JP2020056468A - Device and method for manufacturing liner for high-pressure tank - Google Patents

Device and method for manufacturing liner for high-pressure tank Download PDF

Info

Publication number
JP2020056468A
JP2020056468A JP2018187931A JP2018187931A JP2020056468A JP 2020056468 A JP2020056468 A JP 2020056468A JP 2018187931 A JP2018187931 A JP 2018187931A JP 2018187931 A JP2018187931 A JP 2018187931A JP 2020056468 A JP2020056468 A JP 2020056468A
Authority
JP
Japan
Prior art keywords
liner
pressure tank
manufacturing
opening end
heating mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018187931A
Other languages
Japanese (ja)
Other versions
JP7034045B2 (en
Inventor
隆治 佐藤
Takaharu Sato
隆治 佐藤
有香 岸
Yuka KISHI
有香 岸
晃宏 八島
Akihiro Yashima
晃宏 八島
大輔 戸山
Daisuke Toyama
大輔 戸山
単明 ▲蔡▼
単明 ▲蔡▼
Dan Ming Cai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yachiyo Industry Co Ltd
Original Assignee
Honda Motor Co Ltd
Yachiyo Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yachiyo Industry Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018187931A priority Critical patent/JP7034045B2/en
Publication of JP2020056468A publication Critical patent/JP2020056468A/en
Application granted granted Critical
Publication of JP7034045B2 publication Critical patent/JP7034045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To provide a device for manufacturing a liner for a high-pressure tank that can preferably join liner component members to each other to obtain a liner for a high-pressure tank, and to provide a manufacturing method.SOLUTION: A device 10 for manufacturing a liner 12 for a high-pressure tank includes: an infrared heating mechanism 30 facing opening end surfaces 22a, 24a of liner component members 22, 24 while having an interval to them and heating the opening end surfaces 22a, 24a; a support body 32 for supporting the infrared heating mechanism 30; and blower 34 for circulating air between the infrared heating mechanism 30 and the opening end surfaces 22a, 24a.SELECTED DRAWING: Figure 3

Description

本発明は、樹脂製の複数個のライナ構成部材を接合して高圧タンク用ライナを得る高圧タンク用ライナの製造装置及び製造方法に関する。   The present invention relates to a high-pressure tank liner manufacturing apparatus and method for joining a plurality of resin-made liner components to obtain a high-pressure tank liner.

例えば、特許文献1に記載されるように、流体を内側に収容可能な高圧タンク用ライナは、ライナ構成部材同士を接合して構成されることが知られている。   For example, as described in Patent Literature 1, it is known that a liner for a high-pressure tank capable of storing a fluid inside is configured by joining liner constituent members.

特開2013−119924号公報JP 2013-119924 A

この種の高圧タンク用ライナには、流体が高圧で充填されるため、該流体の圧力に耐え得るようにライナ構成部材同士を良好に接合することが求められる。   Since a high-pressure tank liner of this type is filled with a fluid at a high pressure, it is required that the liner constituting members be well joined to each other so as to withstand the pressure of the fluid.

本発明は上記した問題を解決するためになされたもので、ライナ構成部材同士を良好に接合して高圧タンク用ライナを得ることが可能な高圧タンク用ライナの製造装置及び製造方法を提供する。   The present invention has been made in order to solve the above-described problems, and provides a manufacturing apparatus and a manufacturing method of a high-pressure tank liner capable of obtaining a high-pressure tank liner by suitably joining liner components.

本発明の一態様は、樹脂製の複数個のライナ構成部材にそれぞれ設けられた開口端面を互いに接合して高圧タンク用ライナを得る高圧タンク用ライナの製造装置であって、前記開口端面に間隔を置いて対向して、前記開口端面を加熱する赤外線加熱機構と、前記赤外線加熱機構と前記開口端面との間に空気を流通させる送風機と、を備える。   One aspect of the present invention is a manufacturing apparatus for a high-pressure tank liner, which obtains a high-pressure tank liner by joining open end faces respectively provided on a plurality of resin-made liner constituting members to form a high-pressure tank liner. An infrared heating mechanism for heating the opening end face and a blower for flowing air between the infrared heating mechanism and the opening end face.

本発明の別の一態様は、樹脂製の複数個のライナ構成部材にそれぞれ設けられた開口端面を互いに接合して高圧タンク用ライナを得る高圧タンク用ライナの製造方法であって、赤外線加熱機構と、前記開口端面とを間隔を置いて対向させる対向工程と、送風機により前記赤外線加熱機構と前記開口端面との間に空気を流通させながら、前記赤外線加熱機構により前記開口端面を加熱する送風加熱工程と、を有する。   Another aspect of the present invention is a method for manufacturing a high-pressure tank liner that obtains a high-pressure tank liner by joining open end faces respectively provided on a plurality of resin-made liner constituting members to obtain a high-pressure tank liner. And an opposing step of opposing the opening end face at an interval, and blast heating for heating the opening end face by the infrared heating mechanism while flowing air between the infrared heating mechanism and the opening end face by a blower. And a step.

本発明では、ライナ構成部材の開口端面同士を接合して、高圧タンク用ライナを得るべく、開口端面に赤外線加熱機構を対向させて加熱する。この際、ライナ構成部材を構成する樹脂材に吸収されていた水分が多量に蒸発すること等によって、開口端面と赤外線加熱機構との間に多量に水蒸気が生じても、送風機によって空気を流通させることで、水蒸気の滞留を抑制することができる。これによって、赤外線加熱機構により照射された赤外線が水蒸気に吸収されることを抑制できるため、開口端面の全体を効率的且つ略均等に加熱することができる。その結果、ライナ構成部材同士を良好に接合して高圧タンク用ライナを得ることが可能になる。   In the present invention, in order to obtain a liner for a high-pressure tank by joining the open end faces of the liner constituent members, an infrared heating mechanism is heated to face the open end face. At this time, even when a large amount of water is absorbed between the resin material constituting the liner component and a large amount of water vapor is generated between the opening end surface and the infrared heating mechanism, the air is circulated by the blower. This can suppress the retention of water vapor. Thereby, since the infrared rays emitted by the infrared heating mechanism can be prevented from being absorbed by the water vapor, the entire opening end face can be efficiently and substantially uniformly heated. As a result, it is possible to obtain a high-pressure tank liner by satisfactorily joining the liner components.

本発明の第1実施形態に係る高圧タンク用ライナの製造装置及び製造方法を適用して得られる高圧タンク用ライナの一例を示す概略構成図である。It is a schematic structure figure showing an example of a liner for high pressure tanks obtained by applying a manufacturing device and a manufacturing method of a liner for high pressure tanks concerning a 1st embodiment of the present invention. 図1の高圧タンク用ライナの製造方法におけるライナ構成部材の開口端面同士を位置合わせする位置合わせ工程を説明する説明図である。FIG. 3 is an explanatory view illustrating a positioning step of positioning the opening end faces of the liner components in the method for manufacturing the high-pressure tank liner of FIG. 1. 図2のライナ構成部材の開口端面に、赤外線加熱機構を対向させる対向工程と、開口端面と赤外線加熱機構との間に送風機により空気を流通させつつ赤外線加熱機構により加熱を行う送風加熱工程とを説明する説明図である。The facing step of facing the infrared heating mechanism to the opening end face of the liner component of FIG. 2 and the blast heating step of heating by the infrared heating mechanism while flowing air between the opening end face and the infrared heating mechanism by a blower. FIG. 図3の赤外線加熱機構及び支持体と、開口端面との位置関係を説明する平面図である。FIG. 4 is a plan view illustrating a positional relationship between the infrared heating mechanism and the support in FIG. 3 and an opening end surface. 図3の赤外線加熱機構により加熱された開口端面同士を振動溶着する接合工程を説明する説明図である。FIG. 4 is an explanatory view illustrating a joining step of vibration welding the end faces of the openings heated by the infrared heating mechanism of FIG. 3. 本発明の第2実施形態に係る高圧タンク用ライナの製造装置及び製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing apparatus and manufacturing method of the liner for high pressure tanks which concern on 2nd Embodiment of this invention. 本発明の第3実施形態に係る高圧タンク用ライナの製造装置及び製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing apparatus and manufacturing method of the liner for high pressure tanks which concern on 3rd Embodiment of this invention. 本発明の第4実施形態に係る高圧タンク用ライナの製造装置及び製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing apparatus and manufacturing method of the high-pressure tank liner which concern on 4th Embodiment of this invention. 図8の赤外線加熱機構及び支持体と、開口端面との位置関係を説明する平面図である。FIG. 9 is a plan view illustrating a positional relationship between the infrared heating mechanism and the support in FIG. 8 and an opening end surface.

本発明に係る高圧タンク用ライナの製造装置及び製造方法(以下、単に製造装置、製造方法ともいう)について好適な実施形態を挙げ、添付の図面を参照しながら詳細に説明する。なお、以下の図において、同一又は同様の機能及び効果を奏する構成要素に対しては同一の参照符号を付し、繰り返しの説明を省略する場合がある。   A preferred embodiment of a manufacturing apparatus and a manufacturing method (hereinafter, also simply referred to as a manufacturing apparatus and a manufacturing method) of a liner for a high-pressure tank according to the present invention will be described in detail with reference to the accompanying drawings. In the following drawings, components having the same or similar functions and effects are denoted by the same reference numerals, and repeated description may be omitted.

第1実施形態に係る製造装置10(図3参照)及び製造方法を適用して、図1に示す高圧タンク用ライナ(以下、単に「ライナ」ともいう)12を得ることができる。先ず、ライナ12について、図1及び図2を参照しつつ簡単に説明する。   By applying the manufacturing apparatus 10 (see FIG. 3) and the manufacturing method according to the first embodiment, the liner for a high-pressure tank (hereinafter, also simply referred to as “liner”) 12 shown in FIG. 1 can be obtained. First, the liner 12 will be briefly described with reference to FIGS.

ライナ12は、例えば、何れも不図示であるが、燃料電池電気自動車等の燃料電池車両である搭載体に搭載され、燃料電池システムに供給するための水素ガスを貯留する高圧水素用タンクに好適に用いられる。そこで、以下では、ライナ12が、上記の高圧水素用タンクに用いられる例について説明するが、特にこれに限定されるものではない。ライナ12は、燃料電池車両以外の搭載体に搭載されてもよいし、水素ガス以外の流体を貯留することも可能である。   The liner 12 is, for example, mounted on a mounting body that is a fuel cell vehicle such as a fuel cell electric vehicle, although not shown, and is suitable for a high-pressure hydrogen tank that stores hydrogen gas to be supplied to a fuel cell system. Used for Therefore, an example in which the liner 12 is used for the above-described high-pressure hydrogen tank will be described below, but the present invention is not particularly limited to this. The liner 12 may be mounted on a mounting body other than the fuel cell vehicle, and may store a fluid other than hydrogen gas.

図1に示すように、ライナ12は、円筒状の胴体部14と、胴体部14の軸方向両側にそれぞれ設けられたドーム状部16と、ドーム状部16の軸方向両側からそれぞれ突出する突出部18とを有する。胴体部14の径は軸方向に略一定である。ドーム状部16は、胴体部14から突出部18側に向かって円弧状に縮径する。突出部18は、胴体部14よりも小径の円筒状であり、内側にライナ12の内部と外部を連通する開口20が設けられている。なお、本実施形態では、ライナ12は、その軸方向の一端側と他端側とが、軸方向に直交する方向を軸として対称となるように構成されている。   As shown in FIG. 1, the liner 12 includes a cylindrical body portion 14, dome-shaped portions 16 provided on both sides in the axial direction of the body portion 14, and protrusions projecting from both axial sides of the dome-shaped portion 16. A portion 18. The diameter of the body portion 14 is substantially constant in the axial direction. The dome-shaped portion 16 is reduced in diameter in an arc shape from the body portion 14 toward the protruding portion 18. The protruding portion 18 has a cylindrical shape with a smaller diameter than the body portion 14, and has an opening 20 for communicating the inside and the outside of the liner 12 inside. In the present embodiment, the liner 12 is configured such that one end and the other end in the axial direction are symmetric with respect to a direction orthogonal to the axial direction.

このライナ12は、図2に示すように、少なくとも一部が円筒状である2個のライナ構成部材22、24の端部にそれぞれ設けられた円環状の開口端面22a、24a同士を接合した後、所定の除去加工等を施すことで得られる。ライナ構成部材22、24の各々は、例えば、ナイロン系樹脂等の水素バリア性を有する吸湿性の樹脂材からなる。   As shown in FIG. 2, the liner 12 is formed by joining annular opening end surfaces 22 a and 24 a provided at ends of two liner constituting members 22 and 24 each having at least a part in a cylindrical shape. , A predetermined removal process or the like. Each of the liner constituting members 22 and 24 is made of, for example, a hygroscopic resin material having a hydrogen barrier property such as a nylon resin.

一方のライナ構成部材22は、ライナ12の軸方向の中心から一端側の半分を構成し、他方のライナ構成部材24は、ライナ12の軸方向の中心から他端側の半分を構成する。すなわち、ライナ構成部材22、24は、互いに略同形状であり、胴体構成部26と、上記のドーム状部16及び突出部18とをそれぞれ有する。胴体構成部26は、開口端面22a、24a同士が接合されることで、ライナ12の胴体部14を構成する。   One of the liner components 22 constitutes one half from the axial center of the liner 12 at one end, and the other liner component 24 constitutes the other half from the axial center of the liner 12 at the other end. That is, the liner constituting members 22 and 24 have substantially the same shape as each other, and have the body constituting portion 26, the dome-shaped portion 16 and the projecting portion 18 described above, respectively. The body constituting part 26 constitutes the body part 14 of the liner 12 by joining the open end faces 22a and 24a.

開口端面22a、24a近傍の胴体構成部26の外周面からは、該外周面を全周に亘って周回して突出するフランジ部28がそれぞれ設けられている。フランジ部28は、後述するように、ライナ構成部材22、24を保持したり、開口端面22a、24a同士を接合したりする際に利用される。このため、ライナ構成部材22、24同士を接合した後のライナ12では、フランジ部28が除去加工により切除されている(図1参照)。   From the outer peripheral surface of the body constituting portion 26 in the vicinity of the opening end surfaces 22a and 24a, there are provided flange portions 28 protruding around the entire outer peripheral surface over the entire periphery. The flange portion 28 is used when holding the liner constituting members 22 and 24 and joining the open end surfaces 22a and 24a to each other as described later. For this reason, in the liner 12 after the liner components 22 and 24 have been joined together, the flange portion 28 has been cut off by removal processing (see FIG. 1).

次いで、図3を参照しつつ、第1実施形態に係る製造装置10について説明する。製造装置10は、不図示の保持機構と、赤外線加熱機構30と、支持体32と、送風機34と、振動溶着機構36とを備える。保持機構は、例えば、フランジ部28と係合する係合部等(不図示)を備え、ライナ構成部材22、24を互いの開口端面22a、24a同士が間隔を置いて対向するように保持する。なお、保持機構は、後述する振動溶着機構36の溶着用治具36a、36bによって構成されてもよい。   Next, the manufacturing apparatus 10 according to the first embodiment will be described with reference to FIG. The manufacturing apparatus 10 includes a holding mechanism (not shown), an infrared heating mechanism 30, a support 32, a blower 34, and a vibration welding mechanism 36. The holding mechanism includes, for example, an engaging portion (not shown) that engages with the flange portion 28, and holds the liner constituting members 22, 24 so that the open end faces 22a, 24a thereof face each other with a space therebetween. . The holding mechanism may be constituted by welding jigs 36a and 36b of the vibration welding mechanism 36 described later.

赤外線加熱機構30は、開口端面22a、24aの形状に応じた円環状の2個の赤外線放射部38a、38bを有する。赤外線放射部38a、38bは、開口端面22a、24aにそれぞれ対向して赤外線を放射することで、開口端面22a、24aを加熱する。なお、図4では、赤外線放射部38a、38bと開口端面22a、24aとを対向させた際の平面視の位置関係を説明するべく、赤外線放射部38a、38b上に二点鎖線で開口端面22a、24aの形状を示している。   The infrared heating mechanism 30 has two annular infrared radiating portions 38a and 38b corresponding to the shapes of the opening end surfaces 22a and 24a. The infrared radiation parts 38a and 38b heat the opening end faces 22a and 24a by radiating infrared rays facing the opening end faces 22a and 24a, respectively. In FIG. 4, in order to explain the positional relationship in a plan view when the infrared radiation portions 38a, 38b and the opening end surfaces 22a, 24a face each other, the opening end surface 22a is indicated by a two-dot chain line on the infrared radiation portions 38a, 38b. , 24a.

図4に示すように、赤外線放射部38a、38bの内径は、開口端面22a、24aの内径よりも若干小さく、赤外線放射部38a、38bの外径は、開口端面22a、24aの外径よりも若干大きく設定されることが好ましい。この場合、赤外線放射部38a、38bから開口端面22a、24aの全体に赤外線を良好に照射することが可能になる。赤外線放射部38a、38bとしては、赤外線(遠赤外線及び近赤外線)を放射して開口端面22a、24aを非接触で加熱することが可能であれば、公知のいかなる構成を採用してもよい。   As shown in FIG. 4, the inner diameters of the infrared radiation portions 38a and 38b are slightly smaller than the inner diameters of the opening end surfaces 22a and 24a, and the outer diameters of the infrared radiation portions 38a and 38b are smaller than the outer diameters of the opening end surfaces 22a and 24a. It is preferable that the value is set slightly larger. In this case, it becomes possible to irradiate the infrared rays from the infrared radiation portions 38a and 38b to the entire opening end faces 22a and 24a in a satisfactory manner. As the infrared radiating portions 38a and 38b, any known configuration may be adopted as long as it can radiate infrared rays (far infrared rays and near infrared rays) and heat the opening end faces 22a and 24a in a non-contact manner.

図3に示すように、支持体32は、開口端面22a、24aの外径より大きい寸法の2枚の板部材40a、40bを有する。板部材40a、40bは、互いの一方の主面側が重なるように積層されている。また、板部材40a、40bの他方の主面には、円環状の支持溝42がそれぞれ形成され、該支持溝42の内部に赤外線放射部38a、38bがそれぞれ配設される。つまり、支持体32は、その両面側に赤外線放射部38a、38bをそれぞれ支持する。また、支持体32の赤外線放射部38a、38b(支持溝42)の径方向の内側には、円板状の板状部44が設けられる。   As shown in FIG. 3, the support 32 has two plate members 40a and 40b having dimensions larger than the outer diameters of the open end faces 22a and 24a. The plate members 40a and 40b are stacked such that one main surface side of each plate member overlaps with the other. Further, annular support grooves 42 are formed on the other main surfaces of the plate members 40a and 40b, respectively, and the infrared radiation portions 38a and 38b are disposed inside the support grooves 42, respectively. That is, the support 32 supports the infrared radiation portions 38a and 38b on both sides thereof. Further, a disk-shaped plate-shaped portion 44 is provided inside the support 32 in the radial direction of the infrared radiation portions 38a and 38b (support groove 42).

支持体32は、上記のように保持機構により保持されたライナ構成部材22、24の互いに対向する開口端面22a、24a同士の間に介在する。これによって、支持体32の両面側に設けられた赤外線放射部38a、38bのそれぞれを開口端面22a、24aに間隔を置いて対向させることが可能である。この際、支持体32の板状部44は、ライナ構成部材22、24の開口端面22a、24aよりも径方向の内側に対向する。   The support 32 is interposed between the facing open end faces 22a, 24a of the liner components 22, 24 held by the holding mechanism as described above. Thus, the infrared radiation portions 38a and 38b provided on both sides of the support 32 can be opposed to the opening end surfaces 22a and 24a at intervals. At this time, the plate-shaped portion 44 of the support 32 faces radially inward from the open end surfaces 22a and 24a of the liner constituting members 22 and 24.

送風機34は、赤外線加熱機構30と開口端面22a、24aとの間に空気を流通させる。具体的に第1実施形態において、送風機34は、上記のようにして互いに対向させた赤外線放射部38a、38bと開口端面22a、24aとの間のそれぞれに空気を流通させることが可能となるように、ライナ構成部材22、24の外周部の互いに対向する部位の一方側から他方側(図3の矢印方向)に向かって送風する。   The blower 34 allows air to flow between the infrared heating mechanism 30 and the opening end faces 22a and 24a. Specifically, in the first embodiment, the blower 34 allows air to flow between each of the infrared radiating portions 38a, 38b and the opening end surfaces 22a, 24a facing each other as described above. Then, air is blown from one side of the opposing portions of the outer periphery of the liner constituting members 22 and 24 to the other side (the direction of the arrow in FIG. 3).

赤外線加熱機構30と開口端面22a、24aとの間に送風する空気の温度は、例えば、60℃以上であり且つライナ構成部材22、24を構成する樹脂材の融点以下の高温風であることが好ましい。この場合、赤外線加熱機構30による加熱部である開口端面22a、24aが、送風機34から送風される空気により不均一に抜熱されることを抑制できる。また、前記加熱部の不均一な抜熱を防止するべく、送風機34による送風速度は、必要最小限の流速に設定することが好ましい。さらに、開口端面22a、24aの内周側及び外周側に、不図示の熱電対等を設置すること等により、開口端面22a、24aの内周側と外周側との温度差を可及的に小さくすることが好ましい。   The temperature of the air blown between the infrared heating mechanism 30 and the opening end faces 22a, 24a is, for example, a high-temperature wind that is equal to or higher than 60 ° C. and equal to or lower than the melting point of the resin material that configures the liner components 22 and 24. preferable. In this case, it is possible to prevent the opening end surfaces 22a and 24a, which are the heating units of the infrared heating mechanism 30, from being unevenly removed by the air blown from the blower 34. Further, in order to prevent uneven heating of the heating section, it is preferable to set the blowing speed of the blower 34 to a minimum necessary flow velocity. Further, by installing a thermocouple (not shown) on the inner peripheral side and the outer peripheral side of the opening end faces 22a, 24a, etc., the temperature difference between the inner peripheral side and the outer peripheral side of the opening end faces 22a, 24a is made as small as possible. Is preferred.

振動溶着機構36は、一組の溶着用治具36a、36bを有する。溶着用治具36aは、ライナ構成部材22のフランジ部28の内部に挿入可能な円環状である。溶着用治具36bは、ライナ構成部材24のフランジ部28に挿入可能な円環状である。振動溶着機構36は、フランジ部28に挿入した溶着用治具36a、36bを介して、互いに当接させた開口端面22a、24aに振動を付与して、これらを振動溶着することが可能である。   The vibration welding mechanism 36 has a pair of welding jigs 36a and 36b. The welding jig 36 a has an annular shape that can be inserted into the flange portion 28 of the liner component member 22. The welding jig 36b has an annular shape that can be inserted into the flange portion 28 of the liner component 24. The vibration welding mechanism 36 can apply vibration to the opening end surfaces 22a and 24a that are brought into contact with each other via welding jigs 36a and 36b inserted into the flange portion 28, and can vibrate weld them. .

第1実施形態に係る製造装置10は、基本的には以上のように構成される。第1実施形態に係る製造方法について、製造装置10を用いてライナ12を得る場合を例に挙げて説明する。   The manufacturing apparatus 10 according to the first embodiment is basically configured as described above. The manufacturing method according to the first embodiment will be described using a case where the liner 12 is obtained using the manufacturing apparatus 10 as an example.

この製造方法では、先ず、図2に示すように、保持機構(不図示)にセットしたライナ構成部材22、24を互いの開口端面22a、24a同士が間隔を置いて対向するように位置合わせする位置合わせ工程を行う。この際、保持機構は、ライナ構成部材22、24の軸方向と鉛直方向とを沿わせてもよいし、該軸方向と水平方向とを沿わせてもよいし、水平方向及び鉛直方向に対して該軸方向を傾斜させてもよい。なお、保持機構が溶着用治具36a、36bから構成される場合には、図3に仮想線で示すように、フランジ部28に溶着用治具36a、36bを挿入して、ライナ構成部材22、24を保持してもよい。   In this manufacturing method, first, as shown in FIG. 2, the liner components 22, 24 set on a holding mechanism (not shown) are aligned such that their open end faces 22a, 24a face each other with an interval. Perform a positioning process. At this time, the holding mechanism may make the axial direction of the liner constituting members 22 and 24 extend along the vertical direction, or may make the axial direction and the horizontal direction extend, or may move the axial direction and the vertical direction. Alternatively, the axial direction may be inclined. When the holding mechanism is composed of the welding jigs 36a and 36b, the welding jigs 36a and 36b are inserted into the flange portion 28 as shown by phantom lines in FIG. , 24 may be held.

次に、図3に示すように、円環状の赤外線加熱機構30と、開口端面22a、24aとを間隔を置いて対向させる対向工程を行う。具体的に、対向工程では、開口端面22a、24a同士の間に支持体32を介在させる。これによって、赤外線放射部38a、38bを開口端面22a、24aに間隔を置いて対向させるとともに、板状部44をライナ構成部材22、24の開口端面22a、24aよりも径方向の内側に対向させる。   Next, as shown in FIG. 3, a facing step of facing the annular infrared heating mechanism 30 and the opening end faces 22a and 24a at an interval is performed. Specifically, in the facing step, the support 32 is interposed between the opening end faces 22a and 24a. Thereby, the infrared radiation portions 38a, 38b are opposed to the opening end surfaces 22a, 24a at intervals, and the plate-shaped portion 44 is opposed radially inward from the opening end surfaces 22a, 24a of the liner constituting members 22, 24. .

次に、送風機34により赤外線加熱機構30と開口端面22a、24aとの間に空気を流通させながら、赤外線加熱機構30により開口端面22a、24aを加熱する送風加熱工程を行う。具体的に、送風加熱工程では、送風機34によりライナ構成部材22、24の外周部の互いに対向する部位の一方側から他方側に向かって、図3の矢印方向に送風することで、赤外線加熱機構30(赤外線放射部38a、38b)と開口端面22a、24aの間にそれぞれ空気を流通させながら、赤外線加熱機構30により赤外線を放射して開口端面22a、24aを加熱する。   Next, while the air is circulated between the infrared heating mechanism 30 and the opening end faces 22a and 24a by the blower 34, a blowing heating step of heating the opening end faces 22a and 24a by the infrared heating mechanism 30 is performed. More specifically, in the blow heating step, the blower 34 blows air from one side to the other side of the opposing outer peripheral portions of the liner components 22 and 24 in the direction of the arrow in FIG. The infrared heating mechanism 30 radiates infrared rays to heat the opening end faces 22a and 24a, while circulating air between the opening end faces 22a and 24a and the opening end faces 22a and 24a, respectively.

これによって、接合前の開口端面22a、24aを所定の温度まで予備加熱した後、開口端面22a、24a同士の間から支持体32を退避させる。そして、図5に示すように、ライナ構成部材22、24を互いに接近させて、開口端面22a、24a同士を接合する接合工程を行う。   Thus, after the opening end faces 22a and 24a before joining are preheated to a predetermined temperature, the support 32 is retracted from between the opening end faces 22a and 24a. Then, as shown in FIG. 5, a joining step of bringing the liner components 22 and 24 close to each other and joining the open end faces 22a and 24a is performed.

接合工程では、振動溶着により、開口端面22a、24a同士を接合する。具体的には、軸方向の両側からライナ構成部材22、24のフランジ部28に溶着用治具36a、36bをそれぞれ挿入することで、溶着用治具36a、36b及びフランジ部28を介して、開口端面22a、24aに互いに接近する方向に加圧力を加える。この状態で、溶着用治具36a、36bの一方を振動させることで、開口端面22a、24aを摩擦熱により軟化ないし溶融させて互いに溶着する。   In the joining step, the opening end faces 22a and 24a are joined to each other by vibration welding. Specifically, by inserting the welding jigs 36a and 36b into the flange portions 28 of the liner constituent members 22 and 24 from both sides in the axial direction, respectively, the welding jigs 36a and 36b and the flange portions 28 are used. A pressing force is applied to the opening end faces 22a and 24a in a direction approaching each other. In this state, by vibrating one of the welding jigs 36a, 36b, the opening end faces 22a, 24a are softened or melted by frictional heat and welded to each other.

上記のようにして開口端面22a、24a同士を溶着した後、溶着用治具36a、36bをフランジ部28から離脱させることで、ライナ構成部材22、24同士が接合された接合体が得られる。この接合体に、フランジ部28を切除する除去加工を施すことで、図1に示すライナ12を得ることができる。   After welding the opening end surfaces 22a and 24a to each other as described above, the welding jigs 36a and 36b are separated from the flange portion 28 to obtain a joined body in which the liner components 22 and 24 are joined to each other. The liner 12 shown in FIG. 1 can be obtained by subjecting the joined body to removal processing for cutting off the flange portion 28.

以上から、第1実施形態に係る製造装置10及び製造方法では、開口端面22a、24aに赤外線加熱機構30を対向させて加熱する際、ライナ構成部材22、24を構成する樹脂材に吸収されていた水分が蒸発すること等によって水蒸気が生じることがある。この場合であっても、開口端面22a、24aと赤外線加熱機構30との間に、送風機34により空気を流通させることで、水蒸気が滞留することを抑制できる。これによって、赤外線加熱機構30から放射された赤外線が水蒸気に吸収されることを抑制できるため、該赤外線により開口端面22a、24aの全体を効率的且つ略均等に加熱することができる。   As described above, in the manufacturing apparatus 10 and the manufacturing method according to the first embodiment, when the infrared heating mechanism 30 is opposed to the opening end surfaces 22a and 24a and heated, the infrared rays are absorbed by the resin material forming the liner components 22 and 24. Water vapor may be generated due to evaporation of the water. Even in this case, by allowing air to flow between the opening end surfaces 22a and 24a and the infrared heating mechanism 30 by the blower 34, the retention of water vapor can be suppressed. Thereby, the absorption of the infrared rays emitted from the infrared heating mechanism 30 into the water vapor can be suppressed, so that the entire opening end faces 22a and 24a can be efficiently and substantially uniformly heated by the infrared rays.

その結果、開口端面22a、24aの溶着時に溶融不良部等が生じることを回避して、ライナ構成部材22、24同士を良好に接合することができる。ひいては、高圧の水素ガスを充填しても、該水素ガスの圧力に十分に耐え得る耐久性に優れたライナ12を得ることが可能になる。   As a result, the liner components 22 and 24 can be satisfactorily joined to each other while avoiding the occurrence of defective fusion parts and the like during the welding of the opening end faces 22a and 24a. As a result, even if high-pressure hydrogen gas is charged, it is possible to obtain a liner 12 having excellent durability that can sufficiently withstand the pressure of the hydrogen gas.

また、第1実施形態に係る製造装置10及び製造方法では、送風機34によりライナ構成部材22、24の外周部の互いに対向する部位の一方側から他方側に向かって送風する簡単な構成によって、赤外線加熱機構30と開口端面22a、24aとの間の水蒸気を分散させることができる。従って、製造装置10の簡素化や低コスト化を図りつつ、開口端面22a、24a同士を良好に接合することができる。   Further, in the manufacturing apparatus 10 and the manufacturing method according to the first embodiment, a simple configuration in which the blower 34 blows air from one side of the opposing portions of the outer peripheral portions of the liner constituting members 22 and 24 to the other side to provide an infrared ray. Water vapor between the heating mechanism 30 and the opening end faces 22a, 24a can be dispersed. Therefore, the opening end faces 22a and 24a can be satisfactorily joined together while simplifying and reducing the cost of the manufacturing apparatus 10.

次いで、図6を併せて参照しつつ、第2実施形態に係る製造装置50及び製造方法について説明する。第2実施形態に係る製造装置50は、1個の送風機34に代えて、2個の送風機52a、52bと、これらの送風機52a、52bにそれぞれ接続される送風管54a、54bとを備えていることを除いて、上記の第1実施形態に係る製造装置10と同様に構成されている。送風管54aは、送風機52aにより送風された空気を、開口20を介してライナ構成部材22の内部に導くことが可能に配設されている。送風管54bは、送風機52bにより送風された空気を、開口20を介してライナ構成部材24の内部に導くことが可能に配設されている。   Next, a manufacturing apparatus 50 and a manufacturing method according to a second embodiment will be described with reference to FIG. The manufacturing apparatus 50 according to the second embodiment includes, instead of one blower 34, two blowers 52a and 52b, and blower tubes 54a and 54b connected to these blowers 52a and 52b, respectively. Except for this, the configuration is the same as that of the manufacturing apparatus 10 according to the above-described first embodiment. The blower tube 54a is provided so that the air blown by the blower 52a can be guided to the inside of the liner component member 22 through the opening 20. The blower tube 54b is provided so as to guide the air blown by the blower 52b into the liner component 24 through the opening 20.

なお、製造装置50では、2個の送風機52a、52bを備えることに代えて、例えば、1個の送風機52aのみを備え、不図示ではあるが、送風機52aに接続された送風管を分岐させることや、送風機52aに2本の送風管を接続すること等によって、ライナ構成部材22、24の各々の内部に空気を導くこととしてもよい。   In addition, instead of providing the two blowers 52a and 52b, the manufacturing apparatus 50 includes, for example, only one blower 52a, and branches a blower tube (not shown) connected to the blower 52a. Alternatively, the air may be introduced into each of the liner components 22 and 24 by connecting two blowers to the blower 52a.

次いで、第2実施形態に係る製造方法について、製造装置50を用いてライナ12を得る場合を例に挙げて説明する。この製造方法では、上記の第1実施形態に係る製造方法と同様にして位置合わせ工程及び対向工程を行う。そして、送風機52a、52bにより赤外線加熱機構30(赤外線放射部38a、38b)と開口端面22a、24aとの間に空気を流通させながら、赤外線加熱機構30により開口端面22a、24aをそれぞれ加熱する送風加熱工程を行う。   Next, the manufacturing method according to the second embodiment will be described using a case where the liner 12 is obtained using the manufacturing apparatus 50 as an example. In this manufacturing method, the alignment step and the facing step are performed in the same manner as in the manufacturing method according to the first embodiment. Then, while air is passed between the infrared heating mechanism 30 (infrared radiation portions 38a, 38b) and the opening end faces 22a, 24a by the blowers 52a, 52b, the infrared heating mechanism 30 heats the opening end faces 22a, 24a, respectively. A heating step is performed.

この送風加熱工程では、送風機52a、52bにより送風管54a、54bを介して、開口20からライナ構成部材22、24の内部にそれぞれ送風することで、図6に矢印で示すように、板状部44を沿って、ライナ構成部材22、24の径方向の外側に向かう空気を、赤外線加熱機構30と開口端面22a、24aとの間にそれぞれ流通させる。   In this blowing and heating step, the blowers 52a and 52b blow the air from the openings 20 into the liner components 22 and 24 through the blowing tubes 54a and 54b, respectively, so that the plate-shaped portions are formed as shown by arrows in FIG. Air flowing radially outward of the liner constituting members 22 and 24 along 44 is circulated between the infrared heating mechanism 30 and the opening end faces 22a and 24a, respectively.

上記のようにして送風加熱工程を行うことで、接合前の開口端面22a、24aを所定の温度まで予備加熱した後、上記の第1実施形態に係る製造方法と同様にして接合工程等を行うことによって、図1に示すライナ12を得ることができる。   By performing the blast heating process as described above, the opening end surfaces 22a and 24a before bonding are preheated to a predetermined temperature, and then the bonding process and the like are performed in the same manner as in the manufacturing method according to the first embodiment. Thus, the liner 12 shown in FIG. 1 can be obtained.

従って、第2実施形態に係る製造装置50及び製造方法によっても、開口端面22a、24aと赤外線加熱機構30との間に水蒸気が滞留することを抑制できる。これによって、開口端面22a、24aの全体を効率的且つ略均等に加熱することができるため、ライナ構成部材22、24同士を良好に接合して耐久性に優れたライナ12を得ることができる。   Therefore, even with the manufacturing apparatus 50 and the manufacturing method according to the second embodiment, the stagnation of water vapor between the opening end surfaces 22a and 24a and the infrared heating mechanism 30 can be suppressed. As a result, the entire open end faces 22a and 24a can be efficiently and substantially uniformly heated, and the liner components 22 and 24 can be satisfactorily joined to each other to obtain the liner 12 having excellent durability.

また、第2実施形態に係る製造装置50及び製造方法では、ライナ構成部材22、24の内部に送風することにより、赤外線加熱機構30と開口端面22a、24aとの間に効率的に空気を流通させることができるため、水蒸気の滞留を一層効果的に抑制することができる。   In the manufacturing apparatus 50 and the manufacturing method according to the second embodiment, the air is efficiently circulated between the infrared heating mechanism 30 and the opening end faces 22a, 24a by blowing air into the liner constituting members 22, 24. Therefore, the retention of water vapor can be more effectively suppressed.

次いで、図7を併せて参照しつつ、第3実施形態に係る製造装置60及び製造方法について説明する。第3実施形態に係る製造装置60は、ライナ構成部材22、24の外周部の互いに対向する部位の両側に送風機62a、62bが備えられることを除いて、上記の第1実施形態に係る製造装置10と同様に構成されている。すなわち、送風機62a、62bは、保持機構に保持されたライナ構成部材22、24を挟んで互いに対向するように配設されている。   Next, a manufacturing apparatus 60 and a manufacturing method according to a third embodiment will be described with reference to FIG. The manufacturing apparatus 60 according to the third embodiment is the same as the manufacturing apparatus according to the above-described first embodiment except that the blowers 62a and 62b are provided on both sides of the opposing outer peripheral portions of the liner components 22 and 24. It is configured similarly to 10. That is, the blowers 62a and 62b are disposed to face each other with the liner components 22 and 24 held by the holding mechanism therebetween.

次いで、第3実施形態に係る製造方法について、製造装置60を用いてライナ12を得る場合を例に挙げて説明する。この製造方法では、上記の第1実施形態に係る製造方法と同様にして位置合わせ工程及び対向工程を行う。そして、送風機62a、62bにより赤外線加熱機構30(赤外線放射部38a、38b)と開口端面22a、24aとの間にそれぞれ空気を流通させながら、赤外線加熱機構30により開口端面22a、24aを加熱する送風加熱工程を行う。   Next, the manufacturing method according to the third embodiment will be described using a case where the liner 12 is obtained using the manufacturing apparatus 60 as an example. In this manufacturing method, the alignment step and the facing step are performed in the same manner as in the manufacturing method according to the first embodiment. Then, while the air is passed between the infrared heating mechanism 30 (infrared radiation portions 38a, 38b) and the opening end faces 22a, 24a by the blowers 62a, 62b, respectively, the opening end faces 22a, 24a are heated by the infrared heating mechanism 30. A heating step is performed.

この送風加熱工程では、図7に矢印で示すように、送風機62a、62bにより、ライナ構成部材22、24の外周部の互いに対向する部位から内側に向かってそれぞれ送風することで、赤外線加熱機構30と開口端面22a、24aとの間からライナ構成部材22、24の内部に空気を流通させる。そして、この空気を、開口20を介してライナ構成部材22、24の外部に排気する。   In this blowing heating step, as shown by arrows in FIG. 7, the infrared heating mechanism 30 is blown inward from the opposing portions of the outer peripheral portions of the liner components 22 and 24 by the blowers 62a and 62b, respectively. Air is circulated into the liner components 22, 24 from between the opening end faces 22a, 24a. Then, the air is exhausted to the outside of the liner components 22 and 24 through the opening 20.

上記のようにして送風加熱工程を行うことで、接合前の開口端面22a、24aを所定の温度まで予備加熱した後、上記の第1実施形態に係る製造方法と同様にして接合工程等を行うことによって、図1に示すライナ12を得ることができる。   By performing the blast heating process as described above, the opening end surfaces 22a and 24a before bonding are preheated to a predetermined temperature, and then the bonding process and the like are performed in the same manner as in the manufacturing method according to the first embodiment. Thus, the liner 12 shown in FIG. 1 can be obtained.

従って、第3実施形態に係る製造装置60及び製造方法によっても、開口端面22a、24aと赤外線加熱機構30との間に水蒸気が滞留することを抑制できる。これによって、開口端面22a、24aの全体を効率的且つ略均等に加熱することができるため、ライナ構成部材22、24同士を良好に接合して耐久性に優れたライナ12を得ることができる。   Therefore, even with the manufacturing apparatus 60 and the manufacturing method according to the third embodiment, the stagnation of water vapor between the opening end surfaces 22a and 24a and the infrared heating mechanism 30 can be suppressed. As a result, the entire open end faces 22a and 24a can be efficiently and substantially uniformly heated, and the liner components 22 and 24 can be satisfactorily joined to each other to obtain the liner 12 having excellent durability.

また、第3実施形態に係る製造装置60及び製造方法では、ライナ構成部材22、24の外周部の互いに対向する部位の両側から送風することで、赤外線加熱機構30と開口端面22a、24aとの間に効率的に空気を流通させることができるため、水蒸気の滞留を一層効果的に抑制することができる。   Further, in the manufacturing apparatus 60 and the manufacturing method according to the third embodiment, the infrared heating mechanism 30 and the opening end faces 22a, 24a are blown from both sides of the opposing outer peripheral parts of the liner constituting members 22, 24. Since the air can be efficiently circulated in between, the stagnation of steam can be more effectively suppressed.

次いで、図8及び図9を併せて参照しつつ、第4実施形態に係る製造装置70及び製造方法について説明する。第4実施形態に係る製造装置70は、送風機72と、該送風機72に接続される送風管74とを備え、該送風管74と開口20を介して一方のライナ構成部材22の内部に送風可能であること、及び支持体32の板状部44に貫通孔76が設けられていることを除いて、上記の第1実施形態に係る製造装置10と同様に構成されている。貫通孔76は、図8に示すように、板状部44を厚さ方向に貫通する。また、図9に示すように、板状部44には、平面視で、赤外線放射部38a、38bの内周の一部に沿う円弧状の2個の貫通孔76が設けられている。なお、貫通孔76の配置、個数、形状等は特に限定されるものではない。   Next, a manufacturing apparatus 70 and a manufacturing method according to a fourth embodiment will be described with reference to FIGS. 8 and 9. The manufacturing apparatus 70 according to the fourth embodiment includes a blower 72 and a blower tube 74 connected to the blower 72, and can blow air into one of the liner components 22 via the blower tube 74 and the opening 20. And the configuration is the same as that of the manufacturing apparatus 10 according to the above-described first embodiment, except that the through-hole 76 is provided in the plate portion 44 of the support 32. The through-hole 76 penetrates the plate-shaped portion 44 in the thickness direction, as shown in FIG. Further, as shown in FIG. 9, the plate-shaped portion 44 is provided with two arc-shaped through holes 76 along a part of the inner periphery of the infrared radiation portions 38a and 38b in plan view. The arrangement, number, shape, and the like of the through holes 76 are not particularly limited.

次いで、第4実施形態に係る製造方法について、製造装置70を用いてライナ12を得る場合を例に挙げて説明する。この製造方法では、上記の第1実施形態に係る製造方法と同様にして位置合わせ工程及び対向工程を行う。そして、図8に示すように、送風機72により赤外線加熱機構30(赤外線放射部38a、38b)と開口端面22a、24aとの間に空気を流通させながら、赤外線加熱機構30により開口端面22a、24aを加熱する送風加熱工程を行う。   Next, the manufacturing method according to the fourth embodiment will be described using a case where the liner 12 is obtained using the manufacturing apparatus 70 as an example. In this manufacturing method, the alignment step and the facing step are performed in the same manner as in the manufacturing method according to the first embodiment. Then, as shown in FIG. 8, while air is circulated between the infrared heating mechanism 30 (the infrared radiation portions 38 a and 38 b) and the opening end faces 22 a and 24 a by the blower 72, the opening end faces 22 a and 24 a are Is performed in a blast heating step of heating the air.

この送風加熱工程では、送風機72により送風管74を介して、開口20から一方のライナ構成部材22の内部に送風することで、図8に矢印で示すように、板状部44を沿って流通する空気を赤外線加熱機構30の赤外線放射部38aと開口端面22aとの間に流通させる。また、貫通孔76を通過した空気を赤外線加熱機構30の赤外線放射部38bと開口端面24aとの間に流通させる。さらに、貫通孔76を通過して他方のライナ構成部材24に流入した空気を、開口20を介して該ライナ構成部材24の外部に排気する。   In this blowing heating step, air is blown from the opening 20 to the inside of one of the liner constituent members 22 through the blower tube 74 by the blower 72, so that the air flows along the plate-shaped portion 44 as shown by the arrow in FIG. The flowing air flows between the infrared radiating portion 38a of the infrared heating mechanism 30 and the opening end face 22a. In addition, the air that has passed through the through hole 76 is allowed to flow between the infrared radiating portion 38b of the infrared heating mechanism 30 and the opening end surface 24a. Further, the air that has flowed into the other liner component 24 through the through hole 76 is exhausted to the outside of the liner component 24 via the opening 20.

上記のようにして送風加熱工程を行うことで、接合前の開口端面22a、24aを所定の温度まで予備加熱した後、上記の第1実施形態に係る製造方法と同様にして接合工程等を行うことによって、図1に示すライナ12を得ることができる。   By performing the blast heating process as described above, the opening end surfaces 22a and 24a before bonding are preheated to a predetermined temperature, and then the bonding process and the like are performed in the same manner as in the manufacturing method according to the first embodiment. Thus, the liner 12 shown in FIG. 1 can be obtained.

従って、第4実施形態に係る製造装置70及び製造方法によっても、開口端面22a、24aと赤外線加熱機構30との間に水蒸気が滞留することを抑制できる。これによって、開口端面22a、24aの全体を効率的且つ略均等に加熱することができるため、ライナ構成部材22、24同士を良好に接合して耐久性に優れたライナ12を得ることができる。   Therefore, even with the manufacturing apparatus 70 and the manufacturing method according to the fourth embodiment, the stagnation of water vapor between the opening end surfaces 22a and 24a and the infrared heating mechanism 30 can be suppressed. As a result, the entire open end faces 22a and 24a can be efficiently and substantially uniformly heated, and the liner components 22 and 24 can be satisfactorily joined to each other to obtain the liner 12 having excellent durability.

また、第4実施形態に係る製造装置70及び製造方法では、1個の送風機72及び送風管74と、板状部44に設けられた貫通孔76との簡単な構成により、ライナ構成部材22、24の内部に送風して、開口端面22a、24aと赤外線加熱機構30とのそれぞれの間に効果的に空気を流通させることができる。従って、簡素な構成で効率的に水蒸気の滞留を抑制することができる。   Further, in the manufacturing device 70 and the manufacturing method according to the fourth embodiment, the liner component member 22, the blower 72 and the blower tube 74, and the through-hole 76 provided in the plate portion 44 have a simple configuration. The air can be blown into the inside 24 and air can be effectively circulated between each of the opening end faces 22 a and 24 a and the infrared heating mechanism 30. Therefore, the retention of steam can be efficiently suppressed with a simple configuration.

上記の製造装置10、50、60、70では、赤外線加熱機構30は、間隔を置いて対向する一組の開口端面22a、24a同士の間に介在し、送風機34、52a、52b、62a、62b、72は、一組の開口端面22a、24aのうち、一方の開口端面22aと赤外線加熱機構30(赤外線放射部38a)との間、及び他方の開口端面24aと赤外線加熱機構30(赤外線放射部38b)との間のそれぞれに空気を流通させることとした。また、上記の実施形態に係る製造方法において、対向工程では、間隔を置いて対向させた一組の開口端面22a、24a同士の間に介在する赤外線加熱機構30と、一組の開口端面22a、24aのそれぞれとを対向させ、送風加熱工程では、一組の開口端面22a、24aのうち一方の開口端面22aと赤外線加熱機構30(赤外線放射部38a)との間、及び他方の開口端面24aと赤外線加熱機構30(赤外線放射部38b)との間のそれぞれに空気を流通させることとした。   In the above-described manufacturing apparatuses 10, 50, 60, and 70, the infrared heating mechanism 30 is interposed between the pair of open end faces 22a and 24a facing each other at an interval, and the blowers 34, 52a, 52b, 62a, and 62b are provided. , 72 are provided between one opening end face 22a and the infrared heating mechanism 30 (infrared radiation section 38a), and between the other opening end face 24a and the infrared heating mechanism 30 (infrared radiation section). 38b). In the manufacturing method according to the above-described embodiment, in the facing step, the infrared heating mechanism 30 interposed between the pair of opening end faces 22a and 24a opposed to each other at an interval, and the set of opening end faces 22a and 24a are opposed to each other, and in the blast heating step, between one opening end face 22a of the pair of opening end faces 22a and 24a and the infrared heating mechanism 30 (infrared radiation part 38a), and between the other opening end face 24a. Air is allowed to flow between the infrared heating mechanism 30 (infrared radiation section 38b).

この場合、互いに対向させて位置合わせした一組の開口端面22a、24aの両方を一度の送風加熱工程により効率的に加熱した後、速やかに当接させて接合することが可能になる。このため、開口端面22a、24a同士を効率的且つ良好に接合してライナ12を得ることが可能になる。   In this case, it is possible to heat the pair of opening end faces 22a and 24a, which are opposed to each other and aligned, efficiently by a single blast heating step, and then to quickly contact and join. For this reason, it becomes possible to obtain the liner 12 by efficiently and satisfactorily joining the opening end faces 22a and 24a to each other.

上記の実施形態に係る製造装置10、50、60、70では、開口端面22a、24a同士の接合前に、送風機34、52a、52b、62a、62b、72による送風を行うこととした。また、上記の実施形態に係る製造方法では、送風加熱工程を、開口端面22a、24a同士を接合する接合工程の前に行うこととした。これによって、開口端面22a、24aの全体を効率的且つ略均等に加熱した状態で、開口端面22a、24a同士を接合することが可能になるため、接合品質に優れたライナ12を得ることができる。   In the manufacturing apparatuses 10, 50, 60, and 70 according to the above-described embodiment, the blowers 34, 52a, 52b, 62a, 62b, and 72 blow air before joining the open end faces 22a and 24a. In the manufacturing method according to the above-described embodiment, the blast heating step is performed before the joining step of joining the opening end faces 22a and 24a. This makes it possible to join the open end faces 22a and 24a to each other in a state where the entire open end faces 22a and 24a are efficiently and substantially uniformly heated, so that the liner 12 having excellent joining quality can be obtained. .

上記の実施形態に係る製造装置10、50、60、70では、吸湿性の樹脂材からなるライナ構成部材22、24の開口端面22a、24a同士を接合して、水素ガスを貯留する高圧水素用タンクに用いられるライナ12を得ることとした。また、上記の実施形態に係る製造方法では、吸湿性の樹脂材からなるライナ構成部材22、24の開口端面22a、24a同士を接合して、水素ガスを貯留する高圧水素用タンクに用いられるライナ12を得ることとした。   In the manufacturing apparatuses 10, 50, 60, and 70 according to the above-described embodiment, the open end faces 22a and 24a of the liner constituting members 22 and 24 made of a hygroscopic resin material are joined to each other to store high-pressure hydrogen gas. The liner 12 used for the tank was obtained. Further, in the manufacturing method according to the above-described embodiment, the liner used in the high-pressure hydrogen tank that stores the hydrogen gas by joining the open end faces 22a and 24a of the liner constituting members 22 and 24 made of the hygroscopic resin material. 12 was obtained.

水素ガスを貯留する高圧水素用タンクに用いられるライナ12では、例えば、ナイロン系樹脂等の水素バリア性のある樹脂材が好適に用いられるが、この種の樹脂は、吸湿性が高くなり易い。上記の製造装置10、50、60、70及び製造方法は、吸湿性が高い樹脂材からなるライナ構成部材22、24であっても、水蒸気を分散させながら開口端面22a、24aの全体を効率的且つ略均等に加熱することができるため、高圧水素用タンクに用いられるライナ12を得る場合にも好適に適用することができる。   In the liner 12 used for the high-pressure hydrogen tank for storing hydrogen gas, for example, a resin material having a hydrogen barrier property such as a nylon-based resin is preferably used, but this kind of resin tends to have high hygroscopicity. The above manufacturing apparatuses 10, 50, 60, 70 and the manufacturing method efficiently disperse the water vapor and efficiently remove the entire open end faces 22a, 24a even with the liner constituting members 22, 24 made of a resin material having high hygroscopicity. In addition, since the heating can be performed substantially uniformly, it can be suitably applied to a case where the liner 12 used for the high-pressure hydrogen tank is obtained.

上記の実施形態に係る製造装置10、50、60、70では、燃料電池車両に搭載される高圧水素用タンクに用いられるライナ12を得ることとした。また、上記の実施形態に係る製造方法では、燃料電池車両に搭載される高圧水素用タンクに用いられる高圧タンク用ライナ12を得ることとした。上記の製造装置10、50、60、70及び製造方法を適用して得られるライナ12は、耐久性に優れるため、燃料電池自動車に搭載される高圧水素用タンクにも好適に適用することができる。   In the manufacturing apparatuses 10, 50, 60, and 70 according to the above embodiment, the liner 12 used for the high-pressure hydrogen tank mounted on the fuel cell vehicle is obtained. In the manufacturing method according to the above embodiment, the high-pressure tank liner 12 used for the high-pressure hydrogen tank mounted on the fuel cell vehicle is obtained. Since the liner 12 obtained by applying the above-described manufacturing apparatuses 10, 50, 60, and 70 and the manufacturing method is excellent in durability, it can be suitably applied to a high-pressure hydrogen tank mounted on a fuel cell vehicle. .

本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能である。   The present invention is not particularly limited to the embodiment described above, and various modifications can be made without departing from the gist thereof.

上記の第1実施形態〜第4実施形態(これらを総称して実施形態ともいう)では、ライナ構成部材22、24の少なくとも一部が円筒状であることとしたが、特にこれに限定されるものではない。例えば、ライナ構成部材22、24の少なくとも一部は、円筒状以外の閉断面形状であってもよい。また、上記の実施形態では、開口端面22a、24a及び赤外線放射部38a、38bのそれぞれを円環状としたが、特にこれに限定されるものでもない。例えば、開口端面22a、24aは、多角形状、複数の円弧が連なる形状、楕円形状等であってもよい。赤外線放射部38a、38bは、開口端面22a、24aの全体に対向することが可能な形状であればよい。この場合、板状部44も円板状に代えて、赤外線放射部38a、38b(開口端面22a、24a)の形状に応じた形状とすることができる。   In the above-described first to fourth embodiments (these are also collectively referred to as embodiments), at least a part of the liner constituting members 22 and 24 is cylindrical, but it is particularly limited to this. Not something. For example, at least a part of the liner components 22 and 24 may have a closed cross-sectional shape other than a cylindrical shape. In the above-described embodiment, each of the opening end faces 22a and 24a and the infrared radiating portions 38a and 38b has an annular shape. However, the present invention is not limited to this. For example, the opening end faces 22a and 24a may have a polygonal shape, a shape in which a plurality of arcs are continuous, an elliptical shape, or the like. The infrared radiation portions 38a and 38b may have any shape as long as they can face the entire opening end surfaces 22a and 24a. In this case, the plate-shaped portion 44 may be formed in a shape corresponding to the shape of the infrared radiation portions 38a, 38b (opening end faces 22a, 24a) instead of the disk shape.

上記の実施形態では、送風加熱工程により、開口端面22a、24aを予備加熱した後、振動溶着により開口端面22a、24aを接合する接合工程を行うこととしたが、特にこれに限定されるものではない。   In the above embodiment, after the opening end faces 22a and 24a are pre-heated by the blast heating step, the joining step of joining the opening end faces 22a and 24a by vibration welding is performed. However, the present invention is not particularly limited to this. Absent.

例えば、送風加熱工程により、互いに溶着可能な温度まで加熱した開口端面22a、24aを、接合工程で互いに当接させて接合を行ってもよい。また、送風加熱工程で予備加熱を行った場合に、その後の接合工程において、振動溶着以外の種々の溶着手法を採用してもよい。なお、振動溶着以外の溶着手法の一例としては、赤外線加熱を行った後の開口端面22a、24a同士を、振動を加えることなく単に押圧すること等が挙げられる。また、上記の実施形態では、製造装置10が振動溶着機構36を備えることとしたが、製造装置10は、振動溶着機構36を備えていなくてもよく、振動溶着機構36以外の接合機構を備えていてもよい。これらの場合であっても、開口端面22a、24aを良好に接合することができる。   For example, the joining may be performed by bringing the open end faces 22a and 24a heated to a temperature at which they can be welded to each other in the blowing heating step in a joining step. In addition, when the preliminary heating is performed in the blast heating step, various welding methods other than the vibration welding may be employed in the subsequent joining step. As an example of a welding method other than the vibration welding, there is a method of simply pressing the opening end surfaces 22a and 24a after performing infrared heating without applying vibration. In the above embodiment, the manufacturing apparatus 10 includes the vibration welding mechanism 36. However, the manufacturing apparatus 10 may not include the vibration welding mechanism 36, and includes a bonding mechanism other than the vibration welding mechanism 36. May be. Even in these cases, the open end faces 22a and 24a can be satisfactorily joined.

上記の実施形態では、図3、図6〜図8に示すように、支持体32が2枚の板部材40a、40bを積層して構成されることとした。また、赤外線加熱機構30が、2個の赤外線放射部38a、38bを備えることとした。しかしながら、特にこれらに限定されるものではない。   In the above embodiment, as shown in FIGS. 3 and 6 to 8, the support 32 is configured by laminating two plate members 40a and 40b. Further, the infrared heating mechanism 30 includes two infrared radiating portions 38a and 38b. However, it is not particularly limited to these.

支持体32は、開口端面22a、24aに対向するように、赤外線加熱機構30を支持することが可能に構成されればよく、例えば、一枚の板部材40aの両面に赤外線放射部38a、38bを支持してもよい。また、図3及び図7に示す製造装置10、60では、支持体32に板状部44が設けられていなくてもよい。赤外線加熱機構30は、支持体32の両面に露出するように設けられた1個の赤外線放射部38aから構成されてもよい。   The support 32 may be configured to be able to support the infrared heating mechanism 30 so as to face the opening end surfaces 22a and 24a. For example, the infrared radiating portions 38a and 38b may be provided on both surfaces of a single plate member 40a. May be supported. In addition, in the manufacturing apparatuses 10 and 60 shown in FIGS. 3 and 7, the plate 32 may not be provided on the support 32. The infrared heating mechanism 30 may be composed of one infrared radiating portion 38 a provided to be exposed on both surfaces of the support 32.

上記の実施形態では、互いに対向させた一組の開口端面22a、24aの間に支持体32を介在させて、これらの開口端面22a、24aを赤外線加熱機構30によって同時に加熱することとした。しかしながら、図3、図6及び図7に示す、製造装置10、50、60では、開口端面22a、24aの何れか一方のみを加熱可能に構成されてもよいし、並列させた開口端面22a、24aを赤外線加熱機構30によって同時に加熱可能に構成されてもよい。   In the above-described embodiment, the support 32 is interposed between the pair of opening end faces 22a and 24a opposed to each other, and these opening end faces 22a and 24a are simultaneously heated by the infrared heating mechanism 30. However, in the manufacturing apparatuses 10, 50, and 60 shown in FIGS. 3, 6, and 7, only one of the open end faces 22a and 24a may be configured to be heatable, or the open end faces 22a and 24a may be configured to be simultaneously heated by the infrared heating mechanism 30.

図7及び図8に示す製造装置60、70では、開口20からライナ構成部材22、24の少なくとも何れか一方の内部の空気を吸引するポンプやコンプレッサ等の吸引機構(不図示)をさらに備えてもよい。また、送風機62a、62bの両方又は何れか一方に代えて上記の吸引機構を備えてもよい。   The manufacturing apparatuses 60 and 70 shown in FIGS. 7 and 8 are further provided with a suction mechanism (not shown) such as a pump or a compressor for sucking air from at least one of the liner components 22 and 24 through the opening 20. Is also good. Further, the suction mechanism described above may be provided in place of either or both of the blowers 62a and 62b.

図7に示す製造装置60では、ライナ構成部材22、24のうち、少なくとも開口端面22a、24aの近傍の外周を覆うチャンバ(不図示)を設け、該チャンバ内に送風機62a、62bの少なくとも何れか一方から送風を行うことで、赤外線加熱機構30と開口端面22a、24aとの間に送風を行うようにしてもよい。   In the manufacturing apparatus 60 shown in FIG. 7, a chamber (not shown) that covers at least the outer periphery near the opening end faces 22a, 24a among the liner components 22, 24 is provided, and at least one of the blowers 62a, 62b is provided in the chamber. By blowing air from one side, air may be blown between the infrared heating mechanism 30 and the opening end faces 22a and 24a.

上記の実施形態では、軸方向の両側に突出部18及び開口20が設けられたライナ12を得ることとしたが、特にこれに限定されるものではなく、軸方向の一端側にのみ突出部18及び開口20が設けられたライナ12を得ることも可能である。上記の実施形態では、ライナ12の胴体部14の径は軸方向に略一定であるとしたが、特にこれに限定されるものではなく、胴体部14の径は軸方向に異なっていてもよい。   In the above embodiment, the liner 12 having the projection 18 and the opening 20 on both sides in the axial direction is obtained. However, the present invention is not particularly limited to this, and the projection 18 is provided only on one end in the axial direction. Also, it is possible to obtain a liner 12 provided with an opening 20. In the above embodiment, the diameter of the body portion 14 of the liner 12 is substantially constant in the axial direction. However, the present invention is not particularly limited to this, and the diameter of the body portion 14 may be different in the axial direction. .

また、上記の実施形態では、2個のライナ構成部材22、24を接合してライナ12を得ることとしたが、3個以上のライナ構成部材を接合してライナ12を得てもよい。この場合、例えば、ライナ構成部材22、24の間に、軸方向に径が略一定の円筒状のライナ構成部材(不図示)が介在する。このように、軸方向に径が略一定の円筒状のライナ構成部材であっても、ライナ構成部材22、24の開口端面22a、24aと同様に、その全体を効率的且つ略均等に加熱することができる。従って、3個以上の複数個のライナ構成部材であっても、互いに良好に接合して耐久性に優れたライナを得ることができる。   Further, in the above embodiment, the liner 12 is obtained by joining the two liner components 22 and 24, but the liner 12 may be obtained by joining three or more liner components. In this case, for example, a cylindrical liner component (not shown) having a substantially constant diameter in the axial direction is interposed between the liner components 22 and 24. As described above, even in the case of the cylindrical liner component having a substantially constant diameter in the axial direction, the entirety thereof is efficiently and substantially uniformly heated similarly to the open end faces 22a, 24a of the liner components 22, 24. be able to. Therefore, even with three or more liner components, it is possible to obtain a liner having excellent durability by being satisfactorily joined to each other.

10、50、60、70…製造装置 12…高圧タンク用ライナ
20…開口 22、24…ライナ構成部材
22a、24a…開口端面 30…赤外線加熱機構
32…支持体
34、52a、52b、62a、62b、72…送風機
44…板状部 54a、54b、74…送風管
76…貫通孔
10, 50, 60, 70 Manufacturing apparatus 12 High pressure tank liner 20 Opening 22, 24 Liner component members 22a, 24a Opening end face 30 Infrared heating mechanism 32 Supporters 34, 52a, 52b, 62a, 62b , 72: blower 44: plate-shaped portion 54a, 54b, 74: blower tube 76: through hole

Claims (20)

樹脂製の複数個のライナ構成部材にそれぞれ設けられた開口端面を互いに接合して高圧タンク用ライナを得る高圧タンク用ライナの製造装置であって、
前記開口端面に間隔を置いて対向して、前記開口端面を加熱する赤外線加熱機構と、
前記赤外線加熱機構と前記開口端面との間に空気を流通させる送風機と、
を備える高圧タンク用ライナの製造装置。
An apparatus for manufacturing a liner for a high-pressure tank, which obtains a liner for a high-pressure tank by joining open end faces provided on a plurality of resin-made liner constituent members to each other,
An infrared heating mechanism that faces the opening end face at an interval and heats the opening end face,
A blower that allows air to flow between the infrared heating mechanism and the opening end face,
For producing a liner for a high-pressure tank.
請求項1記載の高圧タンク用ライナの製造装置において、
前記送風機は、前記ライナ構成部材の外周部の互いに対向する部位の一方側から他方側に向かって送風することで、前記赤外線加熱機構と前記開口端面との間に前記空気を流通させる、高圧タンク用ライナの製造装置。
The apparatus for manufacturing a liner for a high-pressure tank according to claim 1,
A high-pressure tank configured to blow the air between the infrared heating mechanism and the opening end face by blowing air from one side of a portion of the outer peripheral portion of the liner constituting member facing each other to the other side, Liner manufacturing equipment.
請求項1記載の高圧タンク用ライナの製造装置において、
前記赤外線加熱機構の径方向の内側に配設される板状部を有するとともに、前記赤外線加熱機構を支持する支持体をさらに備え、
前記送風機は、前記ライナ構成部材の軸方向で前記開口端面と反対側に設けられた開口から前記ライナ構成部材の内部に送風することで、前記板状部を沿って、前記ライナ構成部材の径方向の外側に向かう前記空気を、前記赤外線加熱機構と前記開口端面との間に流通させる、高圧タンク用ライナの製造装置。
The apparatus for manufacturing a liner for a high-pressure tank according to claim 1,
Having a plate-shaped portion disposed radially inward of the infrared heating mechanism, further comprising a support for supporting the infrared heating mechanism,
The blower blows the inside of the liner component from an opening provided on the side opposite to the opening end face in the axial direction of the liner component, and the diameter of the liner component along the plate-shaped portion. An apparatus for manufacturing a high-pressure tank liner, wherein the air flowing outward in the direction is circulated between the infrared heating mechanism and the opening end face.
請求項1記載の高圧タンク用ライナの製造装置において、
前記送風機は、前記ライナ構成部材の外周部の互いに対向する部位から内側に向かって送風することで、前記赤外線加熱機構と前記開口端面との間から前記ライナ構成部材の内部に流通させた前記空気を、前記ライナ構成部材の軸方向で前記開口端面と反対側に設けられた開口から排気する、高圧タンク用ライナの製造装置。
The apparatus for manufacturing a liner for a high-pressure tank according to claim 1,
The blower is configured to blow air inward from a portion of the outer peripheral portion of the liner component that opposes each other, thereby allowing the air to flow into the liner component from between the infrared heating mechanism and the opening end surface. A high-pressure tank liner manufacturing apparatus that exhausts air from an opening provided on the side opposite to the opening end face in the axial direction of the liner constituting member.
請求項1〜4の何れか1項に記載の高圧タンク用ライナの製造装置において、
前記赤外線加熱機構は、間隔を置いて対向する一組の前記開口端面同士の間に介在し、
前記送風機は、前記一組の開口端面のうち、一方の前記開口端面と前記赤外線加熱機構との間、及び他方の前記開口端面と前記赤外線加熱機構との間のそれぞれに前記空気を流通させる、高圧タンク用ライナの製造装置。
An apparatus for manufacturing a liner for a high-pressure tank according to any one of claims 1 to 4,
The infrared heating mechanism is interposed between a pair of the open end faces facing each other at intervals,
The blower, among the set of open end faces, between the one open end face and the infrared heating mechanism, and, the other through the air between the open end face and the infrared heating mechanism, Equipment for manufacturing liners for high pressure tanks.
請求項3記載の高圧タンク用ライナの製造装置において、
前記赤外線加熱機構は、間隔を置いて対向する一組の前記開口端面同士の間に介在し、
前記板状部は、厚さ方向に貫通孔が設けられ、
前記送風機は、前記一組の開口端面のうち、一方の前記開口端面を有する前記ライナ構成部材の前記開口から内部に送風することで、前記板状部を沿って流通する前記空気を前記赤外線加熱機構と前記一方の開口端面との間に流通させ、且つ前記貫通孔を通過した前記空気を前記赤外線加熱機構と他方の前記開口端面との間に流通させる、高圧タンク用ライナの製造装置。
An apparatus for manufacturing a liner for a high-pressure tank according to claim 3,
The infrared heating mechanism is interposed between a pair of the open end faces facing each other at intervals,
The plate-shaped portion is provided with a through hole in a thickness direction,
The blower blows the air circulating along the plate-shaped portion through the opening by blowing air from the opening of the liner component member having one of the opening end faces to the inside of the set of opening end faces. An apparatus for manufacturing a high-pressure tank liner, which circulates between a mechanism and the one opening end face, and circulates the air passing through the through hole between the infrared heating mechanism and the other opening end face.
請求項1〜6の何れか1項に記載の高圧タンク用ライナの製造装置において、
前記開口端面同士の接合前に前記送風機による送風を行う、高圧タンク用ライナの製造装置。
The apparatus for manufacturing a liner for a high-pressure tank according to any one of claims 1 to 6,
An apparatus for manufacturing a high-pressure tank liner, wherein air is blown by the blower before joining the open end faces.
請求項1〜7の何れか1項に記載の高圧タンク用ライナの製造装置において、
吸湿性の樹脂材からなる前記ライナ構成部材の前記開口端面同士を接合して、水素ガスを貯留する高圧水素用タンクに用いられる前記高圧タンク用ライナを得る、高圧タンク用ライナの製造装置。
An apparatus for manufacturing a liner for a high-pressure tank according to any one of claims 1 to 7,
An apparatus for manufacturing a high-pressure tank liner, comprising joining the open end faces of the liner constituent member made of a hygroscopic resin material to obtain the high-pressure tank liner used in a high-pressure hydrogen tank for storing hydrogen gas.
請求項8記載の高圧タンク用ライナの製造装置において、
燃料電池車両に搭載される前記高圧水素用タンクに用いられる前記高圧タンク用ライナを得る、高圧タンク用ライナの製造装置。
The apparatus for manufacturing a liner for a high-pressure tank according to claim 8,
An apparatus for manufacturing a high-pressure tank liner, which obtains the high-pressure tank liner used for the high-pressure hydrogen tank mounted on a fuel cell vehicle.
請求項1〜9の何れか1項に記載の高圧タンク用ライナの製造装置において、
前記赤外線加熱機構は、少なくとも一部が円筒状である前記ライナ構成部材の円環状の前記開口端面に対向することが可能な円環状である、高圧タンク用ライナの製造装置。
An apparatus for manufacturing a liner for a high-pressure tank according to any one of claims 1 to 9,
The apparatus for manufacturing a liner for a high-pressure tank, wherein the infrared heating mechanism has an annular shape capable of facing at least a part of the annular end face of the liner constituent member having a cylindrical shape.
樹脂製の複数個のライナ構成部材にそれぞれ設けられた開口端面を互いに接合して高圧タンク用ライナを得る高圧タンク用ライナの製造方法であって、
赤外線加熱機構と、前記開口端面とを間隔を置いて対向させる対向工程と、
送風機により前記赤外線加熱機構と前記開口端面との間に空気を流通させながら、前記赤外線加熱機構により前記開口端面を加熱する送風加熱工程と、
を有する高圧タンク用ライナの製造方法。
A method for manufacturing a liner for a high-pressure tank to obtain a liner for a high-pressure tank by joining the open end faces respectively provided to a plurality of resin-made liner constituting members to each other,
Infrared heating mechanism, a facing step of facing the opening end face at an interval,
A blower heating step of heating the opening end face by the infrared heating mechanism while flowing air between the infrared heating mechanism and the opening end face by a blower,
Of producing a liner for a high-pressure tank having:
請求項11記載の高圧タンク用ライナの製造方法において、
前記送風加熱工程では、前記ライナ構成部材の外周部の互いに対向する部位の一方側から他方側に向かって送風することで、前記赤外線加熱機構と前記開口端面との間に前記空気を流通させる、高圧タンク用ライナの製造方法。
The method for manufacturing a liner for a high-pressure tank according to claim 11,
In the blast heating step, the air is circulated between the infrared heating mechanism and the opening end face by blowing air from one side of the opposing portion of the outer peripheral portion of the liner component to the other side, Manufacturing method of liner for high pressure tank.
請求項11記載の高圧タンク用ライナの製造方法において、
前記対向工程では、前記赤外線加熱機構を前記開口端面に対向させるとともに、前記赤外線加熱機構を支持する支持体のうち、前記赤外線加熱機構の径方向内側に設けられた板状部を前記ライナ構成部材の前記開口端面よりも径方向の内側に対向させ、
前記送風加熱工程では、前記ライナ構成部材の軸方向で前記開口端面と反対側に設けられた開口から前記ライナ構成部材の内部に送風することで、前記板状部を沿って、前記ライナ構成部材の外側に向かう前記空気を、前記赤外線加熱機構と前記開口端面との間に流通させる、高圧タンク用ライナの製造方法。
The method for manufacturing a liner for a high-pressure tank according to claim 11,
In the facing step, the infrared heating mechanism is opposed to the opening end face, and a plate-shaped portion provided radially inside the infrared heating mechanism among the supports for supporting the infrared heating mechanism is a liner component member. Diametrically inward from the opening end face of
In the blower heating step, the air is blown into the liner component from an opening provided on the side opposite to the opening end face in the axial direction of the liner component, so that the liner component is moved along the plate-like portion. A method of manufacturing a high-pressure tank liner, wherein the air flowing toward the outside of the liner is circulated between the infrared heating mechanism and the opening end face.
請求項11記載の高圧タンク用ライナの製造方法において、
前記送風加熱工程では、前記ライナ構成部材の外周部の互いに対向する部位から内側に向かって送風することで、前記赤外線加熱機構と前記開口端面との間から前記ライナ構成部材の内部に流通させた前記空気を、前記ライナ構成部材の軸方向で前記開口端面と反対側に設けられた開口から排気する、高圧タンク用ライナの製造方法。
The method for manufacturing a liner for a high-pressure tank according to claim 11,
In the blast heating step, the inside of the liner component was circulated from between the infrared heating mechanism and the opening end face by blowing inward from the opposing portions of the outer peripheral portion of the liner component. A method for manufacturing a high-pressure tank liner, wherein the air is exhausted from an opening provided on an opposite side to the opening end face in the axial direction of the liner constituting member.
請求項11〜14の何れか1項に記載の高圧タンク用ライナの製造方法において、
前記対向工程では、間隔を置いて対向させた一組の前記開口端面同士の間に介在する前記赤外線加熱機構と、前記一組の前記開口端面のそれぞれとを対向させ、
前記送風加熱工程では、前記一組の開口端面のうち一方の前記開口端面と前記赤外線加熱機構との間、及び他方の前記開口端面と前記赤外線加熱機構との間のそれぞれに前記空気を流通させる、高圧タンク用ライナの製造方法。
The method for producing a liner for a high-pressure tank according to any one of claims 11 to 14,
In the facing step, the infrared heating mechanism interposed between a pair of the open end faces facing each other at an interval, and each of the set of the open end faces face each other,
In the blast heating step, the air is circulated between one of the pair of open end faces and the infrared heating mechanism and between the other open end face and the infrared heat mechanism. Of manufacturing liners for high pressure tanks.
請求項13記載の高圧タンク用ライナの製造方法において、
前記対向工程では、間隔を置いて対向させた一組の前記開口端面同士の間に介在する前記赤外線加熱機構と、前記一組の前記開口端面のそれぞれとを対向させ、且つ、前記一組の開口端面のそれぞれの径方向の内側に前記板状部を対向させ、
前記送風加熱工程では、前記一組の開口端面のうち、一方の前記開口端面を有する前記ライナ構成部材の前記開口から内部に送風することで、前記板状部を沿って流通する前記空気を前記赤外線加熱機構と前記一方の開口端面との間に流通させ、且つ前記板状部に設けられた貫通孔を通過した前記空気を前記赤外線加熱機構と他方の前記開口端面との間に流通させる、高圧タンク用ライナの製造方法。
The method for producing a liner for a high-pressure tank according to claim 13,
In the facing step, the infrared heating mechanism interposed between a pair of the opening end faces spaced apart from each other, and each of the pair of the opening end faces is opposed to each other, and the one set of the opening end faces is provided. The plate-shaped portion is opposed to each radially inner side of the opening end face,
In the blast heating step, of the set of open end faces, by blowing air from the opening of the liner constituent member having one of the open end faces to the inside, the air flowing along the plate-shaped portion is Flowing between the infrared heating mechanism and the one opening end face, and flowing the air passing through the through-hole provided in the plate-shaped portion between the infrared heating mechanism and the other opening end face, Manufacturing method of liner for high pressure tank.
請求項11〜16の何れか1項に記載の高圧タンク用ライナの製造方法において、
前記送風加熱工程は、前記開口端面同士を接合する接合工程の前に行う、高圧タンク用ライナの製造方法。
The method for producing a liner for a high-pressure tank according to any one of claims 11 to 16,
The method for manufacturing a liner for a high-pressure tank, wherein the blast heating step is performed before the joining step of joining the open end faces.
請求項11〜17の何れか1項に記載の高圧タンク用ライナの製造方法において、
吸湿性の樹脂材からなる前記ライナ構成部材の前記開口端面同士を接合して、水素ガスを貯留する高圧水素用タンクに用いられる前記高圧タンク用ライナを得る、高圧タンク用ライナの製造方法。
The method for producing a liner for a high-pressure tank according to any one of claims 11 to 17,
A method for manufacturing a high-pressure tank liner, comprising joining the open end faces of the liner constituent member made of a hygroscopic resin material to obtain the high-pressure tank liner used in a high-pressure hydrogen tank for storing hydrogen gas.
請求項18記載の高圧タンク用ライナの製造方法において、
燃料電池車両に搭載される前記高圧水素用タンクに用いられる前記高圧タンク用ライナを得る、高圧タンク用ライナの製造方法。
The method for manufacturing a liner for a high-pressure tank according to claim 18,
A method for manufacturing a high-pressure tank liner, wherein the high-pressure tank liner is used for the high-pressure hydrogen tank mounted on a fuel cell vehicle.
請求項11〜19の何れか1項に記載の高圧タンク用ライナの製造方法において、
前記対向工程では、少なくとも一部が円筒状である前記ライナ構成部材の円環状の前記開口端面に、円環状の前記赤外線加熱機構を対向させる、高圧タンク用ライナの製造方法。
The method for producing a liner for a high-pressure tank according to any one of claims 11 to 19,
In the facing step, a method of manufacturing a high-pressure tank liner, wherein the annular infrared heating mechanism is opposed to the annular opening end face of the liner component member, at least a part of which is cylindrical.
JP2018187931A 2018-10-03 2018-10-03 Manufacturing equipment and manufacturing method for liners for high-pressure tanks Active JP7034045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187931A JP7034045B2 (en) 2018-10-03 2018-10-03 Manufacturing equipment and manufacturing method for liners for high-pressure tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187931A JP7034045B2 (en) 2018-10-03 2018-10-03 Manufacturing equipment and manufacturing method for liners for high-pressure tanks

Publications (2)

Publication Number Publication Date
JP2020056468A true JP2020056468A (en) 2020-04-09
JP7034045B2 JP7034045B2 (en) 2022-03-11

Family

ID=70106930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187931A Active JP7034045B2 (en) 2018-10-03 2018-10-03 Manufacturing equipment and manufacturing method for liners for high-pressure tanks

Country Status (1)

Country Link
JP (1) JP7034045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000539B2 (en) 2022-06-27 2024-06-04 Honda Motor Co., Ltd. High-pressure tank liner manufacturing device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184829A (en) * 1984-03-05 1985-09-20 Nippon Denso Co Ltd Heat radiation welding of thermoplastic resin member
JPH01229616A (en) * 1988-03-11 1989-09-13 Kobayashi Kogyo Kk Method for thermowelding synthetic resin molded item
JP2005133847A (en) * 2003-10-30 2005-05-26 Toyota Industries Corp Pressure vessel
JP2006153176A (en) * 2004-11-30 2006-06-15 Toyoda Gosei Co Ltd Pressure vessel and liner manufacturing method
JP2012035532A (en) * 2010-08-09 2012-02-23 Japan Steel Works Ltd:The Method and device of manufacturing hollow molded article
JP2017106524A (en) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 High-pressure tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184829A (en) * 1984-03-05 1985-09-20 Nippon Denso Co Ltd Heat radiation welding of thermoplastic resin member
JPH01229616A (en) * 1988-03-11 1989-09-13 Kobayashi Kogyo Kk Method for thermowelding synthetic resin molded item
JP2005133847A (en) * 2003-10-30 2005-05-26 Toyota Industries Corp Pressure vessel
JP2006153176A (en) * 2004-11-30 2006-06-15 Toyoda Gosei Co Ltd Pressure vessel and liner manufacturing method
JP2012035532A (en) * 2010-08-09 2012-02-23 Japan Steel Works Ltd:The Method and device of manufacturing hollow molded article
JP2017106524A (en) * 2015-12-09 2017-06-15 トヨタ自動車株式会社 High-pressure tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000539B2 (en) 2022-06-27 2024-06-04 Honda Motor Co., Ltd. High-pressure tank liner manufacturing device and method

Also Published As

Publication number Publication date
JP7034045B2 (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP5306463B2 (en) Laser head and method for joining tubular parts by laser irradiation
US11110665B2 (en) System and method for direct infrared (IR) laser welding
JP6964820B2 (en) Welding jig device, manufacturing method of parts
JP2020056468A (en) Device and method for manufacturing liner for high-pressure tank
US10259166B2 (en) Reflection inner ring
US20110143069A1 (en) Method of Fabricating A Device Such As A Coupling By Laser Welding, The Device Fabricated By Such Method, And An Element Of Such Device For Implementing The Method
JP6368496B2 (en) Laser transmission welding apparatus, laser transmission welding method, and sheet closing container manufactured by the same
US4658109A (en) Cylindrical laser welder
JP2013184437A (en) Welding apparatus and welding method of thermoplastic resin tube
WO2020184275A1 (en) Welding jig device and production method for component
US11374474B2 (en) Method of manufacturing core product, and core product
JP7067329B2 (en) How to join resin molded products
JP7216326B2 (en) PIPE WELDING METHOD AND PIPE WELDING DEVICE
US20220024145A1 (en) Infrared welding machine
JP2000348900A (en) Manufacture of superconductive high frequency acceleration cavity
JP2021074970A (en) Infrared welder
JP7414269B2 (en) How to assemble an electron beam irradiation device
JP2005161404A (en) Condensing head for laser welding
JPH11151587A (en) Welding method of cylindrical member, and cylindrical body
WO2022224821A1 (en) Method for manufacturing connector-integrated resin tube
JP2023032429A (en) Annular region simultaneous welding device, annular region simultaneous welding method, manufacturing method of water heater, and manufacturing method of compressor
CN115519245A (en) Method of welding a vehicle recliner mechanism
JPS6293094A (en) Laser welding equipment for fine tube
JP2023064529A (en) Housing for welding shield gas supply, welding shield gas supply device, welding device, welding method and manufacturing method of hot water storage tank of water heater
CN116021135A (en) Girth weld electron beam welding method for CLA16F/M alloy pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R150 Certificate of patent or registration of utility model

Ref document number: 7034045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150