JP2020059237A - Three dimentional modeling device and manufacturing method thereof - Google Patents

Three dimentional modeling device and manufacturing method thereof Download PDF

Info

Publication number
JP2020059237A
JP2020059237A JP2018192968A JP2018192968A JP2020059237A JP 2020059237 A JP2020059237 A JP 2020059237A JP 2018192968 A JP2018192968 A JP 2018192968A JP 2018192968 A JP2018192968 A JP 2018192968A JP 2020059237 A JP2020059237 A JP 2020059237A
Authority
JP
Japan
Prior art keywords
base
dimensional structure
dimensional
movable
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018192968A
Other languages
Japanese (ja)
Other versions
JP2020059237A5 (en
Inventor
祐嗣 小山
Yuji Koyama
祐嗣 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018192968A priority Critical patent/JP2020059237A/en
Publication of JP2020059237A publication Critical patent/JP2020059237A/en
Publication of JP2020059237A5 publication Critical patent/JP2020059237A5/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a modeling method and a modeling device that allow an object to be stably molded so that it closely adheres to a base without peeling off when resin is laminated to form a three-dimensional object while curing it, and that the object is not subjected to excessive force that could damage it when it is removed from the base after modeling.SOLUTION: This is a three-dimensional modeling device in which the tips of a plurality of movable parts protrude from the main surface of a base when forming a three-dimensional object on the base by lamination while curing resin, and the tips of the movable parts move toward the base before removing the formed three-dimensional object from the base, rather than when forming the three-dimensional object.SELECTED DRAWING: Figure 5

Description

本発明は、光硬化性樹脂等の液状樹脂を用いた三次元造形物の製造方法、およびそれに用いる三次元造形装置に関する。   The present invention relates to a method for manufacturing a three-dimensional structure using a liquid resin such as a photocurable resin, and a three-dimensional structure forming apparatus used for the method.

近年、いわゆる3Dプリンタの開発が盛んに行われており、さまざまな方式が試みられている。例えば、光硬化性樹脂を用いた光造形法、熱溶融積層造形法、粉末積層溶融法等のさまざまな方式が知られている。
中でも、光硬化性の液状樹脂材料に露光画像を投射して硬化させ、三次元造形物を製造する方式の開発が盛んである。
In recent years, so-called 3D printers have been actively developed, and various methods have been tried. For example, various methods such as a stereolithography method using a photocurable resin, a hot melt lamination molding method, and a powder lamination melting method are known.
Above all, development of a method for producing a three-dimensional model by projecting an exposed image on a photocurable liquid resin material and curing the exposed image is active.

例えば、特許文献1には、液状の光硬化性樹脂を充填した容器の底を光透過性にしておき、底を通して樹脂に露光画像を投射して所望形状の樹脂硬化層を形成する装置が開示されている。かかる装置では、樹脂硬化層を1層形成すると造形物を持ち上げて、光透過性の容器底に密着した三次元造形物を引き剥がし、造形物と容器の底の間に液状の光硬化性樹脂を補充し、次の露光画像を投射して樹脂硬化層を積層する。こうしたプロセスを繰り返して、三次元造形物を引き上げ方式で形成していた。特許文献1の装置では、容器底に密着した造形物を引き剥がす際に、三次元造形物が基台から脱落することを防止するために、三次元造形物を支持する基台にアンダーカット形状を形成する技術が提案されている。   For example, Patent Document 1 discloses a device in which the bottom of a container filled with a liquid photocurable resin is made light-transmissive, and an exposure image is projected through the bottom to expose a resin to form a resin cured layer having a desired shape. Has been done. In such an apparatus, when one resin cured layer is formed, the molded article is lifted up and the three-dimensional molded article adhered to the light-transmissive container bottom is peeled off, and a liquid photocurable resin between the molded article and the container bottom is removed. And the next exposed image is projected to laminate the resin cured layer. By repeating such a process, the three-dimensional structure is formed by the pulling method. In the device of Patent Document 1, an undercut shape is formed on a base that supports the three-dimensional structure in order to prevent the three-dimensional structure from falling off the base when peeling off the model that is in close contact with the container bottom. Techniques have been proposed for forming the.

また、特許文献2には、容器に充填した液状の光硬化樹脂に三次元造形物を支持する基台を沈降させ、上方から露光画像を投射して所望形状の樹脂硬化層を形成する引き下げ方式の造形装置が開示されている。かかる装置では、樹脂硬化層を1層形成すると、造形物を沈降させて造形物の上面に液状の光硬化性樹脂をブレード等で塗布して、次の露光画像を投射して樹脂硬化層を積層する。こうしたプロセスを繰り返して、三次元造形物を引き下げ方式で形成していた。特許文献2の装置では、三次元造形物を基台から取外す際の作業を容易にするため、スリット状に分割した部材を組み合わせて表面が平坦な基台を構成し、取外し時には基台を分割することにより基台と三次元造形物の密着面積を減らす技術が提案されている。   Further, in Patent Document 2, a pulling-down method in which a base supporting a three-dimensional structure is settled in a liquid photocurable resin filled in a container and an exposure image is projected from above to form a resin cured layer having a desired shape. The modeling apparatus of is disclosed. In such an apparatus, when one resin cured layer is formed, the molded article is allowed to settle and the liquid photo-curable resin is applied to the upper surface of the molded article with a blade or the like, and the next exposed image is projected to form the resin cured layer. Stack. By repeating such a process, the three-dimensional modeled object was formed by the pull-down method. In the device of Patent Document 2, in order to facilitate the work of removing the three-dimensional structure from the base, the slit-shaped divided members are combined to form a base with a flat surface, and the base is divided at the time of removal. By doing so, a technique for reducing the contact area between the base and the 3D object has been proposed.

特表2013−517153号公報Special table 2013-517153 gazette 特開2010−46800号公報JP, 2010-46800, A

3Dプリンタの実用性を高めてゆくためには、造形プロセスを安定化させて製造歩留まりを向上することが重要である。
例えば光硬化性樹脂が光重合により硬化する時や、熱可塑性樹脂が高温の溶融状態から冷却されて固化する時など、一般に樹脂が液状から固体に硬化する時には大きな収縮が生じることが知られている。このため、液状樹脂を固化させながら積層して三次元造形する場合には、固化する時に三次元造形物が収縮してしまう。特に大型の三次元造形物を形成する場合には、造形面積の大型化により樹脂収縮も大きくなるので、収縮量も大きくなる。
In order to improve the practicality of the 3D printer, it is important to stabilize the modeling process and improve the manufacturing yield.
For example, when the photocurable resin is cured by photopolymerization, or when the thermoplastic resin is solidified by being cooled from a high temperature molten state, it is generally known that a large shrinkage occurs when the resin is cured from a liquid state to a solid state. There is. Therefore, when the liquid resins are stacked while being solidified for three-dimensional modeling, the three-dimensional model shrinks during solidification. In particular, when a large three-dimensional model is formed, the shrinkage amount also increases because the resin shrinkage increases due to the increase in the modeling area.

三次元造形物が収縮すると反りが発生し、これを支持する基台から剥離が生じ易くなり、引き上げ方式の造形装置の場合は基台からの脱落が、引き下げ方式の場合は特に造形物の周辺部で基台からの剥離が生じやすくなる。三次元造形物が基台から脱落や剥離しなかったとしても、一部にでも反りが生ずれば、基台面を基準位置として立体を形成する三次元造形プロセスにおいて以後の造形形状に誤差が生じ、造形精度や歩留まりの低下を招くことになる。   When a three-dimensional model shrinks, warpage occurs, and the base that supports this tends to peel off.In the case of a pull-up type molding device, the three-dimensional model falls off from the base, and in the case of a pull-down system, especially around the model. In some parts, peeling from the base easily occurs. Even if the 3D object does not fall off or peel off from the base, if some warpage occurs, errors will occur in the subsequent 3D modeling process in which the 3D model is formed with the base surface as the reference position. However, this leads to a decrease in modeling accuracy and yield.

特許文献1の装置の場合は、三次元造形物が基台のアンダーカット部を包み込むことにより固化時の剥離は生じ難くなるものの、三次元造形物を基台から取り外す際に、この部分を起点にして三次元造形物に強い力がかかり、破損を生じる場合があった。   In the case of the device of Patent Document 1, although the three-dimensional shaped article wraps the undercut portion of the base, peeling during solidification is less likely to occur, but when the three-dimensional shaped article is removed from the base, this part is the starting point. Then, a strong force is applied to the three-dimensional structure, which may cause damage.

特許文献2の装置の場合は、基台から三次元造形物を取外すのは容易である反面、造形時には基台表面が平坦であるため、三次元造形物が基台から反ったり剥離したりしやすかった。このため、基台からの脱落や、形状精度の低下が生じたり、場合によっては反った三次元造形物と塗布ブレード等の装置の一部が接触して造形物を破損してしまう場合があった。   In the case of the device of Patent Document 2, it is easy to remove the three-dimensional structure from the base, but the surface of the base is flat during modeling, so the three-dimensional structure may warp or peel off from the base. It was easy. For this reason, there is a case where the three-dimensional object which is warped and a part of the apparatus such as the coating blade may come into contact with each other, and the object may be damaged due to falling off from the base or deterioration of shape accuracy. It was

かかる課題は、光硬化性樹脂を用いた光造形法に限らず、樹脂を順次に積層固化させて三次元造形物を形成する場合に発生しがちであった。
そこで、三次元造形物を形成する際には、造形物が剥離することなく基台に密着して安定に造形することができ、かつ造形後に基台から取り外す際には、破損するような過大な力が造形物にかからないような造形方法および造形装置が求められていた。
Such a problem is not limited to the stereolithography method using a photocurable resin, but tends to occur when a resin is sequentially laminated and solidified to form a three-dimensional structure.
Therefore, when forming a three-dimensional model, the model can stick to the base without peeling and can be stably modeled, and when the model is removed from the base after modeling, it is excessively damaged. There has been a demand for a modeling method and a modeling apparatus that do not apply a large force to the modeled object.

本発明は、樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、複数の可動部の先端が前記基台の主面から前記三次元造形物の側に突出しており、形成した前記三次元造形物を前記基台から取り外す前に、前記可動部の先端は、前記三次元造形物を形成する時よりも前記基台の側に移動する、ことを特徴とする三次元造形装置である。   According to the present invention, when a resin is laminated while being cured to form a three-dimensional structure on a base, the tips of a plurality of movable parts protrude from the main surface of the base to the side of the three-dimensional structure. And the tip of the movable part moves to the side of the base more than when the three-dimensional structure is formed before the formed three-dimensional structure is removed from the base. It is a three-dimensional modeling device.

また、本発明は、樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、複数の可動部の先端が前記基台の主面から前記三次元造形物の側に突出しており、形成した前記三次元造形物を前記基台から取り外す前に、前記可動部の先端は、前記三次元造形物を形成する時よりも前記基台の側に移動する、ことを特徴とする三次元造形物の製造方法である。   Further, according to the present invention, when the three-dimensional structure is formed on the base by laminating the resins while curing the resin, the tips of the plurality of movable parts are located on the side of the three-dimensional structure from the main surface of the base. Before removing the formed three-dimensional structure formed from the base, the tip of the movable portion moves to the side of the base more than when forming the three-dimensional structure. And a method for manufacturing a three-dimensional structure.

本発明は、三次元造形物を形成する際には造形物が剥離することなく基台に密着して安定に造形することができ、かつ造形後に基台から取り外す際には破損するような過大な力が造形物にかからないような造形方法および造形装置を提供することができる。   INDUSTRIAL APPLICABILITY When forming a three-dimensional model, the present invention can adhere stably to the base without peeling off the model and can be damaged when the model is removed from the base after modeling. It is possible to provide a modeling method and a modeling apparatus that do not apply a large force to a modeled object.

第1の三次元造形装置の模式的な断面図。The typical sectional view of the 1st three-dimensional modeling device. 第1の三次元造形装置の制御ブロック図。The control block diagram of the 1st three-dimensional modeling apparatus. 第2の三次元造形装置の模式的な断面図。The typical sectional view of the 2nd three-dimensional modeling device. (a)実施形態の基台の三次元造形前の状態を示す模式的な断面図。(b)実施形態の基台の三次元造形中の状態を示す模式的な断面図。(A) A schematic cross-sectional view showing a state before three-dimensional modeling of the base of the embodiment. (B) A schematic cross-sectional view showing a state during three-dimensional modeling of the base of the embodiment. (a)実施形態の基台の三次元造形後の可動部材の状態を示す模式的な断面図。(b)実施形態の基台において三次元造形物を取り外す状態を示す模式的な断面図。(A) A schematic sectional view showing a state of a movable member after three-dimensional modeling of a base of an embodiment. (B) A schematic cross-sectional view showing a state in which the three-dimensional structure is removed from the base of the embodiment. (a)実施形態の可動部材を挟持治具により移動させる状態を示す模式的な断面図。(b)実施形態の可動部材を締結治具により移動させる状態を示す模式的な断面図。(A) A schematic cross-sectional view showing a state in which the movable member of the embodiment is moved by a holding jig. (B) A schematic cross-sectional view showing a state in which the movable member of the embodiment is moved by a fastening jig. (a)可動機構の実施形態1において三次元造形前の状態を示す模式的な断面図。(b)可動機構の実施形態1において三次元造形物を取り外す状態を示す模式的な断面図。(A) A schematic cross-sectional view showing a state before three-dimensional modeling in the first embodiment of the movable mechanism. (B) A schematic cross-sectional view showing a state in which the three-dimensional structure is removed in the first embodiment of the movable mechanism. (a)可動機構の実施形態2において三次元造形前の状態を示す模式的な断面図。(b)可動機構の実施形態2において三次元造形物を取り外す状態を示す模式的な断面図。(A) A schematic cross-sectional view showing a state before three-dimensional modeling in the second embodiment of the movable mechanism. (B) A schematic cross-sectional view showing a state in which the three-dimensional structure is removed in the second embodiment of the movable mechanism. (a)可動機構の実施形態3において三次元造形前の状態を示す模式的な断面図。(b)可動機構の実施形態3において三次元造形物を取り外す状態を示す模式的な断面図。(A) A schematic cross-sectional view showing a state before three-dimensional modeling in the third embodiment of the movable mechanism. (B) A schematic cross-sectional view showing a state in which the three-dimensional structure is removed in the third embodiment of the movable mechanism. (a)可動機構の実施形態4において三次元造形前の状態を示す模式的な断面図。(b)可動機構の実施形態4において三次元造形物を取り外す状態を示す模式的な断面図。(A) A schematic cross-sectional view showing a state before three-dimensional modeling in the fourth embodiment of the movable mechanism. (B) A schematic cross-sectional view showing a state in which the three-dimensional structure is removed in the fourth embodiment of the movable mechanism.

[実施形態]
図面を参照して、本発明の実施形態である三次元造形物の製造方法と三次元造形装置について説明する。
以下の説明では、特段のただし書きがない限り、硬化していない液状の光硬化性樹脂を液状光硬化性樹脂と記す。また、液状光硬化性樹脂を光硬化させて形成した三次元造形物を、単に造形物と記す場合がある。尚、造形物とは完成品に限らず、途中の層まで積層した段階における半完成品も含むものとする。
[Embodiment]
A method of manufacturing a three-dimensional structure and a three-dimensional structure forming apparatus according to an embodiment of the present invention will be described with reference to the drawings.
In the following description, an uncured liquid photo-curable resin is referred to as a liquid photo-curable resin unless otherwise specified. Further, a three-dimensional model formed by photocuring a liquid photocurable resin may be simply referred to as a model. The modeled object is not limited to a finished product, but includes a semi-finished product at a stage in which intermediate layers are laminated.

実施形態の最も特徴的な部分は、三次元造形物を支持する基台であるが、実施形態の基台は種々のタイプの三次元造形装置に適用することが可能である。そこで、基台の詳細について説明する前に、まず複数の三次元造形装置を例示し、その全体構成を説明する。第1の三次元造形装置として光硬化性樹脂を充填した容器の底に光透過性窓を有する装置を説明し、次に第2の三次元造形装置として光硬化性樹脂を充填した容器の天井に光透過性窓を有する装置について説明する。尚、本発明を適用可能な三次元造形装置はこの2例に限られるわけではなく、容器に貯留された光硬化性樹脂の自由表面に光を照射するタイプの三次元造形装置であってもよい。あるいは、後述するように光造形以外の造形方式にかかる三次元造形装置であってもよい。   The most characteristic part of the embodiment is the base that supports the three-dimensional structure, but the base of the embodiment can be applied to various types of three-dimensional modeling apparatuses. Therefore, before describing the details of the base, first, a plurality of three-dimensional modeling apparatuses will be illustrated and the overall configuration thereof will be described. An apparatus having a light-transmissive window at the bottom of a container filled with a photocurable resin will be described as a first three-dimensional modeling apparatus, and then a ceiling of a container filled with a photocurable resin will be described as a second three-dimensional modeling apparatus. A device having a light transmissive window will be described. The three-dimensional modeling apparatus to which the present invention can be applied is not limited to these two examples, and may be a three-dimensional modeling apparatus of the type that irradiates light on the free surface of the photocurable resin stored in the container. Good. Alternatively, it may be a three-dimensional modeling apparatus according to a modeling method other than optical modeling as described later.

[第1の三次元造形装置]
模式的な断面図である図1を参照して、光硬化性樹脂を充填した容器の底に光透過性窓を有する三次元造形装置について説明する。
図1において、1は容器、2は液状光硬化性樹脂、3は樹脂供給部、4は光透過窓、5は遮光部、7は光源、8はミラー部、9はレンズ部、10は光源ユニット、11は基台、12は昇降アーム、13は昇降部、14は三次元造形物である。
容器1は、液状光硬化性樹脂2を保持するための容器であり、液状光硬化性樹脂を固化させる波長域の光を遮る材料で形成されている。
樹脂供給部3は、液状光硬化性樹脂を貯蔵するタンクとポンプを備え、容器1に適量の液状光硬化性樹脂2が保持されるように、液状光硬化性樹脂を供給する。
[First 3D modeling apparatus]
A three-dimensional modeling apparatus having a light-transmissive window on the bottom of a container filled with a photocurable resin will be described with reference to FIG. 1 which is a schematic cross-sectional view.
In FIG. 1, 1 is a container, 2 is a liquid photocurable resin, 3 is a resin supply part, 4 is a light transmission window, 5 is a light shielding part, 7 is a light source, 8 is a mirror part, 9 is a lens part, and 10 is a light source. A unit, 11 is a base, 12 is a lifting arm, 13 is a lifting unit, and 14 is a three-dimensional model.
The container 1 is a container for holding the liquid photo-curable resin 2, and is made of a material that blocks light in a wavelength range that solidifies the liquid photo-curable resin.
The resin supply unit 3 includes a tank for storing the liquid photocurable resin and a pump, and supplies the liquid photocurable resin so that the container 1 holds an appropriate amount of the liquid photocurable resin 2.

液状光硬化性樹脂2は、特定の波長域の光を照射されると、硬化(固化)する液状の樹脂である。液状光硬化性樹脂2は、光透過窓4と遮光部5を底部とする容器1内に満たされており、気泡が入り込まないように保持されている。光透過窓4と遮光部5は、容器1の底として機能する。
光透過窓4は、液状光硬化性樹脂2を固化させる波長域の光を透過させ、かつ液状光硬化性樹脂の硬化を阻害するガスを透過させる窓である。例えば、PFA,PTFE,PEなど、フルオロポリマーやシリコーンポリマー等の樹脂、あるいは多孔質ガラスを材料として形成される。
The liquid photocurable resin 2 is a liquid resin that cures (solidifies) when irradiated with light in a specific wavelength range. The liquid photocurable resin 2 is filled in the container 1 having the light transmission window 4 and the light shielding portion 5 as the bottom, and is held so that air bubbles do not enter. The light transmitting window 4 and the light shielding portion 5 function as the bottom of the container 1.
The light transmission window 4 is a window that allows light in the wavelength range that solidifies the liquid photocurable resin 2 to pass therethrough, and also allows gas that inhibits curing of the liquid photocurable resin to pass through. For example, a resin such as fluoropolymer or silicone polymer such as PFA, PTFE or PE, or porous glass is used as the material.

光透過窓4の近傍の液状光硬化性樹脂は、光透過窓4を透過した硬化阻害ガスの作用で、光硬化の感度が低下する。硬化阻害作用を発揮するガスは、たとえば酸素なので、光透過窓4の外には通常の大気が存在すればよい。ただし、ガスの作用をより効果的にするために、光透過窓の外気の組成や圧力を制御する機構を設けてもよい。   The liquid photo-curable resin in the vicinity of the light transmission window 4 has the effect of the curing-inhibiting gas that has passed through the light transmission window 4 and the photo-curing sensitivity is lowered. Since the gas that exerts the curing inhibiting effect is oxygen, for example, it is sufficient that normal air exists outside the light transmission window 4. However, in order to make the action of the gas more effective, a mechanism for controlling the composition and pressure of the outside air of the light transmission window may be provided.

より詳しく説明すると、光硬化性樹脂を硬化させて硬化物を得るには、光硬化性樹脂の硬化させたい部分にエネルギー線を照射する。そうすると、まず、エネルギー線の照射によって光硬化性樹脂に含まれる重合開始剤が開裂し、ラジカルが発生する。次に、光硬化性樹脂に含まれる重合禁止剤や溶存酸素がラジカルと反応し、ラジカルと共に消費される。この状態が続くと、やがて光硬化性樹脂に含まれる重合禁止剤や溶存酸素がほとんど無い状態に至る。続いて、エネルギー線照射を続けると、発生したラジカルは光硬化性樹脂に含まれる重合性化合物と反応し、ラジカル重合反応が起きる。その後、ラジカル重合反応が連鎖して起きることにより、低分子であった重合性化合物が高分子化する。以上の化学反応を物理現象で見ると、液体状態であった光硬化性樹脂にエネルギー線を照射すると、光硬化性樹脂が硬化し固体状態に至る。   More specifically, in order to cure the photocurable resin to obtain a cured product, the portion of the photocurable resin to be cured is irradiated with energy rays. Then, first, the polymerization initiator contained in the photocurable resin is cleaved by the irradiation of energy rays, and radicals are generated. Next, the polymerization inhibitor and dissolved oxygen contained in the photocurable resin react with the radicals and are consumed together with the radicals. If this state continues, the state in which the polymerization inhibitor and the dissolved oxygen contained in the photocurable resin are almost absent will eventually be reached. Then, when the energy ray irradiation is continued, the generated radicals react with the polymerizable compound contained in the photocurable resin, and a radical polymerization reaction occurs. After that, radical polymerization reactions occur in a chain, and the low molecular weight polymerizable compound is polymerized. Looking at the above chemical reaction as a physical phenomenon, when the photocurable resin that has been in a liquid state is irradiated with energy rays, the photocurable resin is cured and reaches a solid state.

一方、酸素を含む気体中、例えば大気中で光硬化性樹脂にエネルギー線を照射すると、十分にエネルギー線を照射しても大気に触れている表面部分が硬化しないという現象が起きる。これは、エネルギー線の照射によって光硬化性樹脂に含まれる重合禁止剤や溶存酸素がラジカルと反応し、消費されると同時に、大気中の酸素が光硬化性樹脂に溶け込み続け、溶存酸素が無い状態に至らない。これにより、ラジカルが重合性化合物と反応しないためである。   On the other hand, when a photocurable resin is irradiated with an energy ray in a gas containing oxygen, for example, in the atmosphere, a phenomenon occurs in which the surface portion in contact with the atmosphere is not cured even when the energy ray is sufficiently irradiated. This is because the irradiation of energy rays causes the polymerization inhibitor and dissolved oxygen contained in the photocurable resin to react with the radicals and be consumed, and at the same time oxygen in the atmosphere continues to dissolve in the photocurable resin, and there is no dissolved oxygen. It does not reach the state. This is because the radicals do not react with the polymerizable compound.

光透過窓から常に光硬化性樹脂の硬化阻害剤を供給することにより、光透過窓と造形物の間に硬化阻害領域(未硬化層)を維持することができる。この現象を利用することで、連続的な三次元造形物の形成を容易に実施できる。例えば、光透過窓の材料として酸素透過係数[m・m/m・s・Pa]の高い材料を用い、透過窓の光硬化性樹脂と接触していない側に酸素を含む気体、例えば大気を充填する。これにより、光透過窓から常に酸素を供給し、光透過窓と造形物の間に硬化阻害領域を維持し、連続的に三次元造形物を造形することができる。 By constantly supplying the curing inhibitor of the photocurable resin from the light transmission window, the curing inhibition region (uncured layer) can be maintained between the light transmission window and the molded article. By utilizing this phenomenon, it is possible to easily form a continuous three-dimensional structure. For example, a material having a high oxygen transmission coefficient [m 3 · m / m 2 · s · Pa] is used as the material of the light transmitting window, and a gas containing oxygen is provided on the side of the light transmitting window which is not in contact with the photocurable resin, for example, Fill the atmosphere. Thereby, oxygen is always supplied from the light transmitting window, the curing inhibition region is maintained between the light transmitting window and the shaped object, and the three-dimensional shaped object can be continuously formed.

ここで、未硬化層の厚みは酸素の供給と酸素の消費が釣り合う位置で規定される。酸素の供給を制御する因子としては酸素分圧、光透過窓の酸素透過係数、光硬化性樹脂の酸素透過係数が主に挙げられる。酸素の消費を制御する因子としてはエネルギー線強度、重合開始剤濃度、重合開始剤の開裂エネルギーが主に挙げられる。これらの制御因子について、光透過窓として十分な酸素透過係数をもつ材質を用い、1気圧の大気を用い、一般的に光造形に用いられる光硬化性樹脂及びプロセスを用いると、およそ30μm程度の未硬化層が維持される。これに対して、1気圧の純酸素を用い、エネルギー線強度を造形可能な最低限度である通常条件の4分の1とすると、およそ100μm程度の未硬化層が維持される。   Here, the thickness of the uncured layer is defined at the position where the supply of oxygen and the consumption of oxygen are balanced. Factors that control the supply of oxygen mainly include the oxygen partial pressure, the oxygen transmission coefficient of the light transmission window, and the oxygen transmission coefficient of the photocurable resin. The factors that control the consumption of oxygen mainly include the energy ray intensity, the concentration of the polymerization initiator, and the cleavage energy of the polymerization initiator. Regarding these control factors, when a material having a sufficient oxygen transmission coefficient is used as the light transmission window, an atmosphere of 1 atm is used, and a photocurable resin and process generally used for stereolithography are used, the value is about 30 μm. The uncured layer is retained. On the other hand, when pure oxygen of 1 atm is used and the energy ray intensity is set to a quarter of the normal condition which is the minimum limit of modeling, an uncured layer of about 100 μm is maintained.

次に、遮光部5は、液状光硬化性樹脂2を固化させる波長域の光を遮る部材より成る部分である。本実施形態では、容器の底として機能する部分のうち、光源ユニット10と基台11の間の光路となる部分に光透過窓4を設け、それ以外の領域には遮光部5を設けている。
光源7、ミラー部8およびレンズ部9は、造形すべき三次元モデルの形状に対応させた光を液状光硬化性樹脂に照射するための光源ユニット10を構成している。光源7は、液状光硬化性樹脂を固化させる波長域の光を発する光源である。たとえば、光硬化性樹脂として紫外光に感度を有する材料を用いる場合には、He−CdレーザやArレーザ等の紫外のレーザ光が用いられる。ミラー部8は、光源7が発する光を造形すべき三次元モデルの形状に対応させて変調する部分で、マイクロミラーデバイスをアレイ状に配置したデバイスが用いられる。レンズ部9は、変調された光を、光透過窓近傍の硬化阻害領域よりも上の所定位置に集光するためのレンズである。所定位置にある液状光硬化性樹脂2は、集光された十分な強度の紫外光を照射されると、硬化する。
硬化物の形状の精度を確保するためには、集光レンズの焦点位置は光透過窓の近傍にするのが望ましいが、近すぎると硬化阻害領域と重なる可能性がある。そこで、レンズ部9の焦点位置は、光透過窓4の上面から60μm乃至110μm上方に設定するのが望ましい。
Next, the light shielding portion 5 is a portion formed of a member that shields light in a wavelength range where the liquid photocurable resin 2 is solidified. In the present embodiment, the light transmission window 4 is provided in a portion that serves as an optical path between the light source unit 10 and the base 11 among the portions that function as the bottom of the container, and the light shielding portion 5 is provided in the other regions. .
The light source 7, the mirror section 8, and the lens section 9 constitute a light source unit 10 for irradiating the liquid photocurable resin with light corresponding to the shape of the three-dimensional model to be molded. The light source 7 is a light source that emits light in a wavelength range that solidifies the liquid photocurable resin. For example, when a material having sensitivity to ultraviolet light is used as the photocurable resin, ultraviolet laser light such as He—Cd laser or Ar laser is used. The mirror portion 8 is a portion that modulates the light emitted from the light source 7 in accordance with the shape of the three-dimensional model to be modeled, and a device in which micromirror devices are arranged in an array is used. The lens unit 9 is a lens for condensing the modulated light at a predetermined position above the curing inhibition region near the light transmission window. The liquid photo-curable resin 2 at a predetermined position cures when it is irradiated with the concentrated and sufficient intensity of ultraviolet light.
In order to ensure the accuracy of the shape of the cured product, it is desirable that the focal position of the condenser lens be near the light transmission window, but if it is too close, it may overlap with the curing inhibition region. Therefore, it is desirable that the focal position of the lens portion 9 is set to 60 μm to 110 μm above the upper surface of the light transmission window 4.

尚、光源ユニット10は、液状光硬化性樹脂を固化させる波長域の光を、造形すべき三次元モデルの形状に対応させて変調し、所定の位置に集光する機能を有するものであれば、上記の例に限るものではない。たとえば、紫外光源と透過型液晶シャッターあるいは反射型液晶素子の組み合わせや、半導体レーザダイオードアレイ、走査ミラー、結像ミラー等を用いたものでもよい。
基台11は、その下面に三次元造形物14を吊下して支持する台で、昇降アーム12を介して昇降部13と連結している。昇降部13は、昇降アーム12を上下に移動させて基台11の高さを調整する機構であり、基台を移動させる移動部である。
The light source unit 10 has a function of modulating light in a wavelength range for solidifying the liquid photocurable resin in accordance with the shape of a three-dimensional model to be molded and condensing the light at a predetermined position. However, it is not limited to the above example. For example, a combination of an ultraviolet light source and a transmissive liquid crystal shutter or a reflective liquid crystal element, a semiconductor laser diode array, a scanning mirror, an imaging mirror or the like may be used.
The base 11 is a base for suspending and supporting the three-dimensional structure 14 on the lower surface thereof, and is connected to the elevating unit 13 via the elevating arm 12. The lifting unit 13 is a mechanism that moves the lifting arm 12 up and down to adjust the height of the base 11, and is a moving unit that moves the base.

図2は、三次元造形装置の制御ブロック図である。21は制御部、22は外部装置、23は操作パネル、3は樹脂供給部、10は光源ユニット、13は昇降部である。
制御部21は、CPU、制御プログラムや制御用数値テーブルを記憶した不揮発性メモリであるROM、演算等に使用する揮発性メモリであるRAM、装置各部や外部と通信するためのI/Oポート、等を備えている。なお、ROMには、三次元造形装置の基本動作を制御するためのプログラムが記憶されている。
外部装置22からは、三次元造形物の形状データが、I/Oポートを介して三次元造形装置の制御部21に入力される。
FIG. 2 is a control block diagram of the three-dimensional modeling apparatus. Reference numeral 21 is a control unit, 22 is an external device, 23 is an operation panel, 3 is a resin supply unit, 10 is a light source unit, and 13 is an elevating unit.
The control unit 21 includes a CPU, a ROM that is a non-volatile memory that stores a control program and a numerical table for control, a RAM that is a volatile memory used for calculation, an I / O port for communicating with each unit of the device and the outside, And so on. The ROM stores a program for controlling the basic operation of the three-dimensional modeling apparatus.
From the external device 22, the shape data of the 3D object is input to the control unit 21 of the 3D object through the I / O port.

操作パネル23は、三次元造形装置の操作者が装置に指示を与えるための入力部と、操作者に情報を表示するための表示部を有する。入力部は、キーボードや操作ボタンを備えている。表示部は、三次元造形装置の動作状況等を表示する表示パネルを備えている。
制御部21は、樹脂供給部3、光源ユニット10、昇降部13を制御して、三次元造形プロセスを実行させることができる。
The operation panel 23 has an input unit for an operator of the three-dimensional modeling apparatus to give instructions to the apparatus, and a display unit for displaying information to the operator. The input unit includes a keyboard and operation buttons. The display unit includes a display panel that displays the operating status of the three-dimensional modeling apparatus.
The control unit 21 can control the resin supply unit 3, the light source unit 10, and the elevating / lowering unit 13 to execute the three-dimensional modeling process.

[第2の三次元造形装置]
次に、模式的な断面図である図3を参照して、光硬化性樹脂を充填した容器の天井に光透過性窓を有する三次元造形装置について説明する。第1の三次元造形装置と共通の機能を有する部分については、同じ参照番号を付して図示し、説明を省略する。
[Second 3D modeling apparatus]
Next, with reference to FIG. 3 which is a schematic sectional view, a three-dimensional modeling apparatus having a light-transmissive window on the ceiling of a container filled with a photocurable resin will be described. Portions having the same functions as those of the first 3D modeling apparatus are designated by the same reference numerals and shown in the figure, and the description thereof will be omitted.

第1の三次元造形装置では、光透過窓4は容器の底として機能したが、第2の三次元造形装置では光透過窓4は容器の上部に設けられており、蓋として機能している。また、第2の三次元造形装置では、光源ユニット10は光透過窓4のさらに上方に配置し、基台11は昇降部13により降下する方向に動作し、三次元造形物14を上面側で支持する構造となる。
その他、装置の動作にかかわる制御機構や、三次元造形プロセスなどは昇降方向と光源ユニットが上下反転する以外は第1の三次元造形装置と共通であるため、詳細な説明は省略する。
In the first three-dimensional modeling apparatus, the light transmission window 4 functions as the bottom of the container, but in the second three-dimensional modeling apparatus, the light transmission window 4 is provided at the top of the container and functions as a lid. . Further, in the second three-dimensional modeling apparatus, the light source unit 10 is arranged further above the light transmitting window 4, the base 11 is operated by the elevating unit 13 in the direction of lowering, and the three-dimensional model 14 is placed on the upper surface side. It becomes a supporting structure.
Other than that, the control mechanism relating to the operation of the apparatus, the three-dimensional modeling process, and the like are common to the first three-dimensional modeling apparatus except that the elevating direction and the light source unit are turned upside down, and thus detailed description thereof will be omitted.

また、第2の三次元造形装置では、光透過窓が容器の蓋として機能している形態を図示したが、必ずしも光透過窓の蓋が必要ということではなく、光透過窓が無い場合でも良い。光透過窓が無い場合、容器の蓋に制約されない自由表面の液状光硬化性樹脂に基台を浸漬させてもよいし、ブレードなどの塗布手段を用いて次の層の液状光硬化性樹脂を塗布してもよい。   Further, in the second three-dimensional modeling apparatus, the form in which the light-transmissive window functions as the lid of the container is shown, but the lid of the light-transmissive window is not necessarily required, and the case without the light-transmissive window may be used. . If there is no light transmission window, the base may be immersed in the liquid photocurable resin on the free surface that is not restricted by the lid of the container, or the liquid photocurable resin of the next layer may be applied using a coating means such as a blade. You may apply.

[基台]
次に、実施形態の三次元造形装置の最も特徴的な部分として、三次元造形物を支持する基台について説明する。以下に例示する実施形態の基台は、三次元造形物を鉛直下方に吊り下げるタイプの図1に示した三次元造形装置に用いられるが、基台を設置する向きを変更しさえすれば、図3に示した装置をはじめとする他のタイプの三次元造形装置にも適用が可能である。尚、以下の実施形態の説明図では、図1と共通する部分については同一の番号を付して示す。
[Base]
Next, a base that supports a three-dimensional structure will be described as the most characteristic part of the three-dimensional structure forming apparatus of the embodiment. The base of the embodiment exemplified below is used for the three-dimensional modeling apparatus shown in FIG. 1 of a type in which a three-dimensional model is suspended vertically downward, but if the orientation of the base is changed, The present invention can be applied to other types of three-dimensional modeling devices including the device shown in FIG. In the following explanatory views of the embodiments, parts common to those in FIG. 1 are denoted by the same reference numerals.

図4(a)に示すのは、図1に示した実施形態の三次元造形装置に用いられる基台の模式的な断面図である。図中、2は液状光硬化性樹脂、11は基台、12は昇降アームであり、三次元造形物は基台11の基部11Bの下面に吊り下げられる形で形成される。
実施形態の基台11は、基部11Bと可動部材11Aを含んでいる。図示の便宜上、図4(a)をはじめとする各実施形態の説明図では4個の可動部材11Aを図示するが、可動部材の数は4個に限るわけではない。さらに、可動部材11Aは、装置上方から見て2次元的に行列状に配列するのが望ましい。
可動部材11Aの各々は、基部11Bを鉛直方向に貫通するガイド穴に嵌め込まれており、上下方向に動かすことが可能である。
FIG. 4A is a schematic sectional view of the base used in the three-dimensional modeling apparatus of the embodiment shown in FIG. In the figure, 2 is a liquid photo-curable resin, 11 is a base, and 12 is an elevating arm, and the three-dimensional structure is formed in a form suspended from the lower surface of the base 11B of the base 11.
The base 11 of the embodiment includes a base 11B and a movable member 11A. For convenience of illustration, four movable members 11A are illustrated in the explanatory views of the respective embodiments including FIG. 4A, but the number of movable members is not limited to four. Further, it is desirable that the movable members 11A are two-dimensionally arranged in a matrix when viewed from above the device.
Each of the movable members 11A is fitted in a guide hole that penetrates the base 11B in the vertical direction, and can be moved in the vertical direction.

図4(a)は、可動部材11Aが下げられた状態を示しており、可動部材11Aの先端(下端部)は、突出部Tとして基部11Bの下面から鉛直下方に所定の長さ突出している。
突出部Tが基部11Bの下面から鉛直下方に突出する長さは、0.1mm以上で、一回に硬化させる層(あるいは光造形で形成される一層)の厚み以下、あるいは0.5mm以下が望ましい。突出部Tの形状は、直径が0.5mm以上で5.0mm以下の円柱が望ましく、中でも直径は1.0mm程度が好適で、各突出部を隔てる距離は、3.0mm以上でかつ20.0mm以下が好適である。
FIG. 4A shows a state in which the movable member 11A is lowered, and the tip (lower end) of the movable member 11A projects as a protrusion T vertically downward from the lower surface of the base 11B by a predetermined length. .
The length by which the protruding portion T protrudes vertically downward from the lower surface of the base portion 11B is 0.1 mm or more, and is less than or equal to the thickness of the layer that is cured at one time (or one layer formed by stereolithography), or 0.5 mm or less. desirable. The shape of the protrusion T is preferably a cylinder having a diameter of 0.5 mm or more and 5.0 mm or less, and a diameter of about 1.0 mm is preferable, and the distance separating each protrusion is 3.0 mm or more and 20. It is preferably 0 mm or less.

突出部Tは、三次元造形する際には、三次元造形物を基台に固定して剥離や反りを抑制するアンカーとしての効果を奏する。アンカーとしての効果を十分に発揮するためには、突出部Tが基台11の下面から突出する長さは0.1mm以上であるのが望ましく、突出部どうしの距離は20.0mm以下にするのが望ましい。一方、三次元造形が支障なく行われ、かつ三次元造形物を基台から取り外す際の容易性の観点からは、突出部Tが基台11の下面から突出する長さは0.5mm以下であるのが望ましく、突出部どうしの距離は5.0mm以上にするのが望ましい。   When the three-dimensional modeling is performed, the protruding portion T has an effect as an anchor that fixes the three-dimensional model on the base and suppresses peeling and warpage. In order to sufficiently exert the effect as an anchor, it is desirable that the protruding length of the protruding portion T from the lower surface of the base 11 is 0.1 mm or more, and the distance between the protruding portions is 20.0 mm or less. Is desirable. On the other hand, from the viewpoint of easy three-dimensional modeling and easy removal of the three-dimensional model from the base, the protruding length of the protruding portion T from the lower surface of the base 11 is 0.5 mm or less. It is desirable that the distance between the protrusions be 5.0 mm or more.

三次元造形物の形成を開始する際には、図4(a)に示すように予め昇降アーム12により基台11の高さが調整され、基部11Bの下面および可動部材11Aの突出部Tが液状光硬化性樹脂2の液中に浸漬されている。
三次元造形物の形成段階においては、造形すべき三次元モデルの形状に対応させたパターン光を、図1に示した光源ユニット10から光透過窓4を通して液状光硬化性樹脂2に照射する。即ち、三次元モデルの一層の形状に対応するパターン光を下方から照射して液状光硬化性樹脂2を硬化させ三次元造形物の一層を形成すると、昇降アーム12を駆動して基台11を一層の厚さ分だけ上昇させ、次の層の形状に対応するパターン光を照射する。これを繰り返すことにより、基台11の下面に吊り下げられるようにして三次元造形物が形成される。
When the formation of the three-dimensional structure is started, the height of the base 11 is adjusted in advance by the elevating arm 12 as shown in FIG. 4A, and the lower surface of the base 11B and the protruding portion T of the movable member 11A are removed. It is immersed in the liquid photocurable resin 2.
In the step of forming the three-dimensional model, the pattern light corresponding to the shape of the three-dimensional model to be modeled is applied to the liquid photocurable resin 2 from the light source unit 10 shown in FIG. That is, when the pattern light corresponding to the one-dimensional shape of the three-dimensional model is irradiated from below to cure the liquid photo-curable resin 2 to form one layer of the three-dimensional model, the elevating arm 12 is driven and the base 11 is moved. The thickness is increased by one layer, and pattern light corresponding to the shape of the next layer is irradiated. By repeating this, the three-dimensional structure is formed so as to be hung on the lower surface of the base 11.

図4(b)に示すように、本実施形態の基台11では、可動部材11Aの下端部が突出部Tとして基部11Bの主面(下面)よりも突出した状態で三次元造形物14が形成される。このため、突出部Tと三次元造形物14が噛合う形となりアンカー効果が発揮され、三次元造形物が基台11から脱落することや剥離したりや反ることが、効果的に抑制される。   As shown in FIG. 4B, in the base 11 of the present embodiment, the three-dimensional structure 14 is formed with the lower end of the movable member 11A protruding as the protruding portion T from the main surface (lower surface) of the base 11B. It is formed. Therefore, the protruding portion T and the three-dimensional structure 14 mesh with each other, and the anchor effect is exerted, and the three-dimensional structure is effectively prevented from falling off, peeling, or warping from the base 11. .

三次元造形物の形成が完了すると、三次元造形物14を保持した基台11は、昇降アーム12から取り外される。そして、図5(a)に示すように、可動部材11Aが基部11Bに対して上側に引き上げられる。   When the formation of the three-dimensional structure is completed, the base 11 holding the three-dimensional structure 14 is removed from the elevating arm 12. Then, as shown in FIG. 5A, the movable member 11A is pulled upward with respect to the base portion 11B.

可動部材11Aの引き上げは、例えば図6(a)に示すように、挟持治具61を用いて可動部材11Aの先端(突出部T)とは反対端の頭部を挟持しながら牽引し、引き上げればよい。あるいは、図6(b)に示すように、可動部材11Aの頭部に引き抜き用のねじ穴等の締結部を設けており、ここにボルト62などの締結治具を挿入して締結し、可動部材11Aの頭部を牽引しても良い。あるいは、可動部材11Aの頭部にねじ溝が形成された凸部を締結部として設けておき、ナット状の治具と締結させて可動部材11Aの頭部を牽引しても良い。さらには、後述する可動機構により可動部材11Aを引き上げても良い。   To raise the movable member 11A, for example, as shown in FIG. 6A, a holding jig 61 is used to hold and pull the head of the movable member 11A opposite to the tip (projection T) of the movable member 11A, and pull up the movable member 11A. Just do it. Alternatively, as shown in FIG. 6B, a fastening portion such as a screw hole for pulling out is provided on the head of the movable member 11A, and a fastening jig such as a bolt 62 is inserted and fastened therein to move the movable member 11A. The head of the member 11A may be pulled. Alternatively, the head portion of the movable member 11A may be pulled by providing a convex portion having a thread groove formed on the head portion of the movable member 11A as a fastening portion and fastening it with a nut-shaped jig. Furthermore, the movable member 11A may be pulled up by a movable mechanism described later.

可動部材11Aの引き上げにともない、三次元造形物14と密着して噛合していた可動部材11Aの下端部は基部11B側に移動し、三次元造形物14の上部には空間Sが生じる。生じた空間Sには、ガイド穴と可動部材11Aの隙間を通じて空気が注入される。その結果、噛合が開放されるとともに三次元造形物14と基部11Bの密着面積が小さくなり、図5(b)に示すように、三次元造形物14を基台11から容易に取り外すことができる。つまり、本実施形態によれば、造形後に三次元造形物を基台から取り外す際に、破損を生じるような過大な力が三次元造形物にかかることはない。   As the movable member 11A is pulled up, the lower end portion of the movable member 11A that is in close contact with and meshed with the three-dimensional structure 14 moves to the base 11B side, and a space S is formed above the three-dimensional structure 14. Air is injected into the generated space S through the gap between the guide hole and the movable member 11A. As a result, the meshing is released and the contact area between the three-dimensional structure 14 and the base 11B is reduced, and the three-dimensional structure 14 can be easily removed from the base 11 as shown in FIG. 5B. . That is, according to the present embodiment, when the three-dimensional model is removed from the base after modeling, an excessive force that causes damage is not applied to the three-dimensional model.

尚、図5(a)あるいは図5(b)に示した例では、可動部材11Aの下端の高さが基部11Bの下面の高さと等しくなるように可動部材11Aが引き上げられているが、両者の高さを必ず一致させなければならないわけではない。要は、造形時にはアンカーとして三次元造形物と密着して噛合していた突出部Tを基部側に後退させ、できた空間に空気を注入して両者の噛合を開放すれば、三次元造形物14を基台11から取り外しやすくすることができる。つまりは、取り外し時に両者を分離しやすくすることが可能である限り、可動部材11Aの移動位置は、その下端が基部11Bの下面よりも突出した範囲内にとどめてもよいし、その下端が基部11Bのガイド穴の内部に位置するまで引き戻しても良い。   In the example shown in FIG. 5A or 5B, the movable member 11A is pulled up so that the height of the lower end of the movable member 11A becomes equal to the height of the lower surface of the base 11B. The heights of the do not have to match. The point is that when the protrusion T, which was in close contact with the three-dimensional structure as an anchor during molding, is retracted to the base side and air is injected into the created space to release the mesh between the two, the three-dimensional structure 14 can be easily removed from the base 11. That is, as long as it is possible to easily separate the two at the time of removal, the moving position of the movable member 11A may be limited to a range in which the lower end of the movable member 11A projects from the lower surface of the base portion 11B, or the lower end of the movable portion 11A. It may be pulled back until it is located inside the guide hole of 11B.

本発明を実施した三次元造形装置によれば、造形時には基台の可動部の先端(突出部T)と三次元造形物14が噛合う形となりアンカー効果が発揮され、三次元造形物の層が反ったり基台から剥離したり、三次元造形物が基台から脱落することがない。そして、完成した三次元造形物を基台から取り外す際には、可動部材を基台側に移動させて噛合を外し、できた空間に空気を注入することにより三次元造形物14を基台11から容易に取り外すことができる。   According to the three-dimensional modeling apparatus embodying the present invention, at the time of modeling, the tip of the movable portion (projection T) of the base and the three-dimensional model 14 are engaged with each other, and the anchor effect is exerted. Does not warp or peel off from the base, and the three-dimensional model does not fall off the base. Then, when the completed three-dimensional structure is removed from the base, the movable member is moved to the base side to disengage from the base, and air is injected into the formed space to move the three-dimensional structure 14 to the base 11. Can be easily removed from.

これに対して、特許文献1に記載されたように、基台にアンダーカット形状を固定的に形成する装置の場合には、三次元造形時にはアンカー効果が発揮されるものの、完成した三次元造形物を基台から取り外す際には、三次元造形物が破損する場合がある。また、特許文献2に記載されたように、スリット状に分割可能な表面が平坦な基台を備えた装置の場合には、完成した三次元造形物を基台から取り外す際には破損は生じにくいものの、三次元造形時に反ったり基台から剥離したり基台から脱落する場合がある。   On the other hand, as described in Patent Document 1, in the case of a device that fixedly forms an undercut shape on a base, an anchor effect is exhibited during three-dimensional modeling, but completed three-dimensional modeling When removing an object from the base, the 3D object may be damaged. Further, as described in Patent Document 2, in the case of a device including a base having a flat surface that can be divided into slits, damage occurs when the completed three-dimensional structure is removed from the base. Although difficult, it may warp during the three-dimensional modeling, peel off from the base, or fall off from the base.

これらの従来例とは異なり、本発明を実施すれば、三次元造形物を剥離や脱落させることなく基台に保持させて安定して造形することと、造形後に三次元造形物を破損なく容易に基台から取り外すことを、両立させることが可能である。
次に、可動部材11Aを上下動させる可動機構について、複数の実施形態を例示する。
Unlike these conventional examples, if the present invention is carried out, it is possible to hold the three-dimensional model on the base without peeling or dropping and to perform stable modeling, and after molding, the three-dimensional model can be easily and without damage. It is possible to combine the removal from the base.
Next, a plurality of embodiments will be exemplified as the movable mechanism for moving the movable member 11A up and down.

[可動機構の実施形態1]
図7(a)と図7(b)は、可動機構の実施形態1を備えた基台の模式的な断面図であり、それぞれ前述した図4(a)と図5(b)に対応した状態を示している。
本実施形態では、基台11は、可動部材11Aと、基部11Bに実装されたばねSPと、着脱可能な押え部材11Hを備えている。ばねSPは、基部11Bに装着可能で、可動部材11Aの上下動に応じてガイド穴に沿って伸縮可能な弾性部材であればよく、例えばコイルばねでもよいし、板ばねや空気ばね等でも差し支えない。
[Embodiment 1 of movable mechanism]
7 (a) and 7 (b) are schematic cross-sectional views of a base provided with the movable mechanism according to the first embodiment, and correspond to FIGS. 4 (a) and 5 (b) described above, respectively. It shows the state.
In the present embodiment, the base 11 is provided with a movable member 11A, a spring SP mounted on the base 11B, and a removable holding member 11H. The spring SP may be any elastic member that can be attached to the base portion 11B and can expand and contract along the guide hole according to the vertical movement of the movable member 11A. For example, a coil spring, a leaf spring, an air spring or the like may be used. Absent.

図7(a)に示すように、三次元造形物の形成を開始する際には、基部11Bのガイド穴に可動部材11Aがセットされ、押え部材11HによりばねSPが圧縮された状態で基部11Bに実装されている。かかる状態の基台11は、昇降アーム12により高さが調整され、基台11の下面および下面から所定の長さ突出した可動部材11Aの突出部Tが、液状光硬化性樹脂2の液中に浸漬されている。   As shown in FIG. 7A, when the formation of the three-dimensional structure is started, the movable member 11A is set in the guide hole of the base 11B, and the spring SP is compressed by the pressing member 11H. Implemented in. The height of the base 11 in such a state is adjusted by the elevating arm 12, and the lower surface of the base 11 and the protruding portion T of the movable member 11A protruding by a predetermined length from the lower surface of the base 11 are submerged in the liquid photocurable resin 2. Is soaked in.

図7(b)に示すように、造形が完了した三次元造形物14を基部11Bから取り外す際には、三次元造形物14を保持した基台11が昇降アーム12から取り外され、さらに押え部材11Hが基部11Bから取り外される。押え部材11Hが基部11Bから外されると、圧縮されていたばねSPが伸張して可動部材11Aを押し上げる。図7(b)は、基部11Bのガイド穴に空間Cが生ずるまで可動部材11Aの下端が基部11Bの内部に押し上げられた状態を例示している。   As shown in FIG. 7B, when removing the three-dimensional modeled object 14 whose modeling is completed from the base 11B, the base 11 holding the three-dimensional modeled object 14 is removed from the elevating arm 12, and the pressing member is further pressed. 11H is removed from the base 11B. When the pressing member 11H is removed from the base portion 11B, the compressed spring SP extends and pushes up the movable member 11A. FIG. 7B illustrates a state in which the lower end of the movable member 11A is pushed up into the inside of the base 11B until the space C is created in the guide hole of the base 11B.

可動部材11Aが押上げられるのにともない、三次元造形物14と密着して噛合していた可動部材11Aの下端部は基部11Bの内部に移動し、三次元造形物14の上部にできた空間には、ガイド穴と可動部材11Aの隙間を通じて空気が注入される。その結果、噛合が開放されるとともに三次元造形物14と基部11Bの密着面積が小さくなり、図7(b)に示すように、三次元造形物14を基台11から容易に取り外すことができる。   As the movable member 11A is pushed up, the lower end portion of the movable member 11A that is in close contact with and meshed with the three-dimensional structure 14 moves to the inside of the base 11B, and a space formed above the three-dimensional structure 14 is formed. Air is injected into the through the gap between the guide hole and the movable member 11A. As a result, the meshing is released and the contact area between the three-dimensional structure 14 and the base 11B is reduced, and the three-dimensional structure 14 can be easily removed from the base 11 as shown in FIG. 7B. .

尚、基台11の主要部材の材質はアルミ合金にアルマイト処理をしたものを基本とするが、装置構成において重量を抑える必要がある場合には、特にアルミ合金やマグネシウム合金、チタン合金などが好適である。また、装置構成において、剛性を必要とする場合や腐食を抑える場合にはステンレス合金などが好適である。一例として、可動部材11Aの全長とツバ(頭部)の厚さを調整することで、基部11Bの下面から突出する長さを0.3mmに調整したところ、造形時のアンカー効果と取外し容易性の両立が可能であった。   The material of the main member of the base 11 is basically an aluminum alloy that has been anodized. However, when it is necessary to reduce the weight in the device configuration, an aluminum alloy, a magnesium alloy, a titanium alloy, etc. are particularly suitable. Is. Further, in the device configuration, a stainless alloy or the like is suitable when rigidity is required or corrosion is suppressed. As an example, when the length protruding from the lower surface of the base 11B is adjusted to 0.3 mm by adjusting the total length of the movable member 11A and the thickness of the brim (head), the anchor effect during modeling and the ease of removal It was possible to achieve both.

[可動機構の実施形態2]
図8(a)と図8(b)は、可動機構の実施形態2を備えた基台の模式的な断面図であり、それぞれ前述した図4(a)と図5(b)に対応した状態を示している。
本実施形態では、基台11は、可動部材11A、第1基部11C、第2基部11D、第1基部11Cと第2基部11Dとを着脱可能に固定する固定部材11Eを備えている。第2基部11Dは、三次元造形物を形成する主面を有する基部で、第1基部11Cは三次元造形物を形成するのとは反対側に配置された基部である。
[Embodiment 2 of movable mechanism]
FIG. 8A and FIG. 8B are schematic cross-sectional views of a base provided with the second embodiment of the movable mechanism, and correspond to FIG. 4A and FIG. 5B described above, respectively. It shows the state.
In this embodiment, the base 11 includes a movable member 11A, a first base 11C, a second base 11D, and a fixing member 11E that detachably fixes the first base 11C and the second base 11D. The second base portion 11D is a base portion having a main surface that forms a three-dimensional structure, and the first base portion 11C is a base portion that is arranged on the opposite side to the side that forms the three-dimensional structure.

図8(a)に示すように、三次元造形物の形成を開始する際には、可動部材11Aは、第1基部11Cを貫通するガイド穴、および第2基部11Dを貫通するガイド穴に嵌め込まれている。第1基部11Cと第2基部11Dは、固定部材11Eにより当接して密着するように固定されている。かかる状態の基台11は、昇降アーム12により高さが調整され、第2基部11Dの下面および第2基部11Dの下面から突出した可動部材11Aの突出部Tが液状光硬化性樹脂2の液中に浸漬されている。   As shown in FIG. 8A, when the formation of the three-dimensional structure is started, the movable member 11A is fitted into the guide hole penetrating the first base 11C and the guide hole penetrating the second base 11D. Has been. The first base portion 11C and the second base portion 11D are fixed by a fixing member 11E so as to abut and closely contact each other. The height of the base 11 in this state is adjusted by the elevating arm 12, and the lower surface of the second base 11D and the protruding portion T of the movable member 11A protruding from the lower surface of the second base 11D have the liquid photocurable resin 2 liquid. It is immersed in.

図8(b)に示すように、造形が完了した三次元造形物14を基台11から取り外す際には、三次元造形物14を保持した基台11が昇降アーム12から取り外され、さらに固定部材11Eが開放され、第1基部11Cが第2基部11Dから外される。第1基部11Cが第2基部11Dから取り外され、第1基部11Cが持ち上げられると、第1基部11Cと連動して可動部材11Aも持ち上げられる。図8(b)は、可動部材11Aの下端が第2基部11Dの下面と同じ高さまで持ち上げられた状態を例示している。   As shown in FIG. 8B, when removing the three-dimensional modeled object 14 whose modeling has been completed from the base 11, the base 11 holding the three-dimensional modeled object 14 is removed from the elevating arm 12 and further fixed. The member 11E is opened, and the first base 11C is removed from the second base 11D. When the first base 11C is removed from the second base 11D and the first base 11C is lifted, the movable member 11A is also lifted in conjunction with the first base 11C. FIG. 8B illustrates a state where the lower end of the movable member 11A is lifted to the same height as the lower surface of the second base 11D.

可動部材11Aが持ち上げられるのにともない、三次元造形物14と密着して噛合していた可動部材11Aの下端部は上方向に移動し、三次元造形物14の上部にできた空間には、ガイド穴と可動部材11Aの隙間を通じて空気が注入される。その結果、噛合が開放されるとともに三次元造形物14と第2基部11Dの密着面積が小さくなり、図8(b)に示すように、三次元造形物14を基台11から容易に取り外すことができる。   As the movable member 11A is lifted, the lower end portion of the movable member 11A, which is in close contact with and is meshed with the three-dimensional structure 14, moves upward, and in the space formed on the upper part of the three-dimensional structure 14, Air is injected through the gap between the guide hole and the movable member 11A. As a result, the meshing is released and the contact area between the three-dimensional structure 14 and the second base 11D is reduced, so that the three-dimensional structure 14 can be easily removed from the base 11 as shown in FIG. 8B. You can

尚、基台11の主要部材の材質はアルミ合金にアルマイト処理をしたものを基本とするが、装置構成において重量を抑える必要がある場合には、特にアルミ合金やマグネシウム合金、チタン合金などが好適である。また、装置構成において、剛性を必要とする場合や腐食を抑える場合にはステンレス合金などが好適である。一例として、可動部材11Aの全長とツバ(頭部)の厚さを調整することで、基部11Bの下面から突出する長さを0.3mmに調整したところ、造形時のアンカー効果と取外し容易性の両立が可能であった。   The material of the main member of the base 11 is basically an aluminum alloy that has been anodized. However, when it is necessary to reduce the weight in the device configuration, an aluminum alloy, a magnesium alloy, a titanium alloy, etc. are particularly suitable. Is. Further, in the device configuration, a stainless alloy or the like is suitable when rigidity is required or corrosion is suppressed. As an example, when the length protruding from the lower surface of the base 11B is adjusted to 0.3 mm by adjusting the total length of the movable member 11A and the thickness of the brim (head), the anchor effect during modeling and the ease of removal It was possible to achieve both.

[可動機構の実施形態3]
図9(a)と図9(b)は、可動機構の実施形態3を備えた基台の模式的な断面図であり、それぞれ前述した図4(a)と図5(b)に対応した状態を示している。
本実施形態では、基台11は、可動部材11A、第1基部11C、第2基部11D、押しボルト11Pを備える。押しボルト11Pは、第1基部11Cと第2基部11Dの距離を調整する距離調整手段である。
[Embodiment 3 of movable mechanism]
9A and 9B are schematic cross-sectional views of a base provided with the movable mechanism according to the third embodiment, which correspond to the above-described FIGS. 4A and 5B, respectively. It shows the state.
In this embodiment, the base 11 includes a movable member 11A, a first base 11C, a second base 11D, and a push bolt 11P. The push bolt 11P is a distance adjusting unit that adjusts the distance between the first base 11C and the second base 11D.

図9(a)に示すように、三次元造形物の形成を開始する際には、可動部材11Aは、第1基部11Cを貫通するガイド穴、および第2基部11Dを貫通するガイド穴に嵌め込まれている。第1基部11Cと第2基部11Dが当接して密着するように、押しボルト11Pは位置が調整されている。かかる状態の基台11は、昇降アーム12により高さが調整され、第2基部11Dの下面および第2基部11Dの下面から突出した可動部材11Aの突出部Tが液状光硬化性樹脂2の液中に浸漬されている。   As shown in FIG. 9A, when the formation of the three-dimensional structure is started, the movable member 11A is fitted into the guide hole penetrating the first base 11C and the guide hole penetrating the second base 11D. Has been. The position of the push bolt 11P is adjusted so that the first base portion 11C and the second base portion 11D are in contact with and in close contact with each other. The height of the base 11 in this state is adjusted by the elevating arm 12, and the lower surface of the second base 11D and the protruding portion T of the movable member 11A protruding from the lower surface of the second base 11D have the liquid photocurable resin 2 liquid. It is immersed in.

図9(b)に示すように、造形が完了した三次元造形物14を基台11から取り外す際には、三次元造形物14を保持した基台11が昇降アーム12から取り外される。さらに、押しボルト11Pが第2基部11D側に突き出され、第1基部11Cは第2基部11Dから所定距離だけ離間される。第1基部11Cが第2基部11Dから離間して持ち上げられると、第1基部11Cと連動して可動部材11Aも持ち上げられる。図9(b)は、可動部材11Aの下端が第2基部11Dの下面と同じ高さまで持ち上げられた状態を例示している。   As shown in FIG. 9B, when removing the three-dimensional modeled object 14 whose modeling is completed from the base 11, the base 11 holding the three-dimensional modeled object 14 is removed from the elevating arm 12. Further, the push bolt 11P is projected toward the second base 11D side, and the first base 11C is separated from the second base 11D by a predetermined distance. When the first base 11C is lifted away from the second base 11D, the movable member 11A is also lifted in conjunction with the first base 11C. FIG. 9B illustrates a state where the lower end of the movable member 11A is lifted to the same height as the lower surface of the second base 11D.

可動部材11Aが持ち上げられるのにともない、三次元造形物14と密着して噛合していた可動部材11Aの下端部は上方向に移動し、三次元造形物14の上部にできた空間には、ガイド穴と可動部材11Aの隙間を通じて空気が注入される。その結果、噛合が開放されるとともに三次元造形物14と第2基部11Dの密着面積が小さくなり、図9(b)に示すように、三次元造形物14を基台11から容易に取り外すことができる。   As the movable member 11A is lifted, the lower end portion of the movable member 11A, which is in close contact with and is meshed with the three-dimensional structure 14, moves upward, and in the space formed on the upper part of the three-dimensional structure 14, Air is injected through the gap between the guide hole and the movable member 11A. As a result, the meshing is released and the contact area between the three-dimensional structure 14 and the second base 11D is reduced, and the three-dimensional structure 14 can be easily removed from the base 11 as shown in FIG. 9B. You can

尚、基台11の主要部材の材質はアルミ合金にアルマイト処理をしたものを基本とするが、装置構成において重量を抑える必要がある場合には、特にアルミ合金やマグネシウム合金、チタン合金などが好適である。また、装置構成において、剛性を必要とする場合や腐食を抑える場合にはステンレス合金などが好適である。一例として、可動部材11Aの全長とツバ(頭部)の厚さを調整することで、基部11Bの下面から突出する長さを0.3mmに調整したところ、造形時のアンカー効果と取外し容易性の両立が可能であった。   The material of the main member of the base 11 is basically an aluminum alloy that has been anodized. However, when it is necessary to reduce the weight in the device configuration, an aluminum alloy, a magnesium alloy, a titanium alloy, etc. are particularly suitable. Is. Further, in the device configuration, a stainless alloy or the like is suitable when rigidity is required or corrosion is suppressed. As an example, when the length protruding from the lower surface of the base 11B is adjusted to 0.3 mm by adjusting the total length of the movable member 11A and the thickness of the brim (head), the anchor effect during modeling and the ease of removal It was possible to achieve both.

[可動機構の実施形態4]
図10(a)と図10(b)は、可動機構の実施形態4を備えた基台の模式的な断面図であり、それぞれ前述した図4(a)と図5(b)に対応した状態を示している。
本実施形態では、基台11は、可動部材11A、基部11B、延長部11F、リンク機構11Gを備える。可動部材11Aの頭部に締結された延長部11Fは、リンク機構11Gに連結されている。リンク機構11Gは、回転−直線変換機構であり、図10(a)の矢印方向にアームを回動させると可動部材11Aは鉛直下方に移動し、図10(b)の矢印方向にアームを回動させると可動部材11Aは鉛直上方に移動する。
[Fourth Embodiment of Movable Mechanism]
10 (a) and 10 (b) are schematic cross-sectional views of a base having a movable mechanism according to a fourth embodiment, which correspond to FIGS. 4 (a) and 5 (b) described above, respectively. It shows the state.
In the present embodiment, the base 11 includes a movable member 11A, a base 11B, an extension 11F, and a link mechanism 11G. The extension 11F fastened to the head of the movable member 11A is connected to the link mechanism 11G. The link mechanism 11G is a rotation-linear conversion mechanism, and when the arm is rotated in the arrow direction of FIG. 10A, the movable member 11A moves vertically downward and rotates the arm in the arrow direction of FIG. 10B. When moved, the movable member 11A moves vertically upward.

図10(a)に示すように、三次元造形物の形成を開始する際には、可動部材11Aは、基部11Bを貫通するガイド穴に嵌め込まれている。リンク機構11Gは、可動部材11Aの下端が突出部Tとして基部11Bの下面から所定の長さ突出するように操作される。かかる状態の基台11は、昇降アーム12により高さが調整され、基部11Bの下面および基部11Bの下面から突出した可動部材11Aの突出部Tが液状光硬化性樹脂2の液中に浸漬されている。   As shown in FIG. 10A, when the formation of the three-dimensional structure is started, the movable member 11A is fitted into the guide hole penetrating the base 11B. The link mechanism 11G is operated such that the lower end of the movable member 11A functions as a protrusion T and protrudes from the lower surface of the base 11B by a predetermined length. The height of the base 11 in this state is adjusted by the elevating arm 12, and the lower surface of the base portion 11B and the protruding portion T of the movable member 11A protruding from the lower surface of the base portion 11B are immersed in the liquid photocurable resin 2. ing.

図10(b)に示すように、造形が完了した三次元造形物14を基台11から取り外す際には、三次元造形物14を保持した基台11が昇降アーム12から取り外される。さらに、リンク機構11Gを操作して、可動部材11Aが持ち上げられる。図10(b)は、可動部材11Aの下端が第2基部11Dの下面と同じ高さまで持ち上げられた状態を例示している。   As shown in FIG. 10 (b), when the three-dimensional modeled object 14 whose modeling has been completed is removed from the base 11, the base 11 holding the three-dimensional modeled object 14 is detached from the elevating arm 12. Further, the movable member 11A is lifted by operating the link mechanism 11G. FIG. 10B illustrates a state where the lower end of the movable member 11A is lifted to the same height as the lower surface of the second base 11D.

可動部材11Aが持ち上げられるのにともない、三次元造形物14と密着して噛合していた可動部材11Aの下端部は上方向に移動し、三次元造形物14の上部にできた空間には、ガイド穴と可動部材11Aの隙間を通じて空気が注入される。その結果、噛合が開放されるとともに三次元造形物14と第2基部11Dの密着面積が小さくなり、図10(b)に示すように、三次元造形物14を基台11から容易に取り外すことができる。   As the movable member 11A is lifted, the lower end portion of the movable member 11A, which is in close contact with and is meshed with the three-dimensional structure 14, moves upward, and in the space formed on the upper part of the three-dimensional structure 14, Air is injected through the gap between the guide hole and the movable member 11A. As a result, the meshing is released and the contact area between the three-dimensional structure 14 and the second base 11D is reduced, and the three-dimensional structure 14 can be easily removed from the base 11 as shown in FIG. You can

尚、基台11の主要部材の材質はアルミ合金にアルマイト処理をしたものを基本とするが、装置構成において重量を抑える必要がある場合には、特にアルミ合金やマグネシウム合金、チタン合金などが好適である。また、装置構成において、剛性を必要とする場合や腐食を抑える場合にはステンレス合金などが好適である。一例として、可動部材11Aの全長とツバ(頭部)の厚さを調整することで、基部11Bの下面から突出する長さを0.3mmに調整したところ、造形時のアンカー効果と取外し容易性の両立が可能であった。   The material of the main member of the base 11 is basically an aluminum alloy that has been anodized. However, when it is necessary to reduce the weight in the device configuration, an aluminum alloy, a magnesium alloy, a titanium alloy, etc. are particularly suitable. Is. Further, in the device configuration, a stainless alloy or the like is suitable when rigidity is required or corrosion is suppressed. As an example, when the length protruding from the lower surface of the base 11B is adjusted to 0.3 mm by adjusting the total length of the movable member 11A and the thickness of the brim (head), the anchor effect during modeling and the ease of removal It was possible to achieve both.

[他の実施形態]
本発明の実施形態は、上述した実施形態に限られるものではなく、本発明の技術的思想内で適宜変更したり、組み合わせたりすることが可能である。
例えば、可動部材の形状には円柱が好適に用いられるが、それに限られるわけではなく、例えば角柱であってもよい。
[Other Embodiments]
The embodiments of the present invention are not limited to the above-described embodiments, but can be appropriately modified or combined within the technical idea of the present invention.
For example, a cylinder is preferably used as the shape of the movable member, but the shape is not limited thereto, and may be a prism, for example.

また、三次元造形物に可動部材11Aと噛合していた痕跡(凹部)が残るのが好ましくない場合には、造形モデルの形状を突出部Tの高さ分だけ高く設定しておき、造形後に痕跡部分の深さ分だけ研削して平坦化してもよい。   Further, when it is not preferable that the trace (recess) that has been engaged with the movable member 11A remains on the three-dimensional model, the shape of the modeling model is set higher by the height of the protrusion T, and after modeling, You may grind only the depth of a trace part and flatten it.

また、上記説明では造形する際にアンカー効果を得るために可動部材を基台から突出させたが、造形する際に可動部材を基台のガイド穴の内部に引き込んでおき、所定の深さの凹部を基台に配置することで噛合部を形成してもよい。その場合も、三次元造形物を基台から取り外す際には、可動部材をガイド穴に沿って基台内にさらに引き込み、生じた空間に空気を注入することにより三次元造形物を基台から容易に取り外すことができるようになる。   Further, in the above description, the movable member was projected from the base in order to obtain the anchor effect during modeling, but the movable member is pulled into the guide hole of the base during modeling, and the movable member has a predetermined depth. The engagement portion may be formed by arranging the concave portion on the base. Even in that case, when removing the three-dimensional structure from the base, the movable member is further drawn into the base along the guide hole and air is injected into the created space to remove the three-dimensional structure from the base. It can be easily removed.

本発明は、積層造形する際の造形物の収縮による剥離等を解決し得るものであるため、例えば、熱可塑性樹脂を溶融させて吐出ノズルより線状に樹脂を押出し、複数層を積層させて造形物を得る熱溶融積層造形装置のステージ部にも適用することができる。あるいは、液状の熱硬化性樹脂に基台を浸漬させ、所定部分を加熱して硬化させながら基台上に積層造形する場合の基台にも適用できる。   The present invention is capable of solving peeling and the like due to shrinkage of a shaped object during layered molding, and therefore, for example, a thermoplastic resin is melted and the resin is extruded linearly from a discharge nozzle to laminate a plurality of layers. It can also be applied to a stage part of a hot-melt layered modeling apparatus for obtaining a modeled object. Alternatively, it can also be applied to a base in which a base is immersed in a liquid thermosetting resin, and a predetermined portion is heated and cured to laminate-mold on the base.

1・・・容器/2・・・液状光硬化性樹脂/3・・・樹脂供給部/4・・・光透過窓/5・・・遮光部/7・・・光源/8・・・ミラー部/9・・・レンズ部/10・・・光源ユニット/11・・・基台/11A・・・可動部材/11B・・・基部/11C・・・第1基部/11D・・・第2基部/11E・・・固定部材/11F・・・延長部/11G・・・リンク機構/11P・・・押しボルト/12・・・昇降アーム/13・・・昇降部/14・・・三次元造形物/21・・・制御部/22・・・外部装置/23・・・操作パネル/61・・・挟持治具/62・・・ボルト/C・・・空間/S・・・三次元造形物14の上部にできた空間/SP・・・ばね/T・・・突出部   1 ... Container / 2 ... Liquid photocurable resin / 3 ... Resin supply section / 4 ... Light transmission window / 5 ... Light-shielding section / 7 ... Light source / 8 ... Mirror Part / 9 ... lens part / 10 ... light source unit / 11 ... base / 11A ... movable member / 11B ... base / 11C ... first base / 11D ... second Base part / 11E ... Fixing member / 11F ... Extension part / 11G ... Link mechanism / 11P ... Pushing bolt / 12 ... Elevating arm / 13 ... Elevating part / 14 ... Three-dimensional Modeled object / 21 ... Control unit / 22 ... External device / 23 ... Operation panel / 61 ... Clamping jig / 62 ... Bolt / C ... Space / S ... Three-dimensional Space formed on top of the molded article 14 / SP ... Spring / T ... Projection

Claims (28)

樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、複数の可動部の先端が前記基台の主面から前記三次元造形物の側に突出しており、
形成した前記三次元造形物を前記基台から取り外す前に、前記可動部の先端は、前記三次元造形物を形成する時よりも前記基台の側に移動する、
ことを特徴とする三次元造形装置。
When laminating while curing the resin to form a three-dimensional structure on the base, the tips of the plurality of movable parts project from the main surface of the base to the side of the three-dimensional structure,
Before removing the formed three-dimensional structure from the base, the tip of the movable portion moves to the side of the base more than when forming the three-dimensional structure,
A three-dimensional modeling device characterized in that
光硬化性樹脂である前記樹脂にレーザ光を照射して硬化させながら積層して前記基台の上に前記三次元造形物を形成する、
ことを特徴とする請求項1に記載の三次元造形装置。
Forming the three-dimensional structure on the base by laminating while curing the resin which is a photo-curable resin by irradiating it with laser light,
The three-dimensional modeling apparatus according to claim 1, characterized in that.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、前記可動部の先端が前記基台の主面から前記三次元造形物の側に突出する長さは、一回に硬化させる層の厚み以下である、
ことを特徴とする請求項1または請求項2に記載の三次元造形装置。
When forming the three-dimensional structure on the base by laminating while curing the resin, the length of the tip of the movable portion protruding from the main surface of the base to the side of the three-dimensional structure, Is less than or equal to the thickness of the layer to be cured at one time,
The three-dimensional modeling apparatus according to claim 1 or 2, characterized in that.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、前記可動部の先端が前記基台の主面から前記三次元造形物の側に突出する長さは、0.1mm以上で、0.5mm以下である、
ことを特徴とする請求項1乃至3のいずれか1項に記載の三次元造形装置。
When forming the three-dimensional structure on the base by laminating while curing the resin, the length of the tip of the movable portion protruding from the main surface of the base to the side of the three-dimensional structure, 0.1 mm or more and 0.5 mm or less,
The three-dimensional modeling apparatus according to any one of claims 1 to 3, wherein
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、前記基台の主面から前記三次元造形物の側に突出する前記可動部の直径は、0.5mm以上で、5.0mm以下である、
ことを特徴とする請求項1乃至4のいずれか1項に記載の三次元造形装置。
When the resin is stacked while being cured to form a three-dimensional structure on the base, the diameter of the movable portion protruding from the main surface of the base to the side of the three-dimensional structure is 0.5 mm. Above, 5.0 mm or less,
The three-dimensional modeling apparatus according to any one of claims 1 to 4, wherein
前記複数の可動部の各々を隔てる距離は、3.0mm以上で、20.0mm以下である、
ことを特徴とする請求項1乃至5のいずれか1項に記載の三次元造形装置。
The distance separating each of the plurality of movable parts is 3.0 mm or more and 20.0 mm or less,
The three-dimensional modeling apparatus according to any one of claims 1 to 5, characterized in that.
前記可動部は、前記基台に設けられたガイド穴に沿って移動する、
ことを特徴とする請求項1乃至6のいずれか1項に記載の三次元造形装置。
The movable portion moves along a guide hole provided in the base,
The three-dimensional modeling apparatus according to any one of claims 1 to 6, characterized in that.
形成した前記三次元造形物を前記基台から取り外す前には、前記可動部の先端が前記基台の側に移動して生じた空間に空気が注入される、
ことを特徴とする請求項1乃至7のいずれか1項に記載の三次元造形装置。
Before removing the formed three-dimensional structure from the base, air is injected into the space created by moving the tip of the movable portion toward the base.
The three-dimensional modeling apparatus according to any one of claims 1 to 7, characterized in that
形成した前記三次元造形物を前記基台から取り外す前には、前記可動部の前記先端とは反対端が治具により保持され、前記治具に牽引されて前記可動部が移動する、
ことを特徴とする請求項1乃至8のいずれか1項に記載の三次元造形装置。
Before removing the formed three-dimensional structure from the base, the end opposite to the tip of the movable part is held by a jig, and the movable part moves by being pulled by the jig.
The three-dimensional printing apparatus according to claim 1, wherein the three-dimensional printing apparatus is a three-dimensional printing apparatus.
前記治具は、前記可動部の前記先端とは反対端を挟持して前記可動部を保持する、
ことを特徴とする請求項9に記載の三次元造形装置。
The jig holds the movable portion by sandwiching an end of the movable portion opposite to the tip.
The three-dimensional modeling apparatus according to claim 9, wherein.
前記治具は、前記可動部の前記先端とは反対端に設けられた締結部と締結して前記可動部を保持する、
ことを特徴とする請求項9に記載の三次元造形装置。
The jig holds the movable portion by being fastened to a fastening portion provided at an end opposite to the tip of the movable portion,
The three-dimensional modeling apparatus according to claim 9, wherein.
形成した前記三次元造形物を前記基台から取り外す前には、前記可動部は、前記基台に設けられた可動機構により移動する、
ことを特徴とする請求項1乃至8のいずれか1項に記載の三次元造形装置。
Before removing the formed three-dimensional structure from the base, the movable part is moved by a movable mechanism provided on the base,
The three-dimensional printing apparatus according to claim 1, wherein the three-dimensional printing apparatus is a three-dimensional printing apparatus.
前記可動機構は、伸縮可能な弾性部材を有する、
ことを特徴とする請求項12に記載の三次元造形装置。
The movable mechanism has a stretchable elastic member,
The three-dimensional modeling apparatus according to claim 12, wherein.
前記可動機構は、リンク機構を有する、
ことを特徴とする請求項12に記載の三次元造形装置。
The movable mechanism has a link mechanism,
The three-dimensional modeling apparatus according to claim 12, wherein.
前記基台は、前記三次元造形物を形成する側の第2基部と、前記三次元造形物を形成するのとは反対側の第1基部とを有し、
形成した前記三次元造形物を前記基台から取り外す前には、前記第2基部と前記第1基部を離間させて前記可動部を移動させる、
ことを特徴とする請求項1乃至8のいずれか1項に記載の三次元造形装置。
The base has a second base on the side on which the three-dimensional structure is formed and a first base on the side opposite to the side on which the three-dimensional structure is formed,
Before removing the formed three-dimensional structure from the base, the second base portion and the first base portion are separated from each other to move the movable portion,
The three-dimensional printing apparatus according to claim 1, wherein the three-dimensional printing apparatus is a three-dimensional printing apparatus.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時には、前記第2基部と前記第1基部を当接させて固定手段により固定し、
形成した前記三次元造形物を前記基台から取り外す前には、前記固定手段を開放させて前記第2基部と前記第1基部を離間させて前記可動部を移動させる、
ことを特徴とする請求項15に記載の三次元造形装置。
When the resin is laminated while being cured to form a three-dimensional structure on the base, the second base portion and the first base portion are brought into contact with each other and fixed by a fixing means,
Before removing the formed three-dimensional structure from the base, the fixing means is opened to separate the second base portion from the first base portion to move the movable portion,
The three-dimensional modeling apparatus according to claim 15, wherein.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時には、距離調整手段により前記第2基部と前記第1基部を当接させ、
形成した前記三次元造形物を前記基台から取り外す前には、前記距離調整手段により前記第2基部と前記第1基部を所定距離だけ離間させて前記可動部を移動させる、
ことを特徴とする請求項15に記載の三次元造形装置。
When the resin is laminated while being cured to form a three-dimensional structure on the base, the second base portion and the first base portion are brought into contact with each other by the distance adjusting means,
Before removing the formed three-dimensional structure from the base, the distance adjusting means separates the second base from the first base by a predetermined distance to move the movable part,
The three-dimensional modeling apparatus according to claim 15, wherein.
樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、複数の可動部の先端が前記基台の主面から前記三次元造形物の側に突出しており、
形成した前記三次元造形物を前記基台から取り外す前に、前記可動部の先端は、前記三次元造形物を形成する時よりも前記基台の側に移動する、
ことを特徴とする三次元造形物の製造方法。
When laminating while curing the resin to form a three-dimensional structure on the base, the tips of the plurality of movable parts project from the main surface of the base to the side of the three-dimensional structure,
Before removing the formed three-dimensional structure from the base, the tip of the movable portion moves to the side of the base more than when forming the three-dimensional structure,
A method for manufacturing a three-dimensional object characterized by the following.
光硬化性樹脂である前記樹脂にレーザ光を照射して硬化させながら積層して前記基台の上に前記三次元造形物を形成する、
ことを特徴とする請求項18に記載の三次元造形物の製造方法。
Forming the three-dimensional structure on the base by laminating while curing the resin which is a photo-curable resin by irradiating it with laser light,
The method for manufacturing a three-dimensional structure according to claim 18, characterized in that.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、前記可動部の先端が前記基台の主面から前記三次元造形物の側に突出する長さは、一回に硬化させる層の厚み以下である、
ことを特徴とする請求項18または請求項19に記載の三次元造形物の製造方法。
When forming the three-dimensional structure on the base by laminating while curing the resin, the length of the tip of the movable portion protruding from the main surface of the base to the side of the three-dimensional structure, Is less than or equal to the thickness of the layer to be cured at one time,
The method for manufacturing a three-dimensional structure according to claim 18 or 19, characterized in that.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、前記可動部の先端が前記基台の主面から前記三次元造形物の側に突出する長さは、0.1mm以上で、0.5mm以下である、
ことを特徴とする請求項18乃至20のいずれか1項に記載の三次元造形物の製造方法。
When forming the three-dimensional structure on the base by laminating while curing the resin, the length of the tip of the movable portion protruding from the main surface of the base to the side of the three-dimensional structure, 0.1 mm or more and 0.5 mm or less,
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 20, characterized in that.
前記樹脂を硬化させながら積層して基台の上に三次元造形物を形成する時に、前記基台の主面から前記三次元造形物の側に突出する前記可動部の直径は、0.5mm以上で、5.0mm以下である、
ことを特徴とする請求項18乃至21のいずれか1項に記載の三次元造形物の製造方法。
When the resin is stacked while being cured to form a three-dimensional structure on the base, the diameter of the movable portion protruding from the main surface of the base to the side of the three-dimensional structure is 0.5 mm. Above, 5.0 mm or less,
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 21, characterized in that.
前記複数の可動部の各々を隔てる距離は、3.0mm以上で、20.0mm以下である、
ことを特徴とする請求項18乃至22のいずれか1項に記載の三次元造形物の製造方法。
The distance separating each of the plurality of movable parts is 3.0 mm or more and 20.0 mm or less,
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 22, characterized in that.
前記可動部は、前記基台に設けられたガイド穴に沿って移動する、
ことを特徴とする請求項18乃至23のいずれか1項に記載の三次元造形物の製造方法。
The movable portion moves along a guide hole provided in the base,
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 23, wherein:
形成した前記三次元造形物を前記基台から取り外す前には、前記可動部の先端が前記基台の側に移動して生じた空間に空気が注入される、
ことを特徴とする請求項18乃至24のいずれか1項に記載の三次元造形物の製造方法。
Before removing the formed three-dimensional structure from the base, air is injected into the space created by moving the tip of the movable portion toward the base.
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 24, characterized in that.
形成した前記三次元造形物を前記基台から取り外す前には、前記可動部の前記先端とは反対端が治具により保持され、前記治具に牽引されて前記可動部が移動する、
ことを特徴とする請求項18乃至25のいずれか1項に記載の三次元造形物の製造方法。
Before removing the formed three-dimensional structure from the base, the end opposite to the tip of the movable part is held by a jig, and the movable part moves by being pulled by the jig.
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 25, characterized in that.
形成した前記三次元造形物を前記基台から取り外す前には、前記可動部は、前記基台に設けられた可動機構により移動する、
ことを特徴とする請求項18乃至25のいずれか1項に記載の三次元造形物の製造方法。
Before removing the formed three-dimensional structure from the base, the movable part is moved by a movable mechanism provided on the base,
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 25, characterized in that.
前記基台は、前記三次元造形物を形成する側の第2基部と、前記三次元造形物を形成するのとは反対側の第1基部とを有し、
形成した前記三次元造形物を前記基台から取り外す前には、前記第2基部と前記第1基部を離間させて前記可動部を移動させる、
ことを特徴とする請求項18乃至25のいずれか1項に記載の三次元造形物の製造方法。

The base has a second base on the side on which the three-dimensional structure is formed and a first base on the side opposite to the side on which the three-dimensional structure is formed,
Before removing the formed three-dimensional structure from the base, the second base portion and the first base portion are separated from each other to move the movable portion,
The method for manufacturing a three-dimensional structure according to any one of claims 18 to 25, characterized in that.

JP2018192968A 2018-10-11 2018-10-11 Three dimentional modeling device and manufacturing method thereof Pending JP2020059237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192968A JP2020059237A (en) 2018-10-11 2018-10-11 Three dimentional modeling device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192968A JP2020059237A (en) 2018-10-11 2018-10-11 Three dimentional modeling device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020059237A true JP2020059237A (en) 2020-04-16
JP2020059237A5 JP2020059237A5 (en) 2021-11-18

Family

ID=70219883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192968A Pending JP2020059237A (en) 2018-10-11 2018-10-11 Three dimentional modeling device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020059237A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584834A (en) * 1991-09-25 1993-04-06 Matsushita Electric Works Ltd Molding method of three dimensional shape
JPH0582530U (en) * 1992-04-17 1993-11-09 三洋電機株式会社 Stereolithography device
JP2017200727A (en) * 2016-05-02 2017-11-09 株式会社リコー Three-dimensional molding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584834A (en) * 1991-09-25 1993-04-06 Matsushita Electric Works Ltd Molding method of three dimensional shape
JPH0582530U (en) * 1992-04-17 1993-11-09 三洋電機株式会社 Stereolithography device
JP2017200727A (en) * 2016-05-02 2017-11-09 株式会社リコー Three-dimensional molding device

Similar Documents

Publication Publication Date Title
KR102225135B1 (en) Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
US20220305722A1 (en) Apparatus for fabrication of three dimensional objects
KR20180022571A (en) Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product
US20220001598A1 (en) 3d printing using rotational components and improved light sources
WO2016169170A1 (en) 3d printing apparatus and method
KR20150126916A (en) 3d printing using spiral buildup
JP2009166447A (en) Optical shaping apparatus and optical shaping method
JP2002036373A (en) Stereo lithographic apparatus
CN207916049U (en) 3D printer based on LCD light source
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JP2022527768A (en) Large area 3D printer with precision optical path
KR101990431B1 (en) 3D Printer using macro led
US20210260819A1 (en) Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid
JP2020059237A (en) Three dimentional modeling device and manufacturing method thereof
JPWO2007108444A1 (en) Energy beam curable resin injection molding apparatus and method of manufacturing molded product
JP2024022666A (en) Optical modeling apparatus, and optical modeling method using its apparatus
JP6866152B2 (en) 3D modeling device and 3D modeling method
JP2019142197A (en) Molding apparatus, container, and manufacturing method of molding
JP5045402B2 (en) Stereolithography equipment
JP2007008004A (en) Optical component, manufacturing method of optical component and manufacturing method of mold for optical component
JP6896388B2 (en) Manufacturing method of 3D modeling equipment and 3D modeled objects
JP7066459B2 (en) 3D modeling device and 3D modeling method
JP5391838B2 (en) Wafer lens manufacturing method
JP2006272917A (en) Optical shaping method
CN113276408A (en) Continuous photocuring forming additive manufacturing device in liquid and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207