JP2020063958A - Position estimation device and method - Google Patents

Position estimation device and method Download PDF

Info

Publication number
JP2020063958A
JP2020063958A JP2018195279A JP2018195279A JP2020063958A JP 2020063958 A JP2020063958 A JP 2020063958A JP 2018195279 A JP2018195279 A JP 2018195279A JP 2018195279 A JP2018195279 A JP 2018195279A JP 2020063958 A JP2020063958 A JP 2020063958A
Authority
JP
Japan
Prior art keywords
sound
coordinates
sound source
wave
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195279A
Other languages
Japanese (ja)
Other versions
JP6718098B2 (en
Inventor
圭一 大川
Keiichi Okawa
圭一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acquisition Technology and Logistics Agency ATLA
Original Assignee
Acquisition Technology and Logistics Agency ATLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acquisition Technology and Logistics Agency ATLA filed Critical Acquisition Technology and Logistics Agency ATLA
Priority to JP2018195279A priority Critical patent/JP6718098B2/en
Publication of JP2020063958A publication Critical patent/JP2020063958A/en
Application granted granted Critical
Publication of JP6718098B2 publication Critical patent/JP6718098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To estimate a position of a short-time, unknown sound source in the ocean environment having depth dependency of sound velocity distribution and distance dependency of sea bottom topography.SOLUTION: A position estimation method obtains each sound ray parameter of direct waves, sea surface reflection waves, and sea bottom reflection waves of natural sound rays of pulse waves passing through two points, namely tentative coordinates of a sound source and coordinates of a receiver for receiving pulse waves generated by the sound source, obtains the amount of perturbation of a difference between a propagation time difference actual measurement value between direct waves and sea surface reflection waves and between direct waves and sea bottom reflection waves and a propagation time difference calculation value between direct waves and sea surface reflection waves and between direct waves and sea bottom reflection waves obtained from sound ray parameters of each wave by the perturbation method, and determines estimated coordinates obtained this time as coordinates of the sound source when an error value between estimated coordinates of the sound source estimated from the amount of perturbation and estimated coordinates obtained last time goes below a determination threshold.SELECTED DRAWING: Figure 1

Description

本発明は、海中の音源から発せられる音を受動的に受信して音源の位置を推定する位置推定装置及び方法に関する。   The present invention relates to a position estimation device and method for passively receiving a sound emitted from a sound source in the sea and estimating the position of the sound source.

一般的に、水中では電磁波の減衰が大きいことから水中物体の探知には音波が利用されている。そして、音波による水中物体を探知する方式としては、アクティブ方式とパッシブ方式が知られている。   Generally, sound waves are used to detect an underwater object because electromagnetic waves are greatly attenuated in water. The active method and the passive method are known as methods for detecting an underwater object by sound waves.

アクティブ方式は、反響定位を用い、音源から音を送波して物体から反射するエコー音を検出し、物体までの距離と方位を求めるものであるが、自ら音を出すために自身の存在を暴露してしまうことになる。一方、パッシブ方式は、水中物体の放射音を検出するものであり、自ら音を出さないため、秘密裏に水中物体を探知することができる。   The active method uses echo localization, detects the echo sound reflected from an object by transmitting sound from a sound source, and calculates the distance and direction to the object. You will be exposed. On the other hand, the passive method detects the radiated sound of an underwater object and does not make a sound by itself, so that the underwater object can be secretly detected.

しかしながら、パッシブ方式では、物体の方位を求めるのは容易であるが、物体までの距離を求めるためには目標運動解析やマッチドフィールド処理などによる複雑な計算が必要であった。目標運動解析では連続的な放射音の観測により物体までの距離を推定することができるが、一時的な過渡音では物体までの距離を求めることができない。また、マッチドフィールド処理は海洋環境を事前に把握しておく必要があるが、時間空間的に変化する海洋環境の複雑な特性をデータベース化するのは困難である。   However, in the passive method, it is easy to find the orientation of the object, but complicated calculations such as target motion analysis and matched field processing are required to find the distance to the object. In the target motion analysis, the distance to the object can be estimated by continuous observation of radiated sound, but the distance to the object cannot be obtained by the transient transient sound. In the case of matched field processing, it is necessary to know the marine environment in advance, but it is difficult to create a database of the complicated characteristics of the marine environment that change in space and time.

一時的な過渡音で物体までの距離を求める方法として、音波の伝搬時間差を利用する方法が研究されている。このような方法として、下記特許文献1、2に開示される総当たり法と称される方法がある。   As a method of obtaining the distance to an object by a transient sound, a method of utilizing the propagation time difference of sound waves has been studied. As such a method, there is a method called a brute force method disclosed in Patent Documents 1 and 2 below.

下記特許文献1、2の方法は、音源から直接水中を伝搬して到達する音波(直接波)と境界面で反射して到達する音波(反射波)との伝搬時間差を用いて目標位置を求めており、想定する距離や深度の範囲をデカルト座標や極座標において海洋空間全体を格子化し、格子点上の仮目標からの音波の伝搬時間差を総当たり的に計算して実目標からの音波の伝搬時間差(実測値)との差が最小となる距離や深度を目標位置として推定している。従って、総当たり法は、目標位置の推定範囲(深度及び距離)と計算刻み幅で決まる格子点数に対して反復計算を行う必要があるため、確実な手法である一方、推定範囲が広くなるほど計算時間を要するという問題がある。   In the methods of Patent Documents 1 and 2 below, a target position is obtained by using a propagation time difference between a sound wave (direct wave) that directly propagates in water from a sound source and arrives and a sound wave (reflected wave) that reflects and arrives at a boundary surface. The entire ocean space is gridded in Cartesian coordinates and polar coordinates within the assumed range of distances and depths, and the sound wave propagation time difference from the temporary target on the grid points is exhaustively calculated to propagate the sound wave from the actual target. The distance or depth that minimizes the difference from the time difference (actual measurement value) is estimated as the target position. Therefore, the brute force method is a reliable method because it requires an iterative calculation for the number of grid points determined by the estimation range (depth and distance) of the target position and the calculation step size. There is a problem that it takes time.

そこで、上記問題を解決する他の手法として、例えば下記特許文献3に開示される双曲線法がある。この手法は、音源から受波器に直接到達した直接波、海水面で1回反射して受波器に到達した第1反射波、海底面で1回反射して受波器に到達した第2反射波を海水面と海底面との間に設置された受波器で受信し、音源と海水面に対する音源の鏡像とを焦点とする第1双曲線の式と、音源と海底面に対する音源の鏡像とを焦点とする第2双曲線の式から音源の座標である第1双曲線及び第2双曲線の共通する焦点座標を求めている。   Therefore, as another method for solving the above problem, for example, there is a hyperbolic method disclosed in Patent Document 3 below. This method consists of a direct wave that reaches the receiver directly from the sound source, a first reflected wave that reaches the receiver after being reflected once by the sea surface, and a first reflected wave that reaches the receiver after reflecting once at the sea bottom. 2 The reflected wave is received by the wave receiver installed between the sea surface and the sea bottom, and the formula of the first hyperbola whose focus is the sound source and the mirror image of the sound source with respect to the sea surface, and the sound source and the sound source with respect to the sea bottom The common focus coordinates of the first hyperbola and the second hyperbola, which are the coordinates of the sound source, are obtained from the formula of the second hyperbola whose focal point is the mirror image.

特開2006−194627号公報JP, 2006-194627, A 特開2011−149864号公報JP, 2011-149864, A 特開2015−152376号公報Japanese Patent Laid-Open No. 2015-152376

しかしながら、特許文献3に開示される方法は、一様な環境を仮定しているため、音速分布に深度依存性があったり海底地形に距離依存性があったりするような海洋環境に適用した場合、音源位置が正確に計算できないという問題があった。そのため、音速分布の深度依存性や海底地形の距離依存性がある環境において、短時間で音源位置を推定する新たな手法の確立が求められている。   However, since the method disclosed in Patent Document 3 assumes a uniform environment, when applied to a marine environment in which the sound velocity distribution has depth dependency or the seabed topography has distance dependency. , There was a problem that the sound source position could not be calculated accurately. Therefore, it is required to establish a new method for estimating the sound source position in a short time in an environment where the sound velocity distribution depends on the depth and the seabed topography depends on the distance.

そこで、本発明は上記問題点に鑑みてなされたものであり、音速分布の深度依存性や海底地形の距離依存性の有無に拘わらず短時間で音源の位置推定が可能な位置推定装置及び方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and a position estimation device and method capable of estimating the position of a sound source in a short time regardless of the depth dependency of the sound velocity distribution and the distance dependency of the seabed topography. The purpose is to provide.

上記した目的を達成するため、本発明の第1の態様は、音速が深度方向に変化し、且つ海底が平坦な既知の海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波、海面反射波及び海底反射波の各音線パラメータを求める処理と、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求める処理と、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定する処理と、
を行う演算処理部を備えたことを特徴とする、位置推定装置である。
In order to achieve the above-mentioned object, a first aspect of the present invention is a position estimation device that estimates the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed is flat,
Sound ray parameters of a direct wave, a sea surface reflected wave, and a seabed reflected wave that are eigen sound rays of the pulse wave that passes through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source. And the process of
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A process for obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset determination threshold value, a process of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
A position estimation device comprising an arithmetic processing unit for performing the above.

本発明の第2の態様は、音速が深度方向に変化し、且つ海底が起伏する既知の海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波と海面反射波の音線パラメータを求める処理と、
前記音源の仮座標と、前記受波器から海底反射点までの仮想水平距離から海底反射波の音線パラメータを求める処理と、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求める処理と、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定する処理と、
を行う演算処理部を備えたことを特徴とする、位置推定装置である。
A second aspect of the present invention is a position estimation device that estimates the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed undulates,
A process of obtaining sound ray parameters of a direct wave and a sea surface reflected wave that are eigen sound rays of the pulse wave passing through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source;
Temporary coordinates of the sound source, a process of obtaining sound ray parameters of the seabed reflected wave from the virtual horizontal distance from the receiver to the seabed reflection point,
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A process for obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset determination threshold value, a process of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
A position estimation device comprising an arithmetic processing unit for performing the above.

本発明の第3の態様は、本発明の第1又は第2の態様に係る位置推定装置において、前記音線パラメータは、前記受波器の座標を始点とし、前記音源の仮座標を用いて非線形方程式の数値解法により求めることを特徴とする、位置推定装置である。   A third aspect of the present invention is the position estimation apparatus according to the first or second aspect of the present invention, wherein the sound ray parameter starts from the coordinates of the wave receiver and uses temporary coordinates of the sound source. A position estimation device characterized by being obtained by a numerical solution method of a nonlinear equation.

本発明の第4の態様は、本発明の第1〜第3の何れかの態様に係る位置推定装置において、前記直接波の音線パラメータが実数解を持たないときは、前記直接波の音線が転回点を経由していると仮定して転回点深度に基づき前記直接波の音線パラメータを求めて前記音源の座標を推定することを特徴とする、位置推定装置である。   A fourth aspect of the present invention is the position estimation apparatus according to any one of the first to third aspects of the present invention, wherein when the sound ray parameter of the direct wave does not have a real number solution, the sound of the direct wave is A position estimation device, characterized in that the line is assumed to pass through a turning point, the sound ray parameter of the direct wave is obtained based on the turning point depth, and the coordinates of the sound source are estimated.

本発明の第5の態様は、本発明の第2〜第4の何れかの態様に係る位置推定装置において、既知の海底地形座標と、前記受波器から海底反射点までの仮想水平距離とに基づき前記海底反射波の海底反射点座標と前記海底反射波の音線パラメータを求めることを特徴とする、位置推定装置である。   A fifth aspect of the present invention is, in the position estimation device according to any one of the second to fourth aspects of the present invention, known seabed topographical coordinates and a virtual horizontal distance from the receiver to the seabed reflection point. The position estimating device is characterized in that the seabed reflection point coordinates of the seabed reflected wave and the sound ray parameter of the seabed reflected wave are obtained based on the above.

本発明の第6の態様は海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、深度座標が既知の前記音源までの距離を決定することで前記音源の座標を推定することを特徴とする、位置推定装置である。
A sixth aspect of the present invention is a position estimating device for estimating the coordinates of a sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver for receiving the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the speed of sound, the depth coordinate is known. It is a position estimation device characterized by estimating coordinates of the sound source by determining a distance to the sound source.

本発明の第7の態様は、海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、距離座標が既知の前記音源の深度を決定することで前記音源の座標を推定することを特徴とする、位置推定装置である。
A seventh aspect of the present invention is a position estimation device that estimates the coordinates of a sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver that receives the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the sound velocity, the distance coordinates are known. It is a position estimation device characterized by estimating the coordinates of the sound source by determining the depth of the sound source.

本発明の第8の態様は、音速が深度方向に変化し、且つ海底が平坦な既知の海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波、海面反射波及び海底反射波の各音線パラメータを求めるステップと、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求めるステップと、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定するステップと、
を含むことを特徴とする、位置推定方法である。
An eighth aspect of the present invention is a position estimation method for estimating the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed is flat,
Sound ray parameters of a direct wave, a sea surface reflected wave, and a seabed reflected wave that are eigen sound rays of the pulse wave that passes through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source. And the step of finding
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A step of obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset threshold for determination, a step of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
It is a position estimation method characterized by including.

本発明の第9の態様は、音速が深度方向に変化し、且つ海底が起伏する既知の海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波と海面反射波の音線パラメータを求めるステップと、
前記音源の仮座標と、前記受波器から海底反射点までの仮想水平距離から海底反射波の音線パラメータを求めるステップと、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求めるステップと、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定するステップと、
を含むことを特徴とする、位置推定方法である。
A ninth aspect of the present invention is a position estimation method for estimating the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed undulates,
A step of obtaining sound ray parameters of a direct wave and a sea surface reflected wave which are characteristic sound rays of the pulse wave passing through two points of temporary coordinates of the sound source and coordinates of a receiver for receiving the pulse wave emitted by the sound source;
Temporary coordinates of the sound source, and a step of obtaining a sound ray parameter of the seabed reflected wave from the virtual horizontal distance from the receiver to the seabed reflection point,
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A step of obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset threshold for determination, a step of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
It is a position estimation method characterized by including.

本発明の第10の態様は、本発明の第8又は第9の態様に係る位置推定方法において、前記音線パラメータは、前記受波器の座標を始点とし、前記音源の仮座標を用いて非線形方程式の数値解法により求めることを特徴とする、位置推定方法である。   A tenth aspect of the present invention is the position estimation method according to the eighth or ninth aspect of the present invention, wherein the sound ray parameter starts from the coordinates of the receiver and uses temporary coordinates of the sound source. It is a position estimation method characterized by being obtained by a numerical solution of a nonlinear equation.

本発明の第11の態様は、本発明の第8〜第10の何れかの態様に係る位置推定方法において、前記直接波の音線パラメータが実数解を持たないときは、前記直接波の音線が転回点を経由していると仮定して転回点深度に基づき前記直接波の音線パラメータを求めることを特徴とする、位置推定方法である。 An eleventh aspect of the present invention is the position estimation method according to any one of the eighth to tenth aspects of the present invention, wherein when the sound ray parameter of the direct wave does not have a real number solution, the sound of the direct wave is It is a position estimation method characterized in that the sound ray parameter of the direct wave is obtained based on the turning point depth on the assumption that the line passes through the turning point.

本発明の第12の態様は、本発明の第8〜第10の何れかの態様に係る位置推定方法において、既知の海底地形座標と、前記受波器から海底反射点までの仮想水平距離とに基づき前記海底反射波の海底反射点座標と前記海底反射波の音線パラメータを求めることを特徴とする、位置推定方法である。 A twelfth aspect of the present invention is, in the position estimation method according to any one of the eighth to tenth aspects of the present invention, a known seabed topographic coordinate and a virtual horizontal distance from the wave receiver to the seabed reflection point. The position estimating method is characterized in that the sea bottom reflection point coordinates of the sea bottom reflected wave and the sound ray parameter of the sea bottom reflected wave are obtained based on the above.

本発明の第13の態様は、海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、深度座標が既知の前記音源までの距離を決定することで前記音源の座標を推定することを特徴とする、位置推定方法である。
A thirteenth aspect of the present invention is a position estimation method for estimating the coordinates of a sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver for receiving the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the speed of sound, the depth coordinate is known. A position estimation method characterized in that the coordinates of the sound source are estimated by determining the distance to the sound source.

本発明の第14の態様は、海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、距離座標が既知の前記音源までの深度を決定することで前記音源の座標を推定することを特徴とする、位置推定方法である。
A fourteenth aspect of the present invention is a position estimation method for estimating the coordinates of a sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver that receives the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the sound velocity, the distance coordinates are known. A position estimation method characterized in that the coordinates of the sound source are estimated by determining the depth to the sound source.

本発明によれば、音速分布の深度依存性や海底地形の距離依存性がある環境において、船舶や大型海洋生物海中移動体が発するパルス波を観測して位置を推定しながら行動を把握するエコーロケーションなどに適用すれば、従来の総当たり法のような膨大な演算処理を必要とせず短時間で音源位置を高精度に推定することができる。   According to the present invention, in an environment in which the sound velocity distribution has depth dependency and the seabed topography has distance dependency, an echo that grasps a behavior while observing a pulse wave emitted by a ship or a large marine organism underwater vehicle and estimating a position If it is applied to a location or the like, it is possible to estimate the sound source position with high accuracy in a short time without requiring a huge amount of arithmetic processing like the conventional brute force method.

本発明の位置推定装置における位置推定方法で用いる固有音線の一例を示す概要図である。It is a schematic diagram showing an example of an eigen sound line used by a position estimating method in a position estimating device of the present invention. 音速の深度分布と伝搬音の音線との関係を示す模式図である。It is a schematic diagram which shows the relationship between the depth distribution of sound velocity, and the sound ray of a propagation sound. 本発明の位置推定装置の電気的構成を示す概略機能ブロック図である。It is a schematic functional block diagram which shows the electric constitution of the position estimation apparatus of this invention. 第1実施形態の位置推定装置の位置推定処理の流れを示すフローチャートである。It is a flow chart which shows a flow of position presumption processing of a position presumption device of a 1st embodiment. 転回点の一例を示した図である。It is a figure showing an example of a turning point. 起伏のある海底面への音波の入射俯仰角と反射俯仰角の関係を示した模式図である。It is a schematic diagram which showed the incident elevation angle of a sound wave to the undulating sea bottom, and the relationship of the reflection depression angle. 音源Sから発せられたパルス波の音線と、音線のシャドーゾーンの例を示した模式図である。FIG. 3 is a schematic diagram showing an example of sound rays of a pulse wave emitted from a sound source S and shadow zones of the sound rays.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。また、この実施の形態によりこの発明が限定されるものではなく、この形態に基づいて当業者などによりなされる実施可能な他の形態、実施例及び運用技術などは全て本発明の範疇に含まれるものとする。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Further, the present invention is not limited to the embodiments, and other forms, examples, operational techniques and the like that can be implemented by those skilled in the art based on the embodiments are all included in the scope of the present invention. I shall.

[本発明の概要]
図1は、本発明の位置推定装置1で用いる固有音線の一例を示す概要図である。 図1において、高さ方向(深さ方向)をz軸で表し、水平方向の距離をr軸で表す。以下では、図1に示すように、受波器Rが座標(r0,z0)にあるときに、音源Sの座標(r,z)を求める例である。
[Outline of the present invention]
FIG. 1 is a schematic diagram showing an example of the characteristic sound ray used in the position estimation device 1 of the present invention. In FIG. 1, the height direction (depth direction) is represented by the z-axis, and the horizontal distance is represented by the r-axis. The following is an example of obtaining the coordinates (r, z) of the sound source S when the wave receiver R is at the coordinates (r 0 , z 0 ) as shown in FIG.

通常、音源Sから音波(パルス波)が放射されると、受波器Rには、受波器Rと音源Sとを結ぶ直線上を進んだ直接波dwが到達し、次に、海水面W1で1回反射した海面反射波swと海底面W2で1回反射した海底反射波bwが受波器Rに到達し、この後、海水面W1及び海底面W2での多重反射波が受波器Rに到達する。   Normally, when a sound wave (pulse wave) is radiated from the sound source S, the direct wave dw traveling on a straight line connecting the wave receiver R and the sound source S reaches the receiver R, and then the sea surface. The sea surface reflected wave sw reflected once by W1 and the sea bottom reflected wave bw reflected once by the sea bottom W2 reach the receiver R, and then the multiple reflected waves at the sea water surface W1 and the sea bottom W2 are received. Reach vessel R.

本発明は、音速分布の深度依存性や海底地形の距離依存性がある海洋環境において、深度方向のみを格子化して海中の音源Sから音速分布の深度依存性や海底地形の距離依存性の有無に拘わらず短時間で音源Sの位置を推定するため、海中の未知の音源Sからのパルス波である直接波dw、海面反射波sw及び海底反射波bwを受波器Rで受信し、各波の音線パラメータ用いて音源Sの位置(座標)を推定する。 The present invention, in an marine environment in which the sound velocity distribution has depth dependency and the seabed topography have distance dependency, determines whether or not there is depth dependence of the sound velocity distribution from the underwater sound source S and distance dependence of the seabed topography by gridding only the depth direction. However, in order to estimate the position of the sound source S in a short time, the direct wave dw, the sea surface reflected wave sw, and the seabed reflected wave bw, which are pulse waves from the unknown sound source S in the sea, are received by the receiver R, and The position (coordinates) of the sound source S is estimated using the sound ray parameter of the wave.

[第1実施形態]
次に、本発明の第1実施形態について説明する。
第1実施形態では、音速は深度方向に変化し、海洋環境として海水面W1及び海底面W2は凹凸のない平面であり平行とする。また、海水面と海底面との間は、音波を伝える媒質(海水)で満たされているものとする。
[First Embodiment]
Next, a first embodiment of the present invention will be described.
In the first embodiment, the speed of sound changes in the depth direction, and the sea surface W1 and the sea bottom W2 are planes having no unevenness and are parallel to each other as an ocean environment. The space between the sea surface and the sea bottom is filled with a medium (sea water) that transmits sound waves.

図2は、音速の深度分布と伝搬音の音線との関係を示す図であり、海面位置を原点Oとしたときに高さ方向(深さ方向)をzで表し、水平方向について、左図の図2(a)は音速c(z)を表し、右図の図2(b)は距離rを表している。   FIG. 2 is a diagram showing the relationship between the depth distribution of sound velocity and the sound ray of propagating sound. When the sea surface position is the origin O, the height direction (depth direction) is represented by z, and the horizontal direction is left. FIG. 2A shows the sound velocity c (z), and FIG. 2B shows the distance r.

一の音線に沿って、水平を基準とした俯仰角θ0で深度zから俯仰角θ(z)となる深度zの点まで伝搬する音については、Snellの法則により下記数1が成り立ち、pは、一の音線経路上で値が不変となることから、この値pを音線パラメータとし、このpを使った表示を媒介変数表示とする。 For sound propagating along one sound line from a depth z 0 at a vertical elevation angle θ 0 to a depth z that is a depression angle θ (z), the following formula 1 is established according to Snell's law. , P have values that do not change on one sound ray path, so this value p is used as a sound ray parameter, and the display using this p is used as a parameter display.

Figure 2020063958
Figure 2020063958

また、このときの音線経路長の水平成分は距離rであり、媒介変数表示で下記数2として表すことができる。なお、この媒介変数表示による右辺の汎関数をR(z0,z,p)と表す。 The horizontal component of the sound ray path length at this time is the distance r, which can be expressed by the following equation 2 in the parameter display. The functional on the right side represented by the parametric representation is represented as R (z 0 , z, p).

Figure 2020063958
Figure 2020063958

ここで、音源Sの座標を推定するにあたり、水深hを一定、受波器R(受波点)の座標(r0,z0)を既知、音源Sの座標(r,z)を未知と仮定して音源Sと受波点の2点を通る固有音線を計算すると、相反定理から受波器Rから音源Sへ至る音線経路と、音源Sから受波器Rへ至る音線経路は同一になる。そのため、第1実施形態では受波点である受波器Rを始点として音源Sの位置座標を推定する処理を行う。 Here, in estimating the coordinates of the sound source S, the water depth h is fixed, the coordinates (r 0 , z 0 ) of the receiver R (receiving point) are known, and the coordinates (r, z) of the sound source S are unknown. Assuming that a sound ray passing through the sound source S and the receiving point is calculated, the sound ray path from the wave receiver R to the sound source S and the sound ray path from the sound source S to the wave receiver R are calculated from the reciprocity theorem. Will be the same. Therefore, in the first embodiment, a process of estimating the position coordinates of the sound source S is performed by using the wave receiver R, which is the wave receiving point, as a starting point.

次に、第1実施形態に係る位置推定装置1のシステム構成について説明する。
図3に示すように、位置推定装置1は、音源Sから放射されたパルス波(直接波dw、海面反射波sw、海底反射波bw)を受信する受波器Rと、受波器Rが受信したパルス波による位置推定処理に必要な各種情報を入力するデータ入力部10と、受波器Rが受信した各パルス波から得られる情報とデータ入力部10で入力された各種情報とに基づき音源Sの推定される座標を演算する演算処理部20とで概略構成される。
Next, the system configuration of the position estimation device 1 according to the first embodiment will be described.
As shown in FIG. 3, the position estimation device 1 includes a wave receiver R that receives a pulse wave (direct wave dw, a sea surface reflected wave sw, and a seabed reflected wave bw) radiated from a sound source S, and a wave receiver R. Based on the data input unit 10 for inputting various information necessary for the position estimation processing by the received pulse wave, the information obtained from each pulse wave received by the receiver R and the various information input by the data input unit 10 The calculation processing unit 20 is configured to calculate the estimated coordinates of the sound source S.

<データ入力部>
データ入力部10は、音源Sの位置を推定するために必要な初期値や実測値などの各種データを入力する。このデータとしては、例えば音速の深度依存性を示す音速分布c(z)、受波器Rの座標(r0,z0 )、受波器Rが受信した直接波dwと海面反射波swとの伝搬時間差実測値(τ12 (ob))及び直接波dwと海底反射波bwとの伝搬時間差実測値(τ13 (ob))、例えば測定対象となる海洋における海底地形を所定の大きさのメッシュ状に分割してそれぞれのメッシュ位置の緯度・経度と各メッシュ位置の水深データとが関連付けされた海洋地形座標を含む海洋環境データと、音源Sの仮座標などである。
なお、仮座標とは、音源Sの推定座標を計算する際に設定される座標であり、推定処理が初回の場合は予め実験などで求められる音源Sの大凡の位置を示す初期値座標(r(0),z(0))が設定される。
<Data input section>
The data input unit 10 inputs various data such as an initial value and an actual measurement value necessary for estimating the position of the sound source S. This data includes, for example, the sound velocity distribution c (z) indicating the depth dependence of the sound velocity, the coordinates (r 0 , z 0 ) of the receiver R, the direct wave dw received by the receiver R, and the sea surface reflected wave sw. Of the measured propagation time difference (τ 12 (ob) ) and the measured value of the propagation time difference (τ 13 (ob) ) between the direct wave dw and the ocean bottom reflected wave bw. The ocean environment data including the ocean topographical coordinates in which the latitude / longitude of each mesh position and the water depth data of each mesh position are associated with each other by being divided into meshes, and temporary coordinates of the sound source S are included.
The temporary coordinates are the coordinates set when the estimated coordinates of the sound source S are calculated, and when the estimation process is the first time, the initial value coordinates (r (0) and z (0) ) are set.

<演算処理部>
演算処理部20は、音線パラメータ計算部21と、伝搬時間差計算部22と、摂動計算部23と、座標計算部24と、判定出力部25とを備えている。なお、音源Sから受波器Rに届く直接波dw、海面反射波sw、海底反射波bwは、各パルス波の到達順序及び受波角度に基づいてパルス波の種類を同定する。
<Arithmetic processing unit>
The arithmetic processing unit 20 includes a sound ray parameter calculation unit 21, a propagation time difference calculation unit 22, a perturbation calculation unit 23, a coordinate calculation unit 24, and a determination output unit 25. The direct wave dw, the sea surface reflected wave sw, and the seabed reflected wave bw that reach the receiver R from the sound source S identify the type of pulse wave based on the arrival order of each pulse wave and the reception angle.

音線パラメータ計算部21は、音源Sから放射されたパルス波(直接波dw、海面反射波sw、海底反射波bw)の音線パラメータp(p1,p2 ,p3 )をそれぞれ計算する。ここで、「p1 」は直接波dwの音線パラメータ、「p2 」は海面反射波swの音線パラメータ、「p3 」は海底反射波bwの音線パラメータを表す。 The sound ray parameter calculation unit 21 calculates sound ray parameters p (p 1 , p 2 , p 3 ) of the pulse waves (direct wave dw, sea surface reflected wave sw, sea bottom reflected wave bw) emitted from the sound source S, respectively. . Here, "p 1" is sound ray parameters of the direct wave dw, "p 2" is the sound ray parameter of sea reflected sw, "p 3" represents the sound ray parameters of the seabed reflected wave bw.

音線パラメータ計算部21は、受波器Rを始点として直接波dwが区間[z0 ,z]内にある場合に、仮座標として音源Sの初期値座標(r(0) ,z(0) )と上記数2から直接波dwのr座標は下記数3として与えられる。 The sound ray parameter calculation unit 21 uses initial values coordinates (r (0) , z (0 ) of the sound source S as temporary coordinates when the direct wave dw with the receiver R as a starting point is within the section [z 0 , z]. ) ) And the above equation 2, the r coordinate of the direct wave dw is given by the following equation 3.

Figure 2020063958
Figure 2020063958

この汎関数は、非線形であるが、直接波dwの音線パラメータp1 の単調増加関数である。従って、r,zの値に仮座標として音源Sの初期値座標を与えることで上記数3はp1の関数となり、ニュートン法に代表される非線形方程式の数値解法により直接波dwの音線パラメータp1 が得られる。 Although this functional is non-linear, it is a monotonically increasing function of the sound ray parameter p 1 of the direct wave dw. Therefore, by giving the initial value coordinates of the sound source S as the temporary coordinates to the values of r and z, the above equation 3 becomes a function of p 1 , and the sound ray parameter of the direct wave dw is obtained by the numerical solution of the nonlinear equation represented by the Newton method. p 1 is obtained.

また、直接波dwと同様に、音源Sからの海面反射波swのr座標は下記数4、海底反射波bwのr座標は下記数5として与えられる。   Further, similarly to the direct wave dw, the r coordinate of the sea surface reflected wave sw from the sound source S is given by the following formula 4, and the r coordinate of the seabed reflected wave bw is given by the following formula 5.

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

これらの汎関数も非線形であるが、音線パラメータp2 ,p3 の単調増加関数であり、r,zの値に仮座標として音源Sの初期値座標を与えることで上記数4、数5はp2 ,p3 の関数となり、ニュートン法に代表される非線形方程式の数値解法により海面反射波swと海底反射波bwの音線パラメータp2 ,p3 がそれぞれ得られる。 Although these functionals are also non-linear, they are monotonically increasing functions of the sound ray parameters p 2 and p 3 , and by giving the initial value coordinates of the sound source S as temporary coordinates to the values of r and z, the above equations 4 and 5 are given. Becomes a function of p 2 and p 3 , and sound ray parameters p 2 and p 3 of the sea surface reflected wave sw and the seabed reflected wave bw are obtained by a numerical solution of a nonlinear equation represented by the Newton method.

なお、音線パラメータ計算部21で計算される音線パラメータのうち、位置推定処理を開始した直後は、仮座標として予め設定した初期値座標(r(0) ,z(0) )と上記数3〜5を適宜用いて各波の音線パラメータの初期値(p1 (0),p2 (0),p3 (0))を計算し、座標計算部24で音源Sの推定座標が計算されると、この計算された音源Sの推定座標を仮座標として更新して使用する。つまり、推定処理が初回(1回目)の場合は予め与えられた初期値座標(r(0) ,z(0))を使用し、2回目以降は、座標計算部24で計算した音源Sの推定座標(r(n-1) ,z(n-1) )を使用する。ここで、nは推定処理の回数である。また、海面反射波swの音線パラメータp2 が実数解を持たないときは、海面反射波swが存在しないものとして本装置の処理である音源Sの座標推定処理を終了する。 Of the sound ray parameters calculated by the sound ray parameter calculation unit 21, immediately after the position estimation processing is started, the initial value coordinates (r (0) , z (0) ) preset as temporary coordinates and the above number are calculated. 3 to 5 are appropriately used to calculate the initial values (p 1 (0) , p 2 (0) , p 3 (0) ) of the sound ray parameters of each wave, and the coordinate calculation unit 24 calculates the estimated coordinates of the sound source S. Once calculated, the calculated estimated coordinates of the sound source S are updated and used as temporary coordinates. That is, when the estimation process is the first time (first time), the preset initial value coordinates (r (0) , z (0) ) are used, and from the second time onward, the sound source S calculated by the coordinate calculation unit 24 is calculated. The estimated coordinates (r (n-1) , z (n-1) ) are used. Here, n is the number of estimation processes. When the sound ray parameter p 2 of the sea surface reflected wave sw does not have a real number solution, it is assumed that the sea surface reflected wave sw does not exist, and the coordinate estimation processing of the sound source S, which is the processing of the present device, is terminated.

伝搬時間差計算部22は、直接波dw、海面反射波sw及び海底反射波bwの伝搬時間を計算するとともに、直接波dwと海面反射波swとの伝搬時間差計算値τ12と、直接波dwと海底反射波bwの伝搬時間差計算値τ13を計算する。 Transit time calculation unit 22, a direct wave dw, with calculating the propagation time of the sea reflected sw and seabed reflected wave bw, the propagation time difference calculated value tau 12 between the direct wave dw and sea reflected sw, and direct wave dw The calculated propagation time difference τ 13 of the sea bottom reflected wave bw is calculated.

音線に沿った伝搬経路sにおける深度z0 からzまでの伝搬時間をtとし、これを媒介変数表示として下記数6として表され、右辺の汎関数をT(z0 ,z,p)と表す。 The propagation time from the depth z 0 to z in the propagation path s along the sound ray is represented by t, and this is expressed as the following equation 6, and the functional on the right side is T (z 0 , z, p). Represent

Figure 2020063958
Figure 2020063958

そして、直接波dwの伝搬時間T1 、海面反射波swの伝搬時間T2 、海底反射波bwの伝搬時間T3 はそれぞれ下記数7〜9として得られ、これら伝搬時間の差として直接波dwと海面反射波swの伝搬時間差τ12(=T2 −T1 )、直接波dwと海底反射波bwの伝搬時間差τ13(=T3 −T1 )をそれぞれ伝搬時間差計算値として得る。 Then, the propagation time T 1 of the direct wave dw, the propagation time T 2 of the sea reflected sw, the propagation time T 3 of the submarine reflected wave bw is respectively obtained as the following Equation 7-9, the direct wave dw as the difference between these propagation times And a propagation time difference τ 12 (= T 2 −T 1 ) of the sea surface reflected wave sw, and a propagation time difference τ 13 (= T 3 −T 1 ) of the direct wave dw and the seabed reflected wave bw are obtained as propagation time difference calculated values.

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

なお、推定処理が初回の場合は、仮座標である音源Sの初期値座標(r(0) ,z(0) )から得られた各波の音線パラメータの初期値(p1 (0),p2 (0),p3 (0))に基づいて各波の伝搬時間差計算値の初期値(τ12 (0)13 (0))を計算する。また、2回目以降は、得られた推定座標(r(n-1) ,z(n-1) )を仮座標として各波の伝搬時間差計算値 (τ12 (n-1),τ13 (n-1))を計算する。 When the estimation process is performed for the first time, the initial value (p 1 (0)) of the sound ray parameter of each wave obtained from the initial value coordinates (r (0) , z (0) ) of the sound source S which is the temporary coordinate. , P 2 (0) , p 3 (0) ), the initial values (τ 12 (0) , τ 13 (0) ) of the calculated values of the propagation time difference of each wave are calculated. In addition, after the second time, the calculated estimated propagation coordinates (r (n-1) , z (n-1) ) are used as temporary coordinates, and the calculated propagation time difference of each wave (τ 12 (n-1) , τ 13 ( n-1) ) is calculated.

摂動計算部23は、摂動法により音源Sの推定座標の摂動量を計算する。上記5つの変数(r,z,p1 ,p2 ,p3 )に対して5つの方程式があるため、原理的には方程式の解を求めることは可能であるが、一連の方程式は非線形であるため解析的に解を求めるのは困難となる。また、複雑な非線形方程式系の解を求めるため、Simulated annealing 法やGenetic Algorithm 法などの確率論的解法もあるが、これらの方法では一般に計算時間を要する上に解の収束判定の難しさがある。
このため、本発明では、摂動法により非線形方程式の解を求めている。
The perturbation calculator 23 calculates the perturbation amount of the estimated coordinates of the sound source S by the perturbation method. Since there are 5 equations for the above 5 variables (r, z, p 1 , p 2 , p 3 ), it is possible to solve the equations in principle, but the series of equations is non-linear. Therefore, it is difficult to obtain a solution analytically. In addition, there are probabilistic solution methods such as the Simulated annealing method and the Genetic Algorithm method in order to find the solution of a complex nonlinear equation system, but these methods generally require calculation time and have difficulty in determining the convergence of the solution. .
Therefore, in the present invention, the solution of the nonlinear equation is obtained by the perturbation method.

変数であるr,z,p1 ,p2 ,p3 を微小変化させたときの変分量をそれぞれδr,δz,δp1 ,δp2 ,δp3とし、テーラー展開の1次項までの摂動を考え上記数3〜5及び数7〜9に適用する。変分量δr,δz,δp1 ,δp2 ,δp3のうち独立変数は2つであり、δp1 ,δp2 ,δp3はδr,δzで表すことができるため、下記数10に示す代数方程式が得られる。 Let the variables r, z, p 1 , p 2 , p 3 be slightly changed and be δr, δz, δp 1 , δp 2 , δp 3 , respectively, and consider the perturbation up to the first term of the Taylor expansion. It is applied to the above expressions 3 to 5 and expressions 7 to 9. There are two independent variables among the variation quantities δr, δz, δp 1 , δp 2 , and δp 3 , and δp 1 , δp 2 , and δp 3 can be represented by δr and δz. Is obtained.

Figure 2020063958
Figure 2020063958

ここで、数10の「δr」は下記数11に示すように変分量δrとδzを成分とする列ベクトルであり、Gは2行2列の行列で汎関数R及びTのz,pi (i=1,2,3)に関する偏微分係数から構成される。また、数10の「δτ」は、観測値である伝搬時間差実測値と、伝搬時間差計算部22で計算された計算値である伝搬時間差計算値との差とする。例えば推定処理が初回の場合、下記数12に示すような観測値である伝搬時間差実測値(τ12 (ob),τ13 (ob))と計算値である伝搬時間差計算値の初期値(τ12 (0)13 (0))との差となる。 Here, “δr” in the equation 10 is a column vector whose components are the variation amounts δr and δz as shown in the following equation 11, and G is a matrix of 2 rows and 2 columns and z, p i of the functionals R and T. It is composed of partial differential coefficients with respect to (i = 1, 2, 3). In addition, “δτ” in Expression 10 is the difference between the actual measurement value of the propagation time difference, which is the observed value, and the calculated value of the propagation time difference, which is the calculated value calculated by the propagation time difference calculation unit 22. For example, when the estimation process is the first time, the measured values of the propagation time difference (τ 12 (ob) , τ 13 (ob) ) that are observed values and the initial value (τ It is the difference between 12 (0) and τ 13 (0) ).

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

また、列ベクトルは1次独立であるので、Gの逆行列が存在し、下記数13を得る。   Further, since the column vector is first-order independent, an inverse matrix of G exists, and the following Expression 13 is obtained.

Figure 2020063958
Figure 2020063958

つまり、摂動計算部23は、伝搬時間差計算部22で計算した伝搬時間差計算値と、データ入力部10で入力された直接波dwと海面反射波swとの伝搬時間差実測値(τ12 (ob))及び直接波dwと海底反射波bwとの伝搬時間差実測値(τ13 (ob))との差に基づき、汎関数R,Tの偏微分係数から上記数13の行列を計算して逆行列を求め、上記数13から音源Sの推定座標の摂動量を計算する。 That is, the perturbation calculation unit 23 calculates the propagation time difference calculated by the propagation time difference calculation unit 22 and the measured propagation time difference between the direct wave dw and the sea surface reflected wave sw input by the data input unit 10 (τ 12 (ob) ) And the difference between the measured propagation time difference (τ 13 (ob) ) between the direct wave dw and the reflected sea wave bw (τ 13 (ob) ), and calculates the matrix of Equation 13 from the partial differential coefficient of the functional R, T to obtain the inverse matrix. And the perturbation amount of the estimated coordinates of the sound source S is calculated from the above equation 13.

座標計算部24は、摂動計算部23で計算された摂動量と、下記数14を用いて音源Sの推定座標(r(n) ,z(n) )を求める。座標計算部24で得られた座標は、現在の音源Sの位置として推定された推定座標となる。 The coordinate calculation unit 24 obtains the estimated coordinates (r (n) , z (n) ) of the sound source S using the perturbation amount calculated by the perturbation calculation unit 23 and the following Expression 14. The coordinates obtained by the coordinate calculation unit 24 are estimated coordinates estimated as the current position of the sound source S.

Figure 2020063958
Figure 2020063958

判定出力部25は、座標計算部24で計算された音源Sの推定座標が正確な座標であるかを収束判定する。収束判定処理の内容としては、n回目の推定座標を(r(n) ,z(n))とし、n−1回目の値との誤差を計算し、この誤差値が実験などで予め得られた判定用閾値を下回るか否かを判断する。例えば、下記数15に示すように差の絶対値の(L2 ノルム)をとって距離を正規化して誤差値を計算し、この誤差値が判定用閾値を下回るか否かを判断する。 The determination output unit 25 determines whether or not the estimated coordinates of the sound source S calculated by the coordinate calculation unit 24 are accurate coordinates. The contents of the convergence determination processing are as follows: The estimated coordinates for the nth time are (r (n) , z (n) ), the error from the value for the n-1th time is calculated, and this error value is obtained in advance by experiments or the like. It is determined whether or not it falls below the determination threshold. For example, as shown in the following Expression 15, the absolute value of the difference (L2 norm) is taken to normalize the distance to calculate an error value, and it is determined whether or not this error value is below the determination threshold value.

Figure 2020063958
Figure 2020063958

判定出力部25は、求めた誤差値が判定用閾値を超えていると判断すると、再度音源Sの推定座標の計算処理を行う指示を出力し、誤差値が判定用閾値を下回ると判断したときは、座標計算部24で計算した音源Sの推定座標を外部の出力先に出力する。ここで、判定出力部25が行う指示とは、具体的に音線パラメータ計算部21に対し、座標計算部24で得られた推定座標(r(n) ,z(n) )を仮座標として再度計算を行わせることである。 When the determination output unit 25 determines that the calculated error value exceeds the determination threshold value, it outputs an instruction to calculate the estimated coordinates of the sound source S again, and determines that the error value falls below the determination threshold value. Outputs the estimated coordinates of the sound source S calculated by the coordinate calculation unit 24 to an external output destination. Here, the instruction given by the determination output unit 25 specifically means to the sound ray parameter calculation unit 21 that the estimated coordinates (r (n) , z (n) ) obtained by the coordinate calculation unit 24 are tentative coordinates. It is to make the calculation again.

未知の音源Sの座標を推定する場合、仮座標を与えた状態で音線パラメータ計算部21、伝搬時間差計算部22、摂動計算部23及び座標計算部24による計算を行っても得られた推定座標の値の信頼性は低いため、上記数15の計算を複数回(例えば10回程度)繰り返し行って誤差値を収束させることで推定値が真値に近付き信頼性が高まる。 When estimating the coordinates of the unknown sound source S, the estimation obtained by performing the calculation by the sound ray parameter calculation unit 21, the propagation time difference calculation unit 22, the perturbation calculation unit 23, and the coordinate calculation unit 24 with the provisional coordinates given. Since the reliability of the coordinate value is low, the estimation value approaches the true value and the reliability is increased by repeating the calculation of the above Expression 15 a plurality of times (for example, about 10 times) to converge the error value.

なお、判定出力部25による判定基準として判定用閾値を用いて判断しているが、推定値として信頼性が得られる程度の計算回数(例えば10回程度)を満足したか否か、或いはこの計算のうち数15の最小値を与える座標で推定座標の出力の可否を判断してもよい。この計算回数は、得られた推定座標の信頼性が高くなる回数であれば特に限定されない。この計算回数も判定用閾値と同様に実験などによって得られる。 Although the judgment threshold value is used as the judgment criterion by the judgment output unit 25, it is determined whether or not the number of calculations (for example, about 10 times) at which reliability is obtained as an estimated value is satisfied, or whether or not this calculation is performed. Whether or not to output the estimated coordinate may be determined based on the coordinate that gives the minimum value of Expression 15. The number of calculations is not particularly limited as long as the reliability of the obtained estimated coordinate is high. The number of times of this calculation is also obtained by an experiment or the like like the judgment threshold value.

次に、上述した第1実施形態の位置推定装置1の処理動作(音源Sの位置推定方法)について図4を参照しながら説明する。
なお、以下の処理は、位置推定装置1によって位置推定対象となる音源Sからの最初のパルス波が観測されたときの処理内容である。
Next, the processing operation (position estimation method of the sound source S) of the position estimation device 1 of the above-described first embodiment will be described with reference to FIG.
Note that the following processing is the processing content when the position estimation device 1 observes the first pulse wave from the sound source S that is the position estimation target.

図4に示すように、まずデータ入力部10から推定処理に必要な各種データの入力を行う(ST1)。ここでは、音速分布c(z)、受波器Rの座標(r0,z0 )と、受波器Rが受信した直接波dwと海面反射波swとの伝搬時間差実測値(τ12 (ob))及び直接波dwと海底反射波bwとの伝搬時間差実測値(τ13 (ob))、海洋環境データ、仮座標である音源Sの初期値座標(r(0),z(0))を入力する。 As shown in FIG. 4, first, various data necessary for the estimation process is input from the data input unit 10 (ST1). Here, the sound velocity distribution c (z), the coordinates (r 0 , z 0 ) of the receiver R, and the measured propagation time difference between the direct wave dw received by the receiver R and the sea surface reflected wave sw (τ 12 ( ob) ) and the actual measurement value of the propagation time difference between the direct wave dw and the sea bottom reflected wave bw (τ 13 (ob) ), the marine environment data, and the initial value coordinates (r (0) , z (0) of the sound source S which are temporary coordinates ). ) Is entered.

次に、上記数2〜5の何れかの式を用いて音線パラメータ、すなわち直接波dwの音線パラメータp1、海面反射波swの音線パラメータp2及び海底反射波bwの音線パラメータp3 を計算する(ST2)。
推定処理が初回であるため、音源Sの位置は未知なため、データ入力部10で入力した初期値座標(r(0) ,z(0) )と上記数3〜5を適宜用いて各波の音線パラメータの初期値(p1 (0),p2 (0),p3 (0))を求める。
Then, sound ray parameters using any of the formula in Formula 2-5, i.e. sound ray parameter p 1 of the direct wave dw, sound ray parameter of the sound ray parameter p 2 and seabed reflected wave bw of sea reflected sw Calculate p 3 (ST2).
Since the estimation process is the first time, the position of the sound source S is unknown, so the initial value coordinates (r (0) , z (0) ) input by the data input unit 10 and the above-mentioned equations 3 to 5 are used as appropriate for each wave. The initial values (p 1 (0) , p 2 (0) , p 3 (0) ) of the sound ray parameters of are calculated.

次に、上記数6〜9の何れかの式を用いて伝搬時間を計算する(ST3)。
ここでは、伝搬時間差計算部22が、直接波dwの伝搬時間T1,海面反射波swの伝搬時間T2及び海底反射はbwの伝搬時間T3を計算する。
Next, the propagation time is calculated using any one of the equations 6 to 9 (ST3).
Here, the propagation time difference calculation unit 22, the propagation time T 1 of the direct wave dw, the propagation time T 2 and the seabed reflection of sea reflected sw calculates the propagation time T 3 of bw.

次に、ST3で得た各波の伝搬時間(T1,T2,T3)から直接波dwと海面反射波swとの伝搬時間差である伝搬時間差計算値τ12と、直接波dwと海底反射波bwとの伝搬時間差である伝搬時間差計算値τ13を計算する(ST4)。
推定処理が初回であるため、音線パラメータの初期値(p1 (0),p2 (0),p3 (0))に基づいて伝搬時間差計算値の初期値τ12 (0) ,τ13 (0)を計算する。
Next, the propagation time difference calculation value τ 12 which is the propagation time difference between the direct wave dw and the sea surface reflected wave sw from the propagation time (T 1 , T 2 , T 3 ) of each wave obtained in ST3, and the direct wave dw and the seabed A propagation time difference calculation value τ 13 which is a propagation time difference from the reflected wave bw is calculated (ST4).
Since the estimation process is the first time, the initial values τ 12 (0) and τ of the propagation time difference calculation values are calculated based on the initial values (p 1 (0) , p 2 (0) and p 3 (0) ) of the sound ray parameters. Calculate 13 (0) .

次に、データ入力部10で入力された伝搬時間差実測値(τ12 (ob))及び伝搬時間差実測値(τ13 (ob))とST4で計算された伝搬時間差計算値τ12 (0) ,τ13 (0)との差をδτとして置き換えた上記数10、数13を用いて音源Sの推定座標の摂動量を計算する(ST5)。 Next, the propagation time difference actual measurement value (τ 12 (ob) ) and the propagation time difference actual measurement value (τ 13 (ob) ) input at the data input unit 10 and the propagation time difference calculation value τ 12 (0) calculated at ST4, The perturbation amount of the estimated coordinates of the sound source S is calculated using the above equations 10 and 13 in which the difference from τ 13 (0) is replaced by δτ (ST5).

次に、ST5によって計算された摂動量に基づき上記数14を用いて音源Sの推定座標を計算する(ST6)。   Next, the estimated coordinates of the sound source S are calculated using the above equation 14 based on the perturbation amount calculated in ST5 (ST6).

次に、n回目の推定座標を(r(n) ,z(n))とし、n−1回目の値との誤差を上記数15に示すように誤差値を計算し、この誤差値が予め得られた判定用閾値を下回るか否かを判断する(ST7)。
推定処置が初回であるため、ST6で計算した推定座標(r(1) ,z(1))とデータ入力部10で入力された音源Sの初期値座標(r(0),z(0))から誤差値を計算する。
Next, the estimated coordinates at the n-th time are set to (r (n) , z (n) ), and the error with the value at the ( n-1) -th time is calculated as shown in the above equation 15, and this error value is calculated in advance. It is determined whether or not the obtained value is below the determination threshold value (ST7).
Since the estimation procedure is the first time, the estimated coordinates (r (1) , z (1) ) calculated in ST6 and the initial value coordinates (r (0) , z (0) of the sound source S input by the data input unit 10 are used. ) To calculate the error value.

ST7において、誤差値が判定用閾値を下回る場合は(ST7−Yes)、計算した推定座標(r(1) ,z(1))を最終的な音源Sの座標として外部に出力して処理を終了する。
一方、誤差値が判定用閾値を超えている場合は(ST7−No)、再度ST2に戻って2回目の推定処理を実施する。このとき、1回目で計算した推定座標(r(1) ,z(1))を音源Sの仮座標として更新して一連の計算処理を行う。また、ST2〜ST7の処理ループは、得られた誤差値が判定用閾値を下回るまで仮座標を更新しながら所定回数繰り返される。
In ST7, if the error value is below the threshold for determination (ST7-Yes), the calculated estimated coordinates (r (1) , z (1) ) are output to the outside as the coordinates of the final sound source S and the processing is performed. finish.
On the other hand, when the error value exceeds the determination threshold value (ST7-No), the process returns to ST2 again to perform the second estimation process. At this time, the estimated coordinates (r (1) , z (1) ) calculated in the first time are updated as temporary coordinates of the sound source S, and a series of calculation processing is performed. Further, the processing loop of ST2 to ST7 is repeated a predetermined number of times while updating the provisional coordinates until the obtained error value falls below the determination threshold value.

なお、ST2において、直接波dwの音線パラメータp1や海面反射波swの音線パラメータp2が実数解を持たない場合は、以降の処理を行わずに本処理を終了する。 In ST2, if the sound ray parameter p 1 of the direct wave dw or the sound ray parameter p 2 of the sea surface reflected wave sw does not have a real number solution, this processing is terminated without performing the subsequent processing.

[第2実施形態]
次に、本発明の第2実施形態について説明する。
なお、以下の説明では、上述した第1実施形態の同一構成については同符号を付してその構成や処理内容についての説明を省略し、異なる構成や処理機能を中心に説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
In the following description, the same components as those in the above-described first embodiment will be denoted by the same reference numerals, description of the components and processing contents will be omitted, and different components and processing functions will be mainly described.

第2実施形態の位置推定装置1は、音線パラメータ計算部21による計算処理において、直接波dwの音線パラメータp1 が実数解を持たない場合に、区間[z0 ,z]外の転回点を経由して到達する音線経路が存在する可能性を考慮した構成である。第2実施形態の音線パラメータ計算部21における直接波dwの音線パラメータp1 の計算処理及び伝搬時間差計算部22における直接波dwの伝搬時間計算処理が第1実施形態の処理とは異なる。 In the position estimation device 1 of the second embodiment, in the calculation processing by the sound ray parameter calculation unit 21, when the sound ray parameter p 1 of the direct wave dw does not have a real number solution, the rotation outside the section [z 0 , z] is performed. This configuration takes into consideration the possibility that there are sound ray paths that reach via points. The calculation processing of the sound ray parameter p 1 of the direct wave dw in the sound ray parameter calculation unit 21 of the second embodiment and the propagation time calculation processing of the direct wave dw in the propagation time difference calculation unit 22 are different from the processing of the first embodiment.

図5は、転回点の一例を示した模式図である。図示のように、転回点は音線の向きが下から上或いは上から下に変化する音線の深度の極大/極小点をztpで表し、転回点ではpc(z)=1を満足する。図5において、(a)は転回点の極小点を示し、(b)は極大点を示している。そして、図示のように転回点深度をztpとすると、音源Sのr座標は下記数16で与えられる。 FIG. 5 is a schematic diagram showing an example of a turning point. As shown in the figure, at the turning point, the maximum / minimum point of the depth of the sound ray in which the direction of the sound ray changes from bottom to top or from top to bottom is represented by z tp , and pc (z) = 1 is satisfied at the turning point. . In FIG. 5, (a) shows the minimum point of the turning point, and (b) shows the maximum point. Then, assuming that the turning point depth is z tp as illustrated, the r coordinate of the sound source S is given by the following Expression 16.

Figure 2020063958
Figure 2020063958

第2実施形態の音線パラメータ計算部21は、音線パラメータp1 の値が実数解を持たないときに直接波dwが転回点を経由したものと仮定し、上記数3の代わりに上記数16を用いて直接波dwの音線パラメータp1tpを求める。計算処理を行うにあたり、推定処理が初回であれば初期値座標(r(0) ,z(0))を仮座標とし、2回目以降であれば座標計算部24で求めた推定座標(r(n-1) ,z(n-1) )を仮座標として用いて計算する。 The sound ray parameter calculation unit 21 of the second embodiment assumes that the direct wave dw has passed through the turning point when the value of the sound ray parameter p 1 does not have a real number solution, and instead of the above Equation 3, the above equation 16 is used to find the sound ray parameter p 1tp of the direct wave dw. In the calculation process, if the estimation process is the first time, the initial value coordinates (r (0) , z (0) ) are used as the temporary coordinates, and if the second time or later, the estimated coordinates (r ( n-1) , z (n-1) ) are used as temporary coordinates for calculation.

また、第2実施形態の伝搬時間差計算部22は、音線パラメータp1 の値が実数解を持たないときに直接波dwが転回点を経由したものと仮定し、上記数7の代わりに下記数17を用いて直接波dwの伝搬時間T1 を求める。 Further, the propagation time difference calculation unit 22 of the second embodiment assumes that the direct wave dw has passed through the turning point when the value of the sound ray parameter p 1 does not have a real number solution, and instead of the above Equation 7, The propagation time T 1 of the direct wave dw is obtained by using Expression 17.

Figure 2020063958
Figure 2020063958

なお、第2実施形態における音線パラメータ計算部21は、直接波dwが実数解であるか否かの判断を行いながら上記処理を2、3回程度行い、直接波dwの音線パラメータが実数解を持たない場合は、直接波dwが存在しないものとして本装置の処理である音源Sの座標推定処理を終了する。   Note that the sound ray parameter calculation unit 21 in the second embodiment performs the above-described processing about a few times while determining whether the direct wave dw is a real number solution, and the sound ray parameter of the direct wave dw is a real number. If there is no solution, it is assumed that the direct wave dw does not exist, and the coordinate estimation process of the sound source S, which is the process of the present device, ends.

第2実施形態の位置推定装置1の処理動作としては、上述したように音線パラメータ計算部21の処理において、直接波dwが実数解を持たないときに転回点を経由していると仮定しそれに対応する処理を行っている。
つまり、第2実施形態の処理動作は、使用する数式が多少異なるが基本的に上述した第1実施形態の処理動作と同様であり、ST2における直接波dwの音線パラメータ処理が異なる。
As the processing operation of the position estimation device 1 of the second embodiment, it is assumed that the direct wave dw passes through the turning point when the direct wave dw does not have a real solution in the processing of the sound ray parameter calculation unit 21 as described above. The processing corresponding to it is performed.
That is, the processing operation of the second embodiment is basically the same as the processing operation of the first embodiment described above, although the mathematical expressions used are slightly different, and the sound ray parameter processing of the direct wave dw in ST2 is different.

第2実施形態における音線パラメータ計算処理(ST2)は、直接波dwの音線パラメータp1が実数解を持たないとき、上記数16を用いて音線パラメータp1tpを計算する。このとき、推定処理が初回であれば初期値座標(r(0) ,z(0))を仮座標とし、2回目以降であれば座標計算部24で求めた推定座標(r(n-1) ,z(n-1) )を仮座標として用いて計算する。 In the sound ray parameter calculation process (ST2) in the second embodiment, when the sound ray parameter p 1 of the direct wave dw does not have a real number solution, the sound ray parameter p 1tp is calculated using the above equation 16. At this time, if the estimation process is the first time, the initial value coordinates (r (0) , z (0) ) are used as the temporary coordinates, and if it is the second time or later, the estimated coordinates (r (n-1) ) , Z (n-1) ) as temporary coordinates.

そして、転回点経由と仮定された直接波dwの音線パラメータp1tpが実数となれば次のステップ(ST4)へと進む。また、計算した結果が実数解を持たない場合は、再度直接波dwの音線パラメータp1tpを計算し直す。この処理を2、3回程度繰り返し行った結果、直接波dwの音線パラメータp1tpが実数解を持たないときは、直接波dwが存在しないと判断して以降の処理を終了する。 Then, if the sound ray parameter p 1tp of the direct wave dw assumed to pass through the turning point becomes a real number, the process proceeds to the next step (ST4). When the calculated result does not have a real number solution, the sound ray parameter p 1tp of the direct wave dw is calculated again. As a result of repeating this process a few times, when the sound ray parameter p 1tp of the direct wave dw does not have a real number solution, it is determined that the direct wave dw does not exist, and the subsequent processes are ended.

[第3実施形態]
次に、本発明の第3実施形態について説明する。
なお、以下の説明では、上述した第1,第2実施形態の同一構成については同符号を付してその構成や処理内容についての説明を省略し、異なる構成や処理機能を中心に説明する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
In the following description, the same configurations as those of the above-described first and second embodiments will be denoted by the same reference numerals, description of the configurations and processing contents will be omitted, and different configurations and processing functions will be mainly described.

海底に起伏がある場合に海底が平坦なときと海底反射波bwの音線経路が異なる。そのため、第3実施形態では、海底に起伏があり、海底地形が既知で関数h(r)で求められる場合に、海底反射波bwの音線パラメータp3 と伝搬時間T3を計算する処理が第1、第2実施形態と異なる。 When the seabed is uneven, the sound ray path of the seabed reflected wave bw is different from when the seabed is flat. Therefore, in the third embodiment, when the seabed has undulations and the seabed topography is known and can be obtained by the function h (r), the process of calculating the sound ray parameter p 3 of the seabed reflected wave bw and the propagation time T 3 is performed. Different from the first and second embodiments.

図6は、起伏のある海底面への音波の入射俯仰角と反射俯仰角の関係を示した模式図である。受波器Rを基準とした海底地形は既知であり、関数h(r)で与えられるものとする。このとき、水平面に対して傾斜角α=dh/drの海底面h(r)に俯仰角θinで入射する音波の反射俯仰角θout は下記数18で与えられる。 FIG. 6 is a schematic diagram showing the relationship between the incident elevation angle and the reflected depression angle of a sound wave on the undulating sea bottom. The seabed topography based on the receiver R is known and is given by the function h (r). At this time, the reflected depression / elevation angle θ out of the sound wave incident on the sea bottom h (r) having the inclination angle α = dh / dr with respect to the horizontal plane at the depression angle θ in is given by the following formula 18.

Figure 2020063958
Figure 2020063958

従って、反射の前後で音線パラメータは変化するため、反射後の音線パラメータを上記数1と上記数18から下記数19で与えられる。ここで、受波点から海底反射点までのr座標は下記数20で表し、海底反射点における音速を下記数21で示す。   Therefore, since the sound ray parameter changes before and after the reflection, the sound ray parameter after the reflection is given by the above Expression 1 and Expression 18 from the following Expression 19. Here, the r coordinate from the receiving point to the seabed reflection point is expressed by the following formula 20, and the sound velocity at the seabed reflection point is expressed by the following formula 21.

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

また、受波点、海底反射点及び音源Sを通る海底反射波bwの固有音線について、音源Sまでの距離は下記数22となるため、海底反射波bwの伝搬時間T3 は、下記数23から求められる。 Further, regarding the characteristic sound line of the seabed reflected wave bw that passes through the receiving point, the seabed reflection point, and the sound source S, the distance to the sound source S is given by the following formula 22, so the propagation time T 3 of the seabed reflected wave bw is Required from 23.

Figure 2020063958
Figure 2020063958

Figure 2020063958
Figure 2020063958

このように、第3実施形態では、海底に起伏がある場合の音線パラメータp3 を決定するため、音源Sの仮座標(例えば、初期値座標(r(0) ,z(0)))及び受波点から海底反射点までの仮想水平距離(予め実験などで得られる仮想的な距離)に基づき上記数20を計算することで音線パラメータp3の初期値を求める。また、上記数22を解くことで、受波点から海底反射点までの水平距離の値を更新し、上記数20及び数22の計算を繰り返し行って、誤差が予め実験などによって得られた閾値範囲内に入るか、又は既定の計算回数(10回程度)に達したときに上記水平距離が決定する。このため、海底反射波bwの音線パラメータp3のみならず、下記数24に示す海底反射点の座標も求めることができる。 As described above, in the third embodiment, since the sound ray parameter p 3 when the seabed has undulations is determined, the temporary coordinates of the sound source S (for example, initial value coordinates (r (0) , z (0) )). Also, the initial value of the sound ray parameter p 3 is obtained by calculating the above equation 20 based on the virtual horizontal distance from the wave receiving point to the seabed reflection point (virtual distance obtained in advance by experiments or the like). In addition, the value of the horizontal distance from the receiving point to the seafloor reflection point is updated by solving the above equation 22, and the calculation of the above equations 20 and 22 is repeated, and the error is a threshold value obtained in advance by experiments or the like. The horizontal distance is determined when it falls within the range or reaches a predetermined number of calculations (about 10 times). Therefore, not only the sound ray parameter p 3 of the seabed reflected wave bw but also the coordinates of the seabed reflection point shown in the following Expression 24 can be obtained.

Figure 2020063958
Figure 2020063958

なお、海底反射点は、音線パラメータp3で表される音線と海底面との交点を計算することでも求めることができる。 The sea bottom reflection point can also be obtained by calculating the intersection of the sound ray represented by the sound ray parameter p 3 and the sea bottom.

よって、第3実施形態の音線パラメータ計算部21は、データ入力部10による海洋環境データから海底地形が平坦ではなく変化していると判断した場合、上記数5の代わりに上記数22を用い、推定処理が初回であれば初期値座標(r(0) ,z(0))を仮座標とし、2回目以降であれば座標計算部24で求めた推定座標(r(n-1) ,z(n-1) )を仮座標として音線パラメータp3を計算する。 Therefore, when the sound ray parameter calculation unit 21 of the third embodiment determines from the ocean environment data from the data input unit 10 that the seafloor topography is not flat and is changing, it uses Equation 22 instead of Equation 5. If the estimation process is the first time, the initial value coordinates (r (0) , z (0) ) are used as temporary coordinates, and if the second and subsequent times, the estimated coordinates (r (n-1) , obtained by the coordinate calculation unit 24 are calculated. The sound ray parameter p 3 is calculated using z (n-1) ) as temporary coordinates.

また、第3実施形態の伝搬時間差計算部22は、海底地形が平坦ではなく変化していると判断した場合に、上記数9の代わりに上記数23を用いて海底反射波bwの伝搬時間T3 を求める。 Further, when the propagation time difference calculation unit 22 of the third embodiment determines that the seafloor topography is not flat and is changing, the propagation time T of the seafloor reflected wave bw is calculated by using the above Formula 23 instead of the above Formula 9. Ask for 3 .

なお、第3実施形態の音線パラメータ計算部21は、音線パラメータp1 の値が実数解を持たないのときは、上述した第2実施形態の処理も実行する。すなわち、音線パラメータp1 の値が実数解を持たないときは、直接波dwが転回点を経由したものと推定し、上記数3の代わりに上記数16を用いて直接波dwの音線パラメータp1を求める。 Note that the sound ray parameter calculation unit 21 of the third embodiment also executes the processing of the above-described second embodiment when the value of the sound ray parameter p 1 does not have a real number solution. That is, when the value of the sound ray parameter p 1 does not have a real number solution, it is estimated that the direct wave dw has passed through the turning point, and instead of the above Equation 3, the above Equation 16 is used to calculate the sound ray of the direct wave dw. Find the parameter p 1 .

また、第3実施形態の伝搬時間差計算部22は、音線パラメータp1の値が実数解を持たないときは、上述した第2実施形態の処理も実行する。すなわち、転回点を経由した直接波dwの音線パラメータp1 を用い、上記数7の代わりに上記数17を用いて直接波dwの伝搬時間T1を求める。 In addition, the propagation time difference calculation unit 22 of the third embodiment also executes the processing of the above-described second embodiment when the value of the sound ray parameter p 1 does not have a real number solution. That is, the propagation time T 1 of the direct wave dw is obtained by using the sound ray parameter p 1 of the direct wave dw passing through the turning point and using the above expression 17 instead of the above expression 7.

第3実施形態の位置推定装置1の処理動作としては、海底に起伏がある場合に音源Sから海底反射点を経由して受波器Rに届く海底反射波bwの音線パラメータp3と伝搬時間T3を得るための対応する処理を行っている。 As the processing operation of the position estimation device 1 of the third embodiment, the sound ray parameter p 3 of the seabed reflected wave bw that reaches the receiver R from the sound source S via the seabed reflection point when the seabed has undulations and propagation. Corresponding processing for obtaining the time T 3 is performed.

そのため、第3実施形態の処理動作は、使用する数式が多少異なるが基本的に上述した第1実施形態の処理動作と同様であり、ST2の処理で海底反射波bwの音線パラメータを取得するにあたり、海底地形を考慮した音線パラメータp3の計算処理の他、海底反射点の座標を計算する処理が追加される。 Therefore, the processing operation of the third embodiment is basically the same as the processing operation of the first embodiment described above, although the mathematical expressions used are slightly different, and the sound ray parameter of the seabed reflected wave bw is acquired in the processing of ST2. In addition to the calculation processing of the sound ray parameter p 3 in consideration of the seabed topography, the processing of calculating the coordinates of the seabed reflection point is added.

[第4実施形態]
次に、本発明の第4実施形態について説明する。
なお、以下の説明では、上述した第1〜第3実施形態の同一構成については同符号を付してその構成や処理内容についての説明を省略し、異なる構成や処理機能を中心に説明する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described.
In the following description, the same configurations as those of the above-described first to third embodiments will be denoted by the same reference numerals, description of the configurations and processing contents will be omitted, and different configurations and processing functions will be mainly described.

音源Sの深度によっては、直接波dw,海面反射波sw,海底反射波bwが受信器Rに到達しない領域が存在する。図7は、音源Sから発せられたパルス波の音線と、音線のシャドーゾーンの例を示した模式図である。
図示のように音源Sから発するパルス波は、海中を上下に屈折しながら伝搬するが、パルス波は海中領域全てを屈折しながら伝搬するわけではなく、所々音波の届かない領域(シャドーゾーン)も存在する。つまり、受波器Rがシャドーゾーン内にあると、第1〜第3実施形態の実施に必要なパルス波が観測できないため伝搬時間差による音源Sの座標を推定することができない。
Depending on the depth of the sound source S, there is a region where the direct wave dw, the sea surface reflected wave sw, and the seabed reflected wave bw do not reach the receiver R. FIG. 7 is a schematic diagram showing an example of a sound ray of a pulse wave emitted from the sound source S and a shadow zone of the sound ray.
As shown in the figure, the pulse wave emitted from the sound source S propagates while refracting up and down in the sea, but the pulse wave does not propagate while refracting in the entire undersea area, and in some areas (shadow zones) where sound waves do not reach. Exists. In other words, if the wave receiver R is in the shadow zone, the pulse wave required for implementing the first to third embodiments cannot be observed, and thus the coordinates of the sound source S due to the propagation time difference cannot be estimated.

そこで、第4実施形態では、音源Sの深度或いは受波器Rから音源Sまでの距離が大凡既知の場合、直接波dwや海面反射波sw,海底反射波bwのうち何れか1つの伝搬俯仰角θを観測することで音源Sのr座標或いはz座標を推定する。上述した第1〜第3実施形態では、音源Sの座標(距離,深度)が共に未知の場合の座標推定処理であるが、第4実施形態では音源Sの深度或いは受波器Rから音源Sまでの距離が既知の場合の座標推定処理である。   Therefore, in the fourth embodiment, when the depth of the sound source S or the distance from the wave receiver R to the sound source S is approximately known, any one of the direct wave dw, the sea surface reflected wave sw, and the seabed reflected wave bw is propagated. The r coordinate or z coordinate of the sound source S is estimated by observing the angle θ. In the first to third embodiments described above, the coordinate estimation processing is performed when the coordinates (distance, depth) of the sound source S are both unknown, but in the fourth embodiment, the depth of the sound source S or the sound source S from the wave receiver R is calculated. This is coordinate estimation processing when the distance to is known.

あるパルス波の伝搬俯仰角の観測値をθとし上記数1から音線パラメータpは下記数25で与えられる。ここで、伝搬俯仰角の観測値θは、受波器Rを海中に複数並設し、それぞれの受波器Rで受けたパルス波の受信時間(位相のずれ)を補正して得られる。 Letting θ be the observed value of the propagation angle of elevation of a certain pulse wave, the sound ray parameter p is given by the following equation 25 from the above equation 1. Here, the observation value θ of the propagation depression angle is obtained by arranging a plurality of receivers R in parallel in the sea and correcting the reception time (phase shift) of the pulse wave received by each receiver R.

Figure 2020063958
Figure 2020063958

また、第4実施形態では、音源Sからのパルス波が直接波dw,海面反射波sw,海底反射波bwのどのパルス波であるかを同定するため、受波器Rの上方から受信したパルス波を直接波dw又は海面反射波swであると同定し、受波器Rの下方から受信したパルス波を海底反射波bwと同定する。よって、第4実施形態では、音源Sからのパルス波がどの種類の波であるかを同定する必要があるため、本形態では海底反射波bwと同定できた場合に処理が可能となる。   Further, in the fourth embodiment, in order to identify which of the direct wave dw, the sea surface reflected wave sw, and the seabed reflected wave bw is the pulse wave from the sound source S, the pulse received from above the receiver R is identified. The wave is identified as the direct wave dw or the sea surface reflected wave sw, and the pulse wave received from below the receiver R is identified as the seabed reflected wave bw. Therefore, in the fourth embodiment, it is necessary to identify what kind of wave the pulse wave from the sound source S is. Therefore, in the present embodiment, the processing can be performed when it can be identified as the seabed reflected wave bw.

音源Sの深度zが大凡既知である場合、第4実施形態の音線パラメータ計算部21では、上記処理によって音線の種類を特定し、海底反射波bwと同定できた場合は、海底反射波bwのr座標を求める上記数5に上記数25を代入して音源Sのr座標を求める。前記r座標が求まれば自ずと音源Sの座標を得ることができる。つまり、受波器Rの座標における海底反射波bwの伝搬俯仰角θの実測値と、音速の値とに基づき海底反射波bwの音線パラメータp3を求め、深度座標が既知の音源Sまでの距離を決定することで音源Sの座標を推定することができる。 When the depth z of the sound source S is approximately known, the sound ray parameter calculation unit 21 of the fourth embodiment specifies the type of sound ray by the above processing, and when it can be identified as the seabed reflected wave bw, the seabed reflected wave. By substituting the above equation 25 into the above equation 5 for obtaining the r coordinate of bw, the r coordinate of the sound source S is obtained. If the r-coordinate is obtained, the coordinates of the sound source S can be naturally obtained. That is, the sound ray parameter p 3 of the seabed reflected wave bw is obtained based on the actual measurement value of the propagation angle of elevation θ of the seabed reflected wave bw at the coordinate of the receiver R and the value of the sound velocity, and the sound source S whose depth coordinate is known is obtained. The coordinates of the sound source S can be estimated by determining the distance of.

音源Sまでの距離rが大凡既知である場合、第4実施形態の音線パラメータ計算部21では、上記処理によって音線の種類を特定し、海底反射波bwと同定できた場合は、海底反射波bwのr座標を与える上記数5に上記数25を代入し、z座標について数値的に解くことにより音源Sのz座標を求める。前記z座標が求まれば自ずと音源Sの座標を得ることができる。つまり、受波器Rの座標における海底反射波bwの伝搬俯仰角θの実測値と、音速の値とに基づき海底反射波bwの音線パラメータp3を求め、距離座標が既知の音源Sの深度を決定することで音源Sの座標を推定することができる。 When the distance r to the sound source S is roughly known, the sound ray parameter calculation unit 21 of the fourth embodiment specifies the type of sound ray by the above processing, and when it can be identified as the seabed reflected wave bw, the seabed reflection The above-mentioned equation 25 is substituted into the above-mentioned equation 5 which gives the r-coordinate of the wave bw, and the z-coordinate of the sound source S is obtained by numerically solving the z-coordinate. If the z coordinate is obtained, the coordinate of the sound source S can be obtained naturally. That is, the sound ray parameter p 3 of the seabed reflected wave bw is obtained based on the actual measurement value of the propagation angle of elevation θ of the seabed reflected wave bw at the coordinate of the receiver R and the value of the sound speed, and the distance coordinate of the sound source S whose distance coordinate is known is obtained. The coordinates of the sound source S can be estimated by determining the depth.

以上説明したように、本発明に係る位置推定装置1は、受波器Rを始点として音源Sが発するパルス波の直接波dw、海面反射波sw及び海底反射波bwを受信して各波の音線パラメータから伝搬時間差を計算し、この伝搬時間差計算と受信した各波における伝搬時間差実測値との差の摂動量を求め、この摂動量に基づき得られた推定座標の誤差値を収束させながら音源Sの座標を推定している。   As described above, the position estimation device 1 according to the present invention receives the direct wave dw, the sea surface reflected wave sw, and the seabed reflected wave bw of the pulse wave generated by the sound source S with the receiver R as a starting point, and The propagation time difference is calculated from the sound ray parameters, the perturbation amount of the difference between the propagation time difference calculation and the actual measurement value of the propagation time difference in each received wave is obtained, and the error value of the estimated coordinate obtained based on this perturbation amount is converged. The coordinates of the sound source S are estimated.

このため、従来のような総当たり法のように海洋空間をデカルト座標や極座標において海洋空間全体を格子化し、微分方程式による数値解法を用いて計算する必要がないため、短時間で音源Sの座標を推定することができる。   For this reason, unlike the conventional brute force method, it is not necessary to grid the entire ocean space in Cartesian coordinates or polar coordinates and calculate it using a numerical solution method using a differential equation. Can be estimated.

1…位置推定装置
10…データ入力部
20…演算処理部
21…音線パラメータ計算部
22…伝搬時間差計算部
23…摂動計算部
24…座標計算部
25…判定出力部
R…受波器
S…音源
dw…直接波
sw…海面反射波
bw…海底反射波
W1…海水面
W2…海底面
DESCRIPTION OF SYMBOLS 1 ... Position estimation device 10 ... Data input part 20 ... Arithmetic processing part 21 ... Sound ray parameter calculation part 22 ... Propagation time difference calculation part 23 ... Perturbation calculation part 24 ... Coordinate calculation part 25 ... Judgment output part R ... Wave receiver S ... Sound source dw ... direct wave sw ... sea surface reflected wave bw ... sea bottom reflected wave
W1 ... Sea surface
W2 ... sea bottom

本発明の第の態様は、音速が深度方向に変化し、且つ海底が平坦な既知の海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波、海面反射波及び海底反射波の各音線パラメータを求めるステップと、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求めるステップと、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定するステップと、
を含むことを特徴とする、位置推定方法である。
A sixth aspect of the present invention is a position estimation method for estimating the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed is flat,
Sound ray parameters of a direct wave, a sea surface reflected wave, and a seabed reflected wave that are eigen sound rays of the pulse wave that passes through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source. And the step of finding
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A step of obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset threshold for determination, a step of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
It is a position estimation method characterized by including.

本発明の第の態様は、音速が深度方向に変化し、且つ海底が起伏する既知の海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波と海面反射波の音線パラメータを求めるステップと、
前記音源の仮座標と、前記受波器から海底反射点までの仮想水平距離から海底反射波の音線パラメータを求めるステップと、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求めるステップと、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定するステップと、
を含むことを特徴とする、位置推定方法である。
A seventh aspect of the present invention is a position estimation method for estimating the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed undulates,
A step of obtaining sound ray parameters of a direct wave and a sea surface reflected wave which are characteristic sound rays of the pulse wave passing through two points of temporary coordinates of the sound source and coordinates of a receiver for receiving the pulse wave emitted by the sound source;
Temporary coordinates of the sound source, and a step of obtaining a sound ray parameter of the seabed reflected wave from the virtual horizontal distance from the receiver to the seabed reflection point,
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A step of obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset threshold for determination, a step of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
It is a position estimation method characterized by including.

本発明の第の態様は、本発明の第又は第の態様に係る位置推定方法において、前記音線パラメータは、前記受波器の座標を始点とし、前記音源の仮座標を用いて非線形方程式の数値解法により求めることを特徴とする、位置推定方法である。 An eighth aspect of the present invention is the position estimation method according to the sixth or seventh aspect of the present invention, wherein the sound ray parameter uses the coordinates of the wave receiver as a starting point and uses temporary coordinates of the sound source. It is a position estimation method characterized by being obtained by a numerical solution of a nonlinear equation.

本発明の第の態様は、本発明の第〜第の何れかの態様に係る位置推定方法において、前記直接波の音線パラメータが実数解を持たないときは、前記直接波の音線が転回点を経由していると仮定して転回点深度に基づき前記直接波の音線パラメータを求めることを特徴とする、位置推定方法である。 A ninth aspect of the present invention is the position estimation method according to any one of the sixth to eighth aspects of the present invention, wherein when the sound ray parameter of the direct wave does not have a real number solution, the sound of the direct wave is The position estimating method is characterized in that the sound ray parameter of the direct wave is obtained based on the turning point depth on the assumption that the line passes through the turning point.

本発明の第10の態様は、本発明の第〜第の何れかの態様に係る位置推定方法において、既知の海底地形座標と、前記受波器から海底反射点までの仮想水平距離とに基づき前記海底反射波の海底反射点座標と前記海底反射波の音線パラメータを求めることを特徴とする、位置推定方法である。 A tenth aspect of the present invention is, in the position estimation method according to any one of the sixth to eighth aspects of the present invention, a known seabed topographical coordinate and a virtual horizontal distance from the wave receiver to the seabed reflection point. The position estimating method is characterized in that the sea bottom reflection point coordinates of the sea bottom reflected wave and the sound ray parameter of the sea bottom reflected wave are obtained based on the above.

Claims (14)

音速が深度方向に変化し、且つ海底が平坦な既知の海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波、海面反射波及び海底反射波の各音線パラメータを求める処理と、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求める処理と、
前記摂動量から推定される前記音源の推定座標を求める処理と、
今回求めた前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定する処理と、
を行う演算処理部を備えたことを特徴とする位置推定装置。
In the position estimation device that estimates the coordinates of the sound source existing in the known ocean where the speed of sound changes in the depth direction and the seabed is flat,
Sound ray parameters of a direct wave, a sea surface reflected wave, and a seabed reflected wave that are eigen sound rays of the pulse wave that passes through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source. And the process of
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A process for obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
A process of obtaining estimated coordinates of the sound source estimated from the perturbation amount;
When the error value between the estimated coordinate of the sound source obtained this time and the estimated coordinate obtained last time is less than a preset threshold for determination, a process of determining the estimated coordinate obtained this time as the coordinate of the sound source,
A position estimation device comprising an arithmetic processing unit for performing the following.
音速が深度方向に変化し、且つ海底が起伏する既知の海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波と海面反射波の音線パラメータを求める処理と、
前記音源の仮座標と、前記受波器から海底反射点までの仮想水平距離から海底反射波の音線パラメータを求める処理と、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求める処理と、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定する処理と、
を行う演算処理部を備えたことを特徴とする位置推定装置。
In the position estimation device that estimates the coordinates of the sound source existing in the known ocean where the speed of sound changes in the depth direction and the seabed undulates,
A process of obtaining sound ray parameters of a direct wave and a sea surface reflected wave that are eigen sound rays of the pulse wave passing through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source;
Temporary coordinates of the sound source, a process of obtaining sound ray parameters of the seabed reflected wave from the virtual horizontal distance from the receiver to the seabed reflection point,
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A process for obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset threshold for determination, a process of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
A position estimation device comprising an arithmetic processing unit for performing the following.
前記音線パラメータは、前記受波器の座標を始点とし、前記音源の仮座標を用いて非線形方程式の数値解法により求めることを特徴とする請求項1又は2記載の位置推定装置。   3. The position estimating apparatus according to claim 1, wherein the sound ray parameter is obtained by a numerical solution of a non-linear equation using a coordinate of the wave receiver as a starting point and a temporary coordinate of the sound source. 前記直接波の音線パラメータが実数解を持たないときは、前記直接波の音線が転回点を経由していると仮定して転回点深度に基づき前記直接波の音線パラメータを求めて前記音源の座標を推定することを特徴とする請求項1〜3の何れかに記載の位置推定装置。 When the sound ray parameter of the direct wave does not have a real number solution, it is assumed that the sound ray of the direct wave passes through a turning point, and the sound ray parameter of the direct wave is obtained based on the turning point depth. The position estimation device according to claim 1, wherein the coordinates of the sound source are estimated. 既知の海底地形座標と、前記受波器から海底反射点までの仮想水平距離とに基づき前記海底反射波の海底反射点座標と前記海底反射波の音線パラメータを求めることを特徴とする請求項2〜4の何れかに記載の位置推定装置。   The seabed reflection point coordinates of the seabed reflected wave and the sound ray parameter of the seabed reflected wave are obtained based on known seabed topographic coordinates and a virtual horizontal distance from the receiver to the seabed reflected point. The position estimation device according to any one of 2 to 4. 海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、深度座標が既知の前記音源までの距離を決定することで前記音源の座標を推定することを特徴とする位置推定装置。
In the position estimation device that estimates the coordinates of the sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver for receiving the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the sound velocity, the depth coordinate is known. A position estimating device for estimating coordinates of a sound source by determining a distance to the sound source.
海洋中に存在する音源の座標を推定する位置推定装置において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、距離座標が既知の前記音源の深度を決定することで前記音源の座標を推定することを特徴とする位置推定装置。
In the position estimation device that estimates the coordinates of the sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver that receives the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the sound velocity, the distance coordinates are known. A position estimating device for estimating coordinates of a sound source by determining a depth of the sound source.
音速が深度方向に変化し、且つ海底が平坦な既知の海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波、海面反射波及び海底反射波の各音線パラメータを求めるステップと、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求めるステップと、
前記摂動量から推定される前記音源の推定座標を求めるステップと、
今回求めた前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定するステップと、
を含むことを特徴とする位置推定方法。
In the position estimation method for estimating the coordinates of a sound source existing in a known ocean where the speed of sound changes in the depth direction and the seabed is flat,
Sound ray parameters of a direct wave, a sea surface reflected wave, and a seabed reflected wave that are eigen sound rays of the pulse wave that passes through two points of the temporary coordinates of the sound source and the coordinates of a receiver that receives the pulse wave emitted by the sound source. And the step of finding
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A step of obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
Determining estimated coordinates of the sound source estimated from the perturbation amount,
When the error value between the estimated coordinate of the sound source obtained this time and the estimated coordinate obtained last time is below a preset threshold for determination, a step of determining the estimated coordinate obtained this time as the coordinate of the sound source,
A position estimation method comprising:
音速が深度方向に変化し、且つ海底が起伏する既知の海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源の仮座標と、前記音源が発するパルス波を受信する受波器の座標の2点を通る前記パルス波の固有音線である直接波と海面反射波の音線パラメータを求めるステップと、
前記音源の仮座標と、前記受波器から海底反射点までの仮想水平距離から海底反射波の音線パラメータを求めるステップと、
摂動法により、前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差実測値と、各波の音線パラメータから得られる前記直接波と前記海面反射波及び前記直接波と前記海底反射波の伝搬時間差計算値との差の摂動量を求めるステップと、
前記摂動量から推定される前記音源の推定座標と前回求めた推定座標との誤差値が予め設定した判定用閾値を下回ったときに、今回求めた推定座標を前記音源の座標として決定するステップと、
を含むことを特徴とする位置推定方法。
In the position estimation method for estimating the coordinates of the sound source existing in the known ocean where the speed of sound changes in the depth direction and the seabed undulates,
A step of obtaining sound ray parameters of a direct wave and a sea surface reflected wave which are characteristic sound rays of the pulse wave passing through two points of temporary coordinates of the sound source and coordinates of a receiver for receiving the pulse wave emitted by the sound source;
Temporary coordinates of the sound source, and a step of obtaining a sound ray parameter of the seabed reflected wave from the virtual horizontal distance from the receiver to the seabed reflection point,
By the perturbation method, the direct time and the sea surface reflected wave and the propagation time difference measured value of the direct wave and the seabed reflected wave, the direct wave and the sea surface reflected wave and the direct wave obtained from the sound ray parameter of each wave A step of obtaining a perturbation amount of the difference between the propagation time difference calculation value of the seabed reflected wave,
When the error value between the estimated coordinate of the sound source estimated from the perturbation amount and the estimated coordinate obtained last time is less than a preset threshold for determination, a step of determining the estimated coordinate obtained this time as the coordinate of the sound source, ,
A position estimation method comprising:
前記音線パラメータは、前記受波器の座標を始点とし、前記音源の仮座標を用いて非線形方程式の数値解法により求めることを特徴とする請求項8又は9記載の位置推定方法。   10. The position estimating method according to claim 8, wherein the sound ray parameter is obtained by a numerical solution of a nonlinear equation using the coordinates of the wave receiver as a starting point and the temporary coordinates of the sound source. 前記直接波の音線パラメータが実数解を持たないときは、前記直接波の音線が転回点を経由していると仮定して転回点深度に基づき前記直接波の音線パラメータを求めることを特徴とする請求項8〜10の何れかに記載の位置推定方法。 When the sound ray parameter of the direct wave does not have a real number solution, it is assumed that the sound ray of the direct wave passes through a turning point, and the sound ray parameter of the direct wave is obtained based on the turning point depth. The position estimation method according to any one of claims 8 to 10, which is characterized. 既知の海底地形座標と、前記受波器から海底反射点までの仮想水平距離とに基づき前記海底反射波の海底反射点座標と前記海底反射波の音線パラメータを求めることを特徴とする請求項8〜10の何れかに記載の位置推定方法。   The seabed reflection point coordinates of the seabed reflected wave and the sound ray parameter of the seabed reflected wave are obtained based on known seabed topographic coordinates and a virtual horizontal distance from the receiver to the seabed reflected point. The position estimation method according to any one of 8 to 10. 海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、深度座標が既知の前記音源までの距離を決定することで前記音源の座標を推定することを特徴とする位置推定方法。
In the position estimation method that estimates the coordinates of the sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver for receiving the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the sound velocity, the depth coordinate is known. A position estimating method comprising estimating coordinates of the sound source by determining a distance to the sound source.
海洋中に存在する音源の座標を推定する位置推定方法において、
前記音源が発するパルス波を受信する受波器の座標における海底反射波の伝搬俯仰角の実測値と、音速の値とに基づき前記海底反射波の音線パラメータを求め、距離座標が既知の前記音源までの深度を決定することで前記音源の座標を推定することを特徴とする位置推定方法。
In the position estimation method that estimates the coordinates of the sound source existing in the ocean,
The actual measurement value of the propagation angle of elevation and the propagation angle of the seabed reflected wave at the coordinates of the receiver that receives the pulse wave emitted by the sound source, and the sound ray parameter of the seabed reflected wave based on the value of the sound velocity, the distance coordinates are known. A position estimating method comprising estimating coordinates of the sound source by determining a depth to the sound source.
JP2018195279A 2018-10-16 2018-10-16 Position estimation apparatus and method Active JP6718098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195279A JP6718098B2 (en) 2018-10-16 2018-10-16 Position estimation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195279A JP6718098B2 (en) 2018-10-16 2018-10-16 Position estimation apparatus and method

Publications (2)

Publication Number Publication Date
JP2020063958A true JP2020063958A (en) 2020-04-23
JP6718098B2 JP6718098B2 (en) 2020-07-08

Family

ID=70387504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195279A Active JP6718098B2 (en) 2018-10-16 2018-10-16 Position estimation apparatus and method

Country Status (1)

Country Link
JP (1) JP6718098B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161246B1 (en) * 2020-08-11 2020-09-29 국방과학연구소 Bistatic sonar system having bottom mounted hydrophones and method for source deployment based on ocean environment using the same
CN111736127A (en) * 2020-06-11 2020-10-02 北京理工大学 Source domain generation and distribution parameter generalization method for unknown sea clutter
CN112051577A (en) * 2020-07-14 2020-12-08 中国船舶重工集团公司第七一五研究所 Method for realizing deep sea intermediate range target ranging and depth fixing by using sectional type vertical array
CN112285719A (en) * 2020-10-26 2021-01-29 中国人民解放军61540部队 Method and system for calculating coordinate adjustment value of seabed reference station
CN115014703A (en) * 2022-05-26 2022-09-06 中国人民解放军海军工程大学 Method for forecasting seawater surface wave excited by midpoint sound source in actual ocean waveguide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312053A (en) * 1971-12-03 1982-01-19 Subcom, Inc. Range and depth detection system
US5034930A (en) * 1966-02-04 1991-07-23 The United States Of America As Represented By The Secretary Of The Navy Passive ranging sonar system
US20090067290A1 (en) * 2007-05-10 2009-03-12 Lockheed Martin Corporation Modeling sound propagation for underwater test areas
JP2018031741A (en) * 2016-08-26 2018-03-01 沖電気工業株式会社 Display device and display method
JP2018141643A (en) * 2017-02-27 2018-09-13 沖電気工業株式会社 Depression/elevation angle calculation device and depression/elevation angle calculation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034930A (en) * 1966-02-04 1991-07-23 The United States Of America As Represented By The Secretary Of The Navy Passive ranging sonar system
US4312053A (en) * 1971-12-03 1982-01-19 Subcom, Inc. Range and depth detection system
US20090067290A1 (en) * 2007-05-10 2009-03-12 Lockheed Martin Corporation Modeling sound propagation for underwater test areas
JP2018031741A (en) * 2016-08-26 2018-03-01 沖電気工業株式会社 Display device and display method
JP2018141643A (en) * 2017-02-27 2018-09-13 沖電気工業株式会社 Depression/elevation angle calculation device and depression/elevation angle calculation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736127A (en) * 2020-06-11 2020-10-02 北京理工大学 Source domain generation and distribution parameter generalization method for unknown sea clutter
CN112051577A (en) * 2020-07-14 2020-12-08 中国船舶重工集团公司第七一五研究所 Method for realizing deep sea intermediate range target ranging and depth fixing by using sectional type vertical array
CN112051577B (en) * 2020-07-14 2024-06-11 中国船舶重工集团公司第七一五研究所 Method for realizing distance measurement and depth setting of deep sea medium distance target by using sectional type vertical array
KR102161246B1 (en) * 2020-08-11 2020-09-29 국방과학연구소 Bistatic sonar system having bottom mounted hydrophones and method for source deployment based on ocean environment using the same
CN112285719A (en) * 2020-10-26 2021-01-29 中国人民解放军61540部队 Method and system for calculating coordinate adjustment value of seabed reference station
CN112285719B (en) * 2020-10-26 2024-01-30 中国人民解放军61540部队 Method and system for calculating coordinate tolerance value of submarine reference station
CN115014703A (en) * 2022-05-26 2022-09-06 中国人民解放军海军工程大学 Method for forecasting seawater surface wave excited by midpoint sound source in actual ocean waveguide
CN115014703B (en) * 2022-05-26 2024-06-07 中国人民解放军海军工程大学 Sea surface wave forecasting method for excitation of point sound source in actual ocean waveguide

Also Published As

Publication number Publication date
JP6718098B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6718098B2 (en) Position estimation apparatus and method
US7219032B2 (en) Estimation algorithms and location techniques
EP2030041A2 (en) Methods and systems for passive range and depth localization
Wang et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter
Mohammadloo et al. Correcting multibeam echosounder bathymetric measurements for errors induced by inaccurate water column sound speeds
CN110132281A (en) A kind of autonomous acoustic navigation method of underwater high-speed target with high precision based on inquiry answer-mode
Su et al. Underwater angle-only tracking with propagation delay and time-offset between observers
CN113156442A (en) AUV (autonomous underwater vehicle) underwater positioning method based on long-baseline underwater acoustic system auxiliary navigation
CN116449374A (en) Underwater positioning method based on sonar
White et al. Localisation of sperm whales using bottom-mounted sensors
US6028823A (en) Geodetic position estimation for underwater acoustic sensors
CN116358544A (en) Method and system for correcting inertial navigation error based on acoustic feature matching positioning
KR101480834B1 (en) Target motion analysis method using target classification and ray tracing of underwater sound energy
JP2005083932A (en) Propagation simulation device, propagation simulation method, and propagation simulation program
WO2010009160A2 (en) Measuring far-field signature of a seismic source
Huang et al. An improvement of long baseline system using particle swarm optimization to optimize effective sound speed
Reilly et al. Computing acoustic transmission loss using 3D Gaussian ray bundles in geodetic coordinates
JP3589186B2 (en) Onboard marine forecasting device
JP6757227B2 (en) Motion parameter estimation device, motion parameter estimation method and program
Hagen et al. Improving terrain navigation by concurrent tidal and sound speed error estimation
Kim et al. Terrain-based localization using particle filter for underwater navigation
KR101407704B1 (en) FWI Initial Velocity Model Implementation Method Using NIP Tomography
JP5716219B1 (en) Position estimation method and position estimation apparatus
RU2798390C1 (en) Method for passive determination of coordinates of a noise-generating object
KR101938724B1 (en) Seismic imaging of water column structure apparatus and method using frequency-domain reverse-time migration with analytic Green&#39;s function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

R150 Certificate of patent or registration of utility model

Ref document number: 6718098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150