JP2020059874A - Method for producing ferrous member - Google Patents

Method for producing ferrous member Download PDF

Info

Publication number
JP2020059874A
JP2020059874A JP2018190781A JP2018190781A JP2020059874A JP 2020059874 A JP2020059874 A JP 2020059874A JP 2018190781 A JP2018190781 A JP 2018190781A JP 2018190781 A JP2018190781 A JP 2018190781A JP 2020059874 A JP2020059874 A JP 2020059874A
Authority
JP
Japan
Prior art keywords
nitrite
iron
rust preventive
mass
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018190781A
Other languages
Japanese (ja)
Other versions
JP7154498B2 (en
Inventor
真那実 佐谷
Manami Satani
真那実 佐谷
眞市 左藤
Shinichi Sato
眞市 左藤
南部 忠彦
Tadahiko Nanbu
忠彦 南部
南部 信義
Nobuyoshi Nanbu
信義 南部
祐弥 諸岡
Yuya Morooka
祐弥 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chelest Corp
Chubu Chelest Co Ltd
Osaka Research Institute of Industrial Science and Technology
Original Assignee
Chelest Corp
Chubu Chelest Co Ltd
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70218795&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020059874(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chelest Corp, Chubu Chelest Co Ltd, Osaka Research Institute of Industrial Science and Technology filed Critical Chelest Corp
Priority to JP2018190781A priority Critical patent/JP7154498B2/en
Publication of JP2020059874A publication Critical patent/JP2020059874A/en
Application granted granted Critical
Publication of JP7154498B2 publication Critical patent/JP7154498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

To provide a method that makes it possible to produce conveniently a ferrous member that has a passive film excellently formed on its surface, and shows an excellent rust-prevention performance, and also provide a natural potential measuring method for evaluating the formation state of a passive film on a ferrous material surface.SOLUTION: A method for producing a ferrous member includes the step of making the ferrous member and a nitrite vaporable rust inhibitor coexist in a closed space controlled to low humidity. A method of measuring a self potential of a ferrous material includes the step of, while degassing an electrolyte solution, immersing an electrode composed of the ferrous material and a reference electrode in an electrolyte solution, and measuring a potential difference between the electrodes.SELECTED DRAWING: None

Description

本発明は、表面に不動態皮膜が良好に形成されており、防錆性能に優れた鉄系部材を簡便に製造できる方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for easily producing an iron-based member having a good passivation film on the surface and excellent in rust prevention performance.

鉄系部材の防錆性能を高めるためには、かつて亜硝酸イオンを含む防錆剤水溶液に鉄系部材を浸漬する方法が主流であった。しかしこの方法には、防錆剤水溶液の槽や、その後の水洗のための槽など、専用の表面処理設備を必要とすること、廃液の処理が必要となること、複雑な形状の鉄系部材では、隙間部の防錆剤水溶液を除去することが難しい場合があるといった問題がある。隙間部に防錆剤水溶液が残留すると、腐食がかえって促進される。また、鉄系部材が巨大な鉄板や鉄柱である場合には、表面処理設備が大規模になり、また廃液も大量に生じる。更に、複雑な形状の鉄系部材を有効に防錆処理できないことがあった。   In order to enhance the anticorrosion performance of iron-based members, a method of immersing the iron-based members in an aqueous solution of a rust preventive agent containing nitrite ion was the mainstream. However, this method requires special surface treatment equipment such as a tank for the rust preventive solution and a tank for washing with water after that, waste liquid needs to be treated, and iron-based members with complicated shapes are required. Then, there is a problem that it may be difficult to remove the aqueous solution of the rust preventive agent in the gap. When the aqueous solution of the rust preventive remains in the gap, the corrosion is rather accelerated. Further, when the iron-based member is a huge iron plate or iron column, the surface treatment facility becomes large in scale and a large amount of waste liquid is generated. Further, there are cases in which an iron-based member having a complicated shape cannot be effectively treated for rust prevention.

そこで、防錆作用を示す亜硝酸イオンを放出できる亜硝酸系気化性防錆剤が開発されている。亜硝酸系気化性防錆剤であれば、気化した防錆成分が鉄系部材に作用するために大規模な表面処理設備が必要無く、廃液は生じず、また、防錆剤水溶液が残留する余地は無い。   Therefore, a nitrite-based vaporizable rust preventive agent capable of releasing nitrite ions exhibiting a rust preventive action has been developed. If it is a nitrous acid-based rust preventive agent, the vaporized rust preventive component acts on the iron-based member, so large-scale surface treatment equipment is not required, no waste liquid is generated, and the rust preventive agent aqueous solution remains. There is no room.

亜硝酸系気化性防錆剤のうち複分解型の気化性防錆剤は、これらが環境中の水分により複分解して気化性の強い亜硝酸アンモニウムを生成し、亜硝酸イオンを拡散させ、且つ金属表面の結露水へ発生アンモニアが吸収されてアルカリ化することにより防錆作用を発揮すると考えられており、90%や100%の相対湿度といった高湿度下で気化亜硝酸ガスを多く放出することが示されている(非特許文献1)。   Among the nitrite-based volatile rust preventives, the metathesis type volatile rust preventives are those which undergo metathesis by water in the environment to generate strongly volatile ammonium nitrite, diffuse nitrite ions, and have a metal surface. It is considered that the rust prevention effect is exerted by absorbing the generated ammonia into the dew condensation water and alkalizing it, and it shows that a large amount of vaporized nitrite gas is released under high humidity such as 90% and 100% relative humidity. (Non-Patent Document 1).

よって、亜硝酸系気化性防錆剤としては金属が錆びやすい高湿度下で亜硝酸ガスを放出する一方で、錆が発生し難い低湿度下では亜硝酸ガスの放出が抑制されているものが効率的で優れたものとされていた(特許文献1〜4)。   Therefore, as a nitrous acid-based vaporizing rust preventive agent, while the metal releases nitrite gas under high humidity where it is easy to rust, the release of nitrite gas is suppressed under low humidity where rust hardly occurs. It was said to be efficient and excellent (Patent Documents 1 to 4).

特開2012−207360号公報JP2012-207360A 特開2011−47028号公報JP, 2011-47028, A 特開2010−285661号公報JP, 2010-285661, A 特開2006−45643号公報JP, 2006-45643, A

有松一比古ら,防錆管理,2007年,p.15〜19Arimatsu Ippiko et al., Rust prevention management, 2007, p. 15-19

上述したように、環境中の水分を利用して亜硝酸イオンを拡散させて防錆効果を発揮する気化性防錆剤は開発されており、かかる亜硝酸系気化性防錆剤は、錆が発生し易い高湿環境下でより多くの亜硝酸イオンを放出するので、錆が発生し難い低湿環境下では亜硝酸イオンを放出しないものが効率的なものであると考えられていた。よって従来の亜硝酸系気化性防錆剤は、一般的に、亜硝酸イオンを有効に利用すべく、防錆対象である金属部材を共に含む密閉環境下で用いられていた。
しかし、より効率的な防錆処理方法は、現場において常に切望されている。
そこで本発明は、表面に不動態皮膜が良好に形成されており、防錆性能に優れた鉄系部材を簡便に製造できる方法を提供することを目的とする。また、本発明は、鉄系材料表面の不動態皮膜の形成状態を評価するための自然電位測定方法を提供することも目的とする。
As described above, a vaporizable rust inhibitor that develops a rust preventive effect by diffusing nitrite ions by utilizing moisture in the environment has been developed. Since more nitrite ions are released in a high humidity environment where rust is likely to occur, it was considered that the one that does not release nitrite ions in a low humidity environment where rust is hard to occur is efficient. Therefore, the conventional nitrite-based vaporizable rust preventive agent is generally used in a closed environment including both metal members to be rust-prevented in order to effectively utilize nitrite ions.
However, a more efficient anticorrosion treatment method is always desired in the field.
Therefore, an object of the present invention is to provide a method capable of easily producing an iron-based member having a good passivation film formed on the surface and excellent in rust prevention performance. Another object of the present invention is to provide a method for measuring the spontaneous potential for evaluating the formation state of the passive film on the surface of the iron-based material.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、従来は高湿下での亜硝酸イオンやアンモニアガスの放出量により亜硝酸系気化性防錆剤の性能が確認されており、低湿下では鉄系部材は錆び難いので防錆作用を発揮する必要は無いと考えられていたのに対して、鉄系部材表面の不動態皮膜は低湿環境下の方が良好に形成され、開放環境下でも防錆作用が継続することを見出して、本発明を完成した。
以下、本発明を示す。
The present inventors have conducted extensive studies to solve the above problems. As a result, conventionally, the performance of nitrite-based vaporizing rust preventive agent has been confirmed by the amount of nitrite ion and ammonia gas released under high humidity. While it was thought that it was not necessary to exert the effect, the passivation film on the surface of the iron-based member was better formed in a low humidity environment, and it was found that the rust preventive action continues even in an open environment, The present invention has been completed.
The present invention will be described below.

[1] 鉄系部材を製造するための方法であって、
低湿に調節した密閉空間内において、上記鉄系部材と亜硝酸系気化性防錆剤を共存させる工程を含むことを特徴とする方法。
[2] 上記密閉空間内の相対湿度が45%以下である上記[1]に記載の方法。
[3] 上記亜硝酸系気化性防錆剤が、ジシクロヘキシルアミン亜硝酸塩、ジイソプロピルアミン亜硝酸塩、亜硝酸ナトリウム、および亜硝酸カリウムから必須的になる群より選択される1種または2種以上の亜硝酸塩を含む上記[1]または[2]に記載の方法。
[4] 上記亜硝酸系気化性防錆剤がアンモニウム塩を含む上記[1]〜[3]のいずれかに記載の方法。
[5] 上記鉄系部材と上記亜硝酸系気化性防錆剤を共存させる時間が1日以上である上記[1]〜[4]のいずれかに記載の方法。
[6] 上記鉄系部材と上記亜硝酸系気化性防錆剤を共存させる温度が5℃以上、50℃以下である上記[1]〜[5]のいずれかに記載の方法。
[7] 上記工程を経る前の鉄系部材の表面電位に対する上記工程を経た鉄系部材の表面電位の差が+90mV以上である上記[1]〜[6]のいずれかに記載の方法。
[8] 鉄系材料の自然電位を測定するための方法であって、
電解質溶液を脱気しつつ、上記鉄系材料からなる電極と参照電極を電解質溶液に浸漬し、電極間の電位差を測定する工程を含むことを特徴とする方法。
[1] A method for manufacturing an iron-based member, comprising:
A method comprising the step of allowing the iron-based member and a nitrite-based vaporizable rust preventive agent to coexist in a closed space controlled to have low humidity.
[2] The method according to [1] above, wherein the relative humidity in the closed space is 45% or less.
[3] The nitrite-based vaporizable rust inhibitor is one or more nitrites selected from the group consisting essentially of dicyclohexylamine nitrite, diisopropylamine nitrite, sodium nitrite, and potassium nitrite. The method according to [1] or [2] above, which comprises:
[4] The method according to any one of [1] to [3] above, wherein the nitrous acid-based vaporizable rust preventive agent contains an ammonium salt.
[5] The method according to any one of [1] to [4] above, wherein the iron-based member and the nitrite-based vaporizable rust inhibitor are allowed to coexist for 1 day or more.
[6] The method according to any one of [1] to [5] above, wherein the temperature at which the iron-based member and the nitrite-based vaporizable rust inhibitor coexist is 5 ° C or higher and 50 ° C or lower.
[7] The method according to any one of [1] to [6] above, wherein the difference between the surface potential of the iron-based member before the above step and the surface potential of the iron-based member after the above step is +90 mV or more.
[8] A method for measuring the spontaneous potential of an iron-based material, comprising:
A method comprising immersing an electrode made of the iron-based material and a reference electrode in an electrolyte solution while degassing the electrolyte solution, and measuring a potential difference between the electrodes.

従来、亜硝酸系気化性防錆剤の防錆作用は亜硝酸イオンやアンモニアガスの放出量により評価されていた。その理由としては、気化性防錆剤は密閉された空間内でしか防錆効果を示さないと考えられていたことが挙げられる。また、亜硝酸系気化性防錆剤の防錆作用に関して、それにより処理された鉄系材料の不動態皮膜の厚さをX線光電子分光法(XPS)で測定することが考えられるが、不動態皮膜と鉄系材料のみの層との境界を明確に定めることが不可能であり、正確な評価はできない。更に、鉄系材料の表面に不動態皮膜が形成されるとアノード反応が抑制されることから、不動態皮膜の評価基準として自然電位を測定することも考えられる。しかし鉄系材料は自然電位を測定するための電解質溶液中で徐々に腐食するため、参照電極との電位差を安定的に測定できず、正確な評価ができない。   Conventionally, the anticorrosive action of a nitrite-based vaporizable anticorrosive agent has been evaluated by the amount of nitrite ion or ammonia gas released. The reason for this is that the vaporizable rust preventive agent was considered to exhibit a rust preventive effect only in a closed space. Regarding the anticorrosive action of the nitrous acid-based vaporizable anticorrosive agent, it is considered that the thickness of the passivation film of the iron-based material treated thereby is measured by X-ray photoelectron spectroscopy (XPS). It is impossible to clearly define the boundary between the dynamic film and the layer containing only iron-based material, and accurate evaluation cannot be performed. Furthermore, when a passive film is formed on the surface of the iron-based material, the anodic reaction is suppressed. Therefore, it is possible to measure the spontaneous potential as an evaluation criterion for the passive film. However, since the iron-based material gradually corrodes in the electrolyte solution for measuring the natural potential, the potential difference from the reference electrode cannot be measured stably and accurate evaluation cannot be performed.

それに対して本発明者らは、自然電位の正確な測定方法を完成し、それにより、鉄系材料の不動態皮膜による安定性を正確に評価できるようにした。   On the other hand, the present inventors have completed an accurate method of measuring the self-potential, and thereby made it possible to accurately evaluate the stability of the iron-based material due to the passive film.

本発明に係る鉄系部材の製造方法は、鉄系部材の表面に不動態皮膜を良好に形成し、その防錆性能を顕著に改善するものである。その結果、従来の鉄系部材製品は気化性防錆剤と共に密閉包装されたまま流通していたが、本発明方法で製造された鉄系部材には優れた不動態皮膜が形成されるため、開放環境下でも防錆性能に優れる。よって本発明は、防錆性能に優れる鉄系部材を製造できる技術として、産業上極めて優れている。   INDUSTRIAL APPLICABILITY The method for manufacturing an iron-based member according to the present invention forms a passivation film on the surface of the iron-based member in a favorable manner, and significantly improves its rust prevention performance. As a result, the conventional iron-based member product was distributed while being hermetically packaged together with the vaporizable rust preventive agent, because an excellent passivation film is formed on the iron-based member manufactured by the method of the present invention. Excellent rust prevention performance even in open environment. Therefore, the present invention is industrially extremely excellent as a technique capable of producing an iron-based member having excellent rust prevention performance.

図1は、耐食性能試験結果を示す鉄系部材試験片の外観写真である。図1(1)は本発明に係る気相防錆処理を施した試験片の外観写真であり、図1(2)は対照試験片の外観写真である。FIG. 1 is an appearance photograph of an iron-based member test piece showing the results of the corrosion resistance performance test. FIG. 1 (1) is an appearance photograph of a test piece that has been subjected to the vapor phase rust prevention treatment according to the present invention, and FIG. 1 (2) is an appearance photograph of a control test piece.

本発明に係る鉄系部材の製造方法は、低湿に調節した密閉空間内において、上記鉄系部材と亜硝酸系気化性防錆剤を共存させる工程を含む。   The method for producing an iron-based member according to the present invention includes the step of allowing the iron-based member and the nitrite-based vaporizable rust preventive agent to coexist in a closed space adjusted to have low humidity.

鉄系部材を構成する材料は、Feを主成分とするものであれば特に制限されない。「Feを主成分とする」とは、材料に占めるFeの割合が50質量%以上であることをいう。当該割合としては、60質量%以上が好ましく、70質量%以上がより好ましい。Fe以外の成分を含む鉄系部材材料としては、例えば、クロム鋼鋼材(SCr材)、マンガン鋼鋼材(SMn材)、マンガンクロム鋼鋼材(SMnC材)、クロムモリブデン鋼鋼材(SCM材)、ニッケルクロム鋼鋼材(SNC材)、ニッケルクロムモリブデン鋼鋼材(SNCM材)、アルミニウムクロムモリブデン鋼材(SACM材)、炭素鋼鋼材(S−C材)、ステンレス鋼材(SUS材)、高炭素クロム軸受鋼鋼材(SUJ材)などを挙げることができる。なお、一般的な鉄系材料の表面には、特殊な環境下でない限り、程度の差こそあれ不動態皮膜が自然に形成されているが、本発明方法によれば、更に優れた不動態皮膜を有効に形成することが可能である。   The material forming the iron-based member is not particularly limited as long as Fe is the main component. “Mainly containing Fe” means that the proportion of Fe in the material is 50 mass% or more. The proportion is preferably 60% by mass or more, and more preferably 70% by mass or more. Examples of iron-based member materials containing components other than Fe include, for example, chrome steel steel (SCr material), manganese steel steel material (SMn material), manganese chrome steel steel material (SMnC material), chrome molybdenum steel steel material (SCM material), nickel. Chrome steel steel (SNC material), nickel chromium molybdenum steel material (SNCM material), aluminum chromium molybdenum steel material (SACM material), carbon steel material (SC material), stainless steel material (SUS material), high carbon chromium bearing steel material (SUJ material) and the like. It should be noted that, on a surface of a general iron-based material, a passivation film is naturally formed to some extent unless under a special environment, but according to the method of the present invention, a more excellent passivation film is formed. Can be effectively formed.

鉄系部材とは、上記材料で構成されており、且つ構造物を組み立てている部分品をいう。但し、何らかの構造物を構成するものである限り、鉄板や鉄柱も含まれる。   The iron-based member is a component that is made of the above-mentioned material and is used to assemble a structure. However, as long as it constitutes some kind of structure, iron plates and iron columns are also included.

本発明方法においては、鉄系部材と亜硝酸系気化性防錆剤を共存させる密閉空間内を低湿に調節する。「低湿」の程度は、鉄系部材の表面に十分な不動態皮膜が形成される範囲で適宜調整すればよいが、例えば、相対湿度で45%以下とすることができる。当該相対湿度としては、40%以下が好ましく、35%以下がより好ましく、30%以下、25%以下または20%以下がより更に好ましい。相対湿度は、湿度計を用いて常法に基づいて測定すればよい。   In the method of the present invention, the inside of the closed space in which the iron-based member and the nitrite-based vaporizable rust preventive coexist is adjusted to low humidity. The degree of "low humidity" may be appropriately adjusted within a range in which a sufficient passivation film is formed on the surface of the iron-based member, but can be set to, for example, 45% or less in relative humidity. The relative humidity is preferably 40% or less, more preferably 35% or less, still more preferably 30% or less, 25% or less or 20% or less. The relative humidity may be measured by a hygrometer based on a conventional method.

密閉空間内における湿度の調整法は特に制限されないが、例えば、シリカゲル、塩化カルシウム、生石灰、五酸化二リン、濃硫酸、グリセリン、グリセリン水溶液などの乾燥剤を用いることが考えられる。また、窒素ガスなど、水分を含まないか或いは水分含量が低減された不活性ガスで、密閉空間内の一部または全部を置換してもよい。   The method for adjusting the humidity in the closed space is not particularly limited, but it is conceivable to use a desiccant such as silica gel, calcium chloride, quick lime, diphosphorus pentoxide, concentrated sulfuric acid, glycerin, or an aqueous glycerin solution. Further, a part or the whole of the closed space may be replaced with an inert gas such as nitrogen gas that does not contain water or has a reduced water content.

密閉空間を形成するためには、例えば、少なくとも鉄系部材と亜硝酸系気化性防錆剤をフィルムで密閉包装したり、ケース内に密閉すればよい。かかる包装やケースを構成する材料としては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィン;アルミニウムなどの金属;ガラスなどを挙げることができる。また、水分子や酸素分子などの透過抑制を目的として、ポリオレフィンのフィルムやシートに、ポリエチレンテレフタレートなどのポリエステル、ナイロンなどのポリアミド、ポリ塩化ビニリデンやポリ塩化ビニルなどの含塩素樹脂、アルミニウムなどの金属、酸化アルミニウムなどの金属酸化物などからなる層を積層してもよい。   In order to form the closed space, for example, at least the iron-based member and the nitrite-based vaporizable rust preventive may be hermetically packaged with a film or sealed in a case. Examples of the material forming the packaging or case include polyolefins such as polyethylene and polypropylene; metals such as aluminum; glass and the like. In addition, for the purpose of suppressing the permeation of water molecules and oxygen molecules, polyolefin films and sheets are used in polyesters such as polyethylene terephthalate, polyamides such as nylon, chlorine-containing resins such as polyvinylidene chloride and polyvinyl chloride, and metals such as aluminum. Alternatively, a layer formed of a metal oxide such as aluminum oxide may be stacked.

密閉空間を形成するためのフィルムやシートの厚さは、例えば20μm以上とすることができる。水分子や酸素分子の透過や、気化防錆成分の消失をより確実に抑制するためには、100μm以上とすることが好ましい。   The thickness of the film or sheet for forming the closed space can be, for example, 20 μm or more. In order to more reliably suppress the permeation of water molecules and oxygen molecules and the disappearance of the vaporized rust preventive component, the thickness is preferably 100 μm or more.

亜硝酸系気化性防錆剤は、亜硝酸イオンとアンモニウムイオンまたはアミノカチオンを含む化合物または組成物であれば特に規定されないが、蒸気圧が高い点から亜硝酸イオンとアンモニウムイオンを含む化合物が好ましい。また、亜硝酸系気化性防錆剤は、例えば亜硝酸塩とアンモニウム塩を含み、空気中の水蒸気を利用した加水分解反応によって防錆効果を発揮するものであってもよい。本発明で用いる亜硝酸系気化性防錆剤は、蒸気圧が高いことと操作性が良いことなどの理由から、少なくとも亜硝酸塩とアンモニウム塩を含み、密閉空間中に亜硝酸イオンを放出できるものから選択することが好ましい。   The nitrite-based vaporizable rust inhibitor is not particularly specified as long as it is a compound or composition containing nitrite ion and ammonium ion or amino cation, but a compound containing nitrite ion and ammonium ion is preferable from the viewpoint of high vapor pressure. . Further, the nitrous acid-based vaporizable rust preventive agent may contain, for example, a nitrite salt and an ammonium salt, and exhibit a rust preventive effect by a hydrolysis reaction utilizing water vapor in the air. The nitrite-based vaporizable rust inhibitor used in the present invention contains at least nitrite and ammonium salt because of its high vapor pressure and good operability, and can release nitrite ions in a closed space. It is preferable to select from

亜硝酸塩、即ち亜硝酸イオン(NO2 -)を有する塩としては、例えば、有機アミンの亜硝酸塩や金属の亜硝酸塩を挙げることができる。これら有機アミンの亜硝酸塩と金属の亜硝酸塩であれば、アンモニウム塩との加水複分解反応が効率よく進み、優れた防錆性能を得ることができる。亜硝酸塩は、単独で使用してもよく、2種以上を併用してもよい。 Examples of the nitrite, that is, a salt having a nitrite ion (NO 2 ) include organic amine nitrite and metal nitrite. With these organic amine nitrites and metal nitrites, the hydrometathesis reaction with ammonium salts proceeds efficiently, and excellent rust prevention performance can be obtained. The nitrite may be used alone or in combination of two or more kinds.

有機アミンの亜硝酸塩を構成する有機アミンとしては、第1級〜第3級の芳香族アミンや、第1級〜第3級の脂肪族アミンが好ましい。有機アミンの亜硝酸塩としては、アニリン等の第1級芳香族アミンの亜硝酸塩;ジシクロアルキルアミン等の第2級環状脂肪族アミンの亜硝酸塩;ジイソプロピルアミン等の第2級分枝鎖状脂肪族アミンの亜硝酸塩;第3級アミンの亜硝酸塩などが挙げられ、第2級有機アミンの亜硝酸塩が好ましく、ジシクロアルキルアミンの亜硝酸塩がより好ましい。   As the organic amine constituting the nitrite of the organic amine, primary to tertiary aromatic amines and primary to tertiary aliphatic amines are preferable. As nitrites of organic amines, nitrites of primary aromatic amines such as aniline; nitrites of secondary cycloaliphatic amines such as dicycloalkylamines; secondary branched chain fatty acids such as diisopropylamine. Group amine nitrites; tertiary amine nitrites, and the like, secondary organic amine nitrites are preferable, and dicycloalkylamine nitrites are more preferable.

金属の亜硝酸塩としては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属イオンの亜硝酸塩;カルシウムイオン等のアルカリ土類金属イオンの亜硝酸塩;マグネシウムイオンの亜硝酸塩などが挙げられ、アルカリ金属イオンの亜硝酸塩が好ましく、ナトリウムイオンの亜硝酸塩がより好ましい。   Examples of the metal nitrite include nitrites of alkali metal ions such as lithium ion, sodium ion and potassium ion; nitrite salts of alkaline earth metal ions such as calcium ion; nitrite salts of magnesium ion. Is preferable, and a nitrite of sodium ion is more preferable.

亜硝酸塩の含有量は、気化性防錆剤100質量%中、5質量%以上であることが好ましく、より好ましくは10質量%以上、さらに好ましくは20質量%以上である。亜硝酸塩の含有量がこの範囲にあると、アンモニウム塩と共に加水複分解しやすくなり、防錆性能向上に寄与する。また、亜硝酸塩の含有量は、60質量%以下であることが好ましく、より好ましくは50質量%以下である。   The content of the nitrite is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more in 100% by mass of the volatile anticorrosive agent. When the content of the nitrite is in this range, it is likely to undergo hydrometathesis together with the ammonium salt, which contributes to the improvement of rust prevention performance. The content of nitrite is preferably 60% by mass or less, more preferably 50% by mass or less.

亜硝酸系気化性防錆剤には、亜硝酸塩と合わせてアンモニウム塩を用いることで、これらの加水複分解により防錆物質(亜硝酸アンモニウム)が発生するため、優れた防錆効果が得られる。アンモニウム塩は、単独で使用してもよく、2種以上を併用してもよい。   When an ammonium salt is used in combination with a nitrite salt as the nitrite-based vaporizable rust preventive agent, a rust preventive substance (ammonium nitrite) is generated by the hydrometathesis of these compounds, so that an excellent rust preventive effect is obtained. The ammonium salt may be used alone or in combination of two or more kinds.

アンモニウム塩を構成する無機酸としては、例えば、ホウ酸、リン酸、炭酸、硫酸、塩酸などが挙げられる。また、これら無機酸のアンモニウム塩としては、メタホウ酸アンモニウム、オルトホウ酸アンモニウム、四ホウ酸アンモニウム等のホウ酸アンモニウム;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、リン酸水素二アンモニウム等のリン酸アンモニウム;炭酸二アンモニウム、炭酸一アンモニウム、炭酸水素アンモニウム等の炭酸アンモニウム;硫酸アンモニウム;塩化アンモニウム等が挙げられる。中でも、四ホウ酸アンモニウム等のホウ酸アンモニウム;リン酸二アンモニウム、リン酸三アンモニウム、リン酸水素二アンモニウム等のリン酸アンモニウム;炭酸アンモニウム等が好ましい。   Examples of the inorganic acid forming the ammonium salt include boric acid, phosphoric acid, carbonic acid, sulfuric acid, hydrochloric acid and the like. Examples of ammonium salts of these inorganic acids include ammonium borate such as ammonium metaborate, ammonium orthoborate, and ammonium tetraborate; monoammonium phosphate, diammonium phosphate, triammonium phosphate, diammonium hydrogenphosphate, etc. Ammonium phosphate; ammonium carbonate such as diammonium carbonate, monoammonium carbonate, ammonium hydrogencarbonate; ammonium sulfate; ammonium chloride and the like. Of these, ammonium borate such as ammonium tetraborate; ammonium phosphate such as diammonium phosphate, triammonium phosphate, diammonium hydrogen phosphate; ammonium carbonate and the like are preferable.

アンモニウム塩を構成する有機酸としては、1価または2価以上のカルボン酸が好ましく、1価以上、3価以下のカルボン酸が好ましい。有機酸のアンモニウム塩としては、具体的には、安息香酸アンモニウム、サリチル酸アンモニウム、p−ニトロ安息香酸アンモニウム等の1価の芳香族カルボン酸アンモニウム塩;ギ酸アンモニウム、酢酸アンモニウム等の1価の脂肪族カルボン酸アンモニウム塩;シュウ酸アンモニウム塩、セバシン酸二アンモニウム塩等の2価の脂肪族ジカルボン酸アンモニウム塩;リンゴ酸などの2価のヒドロキシ酸アンモニウム塩;クエン酸アンモニウム等の3価のヒドロキシ酸アンモニウム塩などが挙げられる。中でも、1価の有機酸のアンモニウム塩および2価の有機酸のアンモニウム塩が好ましく、1価の芳香族カルボン酸アンモニウム塩および2価の脂肪族ジカルボン酸アンモニウム塩がより好ましく、安息香酸アンモニウムおよびセバシン酸二アンモニウムが更に好ましい。   As the organic acid that constitutes the ammonium salt, a monovalent or divalent or higher carboxylic acid is preferable, and a monovalent or trivalent or lower carboxylic acid is preferable. Specific examples of the organic acid ammonium salt include monovalent aromatic carboxylic acid ammonium salts such as ammonium benzoate, ammonium salicylate, and ammonium p-nitrobenzoate; monovalent aliphatic salts such as ammonium formate and ammonium acetate. Ammonium carboxylic acid salt; Ammonium oxalate salt, diammonium sebacate salt, etc., divalent aliphatic dicarboxylic acid ammonium salt; Divalent ammonium hydroxy acid salt, such as malic acid; Trivalent ammonium hydroxy acid salt, such as ammonium citrate Examples include salt. Of these, ammonium salts of monovalent organic acids and ammonium salts of divalent organic acids are preferable, monovalent aromatic carboxylic acid ammonium salts and divalent aliphatic dicarboxylic acid ammonium salts are more preferable, and ammonium benzoate and sebacine are preferable. More preferred is diammonium acid.

アンモニウム塩としては、炭酸アンモニウム、リン酸水素二アンモニウム等の無機酸のアンモニウム塩;安息香酸アンモニウム、サリチル酸アンモニウム、p−ニトロ安息香酸アンモニウム、セバシン酸アンモニウム等の有機酸のアンモニウム塩が好ましく、安息香酸アンモニウムおよびリン酸水素二アンモニウムが特に好ましい。   As the ammonium salt, ammonium salts of inorganic acids such as ammonium carbonate and diammonium hydrogen phosphate; ammonium salts of organic acids such as ammonium benzoate, ammonium salicylate, ammonium p-nitrobenzoate and ammonium sebacate are preferable, and benzoic acid is preferable. Particularly preferred are ammonium and diammonium hydrogen phosphate.

アンモニウム塩の含有量は、気化性防錆剤100質量%中、1質量%以上であることが好ましく、より好ましくは5質量%以上、更に好ましくは10質量%以上である。アンモニウム塩の含有量がこの範囲にあると、亜硝酸塩と共に加水複分解しやすくなり、防錆性能向上に寄与する。当該量としては、40質量%以下であることが好ましく、より好ましくは30質量%以下である。   The content of the ammonium salt is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more in 100% by mass of the volatile rust preventive agent. When the content of the ammonium salt is within this range, it is likely to undergo hydrometathesis together with the nitrite, which contributes to the improvement of rust prevention performance. The amount is preferably 40% by mass or less, more preferably 30% by mass or less.

また、気化性防錆剤において、アンモニウム塩の含有量は亜硝酸塩100モルに対して1モル以上であることが好ましく、より好ましくは50モル以上、更に好ましくは60モル以上であり、200モル以下であることが好ましく、より好ましくは150モル以下、更に好ましくは100モル以下である。アンモニウム塩と亜硝酸塩の含有量がこの範囲にあると、長期にわたって優れた防錆作用を発揮することができる。   Further, in the volatile anticorrosive agent, the content of ammonium salt is preferably 1 mol or more, more preferably 50 mol or more, still more preferably 60 mol or more and 200 mol or less with respect to 100 mol of nitrite. Is preferable, more preferably 150 mol or less, further preferably 100 mol or less. When the contents of ammonium salt and nitrite are in this range, excellent rust preventive action can be exhibited for a long period of time.

亜硝酸系気化性防錆剤は、炭酸水素金属塩を含んでもよい。炭酸水素金属塩を含むことにより、アンモニウム塩の分解により生成するアンモニウムイオンを炭酸アンモニウム金属塩として安定化させることができるため、亜硝酸塩とアンモニウム塩の加水複分解反応を制御して、長期防錆能を発揮することができる。また、亜硝酸系気化性防錆剤が保水性助剤を含む場合、炭酸水素金属塩を用いることで、保水性助剤中の水分による加水複分解反応を抑制し、気化性防錆剤の安定性をも向上させることができる。更に、亜硝酸系気化性防錆剤を錠剤状または粒状に成形する際にも、炭酸水素金属塩を含むことで形状保持性が向上したり、崩壊を防止することができる。   The nitrite-based vaporizable rust preventive agent may contain a hydrogen carbonate metal salt. The inclusion of the hydrogencarbonate metal salt can stabilize the ammonium ion generated by the decomposition of the ammonium salt as the ammonium carbonate metal salt, so that it controls the hydrometathesis reaction of the nitrite and the ammonium salt to prevent the long-term rust prevention ability. Can be demonstrated. When the nitrous acid-based volatile rust preventive agent contains a water retention aid, the use of a hydrogen carbonate metal salt suppresses the hydrometalysis reaction due to the water content of the water retention aid and stabilizes the volatile rust inhibitor. It can also improve the sex. Further, even when the nitrous acid-based vaporizable rust preventive agent is formed into a tablet shape or a granular shape, it is possible to improve the shape retention and prevent disintegration by including the metal hydrogen carbonate.

炭酸水素金属塩としては、炭酸水素カリウムや炭酸水素ナトリウム等の炭酸水素アルカリ金属塩が好ましい。炭酸水素金属塩は、単独で使用してもよく、2種以上を併用してもよい。   As the hydrogen carbonate metal salt, alkali metal hydrogen carbonate salts such as potassium hydrogen carbonate and sodium hydrogen carbonate are preferable. The hydrogencarbonate metal salt may be used alone or in combination of two or more kinds.

炭酸水素金属塩の含有量は、気化性防錆剤100質量%中、0.1質量%以上であることが好ましく、より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上である。炭酸水素金属塩の含有量がこの範囲にあると、長期防錆性能が良好となる。また、炭酸水素金属塩の含有量は、20質量%以下であることが好ましく、より好ましくは10質量%以下である。炭酸水素金属塩の含有量がこの範囲であれば、亜硝酸塩とアンモニウム塩の加水複分解反応による防錆作用が効果的に発揮される。   The content of the hydrogen carbonate metal salt is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.8% by mass or more, in 100% by mass of the volatile rust preventive agent. Is. When the content of the hydrogencarbonate metal salt is within this range, the long-term rust preventive performance becomes good. The content of hydrogencarbonate metal salt is preferably 20% by mass or less, and more preferably 10% by mass or less. When the content of the hydrogencarbonate metal salt is within this range, the rust preventive action by the hydrometathesis reaction of the nitrite and the ammonium salt is effectively exhibited.

また、炭酸水素金属塩の含有量は、亜硝酸塩およびアンモニウム塩の合計100質量部に対して、0.1質量部以上であることが好ましく、より好ましくは1質量部以上であり、20質量部以下であることが好ましく、10質量部以下であることがより好ましい。   Further, the content of the hydrogen carbonate metal salt is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, and 20 parts by mass with respect to 100 parts by mass of the total amount of the nitrite salt and the ammonium salt. It is preferably not more than 10 parts by mass, more preferably not more than 10 parts by mass.

亜硝酸系気化性防錆剤は、保水性助剤を含んでいてもよい。亜硝酸系気化性防錆剤において保水性助剤は、水分を保持し或いは持続的に放出して密閉空間内の湿度を維持する性質を有するものであり、繊維質物質であることが好ましい。亜硝酸系気化性防錆剤を錠剤状または粒状に成形した場合でも、繊維の絡み合いによって錠剤や粒状物の強度が確保され、これらの崩壊が抑制される。繊維質物質としては、羊毛などの動物性繊維;綿、麻、セルロース等の植物性繊維;再生繊維;ビスコースレーヨン等の合成繊維;活性炭繊維などが挙げられ、植物性繊維が好ましく、セルロースがより好ましい。また、保水性助剤は、亜硝酸系気化性防錆剤を錠剤状または粒状に成形した場合にも水分の保持・放出を効率的に行う観点からは、粉末状であることが好ましい。   The nitrite-based vaporizable rust preventive agent may contain a water retention aid. In the nitrite-based vaporizable rust preventive agent, the water retention aid has a property of retaining or continuously releasing water to maintain the humidity in the closed space, and is preferably a fibrous substance. Even when the nitrous acid-based vaporizing rust preventive agent is formed into a tablet shape or a granular shape, the entanglement of the fibers secures the strength of the tablet or the granular material and suppresses the disintegration of these. Examples of the fibrous substance include animal fibers such as wool; vegetable fibers such as cotton, hemp, and cellulose; regenerated fibers; synthetic fibers such as viscose rayon; activated carbon fibers, and the like. Vegetable fibers are preferable, and cellulose is preferable. More preferable. Further, the water retention aid is preferably in powder form from the viewpoint of efficiently retaining and releasing water even when the nitrous acid-based vaporizable rust preventive is formed into a tablet form or a granular form.

保水性助剤の含有量は、気化性防錆剤100質量%中、0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、20質量%以下であることが好ましく、より好ましくは10質量%以下、更に好ましくは5質量%以下である。また、保水性助剤の含有量は、アンモニウム塩と亜硝酸塩の合計100質量部に対して、0.01質量部以上、20質量部以下であることが好ましく、より好ましくは0.05質量部以上、10質量部以下、更に好ましくは0.1質量部以上、5質量部以下である。保水性助剤の含有量がこの範囲にあると、気化性防錆剤中の水分量を適度に保つことができ、長期間にわたって優れた防錆作用を発揮することができる。   The content of the water retention aid is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more in 100% by mass of the volatile anticorrosive agent. It is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less. Further, the content of the water retention aid is preferably 0.01 parts by mass or more and 20 parts by mass or less, more preferably 0.05 parts by mass with respect to 100 parts by mass of the total amount of ammonium salt and nitrite. The amount is 10 parts by mass or less and more preferably 0.1 parts by mass or more and 5 parts by mass or less. When the content of the water retention aid is within this range, the amount of water in the volatile rust preventive agent can be maintained at an appropriate level, and an excellent rust preventive action can be exhibited for a long period of time.

亜硝酸系気化性防錆剤は、更に粘結剤を含んでいてもよい。粘結剤は、上記成分の間に介在して、これらを分離させないようにする機能を有するものであり、亜硝酸系気化性防錆剤の形状保持性を向上させることができ、錠剤状または粒状に成形した場合にも、これらの崩壊を防止して、長期防錆性能を担保することができる。また粘結剤は、亜硝酸系気化性防錆剤に水分が一気に内部に侵入してくるのを防ぐ役目と、他の成分間の過剰な接触を防ぐ役割を果たすことにより、長期防錆の持続作用を高める機能をよりいっそう効果的に発揮する。粘結剤としては、例えば、固形油脂[常温(10〜40℃)で固体の油脂]、植物性ワックス、動物性ワックス、合成樹脂などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。中でも固形油脂が好ましく、常温(10〜40℃)で粉末状の固形油脂がより好ましい。   The nitrite-based vaporizable rust preventive may further contain a binder. The binder is present between the above components and has a function of preventing these components from being separated from each other, which can improve the shape retention of the nitrite-based vaporizing rust preventive agent, and can be used in the form of tablets or tablets. Even when it is formed into a granular shape, it is possible to prevent these from collapsing and ensure long-term rust preventive performance. In addition, the binder has a role of preventing moisture from invading the nitrite-based vaporizing rust preventive agent at once, and a role of preventing excessive contact between other components, so that long-term rust preventive action can be achieved. It exerts the function of enhancing the lasting effect more effectively. Examples of the binder include solid fats and oils [solid fats and oils at room temperature (10 to 40 ° C.)], vegetable wax, animal wax, synthetic resin, and the like. These may be used alone or in combination of two or more. Among them, solid fats and oils are preferable, and powdery solid fats and oils at room temperature (10 to 40 ° C.) are more preferable.

粘結剤を含む場合、その含有量は、気化性防錆剤100質量%中、1質量%以上であることが好ましく、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、50質量%以下であることが好ましく、より好ましくは40質量%以下である。また、粘結剤の含有量は、亜硝酸塩とアンモニウム塩の合計100質量部に対して1質量部以上、100質量部以下が好ましく、5質量部以上、50質量部以下がより好ましい。   When the binder is contained, its content is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more in 100% by mass of the volatile rust preventive agent. It is preferably 50% by mass or less, and more preferably 40% by mass or less. The content of the binder is preferably 1 part by mass or more and 100 parts by mass or less, and more preferably 5 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass as the total of the nitrite salt and the ammonium salt.

亜硝酸系気化性防錆剤は、粉末状であってもよく、これらを錠剤状や粒状に成形したものであってもよい。中でも、錠剤状であることが好ましい。なお本発明において、粉末状とは最大径が100μm未満の形状を意味し、粒状とは最大径が100μm以上、1mm未満の形状を意味し、錠剤状とは最大径が1mm以上の形状を意味するものとする。また、錠剤の形状には、ペレット状、棒状、ドーナツ状などの形状も含まれ、粉末状には顆粒などの形状も含まれるものとする。また、亜硝酸系気化性防錆剤は、上記各成分を一剤中に含むものであってもよいし、1以上の上記各成分を含む二剤以上で構成されるものであってもよい。   The nitrite-based vaporizable rust preventive agent may be in the form of powder, or may be formed in the form of tablets or granules. Among them, the tablet form is preferable. In the present invention, powdery means a shape having a maximum diameter of less than 100 μm, granular means a shape having a maximum diameter of 100 μm or more and less than 1 mm, and tablet-like means a shape having a maximum diameter of 1 mm or more. It shall be. Further, the shape of the tablet includes pellets, rods, donuts, and the like, and the powder includes granules and the like. Further, the nitrite-based vaporizable rust preventive agent may include the above-mentioned components in one agent, or may be composed of two or more agents including one or more of the above-mentioned ingredients. .

亜硝酸系気化性防錆剤を錠剤状または粒状に成形する場合、1単位の重量が0.1g以上、0.5g以下とすることが好ましい。   When the nitrous acid-based vaporizable rust preventive agent is molded into a tablet or granule, the weight of one unit is preferably 0.1 g or more and 0.5 g or less.

亜硝酸系気化性防錆剤の使用量は、防錆効果が発揮される範囲で適宜決定すればよいが、例えば、密閉空間の体積に対して、0.5mg/L以上、300mg/L以下とすることができる。   The amount of the nitrous acid-based vaporizable rust preventive agent to be used may be appropriately determined within a range where the rust preventive effect is exhibited. Can be

本発明方法においては、低湿に調節した密閉空間内において、鉄系部材と亜硝酸系気化性防錆剤を共存させる。その際の温度としては、特に制限されないが、例えば常温とすることができ、具体的には5℃以上、50℃以下とすることができる。但し、高温ほど亜硝酸系気化性防錆剤からの亜硝酸イオンの放出量が多くなると考えられるため、当該温度としては15℃以上または20℃以上が好ましく、25℃以上がより更に好ましく、40℃以下が好ましい。勿論、上記温度範囲内であれば、常温で鉄系部材と亜硝酸系気化性防錆剤を共存させることも可能である。   In the method of the present invention, the iron-based member and the nitrite-based vaporizable rust preventive agent are allowed to coexist in a closed space adjusted to have low humidity. The temperature at that time is not particularly limited, but may be, for example, room temperature, specifically, 5 ° C. or more and 50 ° C. or less. However, since it is considered that the higher the temperature is, the larger the amount of nitrite ion released from the nitrite-based vaporizing rust preventive agent is, the temperature is preferably 15 ° C or higher or 20 ° C or higher, more preferably 25 ° C or higher, and 40 C. or less is preferable. Of course, within the above temperature range, it is possible to coexist the iron-based member and the nitrite-based vaporizable rust preventive agent at room temperature.

低湿に調節した密閉空間内において鉄系部材と亜硝酸系気化性防錆剤を共存させる時間としては、防錆効果が十分に得られる範囲で適宜調整すればよいが、例えば1日以上とすることができ、1週間以上が好ましく、2週間以上がより好ましい。上限は特に制限されず、鉄系部材を密閉空間内で保持したまま市場に流通させてもよく、例えばであるが、3年以下、2年以下、1年以下、6ヶ月以下、2ヶ月以下、または1ヶ月以下とすることができる。   The time for allowing the iron-based member and the nitrite-based vaporizable rust preventive agent to coexist in a closed space adjusted to low humidity may be appropriately adjusted within a range in which the rust preventive effect is sufficiently obtained, but is, for example, 1 day or more. It is possible, and 1 week or more is desirable, 2 weeks or more is more desirable. The upper limit is not particularly limited, and the iron-based member may be distributed in the market while being held in a closed space. For example, 3 years or less, 2 years or less, 1 year or less, 6 months or less, 2 months or less , Or less than 1 month.

本発明方法によれば、上記工程により鉄系部材の表面に優れた不動態皮膜を有効に形成することができる。その結果、上記密閉空間から鉄系部材を取り出した後も、防錆効果が継続する。   According to the method of the present invention, an excellent passivation film can be effectively formed on the surface of the iron-based member by the above steps. As a result, the rust preventive effect continues even after the iron-based member is taken out from the closed space.

従来、防錆処理された鉄系材料試験片の自然電位により防錆効果を評価しようとすると、自然電位を測定するための電解質溶液中でも鉄系材料試験片の腐食が進行するために鉄系材料試験片の自然電位を測定できず、正確な評価ができなかった。それに対して本発明者らは、電解質溶液を脱気しつつ、鉄系材料からなる電極と参照電極を電解質溶液に浸漬し、電極間の電位差を測定することにより、鉄系材料電極の表面電位も安定化し、正確な測定ができることを見出した。その理由としては、電解質溶液の脱気により鉄系材料電極の腐食の原因の一つである溶存酸素の量が低減されることが考えられる。   Conventionally, when trying to evaluate the rust-prevention effect by the natural potential of a rust-prevented iron-based material test piece, the corrosion of the iron-based material test piece progresses even in the electrolyte solution for measuring the natural potential. The spontaneous potential of the test piece could not be measured, and accurate evaluation could not be performed. On the other hand, the present inventors, while degassing the electrolyte solution, by immersing the electrode made of an iron-based material and the reference electrode in the electrolyte solution, by measuring the potential difference between the electrodes, the surface potential of the iron-based material electrode It was also found that it was possible to stabilize and make accurate measurements. It is considered that the reason is that deaeration of the electrolyte solution reduces the amount of dissolved oxygen, which is one of the causes of corrosion of the iron-based material electrode.

自然電位を測定するための鉄系材料電極は、測定に適した形状を有する以外、防錆対象である鉄系部材と同じ材料で構成され、且つ同じ条件で防錆処理されたものである。   The iron-based material electrode for measuring the natural potential is made of the same material as the iron-based member that is the object of rust prevention and has been rust-proofed under the same conditions, except that it has a shape suitable for measurement.

電解質溶液の溶質である電解質としては、自然電位の測定に適するものであれば特に制限されないが、例えば、硫酸ナトリウムや硫酸カリウムなどを挙げることができる。電解質溶液における電解質の濃度は適宜調整すればよいが、例えば、0.0005質量%以上、1質量%以下とすることができる。   The electrolyte that is a solute of the electrolyte solution is not particularly limited as long as it is suitable for measuring the self-potential, and examples thereof include sodium sulfate and potassium sulfate. The concentration of the electrolyte in the electrolyte solution may be appropriately adjusted, and can be, for example, 0.0005 mass% or more and 1 mass% or less.

電解質溶液の脱気条件としては、一般的なものを採用することができる。例えば、窒素ガスやアルゴンガスなどの不活性ガスを電解質溶液に吹き込んでバブリングすればよい。不活性ガスの吹き込み量は、例えば、50mL/min以上、300mL/min以下とすることができる。   As the degassing condition of the electrolyte solution, general conditions can be adopted. For example, an inert gas such as nitrogen gas or argon gas may be blown into the electrolyte solution for bubbling. The amount of the inert gas blown in can be, for example, 50 mL / min or more and 300 mL / min or less.

参照電極と鉄系材料電極との電位差は、一般的なポテンシオスタットを用いて測定することができる。鉄系材料電極の自然電位は、ポテンシオスタットで両電極間の電位差を観察しつつ、当該電位差が安定化した際に求めることが好ましい。   The potential difference between the reference electrode and the iron-based material electrode can be measured using a general potentiostat. The spontaneous potential of the iron-based material electrode is preferably obtained when the potential difference becomes stable while observing the potential difference between the two electrodes with a potentiostat.

本発明に係る製造方法により、鉄系部材の表面には優れた不動態皮膜が形成され、その自然電位は上がっている。例えば、本発明に係る上記防錆工程を経る前の鉄系部材の表面電位に対する上記防錆工程を経た鉄系部材の表面電位の差としては、+90mV以上が好ましく、+95mV以上がより好ましく、+100mV以上がより更に好ましい。   By the manufacturing method according to the present invention, an excellent passivation film is formed on the surface of the iron-based member, and its spontaneous potential is increased. For example, the difference in surface potential of the iron-based member that has undergone the rust-prevention step with respect to the surface potential of the iron-based member that has not undergone the rust-prevention step according to the present invention is preferably +90 mV or higher, more preferably +95 mV or higher, and +100 mV. The above is more preferable.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and may be appropriately modified within a range compatible with the gist of the preceding and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.

実施例1
(1)防錆処理
密閉可能なガラス瓶の内部の湿度を、グリセリン水溶液を使って調節した。当該ガラス瓶は、8:30〜20:30の間の温度を25℃に調節した室内に置いた。温度が25℃で安定している際に、ガラス瓶内の相対湿度を、ガラス瓶内に設置した温湿度記録計で測定した。なお、上記時間以外は室内の温度調節は行わず、常温とした。
別途、断面直径10mm×高さ10〜20mmのクロムモリブデン鋼(SCM435)製円柱の側面に導線を接続し、一方の断面との間が導通可能であることを確認した。導通が確認された断面以外の表面をエポキシ樹脂で被覆することにより絶縁した。露出断面を2000番までのエメリー紙で湿式研磨した。
内部湿度を調節した各ガラス瓶内に、ガラス瓶内容量1Lあたり、市販の気化性防錆剤 250mg錠剤(「キレスダイヤ(R)A」キレスト社製)を1つ入れ、上記と同様の温度条件で一晩以上保持した。次いで、上記クロムモリブデン鋼供試材を入れ、同様の温度条件で1週間保持した。
Example 1
(1) Anticorrosion treatment The humidity inside the sealable glass bottle was adjusted using an aqueous glycerin solution. The glass bottle was placed in a room where the temperature was adjusted to 25 ° C between 8:30 and 20:30. When the temperature was stable at 25 ° C., the relative humidity in the glass bottle was measured by a temperature / humidity recorder installed in the glass bottle. In addition, the temperature inside the room was not adjusted except the above time, and the room temperature was kept.
Separately, a conductor wire was connected to the side surface of a chrome-molybdenum steel (SCM435) cylinder having a cross-sectional diameter of 10 mm and a height of 10 to 20 mm, and it was confirmed that conduction could be established between one cross section. The surfaces other than the cross section where conduction was confirmed were covered with an epoxy resin for insulation. The exposed section was wet-polished with emery paper up to # 2000.
In each glass bottle of which internal humidity was adjusted, one 250 mg tablet of a commercially available vaporizable rust preventive agent (“CHIRES DIA (R) A” manufactured by CREST) was placed per 1 L of the glass bottle, and the temperature was the same as above. Hold over night. Next, the chromium-molybdenum steel test material was put in and held for 1 week under the same temperature condition.

(2)自然電位測定
電気化学測定セルに0.01質量%硫酸ナトリウム水溶液(300mL)を入れ、窒素ガスを100mL/minの流量で導入してバブリングしつつ、電極として上記供試材と参照電極としてAg/AgCl電極を浸漬し、ポテンシオスタット(「VSP」Bio−logic Science Instruments社製)を用いて35℃にて自然電位を測定した。この自然電位測定を継続的に1時間以上行うことで自然電位が安定したことを確認後、各供試材の自然電位を特定した。
別途、上記防錆処理を行わなかった供試材を対照例として同様に自然電位を特定し、防錆処理を行った供試材との電位差を算出した。結果を表1に示す。
(2) Self-potential measurement 0.01 mass% sodium sulfate aqueous solution (300 mL) was put into an electrochemical measurement cell, and nitrogen gas was introduced at a flow rate of 100 mL / min while bubbling, while the above-mentioned test material and reference electrode were used as electrodes. As a result, the Ag / AgCl electrode was dipped, and the spontaneous potential was measured at 35 ° C. using a potentiostat (“VSP” manufactured by Bio-logic Science Instruments). After confirming that the self-potential was stabilized by continuously measuring the self-potential for 1 hour or more, the self-potential of each test material was specified.
Separately, the spontaneous potential was similarly specified using the test material not subjected to the rust-prevention treatment as a control example, and the potential difference from the test material subjected to the rust-prevention treatment was calculated. The results are shown in Table 1.

上記結果の通り、45%RH以下の相対湿度下で亜硝酸系気化性防錆剤により防錆処理を行った場合には、対照例との電位差が+100mVを超えており、クロムモリブデン鋼供試材の表面に優れた不動態皮膜が形成されてアノード反応が抑制されたため、腐食し難くなっている傾向が認められた。   As shown above, the potential difference from the control example exceeded +100 mV when rust-preventing treatment was performed with a nitrous acid-based vaporizing rust preventive agent at a relative humidity of 45% RH or less. It was confirmed that the material had a good passivation film formed on the surface and suppressed the anodic reaction, so that it was difficult to corrode.

実施例2
上記実施例1での気化性防錆剤の使用量は標準よりも多いため、標準的な使用量で再度実験を行った。
具体的には、市販の気化性防錆剤 250mg錠剤(「キレスダイヤ(R)A」キレスト社製)を粉砕して8Lガラス瓶内に56mgの気化性防錆剤粉末を入れた以外は上記実施例1と同様にして、防錆処理と自然電位測定を行った。結果を表2に示す。
Example 2
Since the amount of the vaporizable rust preventive agent used in Example 1 was larger than the standard amount, the experiment was repeated with the standard amount used.
Specifically, the above Example except that a commercially available vaporizing rust preventive 250 mg tablet (“CHIRES DIA (R) A” manufactured by CREST) was crushed and 56 mg of the vaporizable rust preventive powder was put in an 8 L glass bottle. In the same manner as in No. 1, rust prevention treatment and spontaneous potential measurement were performed. Table 2 shows the results.

表2に示す結果の通り、気化性防錆剤の使用量を標準的なものにした場合にも、約40%RH以下の相対湿度下で亜硝酸系気化性防錆剤により防錆処理を行った場合には、対照例との電位差が約+100mVまたはそれ以上であり、クロムモリブデン鋼供試材の表面に優れた不動態皮膜が形成されてアノード反応が抑制されたため、腐食し難くなっている傾向が認められた。   As shown in the results shown in Table 2, even when the amount of the vaporizable rust preventive agent used is standard, the nitrite type vaporizable rust preventive agent is subjected to the rust preventive treatment under the relative humidity of about 40% RH or less. When carried out, the potential difference from the control example was about +100 mV or more, and the excellent passivation film was formed on the surface of the chromium-molybdenum steel test material, and the anode reaction was suppressed. A tendency was observed.

実施例3
試験片として、直径52mm、厚み10mmの円板状クロムモリブデン鋼(SCM435)を用いた。この試験片の表面を湿式研磨機で研磨し、アルカリ脱脂後、エタノールで洗浄した。
5Lガラス容器内の内部湿度を、グリセリン水溶液を使って30%RHに調節し、24時間25℃に調整された室内に一晩以上置いて湿度を安定化させた。当該ガラス容器内に、市販の気化性防錆剤 250mg錠剤(「キレスダイヤ(R)A」キレスト社製)を5つ入れ、上記と同様の温度条件で更に一晩以上保持した。次いで、上記試験片を入れ、同様の温度条件で2週間保持することで、気相防錆処理試験片を得た。また、上記の通り研磨・洗浄のみ施した円板状クロムモリブデン鋼を、対照例試験片として以下の防錆試験に付した。
次いで、500mLの密閉容器を2つ用意し、各容器に蒸留水50mLを入れ、更に一方の容器に気相防錆処理試験片を入れ、他方の容器に対照試験片を入れて各容器を密閉し、室内に28日間放置した。この室内は、8時から20時までの日中は温度を18℃に設定したエアコン環境下にあり、20時から翌日8時までの夜間はエアコンを切り温度制御を行わなかった。この夜間の最低気温は日によって異なるが、実測では7〜11℃であった。試験片の外観写真を図1に示す。
図1に示す結果の通り、本発明に係る気相防錆処理を行わない場合(対照例)には、激しい腐食が確認された。それに対して本発明に係る気相防錆処理を施した試験片の表面には、明確な腐食は確認されなかった。この通り、本発明に係る気相防錆処理により、鉄系部材の耐食性能が顕著に向上していることが明らかとなった。
Example 3
As a test piece, a disc-shaped chrome molybdenum steel (SCM435) having a diameter of 52 mm and a thickness of 10 mm was used. The surface of this test piece was polished by a wet polishing machine, degreased with alkali, and washed with ethanol.
The internal humidity in the 5 L glass container was adjusted to 30% RH using a glycerin aqueous solution, and placed in a room adjusted to 25 ° C. for 24 hours overnight to stabilize the humidity. In the glass container, five commercially available vaporizable rust preventive 250 mg tablets ("CHIRES DIA (R) A" manufactured by CREST) were placed, and the mixture was kept under the same temperature condition as above overnight. Then, the above-mentioned test piece was put in and kept under the same temperature condition for 2 weeks to obtain a vapor-phase rustproof test piece. In addition, the disc-shaped chromium molybdenum steel that was only polished and washed as described above was subjected to the following rust prevention test as a control sample.
Next, prepare two 500 mL sealed containers, put 50 mL of distilled water in each container, put the vapor phase rust treated test piece in one container, put the control test piece in the other container and close each container. Then, it was left indoors for 28 days. This room was in an air conditioner environment where the temperature was set to 18 ° C. during the day from 8:00 to 20:00, and the air conditioner was turned off during the night from 20:00 to 8:00 the next day, and temperature control was not performed. The minimum temperature at night varies depending on the day, but was actually 7 to 11 ° C. The appearance photograph of the test piece is shown in FIG.
As shown in the results shown in FIG. 1, when the vapor-phase anticorrosive treatment according to the present invention was not performed (control example), severe corrosion was confirmed. On the other hand, no clear corrosion was confirmed on the surface of the test piece which was subjected to the vapor phase rust prevention treatment according to the present invention. As described above, it became clear that the corrosion resistance performance of the iron-based member was remarkably improved by the vapor-phase rust preventive treatment according to the present invention.

Claims (8)

鉄系部材を製造するための方法であって、
低湿に調節した密閉空間内において、上記鉄系部材と亜硝酸系気化性防錆剤を共存させる工程を含むことを特徴とする方法。
A method for manufacturing an iron-based member, comprising:
A method comprising the step of allowing the iron-based member and a nitrite-based vaporizable rust preventive agent to coexist in a closed space adjusted to have low humidity.
上記密閉空間内の相対湿度が45%以下である請求項1に記載の方法。   The method according to claim 1, wherein the relative humidity in the closed space is 45% or less. 上記亜硝酸系気化性防錆剤が、ジシクロヘキシルアミン亜硝酸塩、ジイソプロピルアミン亜硝酸塩、亜硝酸ナトリウム、および亜硝酸カリウムから必須的になる群より選択される1種または2種以上の亜硝酸塩を含む請求項1または2に記載の方法。   The nitrite-based vaporizable rust inhibitor contains one or more nitrites selected from the group consisting essentially of dicyclohexylamine nitrite, diisopropylamine nitrite, sodium nitrite, and potassium nitrite. The method according to Item 1 or 2. 上記亜硝酸系気化性防錆剤がアンモニウム塩を含む請求項1〜3のいずれかに記載の方法。   The method according to any one of claims 1 to 3, wherein the nitrite-based vaporizable rust inhibitor contains an ammonium salt. 上記鉄系部材と上記亜硝酸系気化性防錆剤を共存させる時間が1日以上である請求項1〜4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the iron-based member and the nitrite-based vaporizable rust inhibitor are allowed to coexist for 1 day or more. 上記鉄系部材と上記亜硝酸系気化性防錆剤を共存させる温度が5℃以上、50℃以下である請求項1〜5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, wherein the temperature at which the iron-based member and the nitrite-based vaporizable rust inhibitor coexist is 5 ° C or higher and 50 ° C or lower. 上記工程を経る前の鉄系部材の表面電位に対する上記工程を経た鉄系部材の表面電位の差が+90mV以上である請求項1〜6のいずれかに記載の方法。   The method according to any one of claims 1 to 6, wherein a difference in surface potential of the iron-based member that has been subjected to the above step with respect to a surface potential of the iron-based member before being subjected to the step is +90 mV or more. 鉄系材料の自然電位を測定するための方法であって、
電解質溶液を脱気しつつ、上記鉄系材料からなる電極と参照電極を電解質溶液に浸漬し、電極間の電位差を測定する工程を含むことを特徴とする方法。
A method for measuring the spontaneous potential of an iron-based material, comprising:
A method comprising immersing an electrode made of the iron-based material and a reference electrode in an electrolyte solution while deaerating the electrolyte solution, and measuring a potential difference between the electrodes.
JP2018190781A 2018-10-09 2018-10-09 Method for manufacturing ferrous members Active JP7154498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190781A JP7154498B2 (en) 2018-10-09 2018-10-09 Method for manufacturing ferrous members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190781A JP7154498B2 (en) 2018-10-09 2018-10-09 Method for manufacturing ferrous members

Publications (2)

Publication Number Publication Date
JP2020059874A true JP2020059874A (en) 2020-04-16
JP7154498B2 JP7154498B2 (en) 2022-10-18

Family

ID=70218795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190781A Active JP7154498B2 (en) 2018-10-09 2018-10-09 Method for manufacturing ferrous members

Country Status (1)

Country Link
JP (1) JP7154498B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192976A (en) * 1997-09-17 1999-04-06 Nippon Soda Co Ltd Rust preventing agent and rust preventing method
JP2001031966A (en) * 1999-07-21 2001-02-06 Kiresuto Kk Volatile rust preventive
JP2004530541A (en) * 2001-04-16 2004-10-07 ズード−ヘミー・インコーポレイテッド Desiccant composition
CN1619014A (en) * 2004-10-18 2005-05-25 李振波 Gaseous phase and drying rustproof method
JP2011179115A (en) * 2010-01-28 2011-09-15 Excor Korrosionsforschung Gmbh Composition of vapor-phase corrosion inhibitor, method for producing the same and use of the same for temporary corrosion protection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192976A (en) * 1997-09-17 1999-04-06 Nippon Soda Co Ltd Rust preventing agent and rust preventing method
JP2001031966A (en) * 1999-07-21 2001-02-06 Kiresuto Kk Volatile rust preventive
JP2004530541A (en) * 2001-04-16 2004-10-07 ズード−ヘミー・インコーポレイテッド Desiccant composition
CN1619014A (en) * 2004-10-18 2005-05-25 李振波 Gaseous phase and drying rustproof method
JP2011179115A (en) * 2010-01-28 2011-09-15 Excor Korrosionsforschung Gmbh Composition of vapor-phase corrosion inhibitor, method for producing the same and use of the same for temporary corrosion protection

Also Published As

Publication number Publication date
JP7154498B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
Umoren et al. Synergistic and antagonistic effects between halide ions and carboxymethyl cellulose for the corrosion inhibition of mild steel in sulphuric acid solution
RU2453632C2 (en) Vapour-phase acid corrosion inhibitors and procedure for their production
JP5745872B2 (en) Vapor phase corrosion inhibitor composition, process for its production and its use for temporary protection against corrosion
JP7154498B2 (en) Method for manufacturing ferrous members
Attia Expired Farcolin drugs as corrosion inhibitor for carbon steel in 1 M HCl solution
Ismayilov et al. Inhibition effects of some novel surfactants based on corn oil and diethanolamine on mild steel corrosion in chloride solutions saturated with CO2
JP4347458B2 (en) Vaporizable rust preventive
JPS6058161B2 (en) Flexible layered graphite material and its manufacturing method
JP4149708B2 (en) Vaporizable solid rust inhibitor
JP5668256B2 (en) Vaporizable rust preventive composition
JP2011127173A (en) Rust preventing composition and rust preventing film using the same
WO2012023548A1 (en) Surface-treated metal material having excellent scale adhesion-suppressing properties, method for producing same, heat exchanger, and seawater evaporator
Al-Turkustani Thermodynamic, chemical and electrochemical investigation of pandanus tectorius extract as corrosion inhibitor for steel in sulfuric acid solutions
Akrout et al. Adsorption of corrosion inhibitors (SA, HEDP) using EQCM: chloride effect and synergic behavior
JPS63210285A (en) Volatile corrosion inhibitor kit
JP2012001792A (en) Rust prevention composition and rust prevention film using the same
Avdeev et al. Inhibitory protection of steels in hydrochloric and phosphoric acid mixtures containing Fe (III) salts
US4556536A (en) Method and composition for corrosion inhibition of carbon steel by ammonium sulfate
JP6479682B2 (en) Vaporizable rust preventive composition
El-Etre Natural onion juice as inhibitor for zinc corrosion
JP6432028B2 (en) Vaporizable rust preventive
JP4145990B2 (en) Vaporizable metal rust preventive composition
JP2019052362A (en) Method for inhibiting local corrosion of metal in aqueous system
Quraishi et al. Investigation of piperazine and its derivatives as vapor phase corrosion inhibitors for mild steel
US4600558A (en) Method and composition for corrosion inhibition of carbon steel by ammonium sulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7154498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150