JP2020060249A - Shaft sealing device and shaft sealing system - Google Patents

Shaft sealing device and shaft sealing system Download PDF

Info

Publication number
JP2020060249A
JP2020060249A JP2018191697A JP2018191697A JP2020060249A JP 2020060249 A JP2020060249 A JP 2020060249A JP 2018191697 A JP2018191697 A JP 2018191697A JP 2018191697 A JP2018191697 A JP 2018191697A JP 2020060249 A JP2020060249 A JP 2020060249A
Authority
JP
Japan
Prior art keywords
transport pipe
housing
drive shaft
rotary drive
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018191697A
Other languages
Japanese (ja)
Other versions
JP7131278B2 (en
Inventor
美幸 大塚
Miyuki Otsuka
美幸 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2018191697A priority Critical patent/JP7131278B2/en
Publication of JP2020060249A publication Critical patent/JP2020060249A/en
Application granted granted Critical
Publication of JP7131278B2 publication Critical patent/JP7131278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

To satisfy a requirement that measures for a problem of the leakage of powder in a transport pipe to the outside from a clearance between a rotating drive shaft and the transport pipe, and a problem of the intrusion of contaminations into the transport pipe are required.SOLUTION: This shaft sealing device for sealing a clearance between a transport pipe and a rotating drive shaft of transport means comprises a cylindrical housing which is constituted so as to allow the insertion of the rotating drive shaft. A gas supply port for supplying a gas into the housing is formed at the housing. On the inside of the housing, a spiral groove spiraling in an opposite direction to a rotation direction of the rotating drive shaft when viewed from the shaft sealing device toward the transport pipe is formed toward an end part of the transport pipe side from the gas supply port, and a spiral groove spiraling to a forward direction or an opposite direction with respect to the rotation direction is formed toward the gas supply port from an end part at a side opposite to the transport pipe.SELECTED DRAWING: Figure 1

Description

本発明は、輸送管と、該輸送管の端壁から該輸送管内に挿入される、該輸送管内で粉体を輸送するための輸送手段の回転駆動軸との間をシールする軸封装置及び軸封システムに関する。   The present invention relates to a shaft sealing device that seals between a transport pipe and a rotary drive shaft of a transport means inserted into the transport pipe from an end wall of the transport pipe for transporting powder in the transport pipe, and Regarding shaft seal system.

従来より、容器内部に設けた回転部材を回転させて粉体を撹拌するための容器と、該回転部材を回転させる回転駆動軸との間から粉体が漏れ出ないようにシールする技術が知られている。   BACKGROUND ART Conventionally, there is known a technique of rotating a rotating member provided inside a container to stir the powder and a seal for preventing the powder from leaking between a rotary drive shaft that rotates the rotating member. Has been.

特許文献1は、内部に撹拌手段を備えた粉体処理容器と、該撹拌手段を駆動するための該容器の端壁から挿通される回転駆動軸との間をシールする軸封装置であって、内部に空気室を有し、空気室内に回転駆動軸が挿通された状態で容器端壁の外壁面に気密的に配置されるハウジングと、空気室内に該容器の内部気圧よりも高い気圧の加圧空気を供給する加圧空気供給源と、空気室内の容器端壁面側で回転駆動軸に対して非接触で同軸的に配置され、回転駆動軸との間に加圧空気が通過可能な微細なシール間隙を形成する円筒状のシールカラーとを備えた軸封装置を開示する。   Patent Document 1 discloses a shaft sealing device that seals between a powder processing container having a stirring means inside and a rotary drive shaft inserted from an end wall of the container for driving the stirring means. , A housing that has an air chamber inside, and is hermetically disposed on the outer wall surface of the container end wall with the rotary drive shaft inserted in the air chamber, and an air chamber with a pressure higher than the internal pressure of the container. The pressurized air supply source that supplies pressurized air and the container end wall surface side in the air chamber are arranged coaxially in a non-contact manner with the rotary drive shaft, and the pressurized air can pass between the rotary drive shaft and the rotary drive shaft. Disclosed is a shaft sealing device having a cylindrical seal collar that forms a fine seal gap.

特許文献2は、粉粒状材料供給口を上向き開口状に備えたハウジング内に、混練ロータが回転自在に嵌装され、該ロータの駆動軸部に軸封ハウジングが外嵌され、軸封ハウジング内に固定リングが固着されると共に給気用環状空間が形成され、前記環状空間に供給された気体が前記駆動軸部と固定リングとの気体導通間隙を経て前記ハウジングと混練ロータの間隙からハウジング内に放出されるようになっている混練機ロータの軸封装置において、前記環状空間の気体供給路より軸端側に位置して軸封ハウジングに周溝が形成され、該周溝には駆動軸部に設けた円板が遊嵌されると共にグリース等の粘弾性体が充填されている、混練機ロータの軸封装置を開示する。   In Patent Document 2, a kneading rotor is rotatably fitted in a housing provided with a powdery and granular material supply port in an upward opening shape, and a shaft seal housing is externally fitted to a drive shaft portion of the rotor. A fixing ring is fixed to the fixing ring and an air supply annular space is formed, and the gas supplied to the annular space passes through a gas conduction gap between the drive shaft portion and the fixing ring to pass from the gap between the housing and the kneading rotor to the inside of the housing. In a shaft sealing device for a kneading machine rotor, which is designed to be discharged into a shaft, a peripheral groove is formed in a shaft sealing housing at a position closer to a shaft end than a gas supply passage in the annular space, and a drive shaft is formed in the peripheral groove. Disclosed is a shaft sealing device for a kneading machine rotor, in which a disc provided in the section is loosely fitted and a viscoelastic body such as grease is filled.

特開2007−239933号公報JP, 2007-239933, A 特開平06−055052号公報Japanese Patent Laid-Open No. 06-055052

輸送管内の粉体が、輸送手段の回転駆動軸と輸送管との間の隙間から外へ漏れ出る問題や、外気から輸送管内へのコンタミネーションの侵入の問題への対応が求められている。   It is required to deal with the problem that the powder in the transportation pipe leaks out through the gap between the rotary drive shaft of the transportation means and the transportation pipe, and the problem of contamination entering from the outside air into the transportation pipe.

そこで、本発明は、輸送管と、該輸送管の端壁から該輸送管内に挿入される、該輸送管内で粉体を輸送するための輸送手段の回転駆動軸との間をシールする軸封装置及び軸封システムを提供することを目的とする。   Therefore, the present invention provides a shaft seal for sealing between a transport pipe and a rotary drive shaft of a transport means for transporting powder in the transport pipe, which is inserted into the transport pipe from an end wall of the transport pipe. An object is to provide a device and a shaft sealing system.

本発明には以下の実施形態が含まれる。
〔1〕
輸送管と、前記輸送管の端壁から前記輸送管内に挿入される、前記輸送管内で粉体を輸送するための輸送手段の回転駆動軸との間をシールする軸封装置であって、
前記回転駆動軸が挿通するよう構成された円筒状のハウジング
を備え、
前記ハウジングは、前記回転駆動軸が前記ハウジング内に挿入されたときに前記回転駆動軸と前記ハウジングの内面との間に隙間が生じるように構成されており、
前記ハウジングには、前記ハウジング内に気体を供給するための気体供給口が形成され、
前記ハウジングの内面には、前記軸封装置から前記輸送管に向かって見たときの前記回転駆動軸の回転方向とは反対回りの螺旋溝が、前記気体供給口から前記輸送管側の端部に向けて形成され、且つ、前記回転方向と順回りまたは反対回りの螺旋溝が、前記輸送管と反対側の端部から前記気体供給口に向けて形成されている、
ことを特徴とする前記軸封装置。
〔2〕
前記気体供給口から前記輸送管側の端部までの前記隙間は、前記気体供給口から前記輸送管と反対側の端部までの前記隙間よりも大きい、〔1〕に記載の軸封装置。
〔3〕
前記気体供給口は、前記輸送管側の端部から、前記ハウジングの軸方向の長さの30〜70%、40〜60%、又は45〜55%の位置に形成されている、〔1〕又は〔2〕に記載の軸封装置。
〔4〕
前記ハウジングを覆うように構成されたカバーをさらに備える〔1〕〜〔3〕のいずれかに記載の軸封装置。
〔5〕
前記粉体はポリカーボネートの粉体である、〔1〕〜〔4〕のいずれかに記載の軸封装置。
〔6〕
輸送管内で粉体を輸送するための輸送手段、及び
前記輸送管と、前記輸送管の端壁から前記輸送管内に挿入される前記輸送手段の回転駆動軸との間をシールする軸封装置
を有する軸封システムであって、
前記軸封装置は、前記回転駆動軸が挿通するよう構成された円筒状のハウジングを備え、
前記ハウジングは、前記回転駆動軸が前記ハウジング内に挿入されたときに前記回転駆動軸と前記ハウジングの内面との間に隙間が生じるように構成されており、
前記ハウジングには、前記ハウジング内に気体を供給するための気体供給口が形成され、
前記回転駆動軸の表面には、前記軸封装置から前記輸送管に向かって見たときの前記回転駆動軸の回転方向とは反対回りの螺旋溝が、前記気体供給口に相当する前記回転駆動軸の表面上の位置から前記輸送管側の端部に相当する前記回転駆動軸の表面上の位置に向けて形成され、且つ、前記回転方向と順回りまたは反対回りの螺旋溝が、前記輸送管と反対側の端部に相当する前記回転駆動軸の表面上の位置から前記気体供給口に相当する前記回転駆動軸の表面上の位置に向けて形成されている、
ことを特徴とする前記軸封システム。
The present invention includes the following embodiments.
[1]
A shaft sealing device which seals between a transport pipe and a rotary drive shaft of a transport means for transporting powder in the transport pipe, which is inserted into the transport pipe from an end wall of the transport pipe,
A cylindrical housing configured such that the rotary drive shaft is inserted therethrough,
The housing is configured such that when the rotary drive shaft is inserted into the housing, a gap is formed between the rotary drive shaft and an inner surface of the housing.
A gas supply port for supplying gas into the housing is formed in the housing,
On the inner surface of the housing, there is provided a spiral groove that is opposite to the rotation direction of the rotary drive shaft when viewed from the shaft sealing device toward the transport pipe, and has an end portion on the transport pipe side from the gas supply port. And a spiral groove that is forward or counterclockwise with respect to the rotation direction is formed from the end opposite to the transport pipe toward the gas supply port.
The shaft sealing device according to the above.
[2]
The shaft sealing device according to [1], wherein the gap from the gas supply port to the end on the transport pipe side is larger than the gap from the gas supply port to the end on the side opposite to the transport pipe.
[3]
The gas supply port is formed at a position of 30 to 70%, 40 to 60%, or 45 to 55% of the axial length of the housing from the end on the transport pipe side, [1]. Alternatively, the shaft sealing device according to [2].
[4]
The shaft sealing device according to any one of [1] to [3], further including a cover configured to cover the housing.
[5]
The shaft sealing device according to any one of [1] to [4], wherein the powder is a powder of polycarbonate.
[6]
A transport means for transporting the powder in the transport pipe, and a shaft sealing device for sealing between the transport pipe and a rotary drive shaft of the transport means inserted into the transport pipe from an end wall of the transport pipe. A shaft sealing system having
The shaft sealing device includes a cylindrical housing configured so that the rotary drive shaft is inserted therethrough,
The housing is configured such that when the rotary drive shaft is inserted into the housing, a gap is formed between the rotary drive shaft and an inner surface of the housing.
A gas supply port for supplying gas into the housing is formed in the housing,
On the surface of the rotary drive shaft, a spiral groove that is opposite to the rotation direction of the rotary drive shaft when viewed from the shaft sealing device toward the transport pipe has a spiral groove corresponding to the gas supply port. A spiral groove that is formed from a position on the surface of the shaft toward a position on the surface of the rotary drive shaft that corresponds to the end on the side of the transport pipe, and that is forward or reverse to the rotation direction is the transport groove. It is formed from a position on the surface of the rotary drive shaft corresponding to the end opposite to the tube to a position on the surface of the rotary drive shaft corresponding to the gas supply port.
The shaft sealing system according to the above.

本発明の一実施形態に係る軸封装置では、「前記ハウジングの内面には、前記軸封装置から前記輸送管に向かって見たときの前記回転駆動軸の回転方向とは反対回りの螺旋溝が、前記気体供給口から前記輸送管側の端部に向けて形成され、且つ、前記回転方向と順回りまたは反対回りの螺旋溝が、前記輸送管と反対側の端部から前記気体供給口に向けて形成されている」との構成をとることで、軸封装置のハウジングと回転駆動軸との間の隙間気体供給口からの供給される気体は、軸封装置のハウジングと回転駆動軸との間の隙間を通る間に、ラビリンス効果と気体の流速の向上効果との相乗的な作用を受けることにより、輸送管内の粉末が輸送管から漏れ出ることを防止(影響の無い程度の所望の漏れ量に低減することを含む。以下同じ。)することができる。また、気体供給口から大気側へも当該隙間を通って気体が流れることから、大気中からの空気の侵入を防止(影響の無い程度の所望の侵入量に低減することを含む。以下同じ。)し、それにともなうコンタミネーションの侵入も防止できる。   In the shaft sealing device according to the embodiment of the present invention, “the inner surface of the housing has a spiral groove in a direction opposite to a rotation direction of the rotary drive shaft when viewed from the shaft sealing device toward the transport pipe. Is formed from the gas supply port toward the end on the side of the transport pipe, and a spiral groove that is forward or reverse to the rotation direction is formed from the end opposite to the transport pipe to the gas supply port. The gas supplied from the gap gas supply port between the housing of the shaft sealing device and the rotary drive shaft is configured so that the gas is supplied to the housing of the shaft sealing device and the rotary drive shaft. The powder in the transport pipe is prevented from leaking out of the transport pipe by receiving a synergistic effect of the labyrinth effect and the effect of improving the gas flow velocity while passing through the gap between The same applies to the following. It can be. In addition, since the gas also flows from the gas supply port to the atmosphere side through the gap, the invasion of air from the atmosphere is prevented (including reduction to a desired amount of invasion with no influence. The same applies hereinafter. ), And it is possible to prevent the invasion of contamination.

一実施形態に係る軸封装置を備えた粉体輸送システムの模式図である。It is a schematic diagram of the powder transportation system provided with the shaft sealing device which concerns on one Embodiment. 一実施形態に係る軸封装置の斜視図である。It is a perspective view of a shaft seal device concerning one embodiment. 一実施形態に係る軸封装置の断面図である。It is a sectional view of a shaft seal device concerning one embodiment. 一実施形態に係る軸封装置の斜視図である。It is a perspective view of a shaft seal device concerning one embodiment. 他の実施形態に係る軸封システムの断面図である。It is sectional drawing of the shaft sealing system which concerns on other embodiment.

以下、図面を用いて本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る軸封装置10a、10b(総称して「軸封装置10」ともいう)を備えた粉体輸送システム1の模式図である。   FIG. 1 is a schematic diagram of a powder transportation system 1 including shaft sealing devices 10a and 10b (collectively referred to as “shaft sealing device 10”) according to an embodiment of the present invention.

粉体輸送システム1は、輸送管3と、輸送管3内部に設けられ、回転することにより粉体を上流端壁3a側から下流端壁3b側に輸送するスクリューコンベア状の輸送手段20と、輸送手段20の回転駆動軸25(外径d)を回転駆動するための駆動装置5と、駆動装置5の反対側で回転駆動軸25を回転可能に支持する軸支持構造6と、輸送管3と回転駆動軸25との間の隙間をシールする軸封装置10a、10bとを備える。   The powder transport system 1 includes a transport pipe 3, a screw conveyor-shaped transport means 20 provided inside the transport pipe 3, and transporting the powder by rotating from the upstream end wall 3a side to the downstream end wall 3b side. A drive device 5 for rotationally driving the rotary drive shaft 25 (outer diameter d) of the transportation means 20, a shaft support structure 6 rotatably supporting the rotary drive shaft 25 on the opposite side of the drive device 5, and a transport pipe 3. The shaft sealing devices 10a and 10b that seal the gap between the shaft and the rotary drive shaft 25 are provided.

輸送手段20の回転駆動軸25は、封止装置10a、10b及び輸送管3に挿通され、駆動装置5とその反対側に設けられた軸支持構造6とにより回転可能に支持され、駆動装置5の駆動力により回転する。駆動装置5は、不図示のモーターやその駆動力を回転駆動軸25に伝えるための機構を備える。   The rotary drive shaft 25 of the transport means 20 is inserted through the sealing devices 10a and 10b and the transport pipe 3, and is rotatably supported by the drive device 5 and the shaft support structure 6 provided on the opposite side thereof. It is rotated by the driving force of. The drive device 5 includes a motor (not shown) and a mechanism for transmitting the driving force to the rotary drive shaft 25.

軸封装置10aは、輸送管3の上流端壁3aに固定具(不図示)により取り付けられ、上流端壁3aと回転駆動軸25との間の隙間から粉体が漏れ出ることを防止し、大気中から輸送管3内への空気及びコンタミネーションの侵入も防止する。同様に、軸封装置10bは、輸送管3の下流端壁3bに固定具(不図示)により取り付けられた、下流端壁3bと回転駆動軸25との間の隙間から粉体が漏れ出ることを防止し、大気中から輸送管3内への空気及びコンタミネーションの侵入も防止する。   The shaft seal device 10a is attached to the upstream end wall 3a of the transport pipe 3 by a fixture (not shown), and prevents the powder from leaking out from the gap between the upstream end wall 3a and the rotary drive shaft 25. The invasion of air and contamination from the atmosphere into the transportation pipe 3 is also prevented. Similarly, in the shaft sealing device 10b, the powder leaks from the gap between the downstream end wall 3b and the rotary drive shaft 25, which is attached to the downstream end wall 3b of the transport pipe 3 by a fixture (not shown). And the invasion of air and contamination from the atmosphere into the transport pipe 3 is also prevented.

粉体輸送システム1において、投入菅から輸送管3に投入された粉体は、輸送手段20が回転することにより輸送管3の上流端壁3a側から下流端壁3b側に輸送された後、ロータリーバルブを通じて別の工程へ送られる。   In the powder transport system 1, the powder loaded into the transport pipe 3 from the loading pipe is transported from the upstream end wall 3a side of the transport pipe 3 to the downstream end wall 3b side by the rotation of the transport means 20, and It is sent to another process through a rotary valve.

粉体は、合成樹脂の粉体であり、例えばポリカーボネート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、アクリル樹脂、スチロール樹脂、又はこれらの組み合わせの粉体である。限定されるものではないが、粉体輸送システム1の一適用例としては、ウェットな状態のポリカーボネート樹脂の粉体が、投入菅から輸送管3に投入され、輸送管3内を上流端3aから下流端3bに向けて輸送され、ロータリーバルブを通じて粉体を乾燥させる工程へ送られるケースが考えられる。   The powder is a powder of a synthetic resin, for example, a polycarbonate resin, a polyamide resin, a polyacetal resin, a polybutylene terephthalate resin, a polyethylene terephthalate resin, a fluororesin, an acrylic resin, a styrene resin, or a powder of a combination thereof. Although not limited thereto, as one application example of the powder transportation system 1, powder of a polycarbonate resin in a wet state is charged into the transportation pipe 3 from a charging pipe, and the inside of the transportation pipe 3 from the upstream end 3a. A case may be considered in which it is transported toward the downstream end 3b and sent to a step of drying the powder through a rotary valve.

図2は、軸封装置10(10a、10b)の概略斜視図である。軸封装置10は、内部を回転駆動軸25が挿通するよう構成された円筒状のハウジング11を備える。ハウジング11の中心軸に沿った方向(軸方向)の所定の位置にはハウジング11内に気体を供給するための1つ又は複数の気体供給口12が形成されている。また、ハウジング11の内面には螺旋溝13が形成されている。   FIG. 2 is a schematic perspective view of the shaft sealing device 10 (10a, 10b). The shaft seal device 10 includes a cylindrical housing 11 configured so that the rotary drive shaft 25 is inserted therethrough. One or a plurality of gas supply ports 12 for supplying gas into the housing 11 are formed at predetermined positions in the direction along the central axis of the housing 11 (axial direction). A spiral groove 13 is formed on the inner surface of the housing 11.

図2に示すようにハウジング11の軸方向の長さをLとする。気体供給口12は、ハウジング11の軸方向において、ハウジング11の一方の端部11aから長さL1であって、他方の端部11bから長さL2の位置に形成されている(L=L1+L2)。気体供給口12は、当該位置におけるハウジング11の円周方向において、1つ又は所定の間隔ごとに複数個形成されている。   As shown in FIG. 2, the length of the housing 11 in the axial direction is L. The gas supply port 12 is formed at a position having a length L1 from one end 11a of the housing 11 and a length L2 from the other end 11b in the axial direction of the housing 11 (L = L1 + L2). . A plurality of gas supply ports 12 are formed in the circumferential direction of the housing 11 at that position, one at a time or at predetermined intervals.

L1(又はL2)の範囲は、通常0.3L≦L1(又はL2)≦0.7Lの範囲にあり、好ましくは0.4L≦L1(又はL2)≦0.6Lの範囲、さらに好ましくは0.45L≦L1(又はL2)≦0.55Lの範囲にある。L1=L2であってもよい。   The range of L1 (or L2) is usually 0.3L ≦ L1 (or L2) ≦ 0.7L, preferably 0.4L ≦ L1 (or L2) ≦ 0.6L, and more preferably 0. .45L ≦ L1 (or L2) ≦ 0.55L. L1 = L2 may be sufficient.

気体供給口12は、気体供給源(不図示)に接続され、気体供給源から供給された気体は、気体供給口12を介してハウジング11内に導入される。気体は、空気、窒素、二酸化炭素、又はアルゴンなどの気体であるが、輸送管3内に入ることになることから、好ましくは粉体と化学的に反応しない気体がよい。   The gas supply port 12 is connected to a gas supply source (not shown), and the gas supplied from the gas supply source is introduced into the housing 11 via the gas supply port 12. The gas is a gas such as air, nitrogen, carbon dioxide, or argon, but since it enters the transportation pipe 3, a gas that does not chemically react with the powder is preferable.

軸封装置10aを想定すると、軸封装置10aのハウジング11の端部11bが輸送管3の上流端壁3aに接触するように取り付けられる(図3(a)参考)。軸封装置10aのハウジング11の内面には、ハウジング11の軸方向において、(i)気体供給口12から輸送管3側の端部11bに向けて、軸封装置10aから輸送管3に向かって見たときの回転駆動軸25の回転方向とは反対回りの螺旋溝13が形成され、(ii)他方の端部11aから気体供給口12に向けては、当該回転方向と順回り又は反対回りの螺旋溝13が形成されている。   Assuming the shaft sealing device 10a, the end 11b of the housing 11 of the shaft sealing device 10a is attached so as to contact the upstream end wall 3a of the transport pipe 3 (see FIG. 3 (a)). In the inner surface of the housing 11 of the shaft sealing device 10a, in the axial direction of the housing 11, (i) from the gas supply port 12 toward the end 11b on the transport pipe 3 side, from the shaft sealing device 10a toward the transport pipe 3. The spiral groove 13 is formed in the direction opposite to the rotation direction of the rotary drive shaft 25 when viewed, and (ii) from the other end 11a toward the gas supply port 12, the rotation direction is normal or opposite to the rotation direction. Spiral groove 13 is formed.

すなわち、ハウジング11の内面には、ハウジング11の軸方向において、気体供給口12を境に、(i)輸送管3側の領域には、軸封装置10aから輸送管3に向かって見たときの回転駆動軸25の回転方向とは反対回りの螺旋溝13が形成され、(ii)輸送管3と反対側の領域には、当該回転方向とは順回り又は反対回りの螺旋溝13が形成されている。なお、上記(ii)の輸送管3とは反対側の螺旋溝13は、好ましくは順回りに形成することで、外気の侵入の防止効果がよりいっそう期待できる。   That is, in the inner surface of the housing 11, in the axial direction of the housing 11, with the gas supply port 12 as a boundary, (i) the region on the side of the transport pipe 3 when viewed from the shaft sealing device 10a toward the transport pipe 3. The spiral groove 13 is formed in the opposite direction to the rotation direction of the rotary drive shaft 25, and (ii) the spiral groove 13 is formed in the region opposite to the transport pipe 3 in the normal or opposite direction to the rotation direction. Has been done. In addition, the spiral groove 13 on the side opposite to the transportation pipe 3 of (ii) is preferably formed in the normal direction, so that the effect of preventing the invasion of outside air can be further expected.

螺旋溝13は、ハウジング11の内面に螺旋状に溝を削ることにより形成してもよいし、ハウジング11の内面に螺旋状に突起を設けるようにして形成してもよい。   The spiral groove 13 may be formed by cutting the groove in a spiral shape on the inner surface of the housing 11, or may be formed by providing a protrusion in a spiral shape on the inner surface of the housing 11.

ハウジング11の内径Dは、回転駆動軸25の外径dよりも大きい値であり(D>d)、回転駆動軸25の中心軸とハウジング11の中心軸とが一致するように回転駆動軸25をハウジング11内に挿通した際に、回転駆動軸25とハウジング11の内面との間に隙間が生じるように構成されている。当該隙間は、回転駆動軸25の軸振れの影響や、螺旋溝13によるラビリンス効果(シール効果)を考慮して設計しておくとよい。例えば、隙間は、回転駆動軸25の軸振れ(例えば数mm)の影響がある場合は、その振れ幅の数倍(例えば2〜3倍)程度に予め設計しておくとよい。   The inner diameter D of the housing 11 is larger than the outer diameter d of the rotary drive shaft 25 (D> d), and the rotary drive shaft 25 and the central axis of the housing 11 coincide with each other. Is inserted into the housing 11, a gap is formed between the rotary drive shaft 25 and the inner surface of the housing 11. The gap may be designed in consideration of the effect of shaft runout of the rotary drive shaft 25 and the labyrinth effect (sealing effect) of the spiral groove 13. For example, when there is an influence of shaft runout (for example, several mm) of the rotary drive shaft 25, the gap may be designed in advance to be several times (for example, 2 to 3 times) the runout width.

ラビリンス効果を高めるために、ハウジング11の螺旋溝13が形成された内面と、回転駆動軸25との間の隙間を小さくすること、螺旋溝13のピッチを増やして(隣接する溝と溝の間隔を小さくして)気体が通過する流路の長さを大きくすることが考えられる。また、軸封装置10側から輸送管3に向かって見た場合の回転駆動軸25の回転方向とは反対回りに、気体供給口12から輸送管3側の端部11bに向けて螺旋溝13を形成することで、順回りに形成した場合に比べて、螺旋溝13の流路を流れる気体の流速を向上させることができる。   In order to enhance the labyrinth effect, the gap between the inner surface of the housing 11 in which the spiral groove 13 is formed and the rotary drive shaft 25 is made small, and the pitch of the spiral groove 13 is increased (the distance between adjacent grooves). It is conceivable to increase the length of the flow path through which the gas passes (by decreasing). Further, the spiral groove 13 extends from the gas supply port 12 toward the end 11b on the side of the transport pipe 3 in a direction opposite to the rotation direction of the rotary drive shaft 25 when viewed from the shaft sealing device 10 side toward the transport pipe 3. By forming, the flow velocity of the gas flowing through the flow path of the spiral groove 13 can be improved as compared with the case of forming in the normal direction.

すなわち、本実施形態の軸封装置10は、螺旋溝13によるラビリンス効果と、上記(i)の輸送管3側の領域に、回転駆動軸25の回転方向と反対方向に螺旋溝13を形成したことによる気体の流速の向上との相乗効果により、従来技術に比べて、輸送管3から粉体が漏れ出ることをより効果的に防止することができる。   That is, in the shaft sealing device 10 of the present embodiment, the labyrinth effect of the spiral groove 13 and the spiral groove 13 is formed in the region (i) on the side of the transport pipe 3 in the direction opposite to the rotation direction of the rotary drive shaft 25. Due to the synergistic effect with the improvement of the flow velocity of the gas, it is possible to more effectively prevent the powder from leaking from the transport pipe 3 as compared with the conventional technique.

なお、本実施形態の軸封装置10では、上記(ii)の輸送管3と反対側の領域の螺旋溝13の形成方向は、回転駆動軸25の回転方向と反対方向に限定するものではないが、駆動装置5(又は軸支持構造6)側から輸送管3に向かって見た場合の回転駆動軸25の回転方向とは順回りに、端部11aから気体供給口12に向けて螺旋溝13を形成することで、上記(i)の輸送管3側の領域の螺旋溝13による効果と同様に、気体の流速が向上し、外気からの空気の侵入をより効果的に防止することができる。   In addition, in the shaft sealing device 10 of the present embodiment, the formation direction of the spiral groove 13 in the region on the side opposite to the transportation pipe 3 of (ii) is not limited to the direction opposite to the rotation direction of the rotary drive shaft 25. However, the spiral groove extends from the end 11a toward the gas supply port 12 in a direction that is the same as the rotational direction of the rotary drive shaft 25 when viewed from the drive device 5 (or shaft support structure 6) side toward the transport pipe 3. By forming 13, the flow velocity of gas is improved and the invasion of air from the outside air can be prevented more effectively, similar to the effect of the spiral groove 13 in the region on the side of the transport pipe 3 in (i) above. it can.

ハウジング11の内径について、上記(i)の輸送管3側の領域の内径と、上記(ii)の輸送管3とは反対側の領域の内径とが異なるようにしてもよい(図3のD1、D2)。すなわち、ハウジング11の軸方向において、(i)気体供給口12から輸送管3側の端部11bまでの内径をD2とし、(ii)気体供給口12から輸送管3とは反対側の端部11aまでの内径をD1とすると、D1>D2、又はD1<D2であってもよい。なお、D1=D2であってもよい。   Regarding the inner diameter of the housing 11, the inner diameter of the region (i) on the side of the transport pipe 3 and the inner diameter of the region (ii) on the side opposite to the transport pipe 3 may be different (D1 in FIG. 3). , D2). That is, in the axial direction of the housing 11, (i) the inner diameter from the gas supply port 12 to the end 11b on the transport pipe 3 side is D2, and (ii) the end on the opposite side from the gas supply port 12 to the transport pipe 3. If the inner diameter up to 11a is D1, D1> D2 or D1 <D2 may be satisfied. Note that D1 = D2 may be satisfied.

ハウジングの内径D1、D2の関係をD2>D1とすると、気体供給口12を通じて供給される気体は、上記(ii)の輸送管3とは反対側の領域に流れる量と比べて、上記(i)の輸送管3側の領域に流れる量を相対的に増やすことができる。また、駆動装置5又は軸支持構造6から離れている分、軸振れの影響が比較的大きくなる影響も回避することができる。もちろん、ラビリンス効果は隙間が小さいほど効果が期待できるが、軸振れの影響や隙間を大きくしたことによる気体の流量などを考慮しながら、ハウジング11の内径を設計するとよい。   Assuming that the relationship between the inner diameters D1 and D2 of the housing is D2> D1, the amount of gas supplied through the gas supply port 12 is larger than that of the above (i) as compared with the amount flowing in the region opposite to the transport pipe 3 (i). It is possible to relatively increase the amount of flow in the region on the side of the transportation pipe 3 of (4). Further, the influence of the shaft runout being relatively large due to the distance from the drive device 5 or the shaft support structure 6 can be avoided. Of course, the labyrinth effect can be expected to be smaller as the gap becomes smaller. However, the inner diameter of the housing 11 may be designed in consideration of the influence of shaft runout and the gas flow rate due to the large gap.

例えば、後述するように、空気の侵入の問題はハウジング11の外部を覆うカバーにより低減できるケースでは、空気の侵入は防止できるので、気体供給口12から流れる気体を上記(i)の輸送管3側の領域に多く流れるように、隙間を大きく(D2>D1)するとよい。   For example, as will be described later, in a case where the problem of air invasion can be reduced by a cover that covers the outside of the housing 11, invasion of air can be prevented, so that the gas flowing from the gas supply port 12 is transferred to the transport pipe 3 of (i) above. It is advisable to increase the gap (D2> D1) so that a large amount of gas flows in the side region.

図3(a)及び(b)はそれぞれ、輸送管3の上流端壁3a及び下流端壁3bに固定具により取り付けた軸封装置10a及び10bの中心軸を通る概略断面図である。   3A and 3B are schematic cross-sectional views through the central axes of the shaft sealing devices 10a and 10b attached to the upstream end wall 3a and the downstream end wall 3b of the transport pipe 3 by a fixture, respectively.

図3に示す構成では、回転駆動軸25の軸振れの影響と気体の流量を増やす点を考慮して、軸封装置10a及び10bそれぞれの気体供給口12から端部11bまでのハウジング11の内径D2(及び回転駆動軸25との間の隙間s2)は、気体供給口12から他方の端部11aまでのハウジング11の内径D1(及び回転駆動軸25との間の隙間s1)よりも大きくなるように構成している。なお、回転駆動軸25の軸振れの影響が無いならば、隙間s2は隙間s1と同じにしてもよいし、ラビリンス効果をより得るために、隙間s2を隙間s1よりも小さくしてもよい。   In the configuration shown in FIG. 3, the inner diameter of the housing 11 from the gas supply port 12 to the end portion 11b of each of the shaft sealing devices 10a and 10b is taken into consideration in consideration of the influence of the shaft runout of the rotary drive shaft 25 and the increase of the gas flow rate. D2 (and the gap s2 between the rotary drive shaft 25) is larger than the inner diameter D1 of the housing 11 from the gas supply port 12 to the other end 11a (and the gap s1 between the rotary drive shaft 25). Is configured as follows. If there is no influence of the shaft runout of the rotary drive shaft 25, the gap s2 may be the same as the gap s1, or the gap s2 may be smaller than the gap s1 in order to obtain a more labyrinth effect.

図4は、軸封装置10aを覆うように取り付けられたカバー30を備えた構成の概略斜視図である。カバー30の全体又は一部は、内部の軸封装置10aが見えるように透明な部材で形成されている。カバー30の材料は、例えばポリカーボネートで形成してもよい。軸封装置10aを覆うようにカバー30を設けることで、大気中から輸送管3への空気の侵入及びそれにともなうコンタミネーションの侵入を防ぐことができる。図示していないが同様に、カバー30は、軸封装置10bを覆うように取り付けるとよい。   FIG. 4 is a schematic perspective view of a configuration including a cover 30 attached so as to cover the shaft sealing device 10a. The whole or a part of the cover 30 is formed of a transparent member so that the shaft sealing device 10a inside can be seen. The material of the cover 30 may be formed of polycarbonate, for example. By providing the cover 30 so as to cover the shaft sealing device 10a, it is possible to prevent air from entering the transport pipe 3 from the atmosphere and accompanying contamination. Although not shown, similarly, the cover 30 may be attached so as to cover the shaft sealing device 10b.

次に図5は、本発明の他の実施形態に係る軸封システム100の断面図である。本実施形態では、軸封装置10a、10bの内面には螺旋溝13は形成されておらず、輸送手段20の回転駆動軸250の表面に螺旋溝130が形成されている点で、上記実施形態とは異なる。なお、螺旋溝130は、回転駆動軸250の表面に螺旋状に溝を削ることにより形成してもよいし、回転駆動軸250の表面に螺旋状に突起を設けるようにして形成してもよい。   Next, FIG. 5 is a cross-sectional view of a shaft sealing system 100 according to another embodiment of the present invention. In the present embodiment, the spiral groove 13 is not formed on the inner surfaces of the shaft sealing devices 10a and 10b, but the spiral groove 130 is formed on the surface of the rotary drive shaft 250 of the transportation means 20. Is different from. The spiral groove 130 may be formed by spirally cutting the surface of the rotary drive shaft 250, or may be formed by providing a spiral projection on the surface of the rotary drive shaft 250. .

軸封装置10aの内部を挿通する回転駆動軸250の表面には、回転駆動軸250の軸方向において、(a)軸封装置10aのハウジング11の気体供給口12に相当する回転駆動軸250の表面上の位置120から、ハウジング11の輸送管3側の端部11bに相当する回転駆動軸250の表面上の位置110bに向けて、軸封装置10aから輸送管3に向かって見たときの回転駆動軸250の回転方向とは反対回りに螺旋溝130が形成されている。また、軸封装置10aの内部を挿通する回転駆動軸250の表面には、回転駆動軸250の軸方向において、(b)ハウジング11の輸送管3と反対側の端部11aに相当する回転駆動軸250の表面上の位置110aから軸封装置10aのハウジング11の気体供給口12に相当する回転駆動軸250の表面上の位置120に向けて、軸封装置10aから輸送管3に向かって見たときの回転駆動軸250の回転方向と順回り又は反対回りに螺旋溝130が形成されている。   On the surface of the rotary drive shaft 250 that passes through the inside of the shaft seal device 10a, in the axial direction of the rotary drive shaft 250, (a) the rotary drive shaft 250 corresponding to the gas supply port 12 of the housing 11 of the shaft seal device 10a. When viewed from the shaft sealing device 10a toward the transport pipe 3 from the position 120 on the surface toward the position 110b on the surface of the rotary drive shaft 250 corresponding to the end 11b on the transport pipe 3 side of the housing 11. The spiral groove 130 is formed in the opposite direction to the rotation direction of the rotary drive shaft 250. In addition, on the surface of the rotary drive shaft 250 that is inserted through the inside of the shaft sealing device 10a, in the axial direction of the rotary drive shaft 250, (b) the rotary drive corresponding to the end portion 11a of the housing 11 opposite to the transport pipe 3 is formed. From the position 110a on the surface of the shaft 250 toward the position 120 on the surface of the rotary drive shaft 250, which corresponds to the gas supply port 12 of the housing 11 of the shaft sealing device 10a, looking from the shaft sealing device 10a toward the transport pipe 3. The spiral groove 130 is formed in the normal direction or the opposite direction to the rotation direction of the rotary drive shaft 250 at that time.

本実施形態の軸封システム100は、上記実施形態と同様の効果を奏する。すなわち、螺旋溝130によるラビリンス効果と、上記(a)の輸送管3側の領域に、回転駆動軸250の回転方向と反対方向に螺旋溝130を形成したことによる気体の流速の向上との相乗効果により、従来技術に比べて、輸送管3から粉体が漏れ出ることをより効果的に防止することができる。その他の点についても、上記実施形態と同様であることから説明を省略する。   The shaft sealing system 100 of this embodiment has the same effects as the above embodiments. That is, the labyrinth effect of the spiral groove 130 and the improvement of the gas flow rate due to the spiral groove 130 formed in the area (a) on the side of the transport pipe 3 in the direction opposite to the rotation direction of the rotary drive shaft 250 are synergistic. Due to the effect, it is possible to more effectively prevent the powder from leaking out from the transport pipe 3 as compared with the related art. Since the other points are the same as those in the above-described embodiment, the description thereof will be omitted.

上記実施形態で説明される寸法、材料、形状、構成要素の相対的な位置等は任意であり、本発明が適用される装置の構造又は様々な条件に応じて変更される。また、本発明は、具体的に記載された上記実施形態に限定されるものではない。   The dimensions, materials, shapes, relative positions of components, etc. described in the above embodiments are arbitrary, and are changed according to the structure of the device to which the present invention is applied or various conditions. Further, the present invention is not limited to the specifically described embodiments.

1 粉体輸送システム
3 輸送管
5 駆動装置
6 軸支持構造
10 軸封装置
11 ハウジング
12 気体供給口
13、130 螺旋溝
20 輸送手段
25、250 回転駆動軸
30 カバー
100 軸封システム
1 Powder Transport System 3 Transport Pipe 5 Drive Device 6 Shaft Support Structure 10 Shaft Sealing Device 11 Housing 12 Gas Supply Ports 13, 130 Spiral Groove 20 Transport Means 25, 250 Rotation Drive Shaft 30 Cover 100 Shaft Sealing System

Claims (6)

輸送管と、前記輸送管の端壁から前記輸送管内に挿入される、前記輸送管内で粉体を輸送するための輸送手段の回転駆動軸との間をシールする軸封装置であって、
前記回転駆動軸が挿通するよう構成された円筒状のハウジング
を備え、
前記ハウジングは、前記回転駆動軸が前記ハウジング内に挿入されたときに前記回転駆動軸と前記ハウジングの内面との間に隙間が生じるように構成されており、
前記ハウジングには、前記ハウジング内に気体を供給するための気体供給口が形成され、
前記ハウジングの内面には、前記軸封装置から前記輸送管に向かって見たときの前記回転駆動軸の回転方向とは反対回りの螺旋溝が、前記気体供給口から前記輸送管側の端部に向けて形成され、且つ、前記回転方向と順回りまたは反対回りの螺旋溝が、前記輸送管と反対側の端部から前記気体供給口に向けて形成されている、
ことを特徴とする前記軸封装置。
A shaft sealing device which seals between a transport pipe and a rotary drive shaft of a transport means for transporting powder in the transport pipe, which is inserted into the transport pipe from an end wall of the transport pipe,
A cylindrical housing configured such that the rotary drive shaft is inserted therethrough,
The housing is configured such that when the rotary drive shaft is inserted into the housing, a gap is formed between the rotary drive shaft and an inner surface of the housing.
A gas supply port for supplying gas into the housing is formed in the housing,
On the inner surface of the housing, there is provided a spiral groove that is opposite to the rotation direction of the rotary drive shaft when viewed from the shaft sealing device toward the transport pipe, and has an end portion on the transport pipe side from the gas supply port. And a spiral groove that is forward or counterclockwise with respect to the rotation direction is formed from the end opposite to the transport pipe toward the gas supply port.
The shaft sealing device according to the above.
前記気体供給口から前記輸送管側の端部までの前記隙間は、前記気体供給口から前記輸送管と反対側の端部までの前記隙間よりも大きい、請求項1に記載の軸封装置。   The shaft sealing device according to claim 1, wherein the gap from the gas supply port to the end on the transport pipe side is larger than the gap from the gas supply port to the end on the opposite side to the transport pipe. 前記気体供給口は、前記輸送管側の端部から、前記ハウジングの軸方向の長さの30〜70%、40〜60%、又は45〜55%の位置に形成されている、請求項1又は2に記載の軸封装置。   The gas supply port is formed at a position 30 to 70%, 40 to 60%, or 45 to 55% of the axial length of the housing from the end on the transport pipe side. Or the shaft sealing device according to 2. 前記ハウジングを覆うように構成されたカバーをさらに備える請求項1〜3のいずれか1項に記載の軸封装置。   The shaft sealing device according to claim 1, further comprising a cover configured to cover the housing. 前記粉体はポリカーボネートの粉体である、請求項1〜4のいずれか1項に記載の軸封装置。   The shaft sealing device according to claim 1, wherein the powder is a powder of polycarbonate. 輸送管内で粉体を輸送するための輸送手段、及び
前記輸送管と、前記輸送管の端壁から前記輸送管内に挿入される前記輸送手段の回転駆動軸との間をシールする軸封装置
を有する軸封システムであって、
前記軸封装置は、前記回転駆動軸が挿通するよう構成された円筒状のハウジングを備え、
前記ハウジングは、前記回転駆動軸が前記ハウジング内に挿入されたときに前記回転駆動軸と前記ハウジングの内面との間に隙間が生じるように構成されており、
前記ハウジングには、前記ハウジング内に気体を供給するための気体供給口が形成され、
前記回転駆動軸の表面には、前記軸封装置から前記輸送管に向かって見たときの前記回転駆動軸の回転方向とは反対回りの螺旋溝が、前記気体供給口に相当する前記回転駆動軸の表面上の位置から前記輸送管側の端部に相当する前記回転駆動軸の表面上の位置に向けて形成され、且つ、前記回転方向と順回りまたは反対回りの螺旋溝が、前記輸送管と反対側の端部に相当する前記回転駆動軸の表面上の位置から前記気体供給口に相当する前記回転駆動軸の表面上の位置に向けて形成されている、
ことを特徴とする前記軸封システム。
A transport means for transporting the powder in the transport pipe, and a shaft sealing device for sealing between the transport pipe and a rotary drive shaft of the transport means inserted into the transport pipe from an end wall of the transport pipe. A shaft sealing system having
The shaft sealing device includes a cylindrical housing configured so that the rotary drive shaft is inserted therethrough,
The housing is configured such that when the rotary drive shaft is inserted into the housing, a gap is formed between the rotary drive shaft and an inner surface of the housing.
A gas supply port for supplying gas into the housing is formed in the housing,
On the surface of the rotary drive shaft, a spiral groove that is opposite to the rotation direction of the rotary drive shaft when viewed from the shaft sealing device toward the transport pipe has a spiral groove corresponding to the gas supply port. A spiral groove that is formed from a position on the surface of the shaft toward a position on the surface of the rotary drive shaft that corresponds to the end on the side of the transport pipe, and that is forward or reverse to the rotation direction is the transport groove. It is formed from a position on the surface of the rotary drive shaft corresponding to the end opposite to the tube to a position on the surface of the rotary drive shaft corresponding to the gas supply port.
The shaft sealing system according to the above.
JP2018191697A 2018-10-10 2018-10-10 Shaft sealing device and shaft sealing system Active JP7131278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018191697A JP7131278B2 (en) 2018-10-10 2018-10-10 Shaft sealing device and shaft sealing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018191697A JP7131278B2 (en) 2018-10-10 2018-10-10 Shaft sealing device and shaft sealing system

Publications (2)

Publication Number Publication Date
JP2020060249A true JP2020060249A (en) 2020-04-16
JP7131278B2 JP7131278B2 (en) 2022-09-06

Family

ID=70219511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018191697A Active JP7131278B2 (en) 2018-10-10 2018-10-10 Shaft sealing device and shaft sealing system

Country Status (1)

Country Link
JP (1) JP7131278B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158814U (en) * 1977-05-20 1978-12-13
JPS57193454U (en) * 1981-06-03 1982-12-08
JPS6138104A (en) * 1984-07-31 1986-02-24 Agency Of Ind Science & Technol Shaft sealing device using visco-seal
JPS6213920U (en) * 1985-07-11 1987-01-28
JPS62209272A (en) * 1986-03-05 1987-09-14 Agency Of Ind Science & Technol Shaft seal device
JPH08128535A (en) * 1994-11-02 1996-05-21 Kobe Steel Ltd Rotor shaft sealing device of kneading machine
JP2000335744A (en) * 1999-05-26 2000-12-05 Tsukasa Kogyo Kk Rotary valve
JP2006315783A (en) * 2005-05-10 2006-11-24 Nisshin Seifun Group Inc Screw conveyer device
US20100230905A1 (en) * 2006-03-27 2010-09-16 Sanden Corporation Shaft Sealing Device for a Fluid Machine
GB2519674A (en) * 2013-10-23 2015-04-29 Romax Technology Ltd Pressurised Gearbox

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158814U (en) * 1977-05-20 1978-12-13
JPS57193454U (en) * 1981-06-03 1982-12-08
JPS6138104A (en) * 1984-07-31 1986-02-24 Agency Of Ind Science & Technol Shaft sealing device using visco-seal
JPS6213920U (en) * 1985-07-11 1987-01-28
JPS62209272A (en) * 1986-03-05 1987-09-14 Agency Of Ind Science & Technol Shaft seal device
JPH08128535A (en) * 1994-11-02 1996-05-21 Kobe Steel Ltd Rotor shaft sealing device of kneading machine
JP2000335744A (en) * 1999-05-26 2000-12-05 Tsukasa Kogyo Kk Rotary valve
JP2006315783A (en) * 2005-05-10 2006-11-24 Nisshin Seifun Group Inc Screw conveyer device
US20100230905A1 (en) * 2006-03-27 2010-09-16 Sanden Corporation Shaft Sealing Device for a Fluid Machine
GB2519674A (en) * 2013-10-23 2015-04-29 Romax Technology Ltd Pressurised Gearbox

Also Published As

Publication number Publication date
JP7131278B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US10107337B2 (en) Bearing assembly
JP6512287B2 (en) Ball screw
JP2011148089A (en) Guide roller
JP4262656B2 (en) Non-contact type sealing device
JP6337151B2 (en) Rotating mechanical seal device with improved gas separation performance
JP2020060249A (en) Shaft sealing device and shaft sealing system
US20180371985A1 (en) Turbocharger
US9709172B2 (en) Rotor shaft seal assembly
US10655632B2 (en) Shaft seal device and vertical pump with this shaft seal device
JP5270965B2 (en) Powder device bearing structure
KR102034794B1 (en) Static pressure seal-equipped motor
JP2007044671A (en) Seal structure for rotation part and screw decanter type centrifugal separator
JP4760201B2 (en) centrifuge
JP4915228B2 (en) Vibrating conveyor
JP7265388B2 (en) rotary machine for work
JP2018192461A (en) Shaft seal structure of powder device, powder device, and shaft seal member
JP6780872B2 (en) Powder and granular material transfer device
JP2016037341A (en) Particulate transport device
JP6542105B2 (en) Sealing device
JPH09240837A (en) Rotary feeder
GB2263944A (en) Pump having magnetic coupling.
JP7265396B2 (en) rotary machine for work
JP7376326B2 (en) Spindle device
JPH11108201A (en) Shaft-sealing device
JP7429628B2 (en) mechanical seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R151 Written notification of patent or utility model registration

Ref document number: 7131278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151