JP2020063161A - Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same - Google Patents

Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same Download PDF

Info

Publication number
JP2020063161A
JP2020063161A JP2018194036A JP2018194036A JP2020063161A JP 2020063161 A JP2020063161 A JP 2020063161A JP 2018194036 A JP2018194036 A JP 2018194036A JP 2018194036 A JP2018194036 A JP 2018194036A JP 2020063161 A JP2020063161 A JP 2020063161A
Authority
JP
Japan
Prior art keywords
sealing agent
resistant coating
corrosion
coating
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018194036A
Other languages
Japanese (ja)
Inventor
寛典 高瀬
Hironori Takase
寛典 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018194036A priority Critical patent/JP2020063161A/en
Publication of JP2020063161A publication Critical patent/JP2020063161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a sealing agent that can seal the pores of a corrosion-resistant coating and does not corrode the substrate for a long period of time.SOLUTION: Provided is a sealing agent for sealing pores of a corrosion resistant coating, characterized by comprising a glass that contains, in mole %, BiOby 10 to 50%, ZnO by 10 to 50%, BOby 0 to 25%, SiOby 0 to 40%, AlOby 0 to 30%, MgO+CaO+SrO+BaO by 0 to 40%, and LiO+NaO+KO by 0 to 20%.SELECTED DRAWING: Figure 1

Description

本発明は、耐食性被膜の気孔を埋めるための封孔剤と、これを用いて作製した耐食性被膜及び高温部材に関する。   The present invention relates to a sealing agent for filling the pores of a corrosion-resistant coating, a corrosion-resistant coating and a high temperature member produced using the same.

火力発電では石炭や石油、LNGをボイラーで燃焼させ、その高温高圧のガスを使ってタービンを回転させたり、高温ガスの熱を使って発生させた蒸気でタービンを回転させたりすることで発電を行っている。このためガスタービンや伝熱管などの高温部材は、500〜1000℃の酸素や硫黄酸化物、硫化水素などの腐食性、酸化性の燃焼ガス雰囲気に晒される。その結果、いわゆる高温腐食による寿命低下が問題となる。   In thermal power generation, coal, oil, and LNG are burned in a boiler, and the high-temperature and high-pressure gas is used to rotate the turbine, or the steam generated using the heat of the high-temperature gas is used to rotate the turbine to generate power. Is going. Therefore, high temperature members such as a gas turbine and a heat transfer tube are exposed to a corrosive and oxidizing combustion gas atmosphere of oxygen, sulfur oxides, hydrogen sulfide and the like at 500 to 1000 ° C. As a result, there is a problem of shortening the life due to so-called high temperature corrosion.

このような酸性ガスによる腐食が原因で高温部材の劣化が起こるため、高温部材の交換を頻繁に行う必要がある。高温部材の交換は発電コストを高めることになるから、より劣化の起こらない高温部材が求められている。   Corrosion due to such acidic gas causes deterioration of the high temperature member, and therefore it is necessary to frequently replace the high temperature member. Since replacement of the high temperature member increases the power generation cost, there is a demand for a high temperature member that does not deteriorate further.

そこで、これらの高温部材の表面に耐食性被膜を形成して劣化を防止することが検討されている。耐食性被膜によって高温部材の寿命を延ばすには、如何にして気孔のない緻密な被膜を形成するかが重要となる。つまり耐食性被膜に気孔が存在すると、気孔を通して酸性ガスが高温部材の基材に到達してしまい、高温部材を腐食させてしまう。   Therefore, it has been studied to form a corrosion resistant coating on the surface of these high temperature members to prevent deterioration. In order to extend the life of the high temperature member by the corrosion resistant coating, how to form a dense coating without pores is important. That is, if pores are present in the corrosion-resistant coating, the acid gas reaches the base material of the high temperature member through the pores and corrodes the high temperature member.

特開2001−152307号公報JP 2001-152307 A

例えば特許文献1には、下地層としてサーメットまたはセラミックスを溶射によって形成し、下地層表面に酸化物セラミックによる封孔処理を施し、さらにはガラス質被膜を形成した複合被膜が開示されている。特許文献1に記載の複合被膜は、貫通気孔が無く、腐食性ガスに対して優れた耐食性を示すだけでなく、基材の使用寿命が著しく向上されるとしている。封孔剤としては、耐熱性有機樹脂セラミックス懸濁液、加熱によってCrを生成するクロム酸、焼成することによって金属酸化物を生成する無機金属化合物の溶液およびコロイド液、金属アルコキシドアルコール溶液、金属塩化物の水溶液またはアルコール溶液、金属燐酸塩水溶液、金属水酸化物のコロイド液、金属酸化物の超微粉を含むアルコールまたは水懸濁液あるいはこれらの2種以上の混合液が推奨されている。しかし、これらの封孔剤は固化後にもガスが発生し完全な封孔ができないという問題がある。 For example, Patent Document 1 discloses a composite film in which a cermet or ceramics is formed as a base layer by thermal spraying, the surface of the base layer is sealed with an oxide ceramic, and a glassy film is formed. The composite coating described in Patent Document 1 has no through pores, exhibits not only excellent corrosion resistance to corrosive gases, but also has a markedly improved service life of the base material. As the pore-sealing agent, a heat-resistant organic resin ceramics suspension, chromic acid that produces Cr 2 O 3 by heating, a solution and colloidal solution of an inorganic metal compound that produces a metal oxide by firing, a metal alkoxide alcohol solution , Metal chloride aqueous solution or alcohol solution, metal phosphate aqueous solution, metal hydroxide colloidal solution, alcohol or water suspension containing ultrafine powder of metal oxide, or a mixture of two or more thereof is recommended. There is. However, these sealing agents have a problem in that gas is generated even after solidification and a complete sealing cannot be achieved.

本発明は上記事情を考慮してなされたものであり、耐食性被膜の気孔を封孔でき、しかも長期間基材を腐食させることのない封孔剤を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sealing agent capable of sealing the pores of a corrosion-resistant coating and not corroding the substrate for a long period of time.

本発明の封孔剤は、耐食性被膜の気孔を封孔するための封孔剤であって、モル%で、Bi 10〜50%、ZnO 10〜50%、B 0〜25%、SiO 0〜40%、Al 0〜30%、MgO+CaO+SrO+BaO 0〜40%、LiO+NaO+KO 0〜20%を含有するガラスからなることを特徴とする。ここで、「MgO+CaO+SrO+BaO」とは、MgO、CaO、SrO及びBaOの含有量の合量を意味する。「LiO+NaO+KO」とは、LiO、NaO及びKOの含有量の合量を意味する。 The pore-sealing agent of the present invention is a pore-sealing agent for sealing the pores of a corrosion-resistant coating, and in mol%, Bi 2 O 3 is 10 to 50%, ZnO is 10 to 50%, and B 2 O 30 is 0 to 50%. 25%, SiO 2 0~40%, Al 2 O 3 0~30%, MgO + CaO + SrO + BaO 0~40%, characterized in that it consists of glass containing 2 O 0~20% Li 2 O + Na 2 O + K. Here, “MgO + CaO + SrO + BaO” means the total content of MgO, CaO, SrO, and BaO. “Li 2 O + Na 2 O + K 2 O” means the total content of Li 2 O, Na 2 O and K 2 O.

上記構成を有する封孔剤は、軟化点を著しく低下させるBiと、Biに比べると軟化点の低下効果が小さいZnO、B、MgO、CaO、SrO、BaOを適切な割合で含有しながらも、腐食性、酸化性のガスと反応しやすく、封孔剤の寿命を短くしてしまうBの含有量を25モル%以下と低くしたガラスからなる。これにより、耐食性被膜の気孔を容易に封孔するとともに、ガラスの粘度が低下しすぎて被膜と反応したり、被膜表面から脱落したりする事態を防止することができ、また耐食性の効果が長期間保持される。 The sealing agent having the above-mentioned structure includes Bi 2 O 3 which significantly lowers the softening point and ZnO, B 2 O 3 , MgO, CaO, SrO and BaO which have a smaller softening point lowering effect than Bi 2 O 3. It is made of glass having a low content of B 2 O 3 of 25 mol% or less which easily reacts with corrosive and oxidative gases and shortens the life of the pore-sealing agent, even though it is contained in an appropriate proportion. This makes it possible to easily seal the pores of the corrosion-resistant coating, prevent the glass from reacting with the coating due to too low a viscosity, and preventing the glass from falling off the coating surface. Hold for a period.

本発明の封孔剤においては、ガラスが、ガラス組成として、モル%でBi 10〜50%、ZnO 10〜50%、B 0〜25%、SiO 0〜40%、Al 0〜30%、MgO+CaO+SrO+BaO 0〜40%、LiO+NaO+KO 0〜20%、ZnO+B 10〜70%、Bi−B 0〜40%、Fe 0〜10%を含有することが好ましい。ここで、「ZnO+B」とは、ZnO及びBの含有量の合量を意味する。「Bi−B」とは、Biの含有量からBの含有量を減算した値を意味する。 In sealer of the present invention, glass is a glass composition including, Bi 2 O 3 10~50% by mole%, 10~50% ZnO, B 2 O 3 0~25%, SiO 2 0~40%, al 2 O 3 0~30%, MgO + CaO + SrO + BaO 0~40%, Li 2 O + Na 2 O + K 2 O 0~20%, ZnO + B 2 O 3 10~70%, Bi 2 O 3 -B 2 O 3 0~40%, It is preferable to contain Fe 2 O 3 0 to 10%. Here, “ZnO + B 2 O 3 ” means the total content of ZnO and B 2 O 3 . And "Bi 2 O 3 -B 2 O 3" means a value obtained by subtracting the content of Bi 2 O 3 B 2 O 3 from content.

上記構成を採用すれば、高寿命で適切な粘度特性を有するガラスを作製することが容易になる。   If the above configuration is adopted, it becomes easy to manufacture a glass having a long life and appropriate viscosity characteristics.

本発明の封孔剤塗布液は、上記した封孔剤を含むことを特徴とする。   The sealing agent coating liquid of the present invention is characterized by containing the above-mentioned sealing agent.

上記構成を採用すれば、刷毛塗り等の簡便な方法によって、封孔剤を耐食性被膜上に塗布することが容易になる。   If the above configuration is adopted, it becomes easy to apply the pore-sealing agent onto the corrosion-resistant coating by a simple method such as brush coating.

本発明の耐食性被膜は、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜であって、上記した封孔剤からなる粉末が表面に付着していることを特徴とする。「表面に付着している」とは、封孔剤粉末が耐食性被膜に化学的、物理的に結合している状態に加え、封孔剤粉末が幾何的に耐食性被膜に引っかかり脱落しない状態を含む。 The corrosion-resistant coating of the present invention is a corrosion-resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2, and the powder made of the above-mentioned sealing agent is attached to the surface. It is characterized by "Adhering to the surface" includes not only the state where the sealing agent powder is chemically and physically bonded to the corrosion-resistant coating, but also the state where the sealing agent powder is geometrically caught by the corrosion-resistant coating and does not fall off. .

上記構成を有する耐食性被膜を採用した高温部材は、使用時の高温雰囲気を利用して耐食性被膜の気孔を封孔することが可能であるため、事前の焼成工程を省略することができる。   In the high temperature member employing the corrosion resistant coating having the above structure, the pores of the corrosion resistant coating can be sealed by using the high temperature atmosphere at the time of use, so that the preliminary firing step can be omitted.

また、本発明の耐食性被膜は、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜であって、表面に存在する気孔の一部又は全部が、上記した封孔剤で満たされていることを特徴とする。 The corrosion-resistant coating of the present invention is a corrosion-resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2, and some or all of the pores present on the surface are It is characterized by being filled with the sealing agent.

上記構成を有する耐食性被膜を採用した高温部材は、封孔剤が耐食性被膜の気孔内に固定されているため、移送中や使用箇所への設置の際に、封孔剤層が脱落したり、破損したりする事態を効果的に回避できる。   The high-temperature member adopting the corrosion-resistant coating having the above-mentioned configuration, the sealing agent is fixed in the pores of the corrosion-resistant coating, so that the sealing agent layer may fall off during the transfer or the installation at the place of use, You can effectively avoid the situation of damage.

本発明の耐食性被膜の製造方法は、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜上に、上記した封孔剤塗布液を塗布することを特徴とする。 The method for producing a corrosion-resistant coating of the present invention is characterized by applying the above-mentioned sealing agent coating liquid onto a corrosion-resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2. And

本発明の耐食性被膜の製造方法においては、封孔剤塗布液の塗布後に焼成する工程を有することが好ましい。   The method for producing a corrosion-resistant coating of the present invention preferably has a step of baking after applying the sealing agent coating liquid.

本発明の高温部材は、基材の表面に、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜を有し、上記した封孔剤からなる粉末が前記耐食性被膜の表面に付着していることを特徴とする。 The high temperature member of the present invention has, on the surface of the base material, a corrosion resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2, and the powder containing the above-mentioned sealing agent is It is characterized in that it is attached to the surface of the corrosion resistant coating.

また、本発明の高温部材は、基材の表面に、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜を有し、耐食性被膜の表面に存在する気孔の一部又は全部が、上記した封孔剤で満たされていることを特徴とする。 The high-temperature member of the present invention has a corrosion-resistant coating film containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2 on the surface of the base material, and is present on the surface of the corrosion-resistant coating film. A part or all of the pores are filled with the above-mentioned sealing agent.

本発明の高温部材の製造方法は、基材上にZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜を形成する工程と、耐食性被膜上に上記した封孔剤塗布液を塗布する工程とを有することを特徴とする。なお、封孔剤塗布後に封孔剤塗布液を乾燥させることが好ましい。 The method for manufacturing a high-temperature member of the present invention includes the steps of forming a corrosion-resistant coating film containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2 on a base material, and performing the above-mentioned processing on the corrosion-resistant coating film. And a step of applying a sealing agent coating liquid. It is preferable to dry the coating liquid for the sealing agent after the coating of the sealing agent.

本発明の高温部材の製造方法においては、封孔剤塗布液の塗布後に焼成する工程を有することが好ましい。なお「封孔剤塗布液の塗布後に焼成」とは、封孔剤塗布液を乾燥した後に焼成する場合を含む。   The method for producing a high-temperature member of the present invention preferably has a step of baking after applying the sealing agent coating liquid. In addition, "baking after applying the sealing agent coating liquid" includes the case where the sealing agent coating liquid is dried and then baked.

試料No.10の耐食性被膜の×2000でのSEM観察及びEDS分析の結果を示す写真である。Sample No. It is a photograph which shows the result of SEM observation and EDS analysis in x2000 of 10 corrosion-resistant coatings. 試料No.10の耐食性被膜の×500でのSEM観察の結果を示す写真である。Sample No. It is a photograph which shows the result of SEM observation of the corrosion-resistant film of 10 at x500. 試料No.18の耐食性被膜の×500でのSEM観察の結果を示す写真である。Sample No. It is a photograph which shows the result of SEM observation of 18 corrosion resistant coatings at x500.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明の封孔剤は、耐食性被膜に存在する気孔を封孔するものである。本発明の封孔剤を適用できる耐食性被膜は特に制限はなく、例えばZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜の封孔剤として使用できる。 The pore-sealing agent of the present invention seals pores existing in the corrosion-resistant coating. The corrosion resistant coating to which the sealing agent of the present invention can be applied is not particularly limited, and for example, it can be used as a sealing agent for a corrosion resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2 .

封孔剤を構成するガラスは、モル%で、Bi 10〜50%、ZnO 10〜50%、B 0〜25%、SiO 0〜40%、Al 0〜30%、MgO+CaO+SrO+BaO 0〜40%、LiO+NaO+KO 0〜20%を含有する。ガラス組成を上記のように限定した理由を以下に説明する。なお以下の記載において「%」はモル%を意味する。 The glass constituting the pore-sealing agent is, in mol%, Bi 2 O 3 10 to 50%, ZnO 10 to 50%, B 2 O 3 0 to 25%, SiO 2 0 to 40%, Al 2 O 3 0 to 0%. 30%, MgO + CaO + SrO + BaO 0~40%, Li 2 O + Na 2 O + K 2 containing O 0 to 20%. The reason for limiting the glass composition as described above will be described below. In the following description, "%" means mol%.

Biは、修飾酸化物または中間酸化物としてガラス形成に寄与する成分であり、またガラスの粘度を下げて軟化流動する温度を低くするための成分である。Biの含有量が多すぎると軟化流動する温度が下がりすぎてしまい、耐食性被膜の表面から流失してしまう恐れがある。一方、少なすぎると軟化流動する温度が高くなって、十分に封孔することができなくなるおそれがある。Biの含有量は、10〜50%であり、15〜45%、20〜41%、特に26〜38%であることが好ましい。 Bi 2 O 3 is a component that contributes to glass formation as a modified oxide or an intermediate oxide, and is a component that lowers the viscosity of the glass and lowers the softening flow temperature. If the content of Bi 2 O 3 is too large, the softening and flowing temperature may be too low, and the Bi 2 O 3 may be washed away from the surface of the corrosion resistant coating. On the other hand, if the amount is too small, the softening and flowing temperature becomes high, and there is a possibility that sufficient sealing cannot be achieved. The content of Bi 2 O 3 is 10 to 50%, preferably 15 to 45%, 20 to 41%, and particularly preferably 26 to 38%.

ZnOは、中間酸化物としてガラス形成に寄与する成分である。また、ガラスの粘度を下げて軟化流動する温度を低くするための成分である。ZnOの含有量が多すぎると失透しやすくなり軟化流動しにくくなる。一方、少なすぎると、ガラス化しにくくなる。ZnOの含有量は10〜50%であり、14〜45%、18〜40%、特に21〜35%であることが好ましい。   ZnO is a component that contributes to glass formation as an intermediate oxide. It is also a component for lowering the viscosity of the glass and lowering the softening and flowing temperature. If the content of ZnO is too large, devitrification is likely to occur, and softening and flow will be difficult. On the other hand, if the amount is too small, vitrification becomes difficult. The ZnO content is 10 to 50%, preferably 14 to 45%, 18 to 40%, and particularly preferably 21 to 35%.

は、ガラスの網目形成酸化物である。また、ガラスの粘度を下げて軟化流動する温度を低くするための成分であるが、腐食性、酸化性のガスと反応しやすく、封孔剤の寿命を短くしてしまう成分である。Bの含有量が多すぎると封孔剤の寿命が短くなりやすい。また、耐水性が低くなり通常湿度での取扱いが難しくなる。Bの含有量は0〜25%であり、1〜23%、3〜22%、特に10〜19%であることが好ましい。 B 2 O 3 is a glass network forming oxide. Further, it is a component for lowering the temperature of softening and flowing by lowering the viscosity of glass, but it is a component that easily reacts with corrosive and oxidizing gases and shortens the life of the sealing agent. If the content of B 2 O 3 is too large, the life of the sealing agent tends to be shortened. In addition, the water resistance becomes low, and handling at normal humidity becomes difficult. The content of B 2 O 3 is 0 to 25%, preferably 1 to 23%, 3 to 22%, and particularly preferably 10 to 19%.

上述した通り、ZnOやBは、ガラスの粘度を下げて軟化流動する温度を低くするための成分であるが、軟化流動する温度を低下させる効果がBiよりも小さい。このため、Biと共にこれらの成分を適量含有させることにより、ガラスの軟化流動する温度を適正化することが可能になる。ZnO+Bが多すぎると、軟化流動する温度が下がりすぎて、封孔剤が被膜と反応したり、被膜表面から脱落したりするおそれがある。一方、少なすぎると、軟化流動する温度が高くなって、十分に封孔することができなくなるおそれがある。ZnO+Bは、10〜70%、12〜60%、14〜50%、特に15〜45%であることが好ましい。 As described above, ZnO and B 2 O 3 are components for lowering the viscosity of glass and lowering the softening flow temperature, but the effect of lowering the softening flow temperature is smaller than that of Bi 2 O 3 . Therefore, by containing an appropriate amount of these components together with Bi 2 O 3 , it becomes possible to optimize the softening and flowing temperature of the glass. If the amount of ZnO + B 2 O 3 is too much, the softening and flowing temperature may be too low, and the pore-sealing agent may react with the coating film or may drop from the coating surface. On the other hand, if the amount is too small, the softening and flowing temperature becomes high, and there is a possibility that sufficient sealing cannot be achieved. ZnO + B 2 O 3 is 10% to 70%, 12-60%, 14-50%, particularly preferably 15% to 45%.

Bi−Bは、0〜40%、1〜37%、3〜35%、特に5〜27%であることが好ましい。Bi−Bが大きすぎるとガラス化しにくくなる。また、軟化流動する温度が下がりすぎて、封孔剤が被膜と反応したり、被膜表面から脱落したりするおそれがある。 Bi 2 O 3 -B 2 O 3 is 0-40%, 1-37%, 3-35%, particularly preferably 5-27%. If Bi 2 O 3 -B 2 O 3 is too large difficult to vitrify. Further, the softening and flowing temperature may be too low, and the pore-sealing agent may react with the coating or may fall off the coating surface.

SiOは、ガラスの網目形成酸化物であり、ガラス形成に寄与すると同時に耐水性を高める成分である。SiOの含有量が多すぎると失透しやすくなる。SiOの含有量は0〜40%であり、9〜30%、特に14〜22%であることが好ましい。 SiO 2 is a glass network-forming oxide, and is a component that contributes to glass formation and at the same time enhances water resistance. If the content of SiO 2 is too large, devitrification tends to occur. The content of SiO 2 is 0 to 40%, preferably 9 to 30%, and particularly preferably 14 to 22%.

Alは、耐水性を高め、ガラスの粘度を高める成分である。Alの含有量が多すぎると失透しやすくなり、また軟化流動しにくくなる。Alの含有量は0〜30%であり、0.5〜20%、特に1〜10%であることが好ましい。 Al 2 O 3 is a component that enhances water resistance and viscosity of glass. If the content of Al 2 O 3 is too large, devitrification is likely to occur, and softening and flow will be difficult. The content of Al 2 O 3 is 0 to 30%, preferably 0.5 to 20%, particularly preferably 1 to 10%.

MgO+CaO+SrO+BaOは0〜40%であり、1〜30%、2〜20%、特に3〜10%であることが好ましい。MgO+CaO+SrO+BaOが多すぎると失透しやすくなり軟化流動しにくくなる。   MgO + CaO + SrO + BaO is 0 to 40%, preferably 1 to 30%, 2 to 20%, and particularly preferably 3 to 10%. If the amount of MgO + CaO + SrO + BaO is too large, devitrification is likely to occur, and softening and fluidization are difficult.

MgOは、ガラスの溶融温度を低下させる成分である。MgOの含有量が多すぎると失透しやすくなり軟化流動しにくくなる。MgOの含有量は0〜40%、0〜30%、特に0〜20%であることが好ましい。   MgO is a component that lowers the melting temperature of glass. If the content of MgO is too large, devitrification is likely to occur, and softening and flow will be difficult. The content of MgO is preferably 0 to 40%, 0 to 30%, and particularly preferably 0 to 20%.

CaOは、ガラスの溶融温度を低下させる成分である。CaOの含有量が多すぎると失透しやすくなり軟化流動しにくくなる。CaOの含有量は0〜40%、0〜30%、特に0〜20%であることが好ましい。   CaO is a component that lowers the melting temperature of glass. If the content of CaO is too large, devitrification is likely to occur, and softening and flow will be difficult. The content of CaO is preferably 0 to 40%, 0 to 30%, and particularly preferably 0 to 20%.

SrOは、ガラスの溶融温度を低下させる成分である。SrOの含有量が多すぎると失透しやすくなり軟化流動しにくくなる。SrOの含有量は0〜40%、0〜30%、特に0〜20%であることが好ましい。   SrO is a component that lowers the melting temperature of glass. If the content of SrO is too large, devitrification is likely to occur, and softening and flow will be difficult. The SrO content is preferably 0 to 40%, 0 to 30%, and particularly preferably 0 to 20%.

BaOは、ガラスの溶融温度を低下させる効果の大きい成分である。BaOの含有量が多すぎると失透しやすくなり軟化流動しにくくなる。BaOの含有量は0〜40%、1〜30%、特に2〜20%であることが好ましい。   BaO is a component that has a large effect of lowering the melting temperature of glass. When the content of BaO is too large, devitrification is likely to occur, and softening and flow becomes difficult. The content of BaO is preferably 0 to 40%, 1 to 30%, and particularly 2 to 20%.

LiO、NaO及びKOは、ガラスの粘度を下げて軟化流動する温度を低くするための成分であるが、高温腐食の原因となってしまう。LiO+NaO+KOは0〜20%であり、0〜15%、0.1〜10%、特に1〜5%であることが好ましい。なお、LiOの含有量は0〜20%、0〜15%、0〜10%、特に0.1〜5%であることが好ましい。NaOの含有量は0〜20%、0〜15%、0.01〜10%、特に0.1〜5%であることが好ましい。KOの含有量は0〜20%、0.01〜10%、特に0.1〜5%であることが好ましい。 Li 2 O, Na 2 O, and K 2 O are components for lowering the viscosity of glass and lowering the temperature at which it softens and flows, but it causes high-temperature corrosion. Li 2 O + Na 2 O + K 2 O is 0 to 20%, preferably 0 to 15%, 0.1 to 10%, and particularly preferably 1 to 5%. The content of Li 2 O is preferably 0 to 20%, 0 to 15%, 0 to 10%, and particularly preferably 0.1 to 5%. The content of Na 2 O is preferably 0 to 20%, 0 to 15%, 0.01 to 10%, and particularly preferably 0.1 to 5%. The content of K 2 O is preferably 0 to 20%, 0.01 to 10%, and particularly preferably 0.1 to 5%.

ガラスに、上記成分以外にも下記の成分を含有させることができる。   The glass may contain the following components in addition to the above components.

Feは、ガラスを安定化させ、失透を抑制する成分である。Feの含有量が多すぎると逆に失透しやすくなる。Feの含有量は0〜10%、0.1〜5%、特に0.3〜3%であることが好ましい。 Fe 2 O 3 is a component that stabilizes the glass and suppresses devitrification. On the contrary, when the content of Fe 2 O 3 is too large, devitrification is likely to occur. The content of Fe 2 O 3 is preferably 0 to 10%, 0.1 to 5%, and particularly 0.3 to 3 %.

所望の特性を損なわない範囲で、P、TiO、MnO、CoO、NiO、CuO、Y、ZrO、SnO、La、CeO等をそれぞれ10%まで含有させても構わない。 Within a range not to impair the desired properties, P 2 O 5, TiO 2 , MnO 2, CoO, NiO, CuO, Y 2 O 3, ZrO 2, SnO 2, La 2 O 3, CeO 2 or the like up to 10%, respectively It may be contained.

PbOは、中間酸化物としてガラス形成に寄与する成分であり、またガラスの粘度を下げて軟化流動する温度を低くするための成分であるが、環境負荷の高い物質として挙げられている。そのため、PbOの含有量は、10%未満、1%未満、実質的に含有しないことが特に好ましい。ここで「実質的に含有しない」とは、PbOを意図的にガラス中に添加しないという意味であり、不可避的不純物まで完全に排除するということを意味するものではない。より客観的には、不純物を含めたこれらの成分の含有量が、0.1%未満であるということを意味する。   PbO is a component that contributes to glass formation as an intermediate oxide and a component that lowers the viscosity of glass and lowers the temperature at which it softens and flows, but it is mentioned as a substance having a high environmental load. Therefore, it is particularly preferable that the content of PbO is less than 10%, less than 1%, and substantially not contained. Here, "substantially free of" means that PbO is not intentionally added to the glass, and does not mean that even unavoidable impurities are completely removed. More objectively, it means that the content of these components including impurities is less than 0.1%.

封孔剤を構成するガラスは、平均粒径が0.1〜500μm、特に1〜100μmのガラス粉末であることが好ましい。ここで「平均粒径」とは、レーザー回折散乱法によって任意の粉末の粒径を測定した際、粒子の体積基準で算出されるD50で定義されるものである。   The glass constituting the pore-sealing agent is preferably a glass powder having an average particle diameter of 0.1 to 500 μm, particularly 1 to 100 μm. Here, the “average particle size” is defined as D50 calculated on the volume basis of particles when the particle size of an arbitrary powder is measured by a laser diffraction scattering method.

本発明の封孔剤塗布液は、封孔剤を各種樹脂や塗料、有機溶媒、ゾルゲル液、水ガラス、水などの無機溶媒と混ぜてペースト化又はスラリー化したものを指す。ペースト化又はスラリー化することにより、封孔剤を耐食性被膜上に均一に塗布し易くなる。また樹脂や塗料、ゾルゲル液には、封孔剤が軟化して耐食性被膜から脱落しなくなるまでの間、封孔剤を被膜上に固定させる働きがある。このような樹脂や塗料、ゾルゲル液、水ガラスとして、例えば不飽和ポリエステル樹脂、エポキシ樹脂、ポリビニルブチラール、ポリビニルアルコール等のビニル系樹脂、ポリブチルメタアクリレート、ポリメチルメタアクリレート、ポリエチルメタアクリレート等のアクリル系樹脂、エチルセルロース、ニトロセルロース等のセルロース系樹脂、アミド系樹脂、シリコーン樹脂、ポリチタノカルボキシルシラン溶液、テトラエトキシシランなどの金属アルコキシドやその部分縮合物の溶液、JIS K1408に規定の珪酸ナトリウム1号、2号、3号等を使用することができる。   The sealing agent coating liquid of the present invention refers to a paste or slurry prepared by mixing the sealing agent with various resins, paints, organic solvents, sol-gel solutions, water glass, water and other inorganic solvents. By making it into a paste or a slurry, it becomes easy to uniformly apply the pore-sealing agent onto the corrosion-resistant coating. In addition, the resin, the paint, and the sol-gel liquid have a function of fixing the pore-sealing agent on the coating until the pore-sealing agent softens and does not fall off the corrosion-resistant coating. Examples of such resins and paints, sol-gel liquids, and water glass include unsaturated polyester resins, epoxy resins, polyvinyl butyral, vinyl resins such as polyvinyl alcohol, polybutyl methacrylate, polymethyl methacrylate, polyethyl methacrylate, and the like. Acrylic resins, cellulose resins such as ethyl cellulose and nitrocellulose, amide resins, silicone resins, polytitanocarboxyl silane solutions, solutions of metal alkoxides such as tetraethoxysilane and partial condensates thereof, sodium silicate specified in JIS K1408. No. 1, No. 2, No. 3, etc. can be used.

また、封孔剤が溶融状態になり、耐食性被膜に浸透する際の浸透性を促進させるために、封孔剤塗布液にホウ酸粉末や酸化ホウ素粉末を少量添加しても良い。   In addition, a small amount of boric acid powder or boron oxide powder may be added to the sealing agent coating liquid in order to promote the permeability when the sealing agent becomes in a molten state and penetrates into the corrosion resistant coating.

本発明の耐食性被膜は、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜である。この種の耐食性被膜は、例えば500〜1000℃の酸素や硫黄酸化物、硫化水素などの腐食性、酸化性の燃焼ガス雰囲気に対して耐食性を有し得るものである。 The corrosion-resistant coating of the present invention is a corrosion-resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2 . This type of corrosion-resistant coating can have corrosion resistance to a corrosive or oxidizing combustion gas atmosphere of oxygen, sulfur oxides, hydrogen sulfide, etc. at 500 to 1000 ° C., for example.

耐食性被膜の例として、安定化ZrOを主たる構成成分とする耐食性被膜(以下、安定化ZrO系耐食性被膜という)が挙げられる。安定化ZrOは、ZrOを主成分とし、Y、MgO、CaO、SiO、CeO、Yb、Dy、HfO等から選ばれた1種類以上の安定化剤を添加したものである。具体的には、ZrOの含有量が85質量%以上、好ましくは85〜95質量%、安定化剤の含有量が15質量%以下、好ましくは5〜15質量%であるものを意味する。ZrOの含有量が85質量%以上であれば、被膜の耐食性が確保できるとともに、プラズマ溶射後の冷却過程において1000℃付近で発生するZrOの正方晶や立方晶から単斜晶への相転移も抑制することができる。なお、ZrOの含有量が85質量%よりも少ないと、被膜の耐食性が低下してしまう。 Examples of the corrosion resistant coating include a corrosion resistant coating containing stabilized ZrO 2 as a main constituent (hereinafter referred to as a stabilized ZrO 2 -based corrosion resistant coating). Stabilized ZrO 2 contains ZrO 2 as a main component and is one or more kinds of stable materials selected from Y 2 O 3 , MgO, CaO, SiO 2 , CeO 2 , Yb 2 O 3 , Dy 2 O 3 , HfO 2 and the like. The agent is added. Specifically, it means that the content of ZrO 2 is 85% by mass or more, preferably 85 to 95% by mass, and the content of the stabilizer is 15% by mass or less, preferably 5 to 15% by mass. When the content of ZrO 2 is 85% by mass or more, the corrosion resistance of the coating can be ensured, and the phase of tetragonal or cubic to monoclinic ZrO 2 which occurs at around 1000 ° C. in the cooling process after plasma spraying. Metastasis can also be suppressed. If the content of ZrO 2 is less than 85% by mass, the corrosion resistance of the coating will be reduced.

耐食性被膜の気孔率は5%以下、特に4%以下であることが好ましい。耐食性被膜を緻密にすることによって、酸性ガスが被膜を透過することによって生じる基材の腐食を一層防止することが可能になる。耐食性被膜の気孔率が高すぎると、封孔剤によって気孔を完全に封孔することが難しくなり、酸性ガスの透過抑制が困難になる。ここで「気孔率が5%以下」とは、耐食性被膜の断面を走査型電子顕微鏡により倍率1000倍で観察した際に、観察画面の面積に対する表面の割れや空隙の総面積の割合が5%以下であることを意味する。   The porosity of the corrosion resistant coating is preferably 5% or less, more preferably 4% or less. By making the corrosion-resistant coating dense, it is possible to further prevent the corrosion of the base material caused by the permeation of the acidic gas through the coating. If the porosity of the corrosion-resistant coating is too high, it becomes difficult to completely seal the pores with the pore-sealing agent, and it becomes difficult to suppress the permeation of the acid gas. Here, "porosity of 5% or less" means that the ratio of the total area of surface cracks and voids to the area of the observation screen is 5% when the cross section of the corrosion resistant coating is observed with a scanning electron microscope at a magnification of 1000 times. It means that

耐食性被膜の膜厚は10〜1000μm、10〜500μm、50〜400μm、特に70〜300μmであることが好ましい。耐食性被膜の膜厚が小さすぎると、酸性ガスの透過抑制が困難になり易い。一方、耐食性被膜の膜厚が大きすぎると、熱サイクルによって発生する熱応力が大きくなり、耐食性被膜が剥離しやすくなる。なお耐食性被膜の気孔率は、溶射粉末(安定化ZrO粉末や無機ガラス粉末)の粒径を変えることによって調整することができる。 The thickness of the corrosion resistant coating is preferably 10 to 1000 μm, 10 to 500 μm, 50 to 400 μm, and particularly preferably 70 to 300 μm. If the thickness of the corrosion-resistant coating is too small, it will be difficult to suppress the permeation of acidic gas. On the other hand, if the thickness of the corrosion-resistant coating is too large, the thermal stress generated by the thermal cycle increases, and the corrosion-resistant coating easily peels off. The porosity of the corrosion-resistant coating can be adjusted by changing the particle size of the sprayed powder (stabilized ZrO 2 powder or inorganic glass powder).

本発明の高温部材は、上述の耐食性被膜が形成されている。尚、高温部材本体(基材)の材料としては、Fe、Ni、Co、Crの少なくとも1つを主成分とする金属材料が好ましい。また耐食性被膜は基材上に直接形成されることが好ましいが、密着性等を向上させる目的で、基材と耐食性被膜の間に1層又は2層以上の下地層を設けても差し支えない。   The high temperature member of the present invention is formed with the above-mentioned corrosion resistant coating. The material of the high temperature member body (base material) is preferably a metal material containing at least one of Fe, Ni, Co and Cr as a main component. The corrosion-resistant coating is preferably formed directly on the substrate, but one or more underlayers may be provided between the substrate and the corrosion-resistant coating for the purpose of improving adhesion and the like.

例えばSUSからなる基材上に、上記した安定化ZrO系耐食性被膜を形成する場合、下地層として、例えばM−Cr−Al−Y系合金(M=Ni、Co、Feの少なくとも1種)からなる層を設けることが好ましい。M−Cr−Al−Y系合金は、耐高温酸化性や耐高温腐食性に優れた性質を有するNiあるいはCo等を主成分とし、Cr、Al及びYを添加した合金である。この種の合金は、SUS及び安定化ZrO系耐食性被膜の双方に密着し易いという特徴がある。 For example, when the above-mentioned stabilized ZrO 2 -based corrosion resistant coating is formed on a base material made of SUS, as an underlayer, for example, an M-Cr-Al-Y-based alloy (M = Ni, Co, Fe at least one kind) is used. It is preferable to provide a layer consisting of The M-Cr-Al-Y-based alloy is an alloy containing Ni, Co, or the like as a main component, which has excellent high temperature oxidation resistance and high temperature corrosion resistance, and Cr, Al, and Y added thereto. This type of alloy is characterized in that it easily adheres to both SUS and the stabilized ZrO 2 -based corrosion resistant coating.

下地層の気孔率は1%以下であることが好ましい。酸性ガスの透過抑制の観点から、下地層の気孔率は低いほど有利になる。   The porosity of the underlayer is preferably 1% or less. From the viewpoint of suppressing the permeation of acidic gas, the lower the porosity of the underlayer, the more advantageous.

下地層の膜厚は10〜500μm、特に50〜400μm、さらには70〜350μmであることが好ましい。酸性ガスの透過抑制の観点から、下地層の膜厚は厚いほど有利になる。また下地層は、一般に基材と耐食性被膜の界面に生じる熱膨張特性の相違に起因した熱応力を緩和する効果を有するが、下地層の膜厚が小さすぎると熱応力の緩和効果を得難くなる。一方、下地層の膜厚が大きすぎると、発電設備内部の熱サイクル等によって発生する熱応力が大きくなり、下地層が剥離し易くなる。なお下地層の気孔率は、溶射するM−Cr−Al−Y系合金粉末等の粒径を変えることによって調整することができる。   The thickness of the underlayer is preferably 10 to 500 μm, particularly 50 to 400 μm, and further preferably 70 to 350 μm. From the viewpoint of suppressing the permeation of acid gas, the thicker the underlayer, the more advantageous. Further, the underlayer generally has an effect of relaxing the thermal stress caused by the difference in the thermal expansion characteristics generated at the interface between the base material and the corrosion resistant film, but if the film thickness of the underlayer is too small, it is difficult to obtain the effect of relaxing the thermal stress. Become. On the other hand, if the film thickness of the underlayer is too large, the thermal stress generated by the thermal cycle inside the power generation facility becomes large, and the underlayer easily peels off. The porosity of the underlayer can be adjusted by changing the particle size of the sprayed M-Cr-Al-Y alloy powder or the like.

高温部材は、蒸気や空気等の流体を介して運動エネルギーや熱エネルギーを回収して発電を行う火力発電のタービンや伝熱管であることが好ましい。ただしこれらに限定されるものでない。例えば、各種エンジン等にも好適である。   The high temperature member is preferably a turbine or a heat transfer tube for thermal power generation that recovers kinetic energy and thermal energy via a fluid such as steam or air to generate power. However, it is not limited to these. For example, it is suitable for various engines.

次に本発明の封孔剤を利用した高温部材の製造方法を、SUSからなる基材上に、M−Cr−Al−Y系合金からなる下地層を介して、安定化ZrO系耐食性被膜を形成する場合を例にとって説明する。なお、以下の説明において、基材として金属管を用いれば、耐食性被膜付き伝熱管を作製することができる。なお、本発明の製造方法は以下の説明に制限されるものではない。当然ながら下地層の形成が必須要件でないことは言うまでもない。 Next, a method for producing a high temperature member using the sealing agent according to the present invention will be described in which a stabilized ZrO 2 system corrosion resistant coating is formed on a substrate made of SUS via an underlayer made of an M—Cr—Al—Y system alloy. An example will be described in which the case is formed. In the following description, if a metal tube is used as the base material, a heat transfer tube with a corrosion resistant coating can be manufactured. The manufacturing method of the present invention is not limited to the following description. Of course, it goes without saying that the formation of the underlayer is not an essential requirement.

まず、SUSからなる基材上に、M−Cr−Al−Y系合金からなる下地層を形成する。   First, a base layer made of an M-Cr-Al-Y-based alloy is formed on a base material made of SUS.

下地層の形成は、特に制限されるものではないが、高速フレーム溶射(HVOF)のようなガス溶射によって形成されることが好ましい。高速フレーム溶射を用いることで、基材であるSUSとの密着性が良く、気孔率も低い下地層を得やすくなる。またこの際に用いる溶射粉末には、M−Cr−Al−Y系合金からなる粉末を使用することが好ましい。M−Cr−Al−Y系合金については既述の通りであり、ここではその説明を省略する。また溶射粉末の平均粒径は10〜75μm、10〜53μm、特に10〜45μmであることが好ましい。溶射粉末の粒径が大きいと、ガス溶射によって形成される下地層の気孔率が高くなる。また溶射粉末の粒径が小さいと、溶射粉末をガスあるいはプラズマに供給する噴出口(ポート)の詰まりが発生しやすくなり、任意の膜厚の溶射被膜の形成に時間がかかり、結果的に溶射コストが高くなり易い。   The formation of the underlayer is not particularly limited, but is preferably formed by gas spraying such as high speed flame spraying (HVOF). By using high-speed flame spraying, it is easy to obtain an underlayer having good adhesion to SUS which is a base material and low porosity. Further, as the thermal spraying powder used at this time, it is preferable to use a powder made of an M-Cr-Al-Y-based alloy. The M-Cr-Al-Y-based alloy is as described above, and the description thereof is omitted here. The average particle size of the sprayed powder is preferably 10 to 75 μm, 10 to 53 μm, and particularly 10 to 45 μm. When the particle size of the sprayed powder is large, the porosity of the underlayer formed by gas spraying becomes high. If the particle size of the sprayed powder is small, the jet port (port) for supplying the sprayed powder to gas or plasma is likely to be clogged, and it takes time to form a sprayed coating having an arbitrary thickness, resulting in spraying. The cost tends to be high.

次に、M−Cr−Al−Y系合金からなる下地層上に、安定化ZrO系耐食性被膜を形成する。 Next, a stabilized ZrO 2 based corrosion resistant coating is formed on the underlayer made of the M—Cr—Al—Y based alloy.

安定化ZrO系耐食性被膜は、プラズマ溶射法によって形成することができる。プラズマ溶射法としては大気圧プラズマ溶射法、真空プラズマ溶射法等の種々の方法を用いることが可能である。この際に用いる溶射粉末には、安定化ZrO粉末を使用することが好ましい。なお耐食性被膜の形成は、プラズマ溶射以外の溶射技術(例えばガス溶射)、コールドスプレー、エアロゾルデポジション法等の方法で形成することも可能である。 The stabilized ZrO 2 -based corrosion resistant coating can be formed by a plasma spraying method. As the plasma spraying method, various methods such as atmospheric pressure plasma spraying method and vacuum plasma spraying method can be used. As the thermal spraying powder used at this time, it is preferable to use stabilized ZrO 2 powder. The corrosion resistant coating may be formed by a spraying technique other than plasma spraying (for example, gas spraying), cold spraying, aerosol deposition, or the like.

安定化ZrO粉末の平均粒径は10〜75μm、10〜53μm、特に10〜45μmであることが好ましい。安定化ZrO粉末の平均粒径が大きいと、プラズマ溶射によって形成される耐食性被膜の気孔率が高くなる。また安定化ZrO粉末の平均粒径が小さいと、溶射粉末をプラズマに供給する噴出口(ポート)の詰まりが発生しやすくなり、任意の膜厚の溶射被膜の形成に時間がかかり、結果的に溶射コストが高くなり易い。 The stabilized ZrO 2 powder preferably has an average particle size of 10 to 75 μm, 10 to 53 μm, and particularly 10 to 45 μm. When the average particle size of the stabilized ZrO 2 powder is large, the porosity of the corrosion resistant coating formed by plasma spraying is high. Further, when the average particle diameter of the stabilized ZrO 2 powder is small, the jet port (port) for supplying the sprayed powder to the plasma is likely to be clogged, and it takes time to form a sprayed coating of an arbitrary thickness, resulting in Moreover, the spraying cost is likely to be high.

続いて、安定化ZrO系耐食性被膜上に、封孔剤層を形成する。 Subsequently, a sealing agent layer is formed on the stabilized ZrO 2 -based corrosion resistant coating.

封孔剤層の形成は、例えば上記した封孔剤を含むペーストやスラリー(封孔剤塗布液)を刷毛塗りやスプレー等の方法で耐食性被膜上に塗布し、必要に応じてさらに乾燥させる。このようにして封孔剤層を形成することができる。なお、封孔剤としては、全体として上記の組成となるように組成や配合割合が調整された二種以上のガラス粉末を含むものを使用してもよい。また、封孔剤の形成は、スパッタリング、溶射等、封孔剤粉末が耐食性被膜から脱落しない方法であれば他の方法を採用することも可能である。   The sealing agent layer is formed, for example, by applying a paste or a slurry (sealing agent coating solution) containing the above-mentioned sealing agent on the corrosion-resistant coating by a method such as brush coating or spraying, and further drying if necessary. In this way, the sealing agent layer can be formed. In addition, as the pore-sealing agent, one containing two or more kinds of glass powders whose composition and mixing ratio are adjusted so as to have the above-mentioned composition as a whole may be used. The sealing agent can be formed by any other method such as sputtering or thermal spraying as long as the sealing agent powder does not fall off from the corrosion-resistant coating.

このようにして作製した高温部材の封孔剤層は、封孔剤粉末が耐食性被膜表面に付着した状態であり、未だ完全に気孔を塞いだ状態とはなっていないが、この状態で使用箇所に設置することが可能である。つまり、使用が開始されると高温雰囲気に晒されることになり、その熱によって封孔剤が軟化流動して耐食性被膜表面に存在する気孔を埋めるためである。   The sealing agent layer of the high-temperature member thus produced is in a state in which the sealing agent powder is adhered to the surface of the corrosion-resistant coating and is not yet in a state of completely closing the pores. It can be installed in. That is, when the use is started, it is exposed to a high temperature atmosphere, and the heat softens and flows the sealing agent to fill the pores existing on the surface of the corrosion resistant coating.

本発明の高温部材を作製するに当たり、封孔剤層を乾燥させた後(且つ、実使用の前)に焼成を行ってもよい。焼成条件としては、例えば300〜1000℃で10分〜10時間が好ましい。実使用の前に予め焼成しておくことにより、移送中や使用箇所への設置の際に、封孔剤層が脱落したり、破損したりすることを防止できる。   In producing the high temperature member of the present invention, firing may be performed after the sealing agent layer is dried (and before actual use). The firing conditions are preferably, for example, 300 to 1000 ° C. and 10 minutes to 10 hours. By pre-baking before actual use, it is possible to prevent the sealing agent layer from falling off or being damaged during transportation or installation at a use place.

以下、実施例に基づいて、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

[封孔剤の作製]
表1及び2は本発明の実施例(試料No.1〜17)を示している。
[Preparation of sealing agent]
Tables 1 and 2 show examples (Sample Nos. 1 to 17) of the present invention.

実施例の封孔剤試料は次のようにして作製した。まず表1及び2の組成となるように調合したガラスバッチを1000〜1200℃で1時間溶融した。次いでこれをフィルム状に成形した後、粉砕、分級して平均粒径50μmのガラス粉末からなる封孔剤試料を得た。   The sealing agent samples of the examples were prepared as follows. First, glass batches prepared to have the compositions shown in Tables 1 and 2 were melted at 1000 to 1200 ° C. for 1 hour. Next, this was molded into a film, crushed and classified to obtain a sealing agent sample made of glass powder having an average particle diameter of 50 μm.

なお軟化点は、示差熱分析装置を用い、山根正之著「はじめてガラスを作る人のために」に記載の方法に準じて測定した。   The softening point was measured using a differential thermal analyzer according to the method described in "For those who make glass for the first time" by Masayuki Yamane.

[高温部材の作製]
高温部材は次のようにして作製した。まず、SUS310S基材を脱脂、洗浄後、ブラスト処理を行い、Co−Ni−Cr−Al−Y系合金からなる平均粒径10〜45μmの合金粉末を高速フレーム溶射し、耐高温酸化性・耐高温腐食性に優れた下地層(Co−Ni−Cr−Al−Y合金層)を形成した。下地層の膜厚は50〜200μmであった。なお、下地層の膜厚は、マイクロメーターにて測定した。また、膜厚の調整は、まず溶射装置を基材と平行に移動させて溶射し、一回の溶射でどの程度の膜厚が得られるかをマイクロメーターで測定し、これを基にして溶射の回数を調節することにより行った。
[Fabrication of high temperature member]
The high temperature member was manufactured as follows. First, after degreasing and cleaning the SUS310S base material, blasting treatment is performed, and alloy powder of Co-Ni-Cr-Al-Y-based alloy having an average particle diameter of 10 to 45 μm is subjected to high-speed flame spraying for high-temperature oxidation resistance and resistance. An underlayer (Co-Ni-Cr-Al-Y alloy layer) excellent in high temperature corrosiveness was formed. The film thickness of the underlayer was 50 to 200 μm. The thickness of the underlayer was measured with a micrometer. To adjust the film thickness, first move the thermal spraying device in parallel with the base material to perform thermal spraying, measure with a micrometer how much film thickness can be obtained by one thermal spraying, and based on this, perform thermal spraying. It was performed by adjusting the number of times.

次に、平均粒径10〜45μmの8質量%Y−92質量%ZrO粉末を、下地層上に大気圧プラズマ溶射して耐食性被膜を形成した。耐食性被膜の膜厚は均一で50〜200μmであった。なお耐食性被膜の膜厚の調整及び測定はCo−Ni−Cr−Al−Y合金を溶射する際と同様の方法で行った。 Next, 8 mass% Y 2 O 3 -92 mass% ZrO 2 powder having an average particle diameter of 10 to 45 μm was plasma sprayed onto the underlayer at atmospheric pressure to form a corrosion resistant coating. The thickness of the corrosion resistant coating was uniform and was 50 to 200 μm. The adjustment and measurement of the film thickness of the corrosion resistant coating were carried out in the same manner as in the thermal spraying of Co-Ni-Cr-Al-Y alloy.

続いて、以下の方法で封孔剤層を耐食性被膜上に形成した。まず、ポリビニルブチラール樹脂と、シンナーと、封孔剤試料とを混合し、封孔剤ペーストを作製した。次に、耐食性被膜上に封孔剤ペーストを刷毛塗りによって塗布した後、600〜750℃で1時間焼成した。このようにして封孔剤で耐食性被膜が封孔された高温部材(高温部材試料No.1〜17)を得た。   Subsequently, a sealing agent layer was formed on the corrosion resistant coating by the following method. First, a polyvinyl butyral resin, a thinner, and a sealing agent sample were mixed to prepare a sealing agent paste. Next, a sealing agent paste was applied onto the corrosion resistant coating by brushing, and then baked at 600 to 750 ° C. for 1 hour. In this way, high temperature members (high temperature member samples No. 1 to 17) in which the corrosion resistant coating was sealed with the sealing agent were obtained.

また、封孔剤で耐食性被膜を封孔せず、その他の工程は高温部材試料No.1〜17と同様にして高温部材試料No.18を作製し、比較対象とした。   In addition, the corrosion-resistant coating was not sealed with a sealing agent, and the other steps were performed in the high temperature member sample No. High temperature member sample No. 18 was produced and used as a comparison target.

得られた高温部材試料No.1〜17について、封孔剤の被膜への浸透性を評価した。結果を表1及び2に示す。またSEM(走査電子顕微鏡)及びEDS(エネルギー分散型X線分析)の結果を図1〜3に示す。図1、2は実施例である高温部材試料No.10の観察、分析結果であり、図3は比較例である高温部材試料No.18の観察結果である。なお、図中1は封孔剤、2は耐食性被膜、3は下地層、4は樹脂を示している。   The obtained high temperature member sample No. For 1 to 17, the penetrability of the sealing agent into the coating film was evaluated. The results are shown in Tables 1 and 2. The results of SEM (scanning electron microscope) and EDS (energy dispersive X-ray analysis) are shown in FIGS. 1 and 2 are high-temperature member sample Nos. 10 is the result of observation and analysis, and FIG. 18 observation results. In the figure, 1 is a sealing agent, 2 is a corrosion resistant coating, 3 is a base layer, and 4 is a resin.

なお被膜への浸透性は、切断した試料を樹脂4に包埋し、切断面を研磨した後、切断面をSEM観察及びEDS分析を行った。耐食性被膜2内で封孔剤1に含まれている元素を検出した場合に浸透性を○、検出しなかった場合を×とした。   For the permeability to the coating, the cut sample was embedded in the resin 4, the cut surface was polished, and then the cut surface was observed by SEM and EDS analysis. When the element contained in the sealing agent 1 was detected in the corrosion resistant coating 2, the permeability was evaluated as ◯, and when not detected, it was evaluated as x.

その結果、封孔剤層を形成していない高温部材試料No.18は、図3から、耐食性被膜内に多数の気孔が存在していることがわかる。一方、本発明の実施例である高温部材試料No.1〜17は、表1及び2から明らかなように、封孔剤1が耐食性被膜2内に浸透していた。また、封孔剤1が耐食性被膜2に浸透していることが図1から、耐食性被膜2に少数の気孔しか存在していないことが図2から分かる。なお、試料No.10において、耐食性被膜2内に存在する気孔は外部と連通していないため、実用上問題ないと考えられる。   As a result, the high temperature member sample No. having no sealing agent layer was formed. As for No. 18, it can be seen from FIG. 3 that many pores are present in the corrosion resistant coating. On the other hand, the high temperature member sample No. which is an example of the present invention. 1 to 17, as is clear from Tables 1 and 2, the sealing agent 1 penetrated into the corrosion-resistant coating 2. Further, it can be seen from FIG. 1 that the pore-sealing agent 1 has penetrated into the corrosion-resistant coating 2 and from FIG. 2 that only a small number of pores are present in the corrosion-resistant coating 2. Sample No. In No. 10, it is considered that there is no problem in practical use because the pores existing in the corrosion resistant coating 2 do not communicate with the outside.

これらの事実は、本発明の封孔剤が高い封孔性を有していることを示している。   These facts show that the sealing agent of the present invention has a high sealing property.

本発明の封孔剤を使用した耐食性被膜は、高温燃焼ガスから、蒸気や空気等の流体を介して運動エネルギーや熱エネルギーを回収して発電を行う火力発電のタービンや伝熱管の保護膜として用いることが好ましい。具体的には、ガスタービン発電、石炭火力発電、石炭ガス化複合発電、石油火力発電、廃棄物発電、地熱発電等のタービンや伝熱管などの保護膜として好適である。ただし、これらに限定されるものでなく、各種エンジンなどの保護膜としても好適である。また本発明の高温部材は、ガスタービン発電、石炭火力発電、石炭ガス化複合発電、石油火力発電、廃棄物発電、地熱発電等のタービンや伝熱管、或いは各種エンジン等として好適である。   Corrosion-resistant coating using the sealing agent of the present invention, as a protective film of a turbine or heat transfer tube of thermal power generation that recovers kinetic energy and thermal energy from a high temperature combustion gas through a fluid such as steam or air to generate electricity. It is preferable to use. Specifically, it is suitable as a protective film for turbines and heat transfer tubes for gas turbine power generation, coal thermal power generation, coal gasification combined power generation, oil thermal power generation, waste power generation, geothermal power generation, and the like. However, it is not limited to these, and is suitable as a protective film for various engines. Further, the high-temperature member of the present invention is suitable as a turbine or heat transfer tube for gas turbine power generation, coal-fired power generation, coal gasification combined-cycle power generation, oil-fired power generation, waste power generation, geothermal power generation, various engines, or the like.

1 封孔剤
2 耐食性被膜
3 下地層
4 樹脂
1 Sealing agent 2 Corrosion resistant coating 3 Underlayer 4 Resin

Claims (11)

耐食性被膜の気孔を封孔するための封孔剤であって、モル%で、Bi 10〜50%、ZnO 10〜50%、B 0〜25%、SiO 0〜40%、Al 0〜30%、MgO+CaO+SrO+BaO 0〜40%、LiO+NaO+KO 0〜20%を含有するガラスからなることを特徴とする封孔剤。 A sealing agent for sealing the pores of a corrosion-resistant coating, which is, in mol%, Bi 2 O 3 10 to 50%, ZnO 10 to 50%, B 2 O 3 0 to 25%, SiO 2 0 to 40. %, Al 2 O 3 0-30%, MgO + CaO + SrO + BaO 0-40%, Li 2 O + Na 2 O + K 2 O 0-20%. ガラスが、組成として、モル%でBi 10〜50%、ZnO 10〜50%、B 0〜25%、SiO 0〜40%、Al 0〜30%、MgO+CaO+SrO+BaO 0〜40%、LiO+NaO+KO 0〜20%、ZnO+B 10〜70%、Bi−B 0〜40%、Fe 0〜10%を含有することを特徴とする請求項1に記載の封孔剤。 The composition of the glass is mol% of Bi 2 O 3 10 to 50%, ZnO 10 to 50%, B 2 O 3 to 25%, SiO 2 0 to 40%, Al 2 O 3 0 to 30%, MgO + CaO + SrO + BaO. 0~40%, Li 2 O + Na 2 O + K 2 O 0~20%, ZnO + B 2 O 3 10~70%, Bi 2 O 3 -B 2 O 3 0~40%, contains Fe 2 O 3 0~10% The sealing agent according to claim 1, wherein 請求項1又は2に記載の封孔剤を含むことを特徴とする封孔剤塗布液。   A sealing agent coating liquid comprising the sealing agent according to claim 1 or 2. ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜であって、請求項1又は2に記載の封孔剤からなる粉末が表面に付着していることを特徴とする耐食性被膜。 It is a corrosion resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2, and the powder comprising the sealing agent according to claim 1 or 2 adheres to the surface. Corrosion resistant coating. ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜であって、表面に存在する気孔の一部又は全部が、請求項1又は2に記載の封孔剤で満たされていることを特徴とする耐食性被膜。 A corrosion resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2 , wherein some or all of the pores present on the surface are the sealing holes according to claim 1 or 2. A corrosion resistant coating characterized by being filled with a chemical. ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜上に、請求項3に記載の封孔剤塗布液を塗布することを特徴とする耐食性被膜の製造方法。 4. Production of a corrosion-resistant coating film, which comprises applying the sealing agent coating liquid according to claim 3 on a corrosion-resistant coating film containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2. Method. 封孔剤塗布液の塗布後に焼成する工程を有することを特徴とする請求項6に記載の耐食性被膜の製造方法。   The method for producing a corrosion-resistant coating film according to claim 6, further comprising a step of baking after applying the sealing agent coating liquid. 基材の表面に、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜を有し、請求項1又は2に記載の封孔剤からなる粉末が前記耐食性被膜の表面に付着していることを特徴とする高温部材。 The powder comprising the sealing agent according to claim 1 or 2 has a corrosion-resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2 on the surface of the base material. A high temperature member characterized by being attached to the surface of a corrosion resistant coating. 基材の表面に、ZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜を有し、耐食性被膜の表面に存在する気孔の一部又は全部が、請求項1又は2に記載の封孔剤で満たされていることを特徴とする高温部材。 The surface of the base material has a corrosion resistant coating containing 50% by mass or more of one or more selected from ZrO 2 , Al 2 O 3 and SiO 2, and some or all of the pores present on the surface of the corrosion resistant coating are claimed. A high-temperature member filled with the sealing agent according to Item 1 or 2. 基材上にZrO、Al及びSiOから選ばれる1種以上を50質量%以上含む耐食性被膜を形成する工程と、前記耐食性被膜上に請求項3に記載の封孔剤塗布液を塗布する工程とを有することを特徴とする高温部材の製造方法。 The step of forming a corrosion-resistant coating film containing 50% by mass or more of one or more kinds selected from ZrO 2 , Al 2 O 3 and SiO 2 on a substrate, and the sealing agent coating liquid according to claim 3 on the corrosion-resistant coating film. And a step of coating the high temperature member. 封孔剤塗布液を塗布後に焼成する工程を有することを特徴とする請求項10に記載の高温部材の製造方法。   The method for manufacturing a high-temperature member according to claim 10, further comprising a step of baking the sealing agent coating liquid after coating.
JP2018194036A 2018-10-15 2018-10-15 Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same Pending JP2020063161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018194036A JP2020063161A (en) 2018-10-15 2018-10-15 Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194036A JP2020063161A (en) 2018-10-15 2018-10-15 Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same

Publications (1)

Publication Number Publication Date
JP2020063161A true JP2020063161A (en) 2020-04-23

Family

ID=70386751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194036A Pending JP2020063161A (en) 2018-10-15 2018-10-15 Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same

Country Status (1)

Country Link
JP (1) JP2020063161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185514A1 (en) * 2023-03-03 2024-09-12 Agc株式会社 Glass, glass powder, paste, fired product, and glass article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185514A1 (en) * 2023-03-03 2024-09-12 Agc株式会社 Glass, glass powder, paste, fired product, and glass article

Similar Documents

Publication Publication Date Title
US11549169B2 (en) Method for fabricating thermal barrier coating having self-repair and temperature-sensitive functions
KR100216242B1 (en) Glazing layer forming composition for hot coating of oven refractory and method of forming glazing layer
US8784979B2 (en) Thermally sprayed gastight protective layer for metal substrates
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
CN103484857B (en) Metallic matrix ceramic coating is prepared the method for nano modification amorphous ceramic coating
CN107406305A (en) Frit and the glass assembly sealed with the frit
CN115286944B (en) High-temperature corrosion-resistant glass ceramic composite coating and preparation method thereof
CA2847667A1 (en) Method for forming a smooth glaze-like coating on a substrate made of a ceramic matrix composite material containing sic, and part made of a ceramic material composite provided with such a coating
US9017764B2 (en) High temperature stable amorphous silica-rich aluminosilicates
CN110965005A (en) High-temperature corrosion resistant coating on surface of heating furnace radiation area collecting pipe and preparation method thereof
JP2020063161A (en) Sealing agent, coating solution for sealing agent, corrosion resistant coating, high temperature member, and methods for producing the same
WO2017098854A1 (en) Sealer, sealer coating solution, corrosion resistant film, high temperature member, and method for manufacturing high temperature member
JP2017052672A (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2018193606A (en) Sealer, sealer application liquid, corrosion-resistant film, high-temperature member, and methods for producing the same
JP2017190263A (en) Sealer, sealer coating liquid, anticorrosive coat, high temperature member and method for producing the same
WO2018159195A1 (en) Sealer, sealer application liquid, corrosion-resistant film, high-temperature member, and methods for producing same
JP2015183193A (en) Anticorrosive coating film, heat transfer pipe and production method thereof
WO2017043423A1 (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2017052670A (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2017052671A (en) Corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2017190264A (en) Sealer, sealer coating liquid, anticorrosive coat, high temperature member and method for producing the same
JP2017105666A (en) Sealer, sealer coating solution, corrosion resistant film, high temperature member, and method for manufacturing high temperature member
JP2017106066A (en) Sealant, sealant coating liquid, corrosion resistant film, high temperature member, and production method of high temperature member
WO2015053242A1 (en) Gas circulation member
JP2015183195A (en) Anticorrosive coating film, heat transfer pipe and production method thereof