遺伝子変異を検出する。   In the diagnosis of prosaposin gene mutation-positive PD in the present invention, prosaposin gene mutation in a sample derived from a subject is detected.

近年、PD病態解明においてリソソーム機能異常の関与が多く報告されている。特に、リソソーム機能異常を来たす疾患群であるリソソーム病の関与が特に注目されている。一部のリソソーム病では細胞内スフィンゴ脂質の代謝に関与する酵素の欠損によりその基質となるスフィンゴ脂質が蓄積するスフィンゴリピドーシスを発症し、重度の中枢神経系障害を伴うことが知られている(非特許文献2)。PDにおけるリソソーム病の病態の重要性は、リソソーム病の一型である神経セロイドリポフスチン症の原因遺伝子であるATP13A2遺伝子が遺伝性PDの原因遺伝子でもあることや、リソソーム病で最も発症頻度の高いゴーシェ病の原因遺伝子であるGBA遺伝子変異がPD発症の最大の遺伝的リスクであることからも示唆される。さらに、リソソームではPD患者の脳病理に特徴的にみられるレビー小体という封入体の主要構成蛋白であるα−シヌクレインの分解が行われる(非特許文献3)。
プロサポシン(PSAP)遺伝子は極めて稀ではあるが、その病的変異はリソソーム病を起こし得る遺伝子である。しかしながら、PD患者において、PSAP遺伝子変異が生じているか否かは全く不明であった。本発明者の検討により、初めて3家系の常染色体優性遺伝性PD患者にPSAP遺伝子変異が生じていることが見出された(図1)。
PSAP遺伝子変異は、全てサポシンDドメインをコードする領域に認められたことから、サポシンDドメインをコードする領域の変異が遺伝性PD診断のために、特に有用である。
In recent years, the involvement of lysosomal dysfunction in the elucidation of PD pathology has been reported many times. In particular, the involvement of lysosomal disease, which is a group of diseases that cause lysosomal dysfunction, has attracted particular attention. In some lysosomal diseases, it is known that deficiency of enzymes involved in intracellular sphingolipid metabolism causes sphingolipidosis in which sphingolipid, which is a substrate thereof, accumulates, and is accompanied by severe central nervous system disorder (non- Patent Document 2). The importance of the pathophysiology of lysosomal disease in PD is that the ATP13A2 gene, which is the causative gene of neuronal ceroid lipofuscinosis, which is a type of lysosomal disease, is also the causative gene of hereditary PD, and the most frequent occurrence of lysosomal disease. It is also suggested that the GBA gene mutation, which is the causative gene of Gaucher disease, is the greatest genetic risk of PD. Furthermore, in lysosomes, α-synuclein, which is a major constituent protein of Lewy bodies, which is characteristic of brain pathology of PD patients, is decomposed (Non-patent Document 3).
Although the prosaposin (PSAP) gene is extremely rare, its pathological mutation is a gene capable of causing lysosomal disease. However, it was completely unknown whether or not the PSAP gene mutation occurred in PD patients. As a result of the study by the present inventor, it was found for the first time that a PSAP gene mutation occurred in an autosomal dominant PD patient of three kindreds (FIG. 1).
Since all PSAP gene mutations were found in the saposin D domain-encoding region, mutations in the saposin D domain-encoding region are particularly useful for the diagnosis of hereditary PD.

さらに、サポシンDドメインの変異としては、サポシンDドメインの3対のジスルフィド結合を構成する6つのシステイン残基のうち少なくとも1つを置換する変異や、6つのシステイン残基をコードする領域の近傍の変異が好ましい。ここで、6つのシステイン残基は、ヒトの場合はC409、C412、C440、C451、C476、C482であり、マウスの場合はC442、C445、C473、C484、C509、C515である。このうち、C409、C412、C440及びC482から選ばれるシステイン残基が、他のアミノ酸残基に置換されている変異が好ましい。   Furthermore, as a mutation in the saposin D domain, a mutation that replaces at least one of the six cysteine residues constituting the three pairs of disulfide bonds in the saposin D domain, or a mutation in the vicinity of the region encoding the six cysteine residues Mutations are preferred. Here, the six cysteine residues are C409, C412, C440, C451, C476, C482 in the case of human and C442, C445, C473, C484, C509, C515 in the case of mouse. Among these, a mutation in which a cysteine residue selected from C409, C412, C440 and C482 is replaced with another amino acid residue is preferable.

被験者としては、PD患者で遺伝子検査を希望するヒトが挙げられる。特に常染色体優性遺伝性のPD家族歴がある場合に被検者として適しているが、孤発例・常染色体劣性遺伝性のPD例においても施行は可能である。また、検査に用いる試料としては、遺伝子を含むヒト由来の試料であればよく、例えば血液、尿、汗、だ液、組織の一部等が挙げられる。   Subjects include humans with PD who wish to undergo genetic testing. It is particularly suitable as a subject if there is an autosomal dominant PD family history, but it can also be performed in sporadic cases or autosomal recessive PD cases. The sample used for the test may be a human-derived sample containing a gene, and examples thereof include blood, urine, sweat, saliva, and a part of tissue.

PSAP遺伝子変異の検出手段としては、従来公知の手段、例えば、DNAシークエンス、DNAチップ、DNAマイクロアレイ、RFLP、PCR−SSOP−Luminex法を用いることができる。従って、本発明のPSAP遺伝子変異の検出試薬としては、これらの検出手段に用いる試薬が挙げられる。   As a means for detecting the PSAP gene mutation, conventionally known means, for example, DNA sequence, DNA chip, DNA microarray, RFLP, PCR-SSOP-Luminex method can be used. Therefore, examples of the reagent for detecting a PSAP gene mutation of the present invention include reagents used for these detection means.

被験者由来の試料にPSAP遺伝子変異が検出されると、その被験者はPSAP遺伝子変異陽性PDと診断できる。本発明者の検討によれば、PSAP遺伝子変異陽性PD患者の臨床症状は孤発性PDの臨床的特徴に酷似するので、PSAP遺伝子変異は遺伝性PDの原因遺伝子としてだけでなく、孤発性PDの病態メカニズムの形成にも深く関与すると考えられる。   When a PSAP gene mutation is detected in a sample derived from the subject, the subject can be diagnosed as PSAP gene mutation positive PD. According to the study by the present inventor, since the clinical symptoms of PSAP gene mutation positive PD patients closely resemble the clinical characteristics of sporadic PD, the PSAP gene mutation is not only a causative gene of hereditary PD but also sporadic It is considered to be deeply involved in the formation of the pathological mechanism of PD.

また、後記実施例に示すように、PSAP変異を有するPD(PSAP−PD)由来皮膚線維芽細胞について電子顕微鏡による形態学的解析を行ったところリソソーム様構造物の異常な蓄積をみとめた(図2)。この構造物は二重膜小胞を含んでいることからオートリソソームであると考えられた。そして、その蓄積はリソソーム機能障害を示唆する所見として矛盾のないものであり、サポシンDドメイン変異によりリソソーム機能障害が引き起こされることが示された。また、PSAP−PD中脳ドパミン神経細胞におけるリソソーム機能異常を証明するためにリソソーム阻害薬であるE64dとペプスタチンAを用いたautophagy flux assayを行った。その結果、図3に示すように、PSAP−PD由来の中脳ドパミン神経細胞はautophagy fluxの低下をみとめておりリソソーム機能障害が示された。また、PSAP−PD由来ドパミン細胞におけるα−シヌクレインを評価したところ、Triton X−100不溶性α−シヌクレインが増加しており、凝集傾向のあるα−シヌクレインが蓄積することを示唆する。   Further, as shown in Examples below, morphological analysis by electron microscopy of PD (PSAP-PD) -derived skin fibroblasts having a PSAP mutation revealed abnormal accumulation of lysosomal structures (Fig. 2). This structure was considered to be an autolysosome because it contained bilayer vesicles. The accumulation was consistent with the findings suggesting lysosomal dysfunction, and it was shown that the saposin D domain mutation causes lysosomal dysfunction. Moreover, in order to prove the lysosomal dysfunction in PSAP-PD midbrain dopamine neurons, autophagy flux assay was performed using lysosomal inhibitor E64d and pepstatin A. As a result, as shown in FIG. 3, PSAP-PD-derived midbrain dopamine neurons showed a decrease in autophagy flux, indicating lysosomal dysfunction. Further, when α-synuclein in PSAP-PD-derived dopamine cells was evaluated, Triton X-100 insoluble α-synuclein was increased, suggesting that α-synuclein, which tends to aggregate, accumulates.

本発明は、またPSAP遺伝子変異を有するPDモデル非ヒト動物及びこのモデル非ヒト動物を用いるPD予防治療薬のスクリーニング法を提供する。   The present invention also provides a PD model non-human animal having a PSAP gene mutation and a method for screening a PD preventive / therapeutic agent using this model non-human animal.

PSAP遺伝子変異としては、前記のサポシンDドメインをコードする領域の変異が好ましく、特にサポシンD分子の中で3対のジスルフィド結合を形成する6つのシステイン残基のうち少なくとも1つのアミノ酸が置換される変異、もしくは6つのシステイン残基をコードする領域の近傍の変異が好ましい。ここで、6つのシステイン残基は、ヒトの場合はC409、C412、C440、C451、C476、C482であり、マウスの場合はC442、C445、C473、C484、C509、C515である。このうち、C442、C445、C473、C484及びC515から選ばれるシステイン残基が、他のアミノ酸残基に置換されている変異が好ましい。   The PSAP gene mutation is preferably a mutation in the region encoding the saposin D domain, and in particular, at least one amino acid of 6 cysteine residues forming 3 pairs of disulfide bonds in the saposin D molecule is substituted. Mutations or mutations near the region encoding the six cysteine residues are preferred. Here, the six cysteine residues are C409, C412, C440, C451, C476, C482 in the case of human and C442, C445, C473, C484, C509, C515 in the case of mouse. Among these, mutations in which the cysteine residue selected from C442, C445, C473, C484 and C515 is replaced with another amino acid residue are preferred.

非ヒト動物としては、非ヒト哺乳動物が好ましい。非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが挙げられるが、病態動物モデル系の作製の面から、個体発生及び生物サイクルが比較的短く、また、繁殖が容易な齧歯動物、とりわけマウス又はラットが好ましい。   The non-human animal is preferably a non-human mammal. Non-human mammals include, for example, cows, pigs, sheep, goats, rabbits, dogs, cats, guinea pigs, hamsters, mice, rats, etc. Rodents with relatively short cycles and easy breeding, especially mice or rats, are preferred.

非ヒト動物にPSAP遺伝子変異を導入するには、通常染色体上の遺伝子を改変するのに用いられている方法を適用することができる。好ましくは、相同組換え領域とCre−loxPシステム領域とを有するターゲティングベクターが用いられる。以下、マウスの場合について説明する。
まず、マウスPSAP遺伝子変異を生じさせるための相同組換え領域を作製する。相同組換え領域は、データベース等より得た塩基配列情報をもとに、変異させるPSAP遺伝子の領域を決定する。特にサポシンD分子の中で3対のジスルフィド結合を形成する6つのシステイン残基のうち少なくとも1つのアミノ酸が置換される変異、もしくは6つのシステイン残基をコードする領域の近傍の変異が好ましい。この遺伝子変異(C509S)はサポシンD分子内に3対あるジスルフィド結合の1対を破壊することが予想される。サポシンDドメインの遺伝子変異による疾患は非常に稀であるが、ヒトでサポシンBやサポシンC内の1対のジスルフィド結合を破壊する変異でサポシンBおよびCの欠損が引き起こされる変異が知られている。4つのサポシン分子はそれぞれが相同性の非常に高い分子であることからサポシンD内のジスルフィド結合を破壊する変異もまた病的意義を持つ可能性が高いと予想される。また、家族性PDに見出した変異もサポシンD内の3対のジスルフィド結合に形成するシステイン残基をコードする箇所の変異が含まれている。
In order to introduce a PSAP gene mutation into a non-human animal, a method usually used for modifying a gene on a chromosome can be applied. Preferably, a targeting vector having a homologous recombination region and a Cre-loxP system region is used. The case of a mouse will be described below.
First, a homologous recombination region for producing a mouse PSAP gene mutation is prepared. The homologous recombination region determines the region of the PSAP gene to be mutated based on the nucleotide sequence information obtained from a database or the like. Particularly preferred is a mutation in which at least one amino acid of 6 cysteine residues forming 3 pairs of disulfide bonds in the saposin D molecule is substituted, or a mutation near the region encoding 6 cysteine residues. This genetic mutation (C509S) is expected to disrupt one pair of three disulfide bonds within the saposin D molecule. Diseases due to gene mutations in the saposin D domain are extremely rare, but mutations that destroy a pair of disulfide bonds in saposin B and saposin C cause human deficiencies in saposin B and C are known. . Since each of the four saposin molecules is a molecule with extremely high homology, it is expected that the mutation that disrupts the disulfide bond in saposin D is also likely to have a pathological significance. In addition, the mutation found in familial PD also includes a mutation at a site encoding a cysteine residue formed in three pairs of disulfide bonds in saposin D.

また、ターゲティングベクターには、ベクターが取り込まれた細胞や目的とする相同組換えの起こっている可能性の高い細胞を選択するためのマーカー遺伝子を含むCre−loxPシステムを用いる。2つのloxP間に挿入されるマーカー遺伝子としては、例えばネオマイシン耐性遺伝子(neo)、ハイグロマイシン耐性遺伝子(hyg)、ヘルペスウイルスチミジンキナーゼ遺伝子(HSV−tk)、ジフテリアトキシンAフラグメント遺伝子(DT−A)、チミジンキナーゼ遺伝子(tk)等の薬剤選択に通常用いられる遺伝子が用いられる。例えば、ネオマイシン耐性遺伝子は、ネオマイシン類似体であるG418を用いることにより相同組換えが生じた細胞の選抜を可能にするポジティブ選択用マーカー遺伝子である。また、目的細胞を選抜するためのネガティブ選択に用いるマーカー遺伝子、例えばチミジンキナーゼ遺伝子(選択剤としてガンシクロビル等を用い、それに対する感受性により非相同組換え体を選抜除去する)、ジフテリアトキシンAフラグメント遺伝子(DT−Aにより発現されたジフテリア毒素により、非相同組換え体を選抜除去する)等をポジティブ選択用マーカー遺伝子と共に用いることもできる。ターゲティングベクターにおいて、ポジティブ選択用マーカー遺伝子は、上流と下流の相同領域に挟まれた領域に位置するのが好ましく、リコンビナーゼ存在下でマーカー遺伝子が切り出されることからリコンビナーゼ標的配列に挟まれた領域に位置するのがさらに好ましい。ネガティブ選択用マーカー遺伝子は、上流又は下流の相同領域の外側の領域に位置するのが好ましい。   Further, as the targeting vector, the Cre-loxP system containing a marker gene for selecting cells into which the vector has been incorporated or cells in which the desired homologous recombination is likely to occur is used. Examples of the marker gene inserted between the two loxPs include neomycin resistance gene (neo), hygromycin resistance gene (hyg), herpesvirus thymidine kinase gene (HSV-tk), diphtheria toxin A fragment gene (DT-A). , A thymidine kinase gene (tk) and the like which are usually used for drug selection are used. For example, the neomycin resistance gene is a marker gene for positive selection that enables selection of cells in which homologous recombination has occurred by using the neomycin analog G418. In addition, a marker gene used for negative selection for selecting a target cell, for example, a thymidine kinase gene (using ganciclovir as a selection agent and selectively removing non-homologous recombinants depending on its sensitivity), diphtheria toxin A fragment gene ( (A non-homologous recombinant is selectively removed by the diphtheria toxin expressed by DT-A) and the like can also be used together with a marker gene for positive selection. In the targeting vector, the marker gene for positive selection is preferably located in a region flanked by upstream and downstream homologous regions, and is located in a region flanked by recombinase target sequences since the marker gene is excised in the presence of recombinase. More preferably. The marker gene for negative selection is preferably located in a region outside the homologous region upstream or downstream.

斯かるターゲティングベクターの調製は、通常のDNA組換え技術により行うことができ、例えば、常法に従ってクローニングしたPSAP変異遺伝子やBACクローンを利用して、これを適当な制限酵素で切断して得られる断片、又はPCR法などにより増幅して調製したDNA断片等を、合成されたリンカーDNAやレポーター遺伝子、薬剤耐性マーカー遺伝子を含む断片等と、前記のような設計に従って適当な順序で結合させればよい。   Such a targeting vector can be prepared by an ordinary DNA recombination technique. For example, it can be obtained by using a PSAP mutant gene or BAC clone cloned according to a conventional method and cleaving it with an appropriate restriction enzyme. If a fragment or a DNA fragment or the like prepared by amplification by the PCR method or the like is combined with the synthesized linker DNA, a reporter gene, a fragment containing a drug resistance marker gene or the like in an appropriate order according to the above design Good.

次に、調製した相同組換え用ターゲティングベクターを、通常キメラ動物の作出に用いられる適当な細胞に導入する。ここで用いる細胞は、例えば卵細胞や胚性幹細胞(ES細胞)が挙げられるが、生体のあらゆる種類の細胞に分化することができる多分化能を有している点でES細胞が好ましい。   Next, the prepared targeting vector for homologous recombination is introduced into an appropriate cell which is usually used for producing a chimeric animal. The cells used here include, for example, egg cells and embryonic stem cells (ES cells), and ES cells are preferable because they have pluripotency capable of differentiating into all kinds of cells in the living body.

ES細胞は、胚盤胞の内部細胞塊(ICM)から樹立され、未分化状態を保ったまま増殖・培養可能な細胞株であり、ES細胞を用いる遺伝子導入の方法は、マウスについては確立されている(Mansour,S.L. et al.,Nature 336:348(1988))。ES細胞としては、既に樹立された細胞株を用いてもよく、例えばマウスの場合、TT2、C57BL/6等のマウス系統由来のES細胞が挙げられる。あるいは、新たに樹立したものを用いてもよい。ES細胞は、常法に従って継代培養すればよい。   ES cells are cell lines that are established from the inner cell mass (ICM) of blastocysts and that can be proliferated and cultured while maintaining an undifferentiated state. A gene transfer method using ES cells has been established for mice. (Mansour, SL et al., Nature 336: 348 (1988)). As the ES cells, already established cell lines may be used. For example, in the case of mice, ES cells derived from mouse strains such as TT2 and C57BL / 6 can be mentioned. Alternatively, a newly established one may be used. ES cells may be subcultured according to a conventional method.

ターゲティングベクターの細胞への導入は、通常の方法、例えば、エレクトロポレーション法、マイクロインジェクション法、リン酸カルシウム法、リポフェクション法、DEAE−デキストラン法等によって行うことができる。このうち、簡便で多数の細胞を処理できることから、エレクトロポレーション法が好適に用いられる。エレクトロポレーション法による遺伝子導入の条件は、通常の動物細胞への遺伝子導入の条件を用いればよい。   The targeting vector can be introduced into cells by a conventional method, for example, an electroporation method, a microinjection method, a calcium phosphate method, a lipofection method, a DEAE-dextran method, or the like. Of these, the electroporation method is preferably used because it is simple and can treat a large number of cells. The conditions for gene transfer by the electroporation method may be those for normal gene transfer into animal cells.

ターゲティングベクターを導入したES細胞は、常法に従い、フィーダー細胞上で培養することで、単一細胞由来のコロニーを得ることができる。このとき、相同組換えが生じたES細胞では、ベクター中のPSAP遺伝子変異とともにマーカー遺伝子も染色体に組み込まれているため、マーカー遺伝子の発現に基づいて、例えば適当な期間薬剤存在下で培養することにより、目的のES細胞を選択することができる。また、当該コロニーから抽出したゲノムDNAを用いて、PCR法又はサザンハイブリダイゼーション法等により、相同組換えが生じたES細胞を選択することもできる。PCR法の場合は、例えば、相同領域の外側に設計したプライマーと、マーカー遺伝子内に設計したプライマーを用い、ゲノムDNAを鋳型としてPCRを行い、所望の長さのバンドが得られるかどうかで判断することができる。サザンハイブリダイゼーション法の場合は、例えば、相同組換えによる切断パターンの変化を観察しやすい制限酵素でゲノムDNAを消化したDNA断片と、相同領域の外側に設計したプローブ及びマーカー遺伝子に設計したプローブを用いてサザンハイブリダイゼーションを行い、目的の位置にバンドが得られるかどうかで判断することができる。   ES cells into which the targeting vector has been introduced can be cultured on feeder cells according to a conventional method to obtain single cell-derived colonies. At this time, in the ES cell in which homologous recombination has occurred, the marker gene is also integrated into the chromosome together with the PSAP gene mutation in the vector. Thus, the target ES cell can be selected. In addition, ES cells in which homologous recombination has occurred can also be selected by the PCR method, the Southern hybridization method or the like using the genomic DNA extracted from the colony. In the case of the PCR method, for example, a primer designed outside the homologous region and a primer designed in the marker gene are used to perform PCR using genomic DNA as a template to determine whether a band of a desired length can be obtained. can do. In the case of the Southern hybridization method, for example, a DNA fragment obtained by digesting genomic DNA with a restriction enzyme that facilitates observation of changes in the cleavage pattern due to homologous recombination, a probe designed outside the homologous region and a probe designed for a marker gene are used. Southern hybridization can be carried out using this to determine whether a band can be obtained at the desired position.

次に、相同組換えを生じたES細胞を用いて、インジェクション法又はアグリゲーション法等の通常のキメラ動物の作出に用いられる方法に従い、キメラ動物を作製する。具体的には、相同組換えを生じたES細胞を胚形成の初期の適当な時期、例えば8細胞期の胚又は胚盤胞に注入し、得られた胚を偽妊娠状態の雌の仮親の子宮内に移植することにより、正常なPSAP遺伝子座をもつ細胞とES細胞由来のPSAP遺伝子座変異をもつ細胞とから構成されるキメラ動物が得られる。宿主胚をどのような系統の動物から得るのかの選択は、常法に従い毛色等の表現型によりES細胞由来の細胞と宿主胚由来の細胞とを区別することができるように行えばよい。   Next, chimeric animals are produced using the ES cells that have undergone homologous recombination, according to the methods generally used for producing chimeric animals, such as the injection method and the aggregation method. Specifically, the ES cells that have undergone homologous recombination are injected into an embryo or blastocyst at an appropriate time in the early stage of embryogenesis, for example, at the 8-cell stage, and the obtained embryo is transferred to a pseudo-pregnant female foster mother. By transplanting into the uterus, a chimeric animal composed of cells having a normal PSAP locus and cells having an ES cell-derived PSAP locus mutation can be obtained. Selection of an animal of which strain to obtain the host embryo may be performed according to a conventional method so that the ES cell-derived cells and the host embryo-derived cells can be distinguished by a phenotype such as coat color.

キメラ動物の生殖細胞の一部がES細胞由来のPSAP遺伝子座変異をもつ場合には、キメラ個体を正常個体と交配することにより得られた個体群より、全ての組織がES細胞由来のPSAP遺伝子座変異をもつ細胞で構成された個体(PSAP F/+)を毛色等の判別法により選別することができる。
例えば、J1株のマウスES細胞とC57BL/6J系の宿主胚を用いて得られたキメラマウスをC57BL/6J系と交配する場合は、娩出される産仔は、キメラマウスの生殖細胞が相同組換えES細胞に由来していれば該ES細胞が由来するマウスと同じ野生色(アグーチ)を呈し、宿主胚に由来していれば該宿主胚が由来するマウスと同じ黒色を呈する。
When a part of the germ cells of the chimeric animal has a PSAP gene locus mutation derived from the ES cell, all tissues derived from the population obtained by mating the chimeric individual with a normal individual have the PSAP gene derived from the ES cell. Individuals (PSAP F / +) composed of cells having a locus mutation can be selected by a discrimination method such as hair color.
For example, when a chimeric mouse obtained by using a mouse ES cell of the J1 strain and a host embryo of the C57BL / 6J strain is crossed with the C57BL / 6J strain, the delivered offspring are homologous to the germ cell of the chimeric mouse. If it is derived from a modified ES cell, it exhibits the same wild color (agouti) as the mouse from which the ES cell is derived, and if it is derived from the host embryo, it exhibits the same black color as the mouse from which the host embryo is derived.

かくして得られた個体は、相同組換えES細胞由来PSAP遺伝子座変異を一方の相同染色体に有するヘテロ接合型である(PSAP F/+)。このF1ヘテロ接合型の個体同士を交配すれば、F2ヘテロ接合型及びF2ホモ接合型(PSAP F/F)の個体を得ることができる。PSAP遺伝子変異の機能を組織特異的に欠損させるには、ホモ接合型を用いることが好ましい。   The thus obtained individual is a heterozygous type having a homologous recombinant ES cell-derived PSAP locus mutation on one homologous chromosome (PSAP F / +). By mating these F1 heterozygous individuals, F2 heterozygous and F2 homozygous (PSAP F / F) individuals can be obtained. To make the function of the PSAP gene mutation defective in a tissue-specific manner, it is preferable to use a homozygous type.

PSAP F/Fマウスは上述の方法等により作製できるが、既存のPSAP F/Fマウスを用いてもよく、例えば、Matsuda et al.,Human Molecular Genetics 2004;13(21):2709−2723に記載のマウスが挙げられる。   The PSAP F / F mouse can be produced by the above-mentioned method or the like, but an existing PSAP F / F mouse may be used, for example, as described in Matsusuda et al. , Human Molecular Genetics 2004; 13 (21): 2709-2723.

本発明者が、このPSAP遺伝子変異を有するマウスを高齢まで飼育したところ、加齢により、PD患者と同様の運動障害及びドパミン神経脱落を生じることが判明した。従って、PSAP遺伝子変異を有する非ヒト動物は、パーキンソン病モデル非ヒト動物として有用である。ここで、運動障害は、ロータロッド法による運動機能低下により確認できる。また、ドパミン細胞の脱落は、抗チロシンキナーゼ(TH)抗体による染色で測定できる。   When the present inventor reared mice having this PSAP gene mutation to an old age, it was found that aging causes the same movement disorder and dopaminergic nerve loss as PD patients. Therefore, a non-human animal having a PSAP gene mutation is useful as a Parkinson's disease model non-human animal. Here, the movement disorder can be confirmed by the deterioration of the movement function by the rotarod method. The loss of dopamine cells can be measured by staining with an anti-tyrosine kinase (TH) antibody.

PSAP遺伝子変異を有するパーキンソン病モデル非ヒト動物を用いれば、パーキンソン病予防治療薬のスクリーニングに応用することができる。例えば、このPSAP遺伝子変異を有するモデル非ヒト動物に、被検薬物を投与してその経過を観察すれば、その被検薬物がパーキンソン病の予防治療薬として有用であるか否かが容易に判定できる。   If a non-human animal model of Parkinson's disease having a PSAP gene mutation is used, it can be applied to screening for a preventive / therapeutic drug for Parkinson's disease. For example, by administering a test drug to a model non-human animal having this PSAP gene mutation and observing the progress thereof, it can be easily determined whether or not the test drug is useful as a prophylactic / therapeutic drug for Parkinson's disease. it can.

次に実施例を挙げて本発明を更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

実施例1
3家系の常染色体優性遺伝性PD患者の遺伝子解析を行った結果、PSAP遺伝子の病的変異があることを見出した(図1)。3家系にみられたPSAP遺伝子変異は全てサポシンDドメインをコードする領域にみとめられた。PSAP遺伝子変異を持つPD患者の臨床症状が孤発性PDの臨床的特徴に酷似している点は、PSAP遺伝子変異が孤発性PD発症の病態メカニズムにも関与する可能性を示唆するものと考えられた。PSAPはリソソーム機能に関与する蛋白であり、PSAP遺伝子変異を持つパーキンソン病患者(PSAP−PD)におけるリソソーム機能障害に着目した。まず、PSAP−PD由来皮膚線維芽細胞について電子顕微鏡による形態学的解析を行ったところリソソーム様構造物の異常な蓄積をみとめた(図2)。この構造物は二重膜小胞を含んでいることからオートリソソームであると考えられた。そして、その蓄積はリソソーム機能障害を示唆する所見として矛盾のないものであり、サポシンDドメイン変異によりリソソーム機能障害が引き起こされることが示された。
Example 1
As a result of gene analysis of autosomal dominant PD patients of 3 families, it was found that there was a pathological mutation in the PSAP gene (Fig. 1). All PSAP gene mutations found in the three families were found in the region encoding the saposin D domain. The fact that the clinical features of PD patients with PSAP mutation closely resemble the clinical features of sporadic PD suggests that PSAP mutation may be involved in the pathological mechanism of sporadic PD development. it was thought. PSAP is a protein involved in lysosomal function, and attention was paid to lysosomal dysfunction in Parkinson's disease patients (PSAP-PD) having a PSAP gene mutation. First, morphological analysis of PSAP-PD-derived skin fibroblasts by electron microscopy revealed abnormal accumulation of lysosome-like structures (Fig. 2). This structure was considered to be an autolysosome because it contained bilayer vesicles. The accumulation was consistent with the findings suggesting lysosomal dysfunction, and it was shown that the saposin D domain mutation causes lysosomal dysfunction.

実施例2
人工多能性幹細胞(induced pluripotent stem cell; iPSC)から分化させたドパミン神経細胞の解析を行った。具体的には、採血で得られた単球に山中因子(Klf4、Oct3/4、Sox2、c−Myc)を発現したセンダイウイルスベクターを用いてiPSCを樹立した。中脳ドパミン神経細胞への分化はProc Natl Acad Sci USA 2018;115:E5815−5823に従い行った。PSAP−PD中脳ドパミン神経細胞におけるリソソーム機能異常を証明するためにリソソーム阻害薬であるE64dとペプスタチンAを用いたautophagy flux assayを行った。具体的には、健常対照およびPSAP−PD由来の中脳ドパミン神経細胞の培地に上記2剤を添加した。薬剤処理24時間後に細胞をRIPAバッファーで回収しその細胞溶解液についてウェスタンブロット法を用いてオートファゴソームマーカーであるLC3の蛋白量を評価した。
すなわち、iPS細胞由来中脳ドパミン神経細胞の培地にリソソーム阻害薬であるE64d(15μM)・ペプスタチンA(Pepstatin A 30μM)を添加し24時間後に細胞を回収してオートファゴソームマーカーであるLC3に対する抗体を用いてウェスタンブロット法を行った。薬剤未添加細胞は定常状態の細胞でありPSAP−PD患者由来中脳ドパミン神経細胞ではLC3−II/GAPDH比が上昇している(図3)。薬剤添加後のLC3−II/GAPDHと未添加細胞のLC3−II/GAPDHとの比を計算しautophagic fluxを評価した。蛋白量の評価はImage Jソフトを用いたdensitometryで行った。ローディングコントロールとして抗GAPDH抗体を用いた。統計解析はスチューデントのt検定で行った(n=4、*p<0.05、**p<0.01)。
図3に示すように、PSAP−PD由来の中脳ドパミン神経細胞はautophagy fluxの低下をみとめておりリソソーム機能障害が示された。
Example 2
Analysis of dopamine neurons differentiated from induced pluripotent stem cells (iPSC) was performed. Specifically, iPSCs were established using Sendai virus vectors expressing Yamanaka factor (Klf4, Oct3 / 4, Sox2, c-Myc) in monocytes obtained by blood collection. Differentiation into midbrain dopamine neurons was performed according to Proc Natl Acad Sci USA 2018; 115: E5815-5823. In order to prove the lysosomal dysfunction in PSAP-PD midbrain dopamine neurons, autophagy flux assay using lysosomal inhibitor E64d and pepstatin A was performed. Specifically, the above two agents were added to the medium of healthy control and midbrain dopamine neurons derived from PSAP-PD. Twenty-four hours after the drug treatment, cells were collected with RIPA buffer, and the cell lysate was evaluated for the protein amount of LC3, which is an autophagosome marker, by Western blotting.
That is, the lysosomal inhibitor E64d (15 μM) / pepstatin A (Pepstatin A 30 μM) was added to the medium of iPS cell-derived midbrain dopamine neurons, and cells were collected 24 hours later to give an antibody against LC3, which is an autophagosome marker. Was used for Western blotting. Drug-non-added cells are steady-state cells, and the LC3-II / GAPDH ratio is increased in midbrain dopamine neurons derived from PSAP-PD patients (Fig. 3). The ratio of LC3-II / GAPDH after drug addition and LC3-II / GAPDH of non-added cells was calculated to evaluate the autophagic flux. The amount of protein was evaluated by densitometry using Image J software. An anti-GAPDH antibody was used as a loading control. Statistical analysis was performed by Student's t-test (n = 4, * p <0.05, ** p <0.01).
As shown in FIG. 3, PSAP-PD-derived midbrain dopamine neurons showed a decrease in autophagy flux, indicating lysosomal dysfunction.

さらにTriton X−100(TX)不溶性のα−シヌクレインを評価した。具体的には、健常対照細胞とPSAP−PD由来ドパミン神経細胞を1%TX含有トリス緩衝液に溶解し20分氷上で静置した後に100,000gの超遠心を20分行った。得られた沈殿物はTX不溶性画分(insoluble)、上清はTX可溶性(soluble)画分としてそれぞれについてウェスタンブロット法をもちいてα−シヌクレインの量を評価した。図4のごとくTX insoluble中のα−シヌクレインが増加しており、凝集傾向のあるα−シヌクレインが蓄積することを示唆する所見である。   Furthermore, Triton X-100 (TX) insoluble α-synuclein was evaluated. Specifically, healthy control cells and PSAP-PD-derived dopamine neurons were dissolved in a 1% TX-containing Tris buffer, allowed to stand on ice for 20 minutes, and then ultracentrifuged at 100,000 g for 20 minutes. The resulting precipitate was used as a TX insoluble fraction (insoluble) and the supernatant was used as a TX soluble (soluble) fraction, and the amount of α-synuclein was evaluated using Western blotting. As shown in FIG. 4, α-synuclein in TX insoluble was increased, which is a finding suggesting that α-synuclein having an aggregation tendency is accumulated.

実施例3
PSAP遺伝子のサポシンDドメイン遺伝子変異を導入したマウスについて運動障害の有無と中脳黒質ドパミン神経細胞脱落の有無の評価を試みた。サポシンDドメイン遺伝子変異導入マウスはHuman Molecular Genetics 2004;13(21):2709−2723記載のマウス(C509S)を用いた。
サポシンD変異導入マウスの運動障害および中脳ドパミン神経細胞数の評価は、ヘテロ接合体(PSAPwt/mt)マウス、ホモ接合体(PSAPmt/mt)マウスを用いて野生型(WT)マウスとの比較を行うことで解析した。
まず運動障害についてはロータロッド法により解析した。具体的には0〜70週齢マウスについて自動タイマーと落下センサーを備えた回転式機械による加速回転試験を実施した。PSAPwt/mtマウス、PSAPmt/mtマウスおよびWTをそれぞれ5匹(全てオス)ずつゴムで覆った直径3cmの回転ロッド上に置き回転速度を3rpmから35rpmまで5分かけて加速した。回転の開始からマウスが転倒するまでの時間(秒)が記録された。図5に示すように35週齢からPSAPmt/mtマウスの転倒までの時間が短縮傾向を示し始め、特に70週齢においてはPSAPwt/mtとPSAPmt/mtともにWTに対して有意な時間短縮を認めた(n=5、*p<0.05、**p<0.01、***p<0.001)。
次に中脳黒質ドパミン神経細胞数の評価を行った。図6左図では、PSAPwt/mtマウス、PSAPmt/mtマウスの抗チロシンヒドロキシラーゼ(tyrosine hydroxylase;TH)抗体で染色される細胞数がWTに比べて顕著に減少していることを示している。THはカテコラミン生合成系の第一段階でドパミン生合成の律速酵素でありL−チロシンからL−DOPAを生合成する。L−DOPAはその後脱炭酸反応を経てドパミンに変換される。中脳黒質ドパミン神経細胞では必ずTHがあるため、抗TH抗体で染色される細胞数の低下はドパミン神経細胞の脱落を示すものと考えられる。図6右図のごとく18月齢におけるドパミン神経細胞数の計測を行いPSAPwt/mtマウス、PSAPmt/mtマウスにおける有意なドパミン神経細胞数減少を認めた。
Example 3
An attempt was made to evaluate the presence or absence of dyskinesia and the presence or absence of midbrain substantia nigra dopamine neurons in mice into which the saposin D domain gene mutation of the PSAP gene was introduced. The mouse (C509S) described in Human Molecular Genetics 2004; 13 (21): 2709-2723 was used as the saposin D domain gene mutation-introduced mouse.
The motility disorders of saposin D mutation-introduced mice and the number of midbrain dopamine neurons were evaluated using wild-type (WT) mice using heterozygous (PSAP wt / mt ) mice and homozygous (PSAP mt / mt ) mice. Was analyzed by comparing
First, movement disorders were analyzed by the rotarod method. Specifically, the 0-70 week old mice were subjected to an accelerated rotation test using a rotary machine equipped with an automatic timer and a drop sensor. Five PSAP wt / mt mice, 5 PSAP mt / mt mice and WT were placed on a rubber-covered rotating rod having a diameter of 3 cm (5 males each), and the rotation speed was accelerated from 3 rpm to 35 rpm over 5 minutes. The time (in seconds) from the start of rotation to the mouse falling was recorded. As shown in FIG. 5, the time from the 35th week of age to the fall of the PSAP mt / mt mouse began to show a shortening tendency, and especially at the 70th week of age, both the PSAP wt / mt and the PSAP mt / mt had significant time to WT. Shortening was observed (n = 5, * p <0.05, ** p <0.01, *** p <0.001).
Next, the number of substantia nigra dopamine neurons was evaluated. The left side of FIG. 6 shows that the number of cells stained with anti-tyrosine hydroxylase (TH) antibody in PSAP wt / mt mouse and PSAP mt / mt mouse is significantly reduced as compared with WT. There is. TH is a rate-limiting enzyme for dopamine biosynthesis in the first step of the catecholamine biosynthesis system, and biosynthesizes L-DOPA from L-tyrosine. L-DOPA is then converted to dopamine through a decarboxylation reaction. Since there is always TH in the mesencephalic substantia nigra dopamine neurons, it is considered that the decrease in the number of cells stained with anti-TH antibody indicates the loss of dopamine neurons. As shown in the right figure of FIG. 6, the number of dopamine neurons at 18 months of age was measured, and a significant decrease in the number of dopamine neurons in PSAP wt / mt mice and PSAP mt / mt mice was observed.

Claims (8)

パーキンソン病の遺伝子検査方法であって、被験者由来の試料におけるプロサポシン遺伝子変異を検出する方法。   A genetic test method for Parkinson's disease, which detects a prosaposin gene mutation in a sample derived from a subject. プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である請求項1記載の検出方法。   The detection method according to claim 1, wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain. プロサポシン遺伝子変異検出試薬を含有するパーキンソン病診断薬。   A diagnostic agent for Parkinson's disease containing a prosaposin gene mutation detection reagent. プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である請求項3記載の診断薬。   The diagnostic agent according to claim 3, wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain. プロサポシン遺伝子変異を有するパーキンソン病モデル非ヒト動物。   Parkinson's disease model non-human animal having a prosaposin gene mutation. プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である請求項5記載のモデル非ヒト動物。   The model non-human animal according to claim 5, wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain. プロサポシン遺伝子変異を有するパーキンソン病モデル非ヒト動物を用いるパーキンソン病予防治療薬のスクリーニング方法。   A method for screening a preventive / therapeutic drug for Parkinson's disease using a non-human animal model of Parkinson's disease having a prosaposin gene mutation. プロサポシン遺伝子変異が、サポシンDドメインをコードする領域の変異である請求項7記載のスクリーニング方法。   The screening method according to claim 7, wherein the prosaposin gene mutation is a mutation in the region encoding the saposin D domain.
JP2018200039A 2018-10-24 2018-10-24 Parkinson's disease diagnostic agent and model animal Pending JP2020065482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200039A JP2020065482A (en) 2018-10-24 2018-10-24 Parkinson's disease diagnostic agent and model animal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200039A JP2020065482A (en) 2018-10-24 2018-10-24 Parkinson's disease diagnostic agent and model animal

Publications (1)

Publication Number Publication Date
JP2020065482A true JP2020065482A (en) 2020-04-30

Family

ID=70388472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200039A Pending JP2020065482A (en) 2018-10-24 2018-10-24 Parkinson's disease diagnostic agent and model animal

Country Status (1)

Country Link
JP (1) JP2020065482A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMBO REP, 22017 MAR 24, VOL. 18, NO. 5, PP. 712-725, JPN6022041324, ISSN: 0004886747 *
JUNTENDO MEDICAL JOURNAL, 2016, VOL. 62, NO. 6, PP. 508, JPN6022041322, ISSN: 0005021172 *

Similar Documents

Publication Publication Date Title
Anderson et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice
Pillai-Nair et al. Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior
Tsao et al. Rodent models of TDP-43: recent advances
Cannon et al. Expression of human E46K-mutated α-synuclein in BAC-transgenic rats replicates early-stage Parkinson's disease features and enhances vulnerability to mitochondrial impairment
Crespi Genomic imprinting in the development and evolution of psychotic spectrum conditions
WO2019210764A1 (en) Impulse control disorder biological detection marker and pharmaceutical use of impulsins
JP7442874B2 (en) Use of TPK as a target in Alzheimer&#39;s disease
US5723719A (en) Transgenic mouse as model for diseases involving dopaminergic dysfunction
JP5686335B2 (en) Diagnostic marker and method for amyotrophic lateral sclerosis, model animal that develops amyotrophic lateral sclerosis, and model cell
Sclafani et al. Nestin‐Cre mediated deletion of Pitx2 in the mouse
US5894078A (en) Transgenic mouse expressing C-100 app
US10390521B2 (en) Parkinsons disease model and methods
JP4613824B2 (en) Transgenic non-human mammal
JP2020065482A (en) Parkinson&#39;s disease diagnostic agent and model animal
US7642399B2 (en) Mouse with deficiency of glutamate transporter GLAST function
Seyfried et al. Experimental models of epilepsy
US20080113915A1 (en) SAPAP3 knockout mouse and clinical modeling associated with the SAPAP3 gene
US20030096295A1 (en) Screening methods and therapeutic treatments for pigment dispersion syndrome
JP2022002472A (en) Parkinson&#39;s disease model non-human animal
US20090249501A1 (en) CISD2-Knockout Mice and Uses Thereof
TWI413690B (en) Non-human animal model for frontotemporal lobar degeneration with ubiquitin-positive inclusions (ftld-u)
Chieppa A NOVEL ANIMAL MODEL FOR AMYOTROPHIC LATERAL SCLEROSIS: THE SOD1G93A TRANSGENIC SWINE.
WO2004076661A1 (en) Establishment of disease nerve cells by combining method of highly efficiently inducing nerve differentiation with disease mutation knockin es cells
Anwar Functional characterisation of synuclein-based novel genetic mouse models
Kouser The Role of SHANK3 at the Synapse and Its Implications in Autism-Associated Behaviors and Synaptic Transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328