JP2020059302A - Course control method for automated driving - Google Patents

Course control method for automated driving Download PDF

Info

Publication number
JP2020059302A
JP2020059302A JP2018189631A JP2018189631A JP2020059302A JP 2020059302 A JP2020059302 A JP 2020059302A JP 2018189631 A JP2018189631 A JP 2018189631A JP 2018189631 A JP2018189631 A JP 2018189631A JP 2020059302 A JP2020059302 A JP 2020059302A
Authority
JP
Japan
Prior art keywords
vehicle
curb
control method
route
automatic driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018189631A
Other languages
Japanese (ja)
Other versions
JP6991119B2 (en
Inventor
達哉 橋本
Tatsuya Hashimoto
達哉 橋本
航 釘宮
Wataru Kugimiya
航 釘宮
賢治 江尻
Kenji Ejiri
賢治 江尻
籾山 冨士男
Fujio Momiyama
冨士男 籾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Smart Mobility Co Ltd
Original Assignee
Advanced Smart Mobility Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Smart Mobility Co Ltd filed Critical Advanced Smart Mobility Co Ltd
Priority to JP2018189631A priority Critical patent/JP6991119B2/en
Publication of JP2020059302A publication Critical patent/JP2020059302A/en
Application granted granted Critical
Publication of JP6991119B2 publication Critical patent/JP6991119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a course control method for automated driving, which allows for driving in a condition where a curbstone on a road is detected by a measurement device such as LiDAR even when a GPS is not available and which can control with high accuracy a clearance between a curbstone and a bus when the bus is driven alongside a bus stop.SOLUTION: A course control method for automated driving includes a target route formulas that can conform to the landform at an actual place, detects a lateral deviation and an angle deviation to a target route from the shape of a curbstone such as a bus stop with a measurement device such as LiDAR, and calculates a steering angle for the target route depending on a vehicle model and thus allows a vehicle to travel along the target route and stop at a predetermined location.SELECTED DRAWING: Figure 3

Description

本発明は、レーザ光を用いた測距装置LiDAR(Light Detection and Ranging)を用いた自動運転における進路制御方法に関する。   The present invention relates to a route control method in automatic driving using a distance measuring device LiDAR (Light Detection and Ranging) using laser light.

自動運転によってバス(車両)をバス停に停車する際に、縁石と平行で且つ縁石との隙間をできるだけ小さくする方法が特許文献1に提案されている。
この特許文献1では、車線を維持しつつバス停に近づきバスを止めるにあたり、後軸路側輪が描く軌跡を車両各部の動きを代表する根源の軌跡としている。
Patent Document 1 proposes a method of making a gap between a curb and a parallel to a curb as small as possible when a bus (vehicle) is stopped at a bus stop by automatic driving.
In this patent document 1, the locus drawn by the rear axle side wheels is used as the root locus representing the movement of each part of the vehicle when approaching the bus stop and stopping the bus while maintaining the lane.

特許文献2には、光測距装置を用いた自動運転方法(隊列走行)が提案されている。この特許文献2では、前車両の位置を光測距装置によって捉え、前車両の特定部への方向と距離を検出して、その特定部へ至る軌跡を辿る前輪実舵角を算出するようにしている。   Patent Document 2 proposes an automatic driving method (platooning) using an optical distance measuring device. In Patent Document 2, the position of the front vehicle is detected by an optical distance measuring device, the direction and distance to the specific portion of the front vehicle are detected, and the front wheel actual steering angle that follows the locus to the specific portion is calculated. ing.

特許文献3には、LiDARを用い、レーザ光によるスキャンを水平方向及び垂直方向に行って自車両の周辺に存在する物体の位置と形状とを測定するにあたり、道路境界の複雑な形状の影響や、ノイズの影響によって、車線境界線の外にある路側物であるにも関わらず、物標枠が車線境界線を跨ぐように物標化が行われてしまう場合がある。これを防止するために、車線境界線認識手段、車線内領域抽出手段及び判定手段を備えることが提案されている。   In Patent Document 3, when LiDAR is used to perform scanning with laser light in the horizontal direction and the vertical direction to measure the position and shape of an object existing around the vehicle, the influence of a complicated shape of a road boundary and Due to the influence of noise, targeting may be performed so that the target frame may straddle the lane boundary line even though it is a roadside object outside the lane boundary line. In order to prevent this, it has been proposed to provide a lane boundary line recognizing means, an in-lane area extracting means, and a judging means.

現在、GPSによる速度・位置認識機能を利用する自動運転の研究が進んできている。GPS衛星からの位置情報と無線通信を利用しての補正情報を受けて数cmの精度が得られるVRS−GPSを利用する自動運転の実証実験が進行している。ここに、VRSはVirtual Reference Stationのことで、日本語で仮想基準点といわれる。   Currently, research on automatic driving utilizing a speed / position recognition function by GPS is progressing. Demonstration experiments of automatic driving using VRS-GPS, which can obtain accuracy of several cm by receiving position information from GPS satellites and correction information using wireless communication, are in progress. VRS stands for Virtual Reference Station and is called a virtual reference point in Japanese.

GPSにはマルチパスと呼ばれるエラーがある。マルチパスは様々な障害物(建物、樹木、電線、地表など)で発生する。マルチパスが発生すると、測位精度に誤差が生じて自動運転経路が乱れて経路維持走行が出来なくなる。 GPS has an error called multipath. Multipath occurs on various obstacles (buildings, trees, power lines, ground, etc.). When the multipath occurs, an error occurs in the positioning accuracy, the automatic driving route is disturbed, and the route maintaining traveling cannot be performed.

一方で、前記したLiDARも性能が向上し、120mの距離から2cm未満の精度で距離測定が行える自動運転向けの商品化計画が報告されている。GPSによる速度・位置認識を利用してGPSが使えない場所ではLiDARによって縁石等との距離を計測して自動走行する技術が考えられる。   On the other hand, the above-mentioned LiDAR has improved performance, and a commercialization plan for autonomous driving that can measure a distance from a distance of 120 m with an accuracy of less than 2 cm is reported. In a place where GPS cannot be used by utilizing the speed / position recognition by GPS, a technology for automatically traveling by measuring the distance to the curb etc. by LiDAR can be considered.

特許第5981010号公報Japanese Patent No. 5981010 特許第6109998号公報Japanese Patent No. 6109998 特開2018−92483号公報JP, 2008-92483, A

課題は自動運転車両において、GPSが使えない状況下でもライダーによって道路縁石・バス停縁石などを検出して走行ないしバス停に着するなど課せられた任務の遂行を可能にすることである。トンネルを含む一般道において、縁石を検出して縁石に沿って走行するには自車と縁石との並行と距離を検出して縁石に沿う操舵制御ができる必要がある。バス停正着のためには、バス停(Bus bay)形状に応じて縁石乗り上げなく最小隙間で接舷(Docking)することが求められる。   It is an object of the present invention to enable a rider to perform a task assigned to an autonomous driving vehicle such as running or landing at a bus stop by detecting a road curb or a bus stop curb even when GPS cannot be used. In a general road including a tunnel, in order to detect a curb and travel along the curb, it is necessary to detect the parallel and the distance between the vehicle and the curb and perform steering control along the curb. In order to arrive at the bus stop, the bus stop (Bus bay) is required to dock with a minimum clearance without climbing a curb according to the shape of the bus (Docking).

しかしながら、特許文献1はバス停正着のための目標軌跡の幾何と操舵制御について述べるもので、縁石と車体との隙間を確認する方法及び手段には言及していない。   However, Patent Document 1 describes the geometry of the target locus and the steering control for the normal stop at the bus stop, and does not refer to the method and means for confirming the clearance between the curb and the vehicle body.

特許文献2は先行車追随に関する車両位置認識にかかわるもので、縁石を検出しての自動走行には言及していない。   Patent Document 2 is concerned with vehicle position recognition regarding following of a preceding vehicle, and does not refer to automatic driving by detecting a curb.

特許文献3はLiDARによって検出した自車両周辺の物標を自車線領域内のみに絞り込むことに関するもので、縁石を検出しての走行や正着に関するものではない。   Patent Document 3 relates to narrowing down the target around the vehicle detected by LiDAR to within the vehicle lane area only, and does not relate to running or normal wearing after detecting a curb.

マップ(デジタルマップを含む)に基づき運行経路に沿って設けられた縁石、ガードレール、白線、柵などの目標物と車体との間隔を予め設定し、設定した間隔を維持した走行を可能とする目標経路を曲線式または数表によって作成し、走行中はLiDARで自車位置を確認し、自車位置と前記目標経路とのずれを算出し、このずれを修正するように操舵する。
前記ずれの検出は、LiDARによって縁石と車体との間隔と角度を監視することで行う。
Targets that set the distances between the curbstones, guardrails, white lines, fences, and other targets along the route based on maps (including digital maps) and the vehicle body in advance, and that enable running while maintaining the set intervals The route is created by a curve formula or a number table, the own vehicle position is confirmed by LiDAR during traveling, the deviation between the own vehicle position and the target route is calculated, and steering is performed to correct this deviation.
The deviation is detected by monitoring the distance and angle between the curb and the vehicle body by LiDAR.

実際の地形に合わせることができる目標経路式等を持ち、目標経路に沿う舵角を決める車両モデルを持ち、目標経路の通り縁石隙間を決めて縁石に沿う車両姿勢がとれているかをLiDARで確認して修正操舵をするので目標経路を正確に走り、バス停の正しい位置に接舷停止することが可能になる。   It has a target route formula that can match the actual terrain, has a vehicle model that determines the rudder angle along the target route, and determines the vehicle attitude along the curb by determining the curb gap along the target route and checking with LiDAR Then, since the correction steering is performed, it is possible to accurately travel the target route and stop at the correct position of the bus stop.

特に、GPSを利用した自動運転において、GPSの測位精度が低下する森林、貫道、崖横、ネット下、高層ビル街での運行、またGPSが使えないトンネル内、地下空間、屋内での運行におけるバス停や荷役縁台などへの接舷精度の向上が図れる。 In particular, in autonomous driving using GPS, it operates in forests, roads, cliffs, under the net, in high-rise buildings, where GPS positioning accuracy decreases, and in tunnels, underground spaces, indoors where GPS cannot be used. It is possible to improve the accuracy of porting to a bus stop or cargo handling platform.

縁石に横づけする際の後車軸軌跡と車両前端軌跡の関係図Relationship diagram between rear axle trajectory and vehicle front edge trajectory when laying on curb 縁石に横づけする目標軌跡の取り方の説明図Explanatory drawing of how to take the target trajectory to be laid on the curb LiDARによる縁石隙間と車両姿勢の検出説明図Explanatory drawing of detection of curb gap and vehicle posture by LiDAR LiDARによる縁石隙間と車両姿勢の検出説明図Explanatory drawing of detection of curb gap and vehicle posture by LiDAR 後軸軌跡から算出される実舵角の説明図Illustration of the actual steering angle calculated from the rear-axis trajectory 制御フローチャートの説明図Illustration of control flow chart

以下、本発明の実施の形態を図1〜6に基づいて説明する。
図1は、縁石に横づけする際の後車軸軌跡と車両前端軌跡の関係図である。(A)から入り(B)に抜ける後軸経路を示す。
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a diagram showing a relationship between a rear axle locus and a vehicle front end locus when horizontally laid on a curb. Shows the rear axle path from (A) to exit (B).

縁石に横づけする際などの極低速域では、タイヤの滑りがないので、後軸のR1点とこれに対応する車両前端F1点はともに後車軸延長線上のO点を中心として旋回する。同様にR2点とこれに対応する車両前端F2点はともに後車軸延長線上のO点を中心として旋回する。このため、F2点の旋回軌跡上に縁石があるとF2点は縁石に乗り上げてしまう。最終的にはR3点、F3点に至り車体を縁石に平行に止めるのであるが、F2点での縁石乗り上げを無くしてR3、F3に至る軌跡の取り方に工夫が必要になる。 The extremely low speed range, such as when the lateral association the curb, because there is no slippage of the tire, R1 point and the vehicle front end F1 point corresponding to the rear axle pivots about a O 1 point on the rear axle extension together. Similarly R2-point and the vehicle front end F2 points corresponding thereto is pivoted about the O 2 points on the rear axle extension together. Therefore, if there is a curb on the turning trajectory of the F2 point, the F2 point will ride on the curb. Eventually, the car body will be stopped parallel to the curb at the R3 and F3 points, but it will be necessary to devise a way to take the trajectory to reach R3 and F3 without eliminating the curb riding at the F2 point.

図2に、縁石に乗り上げずに縁石に横づけする目標軌跡の取り方を示す。(1)はじめに深く切り込んで車両前部路側端を縁石に寄せる。(2)ハンドルを徐々に戻しながら縁石隙間が前後平行になる位置まで前進する。この際の後軸軌跡は、式(1)、(2)の指数関数で近似できる。   FIG. 2 shows how to take a target locus to be laid horizontally on the curb without riding on the curb. (1) First, make a deep cut to bring the front roadside edge of the vehicle closer to the curb. (2) While gradually returning the handle, move forward until the curb gap is parallel to the front and back. The trailing axis locus at this time can be approximated by the exponential function of the equations (1) and (2).

Figure 2020059302
Figure 2020059302

車両前部路側端はF1,F2,F3と縁石すれすれに移動する。移動開始する前段階での自車の位置出しから停止位置に至る経路について目標軌跡を用意し、目標軌跡を辿っていることの確認をとる手段が必要である。目標軌跡を辿っていることの確認をとる手段として本発明ではLiDARを用いた。   The front roadside edge of the vehicle moves to F1, F2, F3 and the curb. A means for preparing a target locus for a route from the position of the vehicle to the stop position before starting the movement and for confirming that the target locus is followed is required. LiDAR is used in the present invention as a means for confirming that the target trajectory is being followed.

図3及び図4にLiDARによる縁石隙間と車両姿勢の検出説明図を示す。ここで、図3は縁石が直線の場合、図4は縁石が曲線(折線を含む)の場合である。車両前部中央にLiDARを装備して、A,B,Cを検出して縁石との距離D,縁石に対する自車の姿勢角Φnを把握することによって、目標軌跡を辿れていることを確認する。ここで、Aは車両前部左端点(PFE)から車両前方に延長した線と縁石との交点、Bは車両前部左端点(PFE)から車幅方向に延長した線と縁石との交点、CはAとBとの距離である。 3 and 4 are explanatory diagrams for detecting the curb gap and the vehicle posture by LiDAR. Here, FIG. 3 is a case where the curb is a straight line, and FIG. 4 is a case where the curb is a curve (including a broken line). By equipping the front center of the vehicle with LiDAR, detecting A, B, and C, and grasping the distance D to the curb and the attitude angle Φn of the vehicle with respect to the curb, it is possible to confirm that the target trajectory is being followed. . Here, A is an intersection of a line extending from the vehicle front left end point ( PFE ) to the vehicle front and the curb, and B is a line extending from the vehicle front left end point ( PFE ) to the vehicle width direction and the curb. The intersection, C, is the distance between A and B.

図5に後軸軌跡から算出される実舵角の説明図を示す。現場の地形に目標軌跡をはめ込んでその軌跡を辿るとき、どの様に操舵すればよいかを説明する。
目標軌跡が前記式(1)(2)により与えられ、この式の曲率は式(3)により与えられる。
FIG. 5 shows an explanatory diagram of the actual steering angle calculated from the rear-axis trajectory. We will explain how to steer when setting a target locus in the terrain of the site and following the locus.
The target locus is given by the equations (1) and (2), and the curvature of this equation is given by the equation (3).

Figure 2020059302
Figure 2020059302

ここに、f(x)は式(1)である。
この曲率を描くための前輪実舵角は式(4)になる。
Here, f (x) is equation (1).
The front wheel actual steering angle for drawing this curvature is given by equation (4).

Figure 2020059302
Figure 2020059302

ここに、δは前輪実舵角、KSFはスタビリティファクタで車両が曲線走行する際の車速の二乗に対する旋回半径の変化特性を表現する特性値である。vは車速、ρは曲率、L(式では小文字)はホイールベースである。 Here, δ is an actual front wheel steering angle, and K SF is a stability factor, which is a characteristic value expressing the change characteristic of the turning radius with respect to the square of the vehicle speed when the vehicle travels on a curve. v is the vehicle speed, ρ is the curvature, and L (lowercase in the equation) is the wheelbase.

図5の上段において、実線が後軸の軌跡で、点線がそれに対応する車両前端中央部の軌跡である。下段は、実舵角である。実舵角の変化に(1)(2)(3)の過程が観察される。
(1)最初に大きく切り込んで車体前端を縁石いっぱいに寄せる。(2)切り戻して車体前端を横移動させつつ前進する。(3)車体前端で縁石をなぞる様に徐々に切り戻して縁石と車体を平行にして停車する。この過程は、人が練習して上達した操舵と一致する。
In the upper part of FIG. 5, the solid line is the locus of the rear shaft, and the dotted line is the locus of the corresponding central portion of the front end of the vehicle. The lower row is the actual steering angle. The processes (1), (2) and (3) are observed in the change of the actual steering angle.
(1) First, make a large cut to bring the front end of the vehicle body close to the curb. (2) Cut back and move forward while laterally moving the front end of the vehicle body. (3) Gradually cut back like tracing a curb at the front end of the car body and stop with the curb and the car body parallel. This process is consistent with a person's practice and improved steering.

この(1)(2)(3)の過程を短い距離で収めようとすると式(1)のλを大きくすることによって成される。その場合の車両前端の軌跡は図中の(4)に示すように盛り上がり、図1の縁石乗り上げになる。
この乗り上げ形状に合わせて縁石を切り取って縁石を建設するなら、現場空間に適応してのバス停にもなる。
If the steps (1), (2) and (3) are to be accommodated in a short distance, it is done by increasing λ in the equation (1). In that case, the locus of the front end of the vehicle rises as shown by (4) in the figure, and the curb rides up in FIG.
If the curb is cut according to this riding shape and the curb is constructed, it will also be a bus stop adapted to the site space.

図6に制御フローチャートを示す。バス停に横づけするためなどの目標軌跡を作成して、その目標軌跡に対する自車位置から目標軌跡に合流するタスクの工程を示す。   FIG. 6 shows a control flowchart. The steps of a task of creating a target locus for laying it down at a bus stop and joining the target locus from the vehicle position to the target locus are shown.

工程(1)では、経路要所の軌道の緯度・経度・方位を取得して、クロソイド曲線、最小二乗法などの方法で補間して目標軌跡を予め整備する。バス停であればバス停に横づけするための走行軌跡を曲線式・数表などを用意する。IDを付して緯度経度方位、曲率、勾配、制御速度の情報を持たせる。   In step (1), the latitude / longitude / azimuth of the orbit of the route key point is acquired and interpolated by a method such as a clothoid curve or a least squares method to prepare the target trajectory in advance. If it is a bus stop, prepare a curve formula, a number table, etc. for the running locus to be placed alongside the bus stop. Information such as latitude / longitude, curvature, gradient, and control speed is given by attaching an ID.

工程2では、目標軌跡と現場との位置合わせをする。始発地、中継地における地球座標系と車両座標系の相対軸を合わせる(車両の位置方位を要所の目印(バス停、停止線・縁石等)と合わせる。 In step 2, the target locus and the site are aligned. Align the relative axes of the earth coordinate system and the vehicle coordinate system at the starting point and transit point (match the vehicle's position and orientation with landmarks (bus stops, stop lines, curbs, etc.).

工程3では、バス停等の現場において、LiDARによって、図3図4のA,B、C、DとΦnを把握する。   In step 3, on the spot such as a bus stop, LiDAR is used to grasp A, B, C, D and Φn in FIG.

工程4では、自車の位置座標と方位を認識する。バス停等の要所軌道式・数表に照らし自車位置を確認する。   In step 4, the position coordinates and direction of the vehicle are recognized. Check the location of your vehicle in light of the orbital and numerical tables at key points such as bus stops.

工程5では、目標軌跡上の目標点座標と方位を認識する。目標点を何メートル先に設定するかを試運行段階で定めておく。通常は4m先(前方注視モデルの場合の常識的数字)とする。   In step 5, the target point coordinates and orientation on the target trajectory are recognized. Determine how many meters ahead the target point will be set at the trial operation stage. Normally, the distance is 4 m (common sense for the forward-looking model).

工程6では、制御舵角を決める。自車の座標と方位と目標点の座標と方位からクロソイド補間等を実施して補間曲線の曲率と車速からの舵角算出式によって実舵角を決める。   In step 6, the control rudder angle is determined. The actual steering angle is determined according to the steering angle calculation formula based on the curvature of the interpolation curve and the vehicle speed by performing clothoid interpolation or the like from the coordinates and direction of the own vehicle and the coordinates and direction of the target point.

工程7にて、目標点に至る。バス停であればそこに停車。一般道であれば、そこでの自車位置誤差偏差を把握して、工程(4)へ戻り工程(4)から工程(7)を繰り返しつつタスクを終了する。
At step 7, the target point is reached. If there is a bus stop, stop there. If it is a general road, the deviation of the own vehicle position error is grasped, the process is returned to the step (4) and the task is ended while repeating the steps (4) to (7).

Claims (3)

マップに基づき運行経路に沿って設けられた縁石、ガードレール、白線、柵などの目標物と車体との間隔を設定し、設定した間隔を維持した走行を可能とする目標経路を曲線式または数表によって作成し、走行中はレーザ光を用いた計測装置で自車位置を確認し、自車位置と前記目標経路とのずれを算出し、このずれを修正するように操舵することを特徴とする自動運転における進路制御方法。   Set the distance between the vehicle body and the curbstone, guardrail, white line, fence, etc., which are provided along the operation route based on the map, and the target route that allows traveling while maintaining the set interval is a curve type or number table It is characterized in that the vehicle position is confirmed by a measuring device using laser light during traveling, the deviation between the own vehicle position and the target route is calculated, and steering is performed to correct this deviation. Course control method in automatic driving. 請求項1に記載の自動運転における進路制御方法において、バス停などの縁石に横づけするため式(1)及び式(2)により軌跡を算出し、式(3)式(4)により軌跡に沿うための実舵角を算出することを特徴とする自動運転における進路制御方法。
Figure 2020059302
In the route control method for automatic driving according to claim 1, the locus is calculated by the formula (1) and the formula (2) for laying on a curb such as a bus stop, and the locus is followed by the formula (3) and the formula (4). A route control method in automatic driving, characterized by calculating an actual steering angle for driving.
Figure 2020059302
請求項1または請求項2に記載の自動運転における進路制御方法において、前記計測装置によって、バス停などの縁石形状から横偏差と角度偏差を検出して軌跡に沿うための実舵角を算出することを特徴とする自動運転における進路制御方法。   The route control method in automatic driving according to claim 1 or 2, wherein the measuring device detects a lateral deviation and an angular deviation from a curb shape of a bus stop or the like to calculate an actual steering angle for following the trajectory. And a route control method in automatic driving.
JP2018189631A 2018-10-05 2018-10-05 Path control method in automatic driving Active JP6991119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189631A JP6991119B2 (en) 2018-10-05 2018-10-05 Path control method in automatic driving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189631A JP6991119B2 (en) 2018-10-05 2018-10-05 Path control method in automatic driving

Publications (2)

Publication Number Publication Date
JP2020059302A true JP2020059302A (en) 2020-04-16
JP6991119B2 JP6991119B2 (en) 2022-01-12

Family

ID=70218669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189631A Active JP6991119B2 (en) 2018-10-05 2018-10-05 Path control method in automatic driving

Country Status (1)

Country Link
JP (1) JP6991119B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638711A (en) * 2020-05-22 2020-09-08 北京百度网讯科技有限公司 Driving track planning method, device, equipment and medium for automatic driving
CN111914955A (en) * 2020-10-13 2020-11-10 上海世脉信息科技有限公司 Public transport line identification method based on GPS track data
CN113386737A (en) * 2021-07-13 2021-09-14 东风汽车集团股份有限公司 Passenger-riding parking method based on fixed line
CN114758522A (en) * 2022-04-25 2022-07-15 驭势科技(北京)有限公司 Vehicle dock parking method, device, equipment and medium
US11807223B2 (en) 2020-12-22 2023-11-07 Toyota Jidosha Kabushiki Kaisha Automated drive device and automated drive method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235073A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Control device
JP2010247585A (en) * 2009-04-13 2010-11-04 Toyota Motor Corp Vehicle controller
JP5981010B1 (en) * 2015-09-30 2016-08-31 先進モビリティ株式会社 Vehicle stopping system
JP2017068440A (en) * 2015-09-29 2017-04-06 富士重工業株式会社 Automatic driving device
JP6202700B1 (en) * 2016-11-30 2017-09-27 先進モビリティ株式会社 Vehicle steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235073A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Control device
JP2010247585A (en) * 2009-04-13 2010-11-04 Toyota Motor Corp Vehicle controller
JP2017068440A (en) * 2015-09-29 2017-04-06 富士重工業株式会社 Automatic driving device
JP5981010B1 (en) * 2015-09-30 2016-08-31 先進モビリティ株式会社 Vehicle stopping system
JP6202700B1 (en) * 2016-11-30 2017-09-27 先進モビリティ株式会社 Vehicle steering device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638711A (en) * 2020-05-22 2020-09-08 北京百度网讯科技有限公司 Driving track planning method, device, equipment and medium for automatic driving
CN111914955A (en) * 2020-10-13 2020-11-10 上海世脉信息科技有限公司 Public transport line identification method based on GPS track data
CN111914955B (en) * 2020-10-13 2021-01-15 上海世脉信息科技有限公司 Public transport line identification method based on GPS track data
US11807223B2 (en) 2020-12-22 2023-11-07 Toyota Jidosha Kabushiki Kaisha Automated drive device and automated drive method
CN113386737A (en) * 2021-07-13 2021-09-14 东风汽车集团股份有限公司 Passenger-riding parking method based on fixed line
CN114758522A (en) * 2022-04-25 2022-07-15 驭势科技(北京)有限公司 Vehicle dock parking method, device, equipment and medium
CN114758522B (en) * 2022-04-25 2023-06-23 驭势科技(北京)有限公司 Method, device, equipment and medium for parking platform of vehicle

Also Published As

Publication number Publication date
JP6991119B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
JP6969962B2 (en) Map information providing system for vehicle driving support and / or driving control
JP2020059302A (en) Course control method for automated driving
CN105984461B (en) The travel controlling system of vehicle
RU2737874C1 (en) Method of storing information of vehicle, method of controlling movement of vehicle and device for storing information of vehicle
CN105620473B (en) One kind is parked track correcting method
CN101819042B (en) Navigation device and navigation program
CN108463690B (en) Evaluating U-turn feasibility
US20210207977A1 (en) Vehicle position estimation device, vehicle position estimation method, and computer-readable recording medium for storing computer program programmed to perform said method
RU2735567C1 (en) Method for storing movement backgrounds, method for generating motion path model, method for estimating local position and storage device for storing movement backgrounds
Qin et al. Curb-intersection feature based monte carlo localization on urban roads
JP2020032802A (en) Traffic lane keeping control device
CN105955257A (en) Bus automatic driving system based on fixed route and driving method thereof
JP7193948B2 (en) Automated driving support device
RU2715667C1 (en) Method of vehicle movement control and movement control device
JP2020506388A (en) Method and apparatus for updating a digital map
CN111016898A (en) Intelligent vehicle track lane change planning method
KR102134841B1 (en) System and method for researching localization of autonomous vehicle
US20220242442A1 (en) Drive trajectory system and device
US10836385B2 (en) Lane keeping assistance system
JP6947487B2 (en) Autonomous driving system
KR20200052997A (en) Apparatus of straight driving recognition for autonomous vehicle dead-reckoning performance improvement, and method thereof
JP2018167735A (en) Steering support device of vehicle
CN211427151U (en) Automatic guide system applied to unmanned freight vehicle in closed field
CN114889606B (en) Low-cost high-precision positioning method based on multi-sensor fusion
JP7458514B2 (en) Determining the starting position of the vehicle for localization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150