JP2020058244A - Electrochemical unlabeled nucleic acid detection method - Google Patents

Electrochemical unlabeled nucleic acid detection method Download PDF

Info

Publication number
JP2020058244A
JP2020058244A JP2018190002A JP2018190002A JP2020058244A JP 2020058244 A JP2020058244 A JP 2020058244A JP 2018190002 A JP2018190002 A JP 2018190002A JP 2018190002 A JP2018190002 A JP 2018190002A JP 2020058244 A JP2020058244 A JP 2020058244A
Authority
JP
Japan
Prior art keywords
nucleic acid
electrode
nucleic acids
aqueous solution
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018190002A
Other languages
Japanese (ja)
Other versions
JP7333928B2 (en
Inventor
宏幸 古澤
Hiroyuki Furusawa
宏幸 古澤
吉嶺 浩司
Koji Yoshimine
浩司 吉嶺
時任 静士
Shizuo Tokito
静士 時任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2018190002A priority Critical patent/JP7333928B2/en
Publication of JP2020058244A publication Critical patent/JP2020058244A/en
Application granted granted Critical
Publication of JP7333928B2 publication Critical patent/JP7333928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide methods that can suppress electrostatic repulsion between nucleic acids and secure the Debye length, which is a distance from the electrode where the negative charges inherent in nucleic acids can be detected, longer than the molecular size so that the increase in charge density of double-stranded nucleic acid formation based on the negative charge of the phosphate group originally possessed by nucleic acid can be detected as a change without using nucleic acid-specific labeling reagents in electrochemical formulas.SOLUTION: By using a low-concentration organic polyvalent cation molecule aqueous solution of biological origin instead of a high-concentration sodium chloride aqueous solution in order to suppress electrostatic repulsion between nucleic acids and to suppress ionic strength, and by fixing the nucleic acid for capture at a distance of about 1 nm from the electrode in order to bring the double-stranded nucleic acid forming region closer to the electrode, negative charges of nucleic acids can be measured as changes in charge density without being blocked by aqueous solution ions.SELECTED DRAWING: Figure 4

Description

本発明は、電気的化学的に核酸を検出する方法に関する。   The present invention relates to a method for detecting a nucleic acid electrochemically.

核酸と呼ばれるDNAやRNAは、生体の遺伝情報を含むことから遺伝子診断や細菌叢の同定などに利用されている。また最近では、血清や尿、唾液に存在するRNA(マイクロRNA)が、がん診断の指標として利用できる可能性が示され、ヘルスケア用途での在宅で利用できるセンサとして核酸検出技術の実用化が望まれている。   DNA and RNA, which are called nucleic acids, are used for genetic diagnosis and identification of bacterial flora because they contain genetic information of the living body. Recently, RNA (micro RNA) present in serum, urine, and saliva has been shown to be usable as an index for cancer diagnosis, and the practical application of nucleic acid detection technology as a sensor that can be used at home for healthcare applications. Is desired.

これまで核酸を検出する技術としては検出対象となるターゲット核酸と相互作用する捕捉核酸を溶液中で混合、またはターゲット核酸を捕捉核酸を固定した基板上で作用させ、相互作用した二本鎖核酸に特異的に作用する蛍光標識物質または相互作用に伴って蛍光が変化する予め核酸に標識された蛍光物質を光学装置を用いて検出する方法が用いられてきた。検出感度が優れている一方で大型・高価で精密な光学装置を必要とする点で、在宅利用を想定したセンサとしては不向きであった。   Up to now, the technique for detecting nucleic acids has been to mix a capture nucleic acid that interacts with a target nucleic acid to be detected in a solution, or to allow the target nucleic acid to act on a substrate on which the capture nucleic acid is immobilized, thereby forming an interacting double-stranded nucleic acid. A method has been used in which a fluorescent labeling substance that acts specifically or a fluorescent substance that is labeled in advance with a nucleic acid and whose fluorescence changes with interaction is detected using an optical device. It is unsuitable as a sensor for home use because it has a large detection sensitivity, but requires a large, expensive, and precise optical device.

また、ターゲット核酸と捕捉核酸が相互作用した二本鎖核酸に特異的に作用する電子メディエーター標識物質を電気化学装置で検出する原理のセンサ開発も報告されているが(特許文献1、2を参照のこと)、電気化学式は装置の小型化に有利である一方、核酸特異的試薬や標識が依然として必要という問題点がある。二本鎖核酸に特異的に作用する蛍光および電子メディエーター試薬や標識物質は発がん性を有する潜在的な危険性を否定できず、取り扱いや廃棄も含めて在宅での利用では安全性の確保が問題となる。   In addition, sensor development of a principle of detecting an electron mediator labeling substance that specifically acts on a double-stranded nucleic acid in which a target nucleic acid and a capture nucleic acid interact with each other has been reported (see Patent Documents 1 and 2). However, while the electrochemical method is advantageous for downsizing the device, it has a problem that a nucleic acid-specific reagent and a label are still necessary. Fluorescent and electron mediator reagents and labeling substances that act specifically on double-stranded nucleic acids cannot be denied potential carcinogenic potential, and safety is a problem when used at home, including handling and disposal. Becomes

非標識で核酸を検出する技術としてインピーダンスを測定(特許文献3、4)やFETの伝達特性変化を測定(非特許文献1)する方法がある。しかしインピーダンス測定やFETの伝達特性変化の測定には電流と電圧を同時に制御かつ測定が高精度に可能な大型な装置が必要であり、在宅での利用を想定した小型の装置化は困難である。   As a technique for detecting nucleic acids without labeling, there are methods of measuring impedance (Patent Documents 3 and 4) and measuring transfer characteristic change of FET (Non-Patent Document 1). However, in order to measure the impedance and the change in the transfer characteristic of the FET, a large device capable of controlling the current and the voltage at the same time and measuring with high accuracy is required, and it is difficult to make a small device for home use. .

これまで在宅で利用できる核酸センサが実現しないのは、上記の問題点があったためである。   The reason why a nucleic acid sensor that can be used at home has not been realized so far is because of the above problems.

核酸はリン酸基に負電荷イオンを持っており、その負電荷を電気化学的に測定することができれば標識物質を用いることなく核酸の検出が可能である。しかしターゲット核酸をセンサ基板上の捕捉核酸と相互作用させて二本鎖核酸として検出する場合には、核酸のリン酸基の負電荷イオンによる核酸同士の静電反発を抑えて結合させるために一般的には生理食塩水と同程度の100から200mMの濃度の塩化ナトリウム(NaCl)の存在下で実施する必要がある。   Nucleic acid has a negatively charged ion in the phosphate group, and if the negative charge can be measured electrochemically, the nucleic acid can be detected without using a labeling substance. However, when the target nucleic acid interacts with the capture nucleic acid on the sensor substrate and is detected as a double-stranded nucleic acid, it is generally used to suppress the electrostatic repulsion between the nucleic acids due to the negatively charged ions of the phosphate groups of the nucleic acids and to bind them. Specifically, it is necessary to carry out the treatment in the presence of sodium chloride (NaCl) at a concentration of 100 to 200 mM, which is similar to that of physiological saline.

電気化学においてイオン溶液中で電極の溶液界面での電荷密度変化を測定する場合には溶液内のイオンが動いて電場を遮蔽するデバイ遮蔽が生じ、遮蔽が有効となる電極からの距離であるデバイ長は溶液中のイオン強度に依存する。デバイ長は数式1で表される。δがデバイ長、εは比誘電率、εは真空の誘電率、kはボルツマン定数、Tは絶対温度、qは電荷、Iはイオン強度である。
When measuring the change in charge density at the electrode solution interface in an ionic solution in electrochemistry, the ions in the solution move to create a Debye shield that shields the electric field, which is the distance from the electrode where the shield is effective. The length depends on the ionic strength in the solution. The Debye length is expressed by Equation 1. δ is the Debye length, ε is the relative permittivity, ε 0 is the permittivity of vacuum, k is the Boltzmann constant, T is the absolute temperature, q is the charge, and I is the ionic strength.

センサ基板からの距離について、バイオセンサで一般的に生体分子を基板に固定化する方法であるアビジン−ビオチン結合法で、センサ基板1の表面にアビジンタンパク質2を介して捕捉核酸として10塩基ビオチン化核酸3を固定しターゲット核酸として10塩基核酸4を作用させた場合のそれぞれの分子の大きさとデバイ長δとのおおよその関係を図1に示す。   Regarding the distance from the sensor substrate, the biosensor generally uses avidin-biotin binding method, which is a method of immobilizing biomolecules on the substrate, and biotinylated 10 bases as a capture nucleic acid via avidin protein 2 on the surface of sensor substrate 1. FIG. 1 shows an approximate relationship between the size of each molecule and the Debye length δ when the nucleic acid 3 is immobilized and the 10-base nucleic acid 4 is allowed to act as the target nucleic acid.

アビジンタンパク質はおよそ6nm×3nmの楕円状球体であり二本鎖核酸の10塩基当たりの長さは3.4nmである。測定にはセンサ基板から6.4nmあるいは9.4nmの範囲内での検出が必要である。それに対して100から200mMの濃度の塩化ナトリウム(NaCl)溶液中でのデバイ長δは数式1より0.7nmから1nmと算出される。二本の核酸の相互作用はデバイ遮蔽の外側で起こっていて二本鎖形成に伴う核酸のリン酸基の負電荷イオンの増加を電荷密度の増加として検出することはできない。また捕捉核酸として10塩基核酸5をセンサ基板上に直接固定できたとしても3分の2以上はデバイ遮蔽の外に出るため正しく測定することができない。   The avidin protein is an ellipsoidal sphere having a size of about 6 nm × 3 nm, and the length per 10 bases of the double-stranded nucleic acid is 3.4 nm. The measurement needs to be detected within the range of 6.4 nm or 9.4 nm from the sensor substrate. On the other hand, the Debye length δ in a sodium chloride (NaCl) solution having a concentration of 100 to 200 mM is calculated from Equation 1 to be 0.7 nm to 1 nm. The interaction of the two nucleic acids occurs outside the Debye shield, and the increase in negatively charged ions of the phosphate groups of the nucleic acid due to duplex formation cannot be detected as an increase in charge density. Even if the 10-base nucleic acid 5 as the capture nucleic acid can be directly immobilized on the sensor substrate, more than two-thirds of the nucleic acid cannot be accurately measured because it goes out of the Debye shield.

特開2000−125865号公報JP, 2000-125865, A 特許第4018672号公報Japanese Patent No. 4018672 国際公開第2003/024954号International Publication No. 2003/024954 国際公開第2018/075085号International Publication No. 2018/075085

「バイオセンサーの先端科学技術と応用」、213−226ページ、CMC出版"Advanced Technology and Applications of Biosensors", pp. 213-226, CMC Publishing

上記のように、核酸を検出する方法として二本鎖核酸形成を検出する場合、核酸同士の負電荷による静電反発を緩和するため高濃度の塩化ナトリウム(NaCl)溶液中で相互作用させる必要があるが、電気化学的には電荷を検出できる電極からの距離、デバイ長が分子サイズ以下に短くなってしまい、核酸本来のリン酸基の負電荷に基づく電荷密度の変化として核酸を検出することができない二律背反の問題が生じる。   As described above, when double-stranded nucleic acid formation is detected as a method for detecting nucleic acids, it is necessary to interact in a high-concentration sodium chloride (NaCl) solution in order to reduce electrostatic repulsion due to the negative charge between nucleic acids. However, the distance from the electrode that can detect the charge electrochemically and the Debye length become shorter than the molecular size, and the nucleic acid can be detected as a change in the charge density based on the negative charge of the phosphate group inherent in the nucleic acid. There is a trade-off problem that cannot be done.

本発明の目的は、核酸同士の静電反発を抑えて二本鎖核酸を形成させつつ核酸が検出可能なデバイ長を確保できる方法を提供することで、電気化学式において核酸特異的標識試薬を用いることなく汎用的な電位差測定で核酸を検出可能にすることである。   An object of the present invention is to provide a method capable of securing a detectable Debye length of a nucleic acid while suppressing electrostatic repulsion between the nucleic acids to form a double-stranded nucleic acid, thereby using a nucleic acid-specific labeling reagent in an electrochemical formula. It is to make it possible to detect nucleic acid by general-purpose potentiometric measurement without any need.

本発明における核酸の二本鎖形成を検出する測定方法は、核酸が本来持つリン酸基の負電荷イオンを使って電荷密度の変化として核酸を標識試薬を用いることなく測定する方法であって、核酸同士の静電反発を抑えるために塩化ナトリウムの代わりに生体由来の有機多価カチオン分子、例えば、スペルミジンを用いたこと、電極からの距離を短くするために捕捉核酸を電極から約1nmの距離で直接固定したことである。   The measuring method for detecting the double-strand formation of a nucleic acid in the present invention is a method for measuring a nucleic acid as a change in charge density using a negatively charged ion of a phosphate group which a nucleic acid originally has, without using a labeling reagent, An organic polyvalent cation molecule derived from a living body, such as spermidine, was used in place of sodium chloride to suppress electrostatic repulsion between nucleic acids, and the captured nucleic acid was separated from the electrode by a distance of about 1 nm in order to shorten the distance from the electrode. It was fixed directly in.

本発明は、生体由来の有機多価カチオン分子を用いることで1mM程度の低濃度の陽電荷イオンであっても多点相互作用により核酸のリン酸アニオンと作用し核酸のリン酸アニオンの静電反発を抑制し、かつ、溶液中のイオン強度を低下させてデバイ長を分子サイズと同程度にまで確保したことと合わせて捕捉核酸を電極から約1nMの距離で直接固定したことで、ターゲット核酸の結合を標識試薬を用いずに核酸本来の負電荷イオンに基づく電極上の電荷密度変化として汎用的な電位差計で経時的に測定できるようになった。   The present invention uses an organic polyvalent cation molecule derived from a living body to act on a phosphate anion of a nucleic acid by a multipoint interaction even with a low concentration of positively charged ions of about 1 mM, so that the phosphate anion of the nucleic acid is electrostatically charged. The target nucleic acid was immobilized by directly fixing the capture nucleic acid at a distance of about 1 nM from the electrode while suppressing the repulsion and ensuring the Debye length to the same level as the molecular size by reducing the ionic strength in the solution. It has become possible to measure the binding of the above as a change in charge density on the electrode based on the negatively charged ions originally present in the nucleic acid with a general-purpose potentiometer without using a labeling reagent.

また用いる試薬の安全性が高いため、研究・開発の現場だけでなく、病院や一般家庭での日常診断用の核酸センサ用途として用いることができる。   Further, since the reagent used is highly safe, it can be used not only in the field of research and development but also as a nucleic acid sensor for daily diagnosis in a hospital or a general home.

アビジン−ビオチン結合法を使ってDNAを電極に固定しそれに相互作用するDNAの結合を観察する際の各分子の大きさとデバイ長δの関係を示す図。The figure which shows the relationship between the size of each molecule | numerator and Debye length (delta) at the time of fixing DNA to an electrode using an avidin-biotin binding method and observing the bond of the DNA which interacts with it. 本発明の実施の形態のDNAセンサの表面設計を示す模式図。The schematic diagram which shows the surface design of the DNA sensor of embodiment of this invention. 本発明の測定方法で使用した実験装置の接続を示す図。The figure which shows the connection of the experimental apparatus used by the measuring method of this invention. 本発明の測定方法によるDNAの検出および1塩基ミスマッチを有するDNAの検出をそれぞれ実施した際に観察された結果を比較した図。The figure which compared the result observed when each of the detection of the DNA by the measuring method of this invention and the detection of the DNA which has 1 base mismatch was performed.

以下、本発明の実施の形態について説明する。
図2は、電極6上に捕捉核酸として任意の配列をもつ10塩基DNA7を固定した核酸センサの表面設計を示す模式図である。電極の表面素材には金を使用する。DNA7は5’末端にアミノ基をもつものを用いてDNA7をアミド結合を介して炭素鎖長2の末端にカルボキシル基を持つアルキルチオール8で金電極6の表面に固定する。金とアルキルチオールは金−チオール吸着で固定される。アルキルチオールと捕捉DNAのアミド結合は水溶性の縮合剤を用いたアミンカップリング反応により生成させた。DNA7が固定されていない金電極の隙間は炭素鎖長2の末端に水酸基を持つアルキルチオール9を固定する。電極表面からDNAの末端までの距離はおよそ4.4nmほどである。
Hereinafter, embodiments of the present invention will be described.
FIG. 2 is a schematic diagram showing the surface design of a nucleic acid sensor in which 10-base DNA 7 having an arbitrary sequence as a capture nucleic acid is immobilized on the electrode 6. Gold is used for the surface material of the electrodes. The DNA 7 having an amino group at the 5'end is used to fix the DNA 7 to the surface of the gold electrode 6 with an alkylthiol 8 having a carboxyl group at the end of a carbon chain length of 2 via an amide bond. Gold and alkyl thiol are fixed by gold-thiol adsorption. The amide bond between the alkylthiol and the capture DNA was generated by an amine coupling reaction using a water-soluble condensing agent. The alkyl thiol 9 having a hydroxyl group is fixed to the end of the carbon chain length 2 in the gap of the gold electrode on which the DNA 7 is not fixed. The distance from the electrode surface to the end of the DNA is about 4.4 nm.

図3に電気化学測定を行うための実験装置の模式図を示す。汎用的な電位差計10に捕捉DNAを固定したセンサ電極11およびガラス参照電極12を接続する。水溶液を満たしたビーカー13にセンサ電極11およびガラス参照電極12を浸し水溶液は撹拌子14で撹拌する。水溶液としてターゲットDNAの検出実験では塩化ナトリウムの代わりに有機多価カチオン分子としてスペルミジン200μMを含む溶液中において実施する。   FIG. 3 shows a schematic diagram of an experimental apparatus for performing electrochemical measurement. A general-purpose potentiometer 10 is connected to a sensor electrode 11 and a glass reference electrode 12 on which capture DNA is fixed. The sensor electrode 11 and the glass reference electrode 12 are immersed in a beaker 13 filled with the aqueous solution, and the aqueous solution is stirred by a stirrer 14. The experiment for detecting the target DNA as an aqueous solution is performed in a solution containing 200 μM of spermidine as an organic polyvalent cation molecule instead of sodium chloride.

捕捉DNAと配列が相補的なターゲットDNAまたは1塩基のみ相補的でないミスマッチDNAとの相互作用による電荷密度の変化をそれぞれ参照電極との電位差変化として電位差計で測定する。それぞれの測定結果の比較において核酸中の1塩基のミスマッチに起因する結合挙動の差異から配列の違いを検出する。   Changes in the charge density due to the interaction between the capture DNA and the target DNA whose sequence is complementary or the mismatch DNA in which only one base is not complementary are measured by a potentiometer as changes in the potential difference from the reference electrode. In comparing the respective measurement results, the difference in the sequence is detected from the difference in the binding behavior resulting from the mismatch of one base in the nucleic acid.

[実施例1]
以下、本発明の測定法を用いた非標識核酸検出の方法の実施例を示す。
核酸には以下の配列の10塩基のDNA(ユーロフィンジェノミクス社製)を使用した。
捕捉DNA NH−5’−AGCTTGGGAA−3’
ターゲットDNA 3’−TCGAACCCTT−5’
ミスマッチDNA 3’−TCGACCCTT−5’
[Example 1]
Examples of the method for detecting unlabeled nucleic acid using the assay method of the present invention will be shown below.
As the nucleic acid, DNA of 10 bases having the following sequence (manufactured by Eurofin Genomics) was used.
Capture DNA NH 2 -5'-AGCTTGGGAA-3 '
Target DNA 3'-TCGAACCTT-5 '
Mismatch DNA 3'-TCGA C CCCTT-5 '

金電極の表面の洗浄のためにPiranha溶液(硫酸:過酸化水素水=3:1)を滴下して5分間放置した後に超純水で洗い流した。さらにこの操作を2回繰り返した。4mMの3,3’−Dithiodipropionic acidと40mMのBis(2−hydroxyethyl)disulfideを含む混合水溶液を調製し、混合水溶液を洗浄した金電極に滴下して30分間室温で放置した。その後、金電極を超純水で洗浄した。0.52Mの(1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩水溶液と0.87MのN−ヒドロキシスクシンイミド水溶液を等量混合し、混合溶液を金表面に滴下し30分間室温で放置した。反応後、超純水で洗浄した。1μMの捕捉DNAを含む10mMのHEPES−NaOH(pH8.0)緩衝液を滴下し60分間のアミンカップリング反応を行った。その反応溶液に反応後5mMのエタノールアミンを含む10mMのHEPES−NaOH(pH8.0)緩衝液を等量添加し10分間放置した。超純水でセンサ表面を洗浄後、参照電極(BAS社製、RE−1B)とともに電位差計(Agilent社製34405A)にセットした。ビーカーには200μMのスペルミジンを含む水溶液を5mL入れた。水溶液の温度を20℃に調節して、終濃度(f.c.)が50nMになるようにターゲットDNAを測定ビーカーへ添加した。測定後、金電極を超純水で洗浄し、再びビーカー13に200μMのスペルミジンを含む水溶液に入れ換えて、ミスマッチDNAを添加した。   For cleaning the surface of the gold electrode, a Piranha solution (sulfuric acid: hydrogen peroxide solution = 3: 1) was dropped and left for 5 minutes, and then rinsed with ultrapure water. Further, this operation was repeated twice. A mixed aqueous solution containing 4 mM 3,3'-Dithiodipropionic acid and 40 mM Bis (2-hydroxyethyl) disulfide was prepared, and the mixed aqueous solution was added dropwise to the washed gold electrode and left at room temperature for 30 minutes. Then, the gold electrode was washed with ultrapure water. 0.52M (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide aqueous solution and 0.87M N-hydroxysuccinimide aqueous solution were mixed in equal amounts, and the mixed solution was added dropwise to the gold surface for 30 minutes at room temperature. After the reaction, the reaction mixture was washed with ultrapure water, 10 mM HEPES-NaOH (pH 8.0) buffer containing 1 μM of captured DNA was added dropwise, and an amine coupling reaction was performed for 60 minutes. After that, an equal amount of 10 mM HEPES-NaOH (pH 8.0) buffer containing 5 mM ethanolamine was added and left for 10 minutes, after washing the sensor surface with ultrapure water, a reference electrode (manufactured by BAS, RE-1B). And a potentiometer (34405A manufactured by Agilent) were set together with 5 mL of an aqueous solution containing 200 μM spermidine in a beaker. The temperature of the solution was adjusted to 20 ° C., and the target DNA was added to the measurement beaker so that the final concentration (fc) was 50 nM After the measurement, the gold electrode was washed with ultrapure water and the beaker 13 was used again. Was replaced with an aqueous solution containing 200 μM spermidine, and the mismatch DNA was added.

測定結果を図4に示す。
ターゲットDNAを添加した場合には結合に伴う負電荷密度の増加による電極電位の減少15が観察された。一方、ミスマッチDNAの添加では電極電位が変化しない様子16が観察された。従って検出対象である核酸を標識物質を用いることなく汎用的な電位差測定装置で経時的に捕捉DNAに結合する様子を測定でき、一塩基のみ配列が異なる核酸を識別できる核酸センサとなることが示された。
以上、説明した電気化学的に非標識で核酸を検出することのできる核酸センサは、潜在的に発がん性を有する危険な標識物質を用いることなく汎用的な安価でシンプルな電位差系で核酸の一塩基ミスマッチの違いを検出できることから、安全、小型で安価な核酸センサが実現でき、専用の施設での利用に限らず在宅でのヘルスケア用途向けの核酸センサの手法として用いることができる。
The measurement results are shown in FIG.
When the target DNA was added, a decrease 15 in the electrode potential due to an increase in negative charge density due to binding was observed. On the other hand, it was observed that the electrode potential 16 was not changed by the addition of mismatched DNA. Therefore, it is possible to measure the state of binding the nucleic acid to be detected to the captured DNA over time with a general-purpose potentiometer without the use of a labeling substance, and it will be a nucleic acid sensor that can identify nucleic acids that differ only in one base sequence. Was done.
As described above, the nucleic acid sensor that can detect nucleic acid electrochemically unlabeled is a general-purpose, inexpensive and simple potentiometric system that does not use a potentially carcinogenic labeling substance. Since a difference in base mismatch can be detected, a safe, small-sized and inexpensive nucleic acid sensor can be realized and can be used as a method of a nucleic acid sensor not only for use in a dedicated facility but also for home healthcare applications.

1 センサ基板
2 アビジンタンパク質
3 捕捉用10塩基ビオチン化核酸
4 ターゲット10塩基核酸
5 捕捉用10塩基核酸
6 金電極
7 10塩基核酸
8 アミンカップリングでDNAと結合した炭素鎖長2のアルキルチオール
9 末端が水酸基の炭素鎖長2のアルキルチオール
10 電位差計
11 センサ電極
12 ガラス参照電極
13 ビーカー
14 撹拌子
15 捕捉用DNAへのターゲットDNA添加による電位差応答
16 捕捉用DNAへの一塩基ミスマッチDNA添加による電位差応答
1 Sensor Substrate 2 Avidin Protein 3 10-base Biotinylated Nucleic Acid for Capture 4 Target 10-base Nucleic Acid 5 10-base Nucleic Acid for Capture 6 Gold Electrode 7 10-base Nucleic Acid 8 Alkylthiol with a carbon chain length of 2 that is bound to DNA by amine coupling 9 End Is an alkylthiol having a carbon chain length of 2 hydroxyl group 10 potentiometer 11 sensor electrode 12 glass reference electrode 13 beaker 14 stirrer 15 potential difference response due to addition of target DNA to capture DNA 16 potential difference due to addition of one base mismatch DNA to capture DNA response

Claims (5)

核酸のリン酸アニオンの静電反発を抑えるために検出対象となる核酸よりも大きさの小さい有機多価カチオン分子を使用した核酸検出の測定方法。   A method for detecting nucleic acid using an organic polyvalent cation molecule having a size smaller than that of the nucleic acid to be detected in order to suppress electrostatic repulsion of the phosphate anion of the nucleic acid. 前記核酸を塩基配列既知の核酸と二本鎖核酸を形成させることに基づく請求項1に記載の核酸検出の測定方法。   The method for detecting nucleic acid according to claim 1, which is based on forming a double-stranded nucleic acid with a nucleic acid whose nucleotide sequence is known. 前記塩基配列既知の核酸をセンサ表面から距離1nm以下に末端で固定する請求項1または2に記載の核酸検出の測定方法。   The method for detecting nucleic acid according to claim 1 or 2, wherein the nucleic acid having a known base sequence is immobilized at the end at a distance of 1 nm or less from the sensor surface. 前記核酸が固定されていない部分を水酸基で覆う請求項3に記載の核酸検出の測定方法。   The method for detecting nucleic acid according to claim 3, wherein a portion where the nucleic acid is not fixed is covered with a hydroxyl group. 電位差計を用いる請求項1〜4のいずれか1項に記載の核酸検出の測定方法。   The method for detecting nucleic acid according to claim 1, wherein a potentiometer is used.
JP2018190002A 2018-10-05 2018-10-05 Measurement method for electrochemical unlabeled nucleic acid detection Active JP7333928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190002A JP7333928B2 (en) 2018-10-05 2018-10-05 Measurement method for electrochemical unlabeled nucleic acid detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190002A JP7333928B2 (en) 2018-10-05 2018-10-05 Measurement method for electrochemical unlabeled nucleic acid detection

Publications (2)

Publication Number Publication Date
JP2020058244A true JP2020058244A (en) 2020-04-16
JP7333928B2 JP7333928B2 (en) 2023-08-28

Family

ID=70218559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190002A Active JP7333928B2 (en) 2018-10-05 2018-10-05 Measurement method for electrochemical unlabeled nucleic acid detection

Country Status (1)

Country Link
JP (1) JP7333928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670798A (en) * 2021-07-02 2021-11-19 广东工业大学 Detection method of microorganism and application thereof
CN114646674A (en) * 2022-03-07 2022-06-21 中国地质大学(武汉) Method for adjusting sensitivity of FET biosensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699A (en) * 1992-06-18 1994-01-11 Fuso Yakuhin Kogyo Kk Detection of nucleic acid
JP2002223755A (en) * 2000-11-30 2002-08-13 Toshiba Corp Method and apparatus for detecting nucleic acid and container for detecting nucleic acid
JP2003090815A (en) * 2001-09-18 2003-03-28 Japan Science & Technology Corp Method for electrochemically detecting gene, and nucleic acid tip
JP2004097173A (en) * 2002-07-17 2004-04-02 Toyo Kohan Co Ltd Solid support having electrostatic layer and its use
JP2007512810A (en) * 2003-11-10 2007-05-24 ジーンオーム サイエンシーズ、インク. Nucleic acid detection method with increased sensitivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699A (en) * 1992-06-18 1994-01-11 Fuso Yakuhin Kogyo Kk Detection of nucleic acid
JP2002223755A (en) * 2000-11-30 2002-08-13 Toshiba Corp Method and apparatus for detecting nucleic acid and container for detecting nucleic acid
JP2003090815A (en) * 2001-09-18 2003-03-28 Japan Science & Technology Corp Method for electrochemically detecting gene, and nucleic acid tip
JP2004097173A (en) * 2002-07-17 2004-04-02 Toyo Kohan Co Ltd Solid support having electrostatic layer and its use
JP2007512810A (en) * 2003-11-10 2007-05-24 ジーンオーム サイエンシーズ、インク. Nucleic acid detection method with increased sensitivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670798A (en) * 2021-07-02 2021-11-19 广东工业大学 Detection method of microorganism and application thereof
CN113670798B (en) * 2021-07-02 2024-04-02 广东工业大学 Microorganism detection method and application thereof
CN114646674A (en) * 2022-03-07 2022-06-21 中国地质大学(武汉) Method for adjusting sensitivity of FET biosensor

Also Published As

Publication number Publication date
JP7333928B2 (en) 2023-08-28

Similar Documents

Publication Publication Date Title
US10871482B2 (en) Target detection with nanopore and a polymer scaffold complex
US20190383806A9 (en) Target Detection with Nanopore
JP4523001B2 (en) DNA sensor and measuring method using the same
US8679806B2 (en) Methods for detecting and/or quantifying a concentration of specific bacterial molecules using bacterial biosensors
Kumar et al. Investigation of mechanisms involved in the enhanced label free detection of prostate cancer biomarkers using field effect devices
JP2005257684A (en) Fixation of chemical or biological sensing molecule to semiconductor nanowire
WO2015171169A1 (en) Target detection with nanopore
JP2020058244A (en) Electrochemical unlabeled nucleic acid detection method
Bigdeli et al. Electrochemical impedance spectroscopy (EIS) for biosensing
Yin et al. Solid-State Nanopore Distinguishes Ferritin and Apo-Ferritin with Identical Exteriors through Amplified Flexibility at Single-Molecule Level
JP2009139114A (en) Electrochemical sensor for immunoassay
KR100731913B1 (en) Method for manufacturing nanohybrid particle using for biomolecule detection, biomolecule detection system, biomolecule detection method, and analysis apparatus using for biomolecule detection using nanohybrid particle
WO2017033922A1 (en) Method of detecting target substance using field-effect transistor
Nhu et al. An evaluation of a gold surface functionalization procedure for antibody binding and protein detection using 11-mercaptoundecanoic acid (11-MUA)
WO2024034315A1 (en) Target substance detection device and target substance detection method
Pourbeyram et al. Electrochemical monitoring of the interaction of UO22+ with immobilized DNA
Xu Bacteriophage Based Micro Electrochemical Sensors and Extended Gate FET Sensors for Bacteria Detection
He et al. Carbon nanospheres for highly sensitive electrochemical detection of sequence-specific protein–DNA interactions
JP2017209049A (en) Method for identifying target biomolecule, bead for specifying target biomolecule, set of beads, and target biomolecule identification apparatus
Levicky et al. Diagnostic applications of morpholinos and label-free electrochemical detection of nucleic acids
Dong et al. Effect of Salt Concentration on Electrochemical Detection of DNA
Telembeci Surface functionalization of a silicon nanowire field-effect transistor (SiNW-FET) for miRNA detection
Aran et al. Published online: 29 February 2024
Khalid et al. Recent Trends in Bacterial Sensors
Pérez Development of biosensors based on randomly oriented silicon nanowire networks for electrochemical or field-effect detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7333928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150