JP2020054634A - 超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム - Google Patents

超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム Download PDF

Info

Publication number
JP2020054634A
JP2020054634A JP2018187516A JP2018187516A JP2020054634A JP 2020054634 A JP2020054634 A JP 2020054634A JP 2018187516 A JP2018187516 A JP 2018187516A JP 2018187516 A JP2018187516 A JP 2018187516A JP 2020054634 A JP2020054634 A JP 2020054634A
Authority
JP
Japan
Prior art keywords
evaluation
ultrasonic image
unit
image
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018187516A
Other languages
English (en)
Other versions
JP7215053B2 (ja
Inventor
一也 高木
Kazuya Takagi
一也 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2018187516A priority Critical patent/JP7215053B2/ja
Priority to US16/566,516 priority patent/US11430120B2/en
Publication of JP2020054634A publication Critical patent/JP2020054634A/ja
Application granted granted Critical
Publication of JP7215053B2 publication Critical patent/JP7215053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/215Motion-based segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Multimedia (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】組織の癒着の定量的な測定を行うことが可能な超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラムを提供する。【解決手段】超音波画像評価装置は、超音波に基づいて生成された第1の超音波画像と第1の超音波画像よりも前に生成された第2の超音波画像とを取得する画像取得部と、第1の超音波画像内の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価する評価部と、評価部の評価結果を出力する制御を行う出力制御部と、を備える。【選択図】図1

Description

本発明は、超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラムに関する。
超音波診断装置は、超音波探触子に内蔵された振動素子から発生する超音波を体内に放射し、組織の音響インピーダンスの差異によって生ずる反射エコーを振動素子により受信して生体情報を収集するものである(例えば特許文献1を参照)。複数の振動素子に供給する駆動信号や振動素子から得られる受信信号の遅延時間を制御することにより超音波の送受信方向や集束点を電子的に制御することが可能な近年の超音波診断装置によれば、人体に対して無侵襲で、リアルタイムに画像で体内を観察することができるため、生体臓器の形態診断や機能診断に広く用いられている。
特開昭63−77436号公報
ところで、整形外科やリハビリテーション科などでは、治療効果を確認するために、組織の癒着を観察するケースがある。その観察は、例えば、当該患部(筋や腱など)を動かして、超音波診断装置に表示された動きを目視により確認することにより行う。
このような従来の超音波診断装置を用いた筋肉や腱などの動きについての観察は、目視によるものであり、定量的に把握できなかった。このため、従来、超音波探触子(プローブ)を体表に当てて当該組織を動かしながら、主観的な確認結果(例えば癒着の有無や癒着の程度など)に基づいて判断していた。すなわち、組織の癒着の評価において定量性に欠けるという問題がある。
本発明の目的は、組織の癒着を定量的に測定できる超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラムを提供することである。
本発明に係る超音波画像評価装置は、
超音波に基づいて生成された第1の超音波画像と前記第1の超音波画像よりも前に生成された第2の超音波画像とを取得する画像取得部と、
前記第1の超音波画像内の組織の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価する評価部と、
前記評価部の評価結果を出力する制御を行う出力制御部と、
を備える。
本発明に係る超音波画像評価方法は、
超音波に基づいて生成された第1の超音波画像と前記第1の超音波画像よりも前に生成された第2の超音波画像とを取得し、
前記第1の超音波画像内の組織の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価し、
評価結果を出力する。
本発明に係る超音波画像評価プログラムは、
コンピューターに、
超音波に基づいて生成された第1の超音波画像と前記第1の超音波画像よりも前に生成された第2の超音波画像とを取得する処理と、
前記第1の超音波画像内の組織の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価する処理と、
評価結果を出力する処理と、
を実行させるための超音波画像評価プログラムである。
本発明によれば、組織の癒着の定量的な測定を行うことができる。
本実施の形態に係る超音波診断装置の全体構成を概略的に示すブロック図である。 図2Aおよび図2Bは、異なる組織間での癒着の有無による動きの違いを説明する図である。 本実施の形態における超音波画像および評価領域等の表示態様を模式的に示す図である。 図4Aおよび図4Bは、超音波画像および評価領域等の他の表示態様を示す図である。 評価結果として表示されるヒストグラムを模式的に示す図である。 本実施の形態の超音波診断装置における動きの分布を評価する処理の一例を説明するフローチャートである。 本実施の形態の超音波診断装置における動きの分布を評価する処理に関する他の例を示すフローチャートである。 過去に生成された第1の超音波画像等と現在測定している第2の超音波画像等を表示部に並べて表示する場合の表示例を示す図である。
以下、本実施の形態について、図面を参照して詳細に説明する。
図1は、本実施の形態に係る超音波診断装置1の主要な機能を示すブロック図である。なお、簡明のため、図1中、超音波探触子(以下、単にプローブという)や画像生成ユニット等の公知の部分については図示を省略している。
図1に示すように、超音波診断装置1は、動画像取得部10、関心領域設定部20、動きベクトル算出部30、動き検出部40、動き類似度算出部50、平滑化部60、表示制御部70、表示部80、および記憶部90を備える。
動画像取得部10は、観察対象に照射した超音波に基づいて生成された超音波画像を取得する画像取得部としての機能を有する。
一具体例では、動画像取得部10は、観察対象に対して超音波を送受信するプローブにより受信された超音波の反射エコーから動画像(フレームの集合)を生成する図示しない画像生成ユニットと接続され、かかる画像生成ユニットから動画像を取得する。動画像取得部10は、取得した動画像を、動きベクトル算出部30の命令に従って、フレーム毎に動きベクトル算出部30に出力する。また、動画像取得部10は、取得した動画像を、表示制御部70の命令に従って、リアルタイム画像として表示制御部70に出力する。
関心領域設定部20は、後述の表示部80に表示されている超音波画像の中から、測定対象となる領域を選択して設定する機能を有する。本実施の形態では、関心領域設定部20は、組織の癒着の有無や程度を測定するために、表示部80に表示されている超音波画像の全領域のうち、組織の癒着の有無や程度の測定対象とする領域(患部及び患部周辺等)をユーザーの操作に基づいて抽出ないし選定する役割を担う。
一具体例では、関心領域設定部20は、図示しない操作入力部(トラックボール等)の操作により、表示部80に表示されている超音波画像の一部を矩形の枠で囲うことで、かかる枠内の領域を関心領域として設定する。
なお、関心領域設定部20は、任意的構成であって省略してもよい。他方、関心領域設定部20を設けることにより、関心領域に絞って定量化することができる。これにより、関心領域内の撮影画像すなわち組織の癒着の評価の正確性を向上させることができる。
動きベクトル算出部30は、動画像取得部10から出力された超音波画像のうち、関心領域設定部20で設定(抽出)された関心領域内の各画素または各小領域(本発明の「部分」ないし「組織の部分」に対応する。)の動きベクトルを算出する。具体的には、動きベクトル算出部30は、関心領域内の各画素または複数画素で構成される各小領域の動きベクトル(動く方向および動く量)を、公知のトラッキング技術に基づいて、画素または各小領域単位で算出する。
動きベクトル算出部30は、連続する2フレームから検出した動きベクトルを、動き情報として、動き検出部40と、動き類似度算出部50と、に各々出力する(図1を参照)。かかる出力処理の後、動きベクトル算出部30は、次の1フレームの超音波画像を動画像取得部10から取得し、同様に、関心領域の各画素または各小領域の動きベクトルを算出する。
動き検出部40は、動きベクトル算出部30から取得した画素または各小領域単位の動きベクトルのうち、最大のベクトル長である動き量を検出し、当該検出された動き量を平滑化部60に出力する。
動き検出部40は、任意的構成であって、省略してもよい。他方、動き検出部40を設けることにより、本来評価対象に含めるべきでないフレームを平滑化部60による解析対象から除外できるメリットがある。かかる解析対象からの除外の処理については後述する。
動き類似度算出部50は、動きベクトル算出部30から取得した画素または各小領域単位の動きベクトルの類似度を、動きベクトル算出部30から上記の動き情報を取得する都度算出し、算出結果を類似度情報として平滑化部60に出力する。
平滑化部60は、動き検出部40から取得した動き量および動き類似度算出部50から逐次取得した複数の類似度情報に基づいて、関心領域の動きを時系列的に解析して全体評価を行い、かかる評価結果を記憶部90に出力する。本実施の形態では、平滑化部60は、動き類似度算出部50から逐次取得した類似度の値を平滑化し、当該平滑化された値(平滑化値)を評価結果として、記憶部90を通じて表示制御部70に提供する。
また、平滑化部60は、上述した評価結果(例えば、平均値や重みづけ平均値)に基づいて、表示部80に表示される超音波画像の付加情報を生成し、該生成された付加情報を、HDDなどのデータ記憶媒体である記憶部90に出力する。ここで、付加情報は、癒着の有無を示す情報及び癒着の程度を示す情報の両方またはいずれかを含む。一具体例では、付加情報として、患部の動きに関する各種数値やグラフ、あるいは超音波画像に重ね合わせるための色画像、などが平滑化部60によって生成される。なお、付加情報は、超音波画像に重ね合わせて表示してもよいし、超音波画像の表示領域外に表示してもよい。
表示制御部70は、記憶部90に接続されており、必要に応じて、表示部80に表示する超音波画像および種々の付加情報を記憶部90から読み出して表示部80に表示する処理を行う。さらに、表示制御部70は、必要に応じて、動画像取得部10から供給された動画像(リアルタイム画像)を表示部80に表示する処理を行う。
表示部80は、表示制御部70と接続され、表示制御部70および動画像取得部10を通じて不図示の画像生成ユニットから出力された動画像をリアルタイムで表示する。また、表示部80は、表示制御部70から出力された付加情報の画像を、動画像とともに表示する。
一具体例では、表示部80は、タッチパネル式のディスプレイが用いられ、この場合、当該ディスプレイは、表示部80と操作入力部(上述した関心領域設定部20を含む)との機能を兼ね備えることができる。
上述した各ブロックの内、動きベクトル算出部30、動き検出部40、動き類似度算出部50、および平滑化部60は、本発明の「評価部」に対応する。他方、表示制御部70は、本発明の「出力制御部」に対応する。また、動きベクトル算出部30、動き検出部40、動き類似度算出部50、平滑化部60、および表示制御部70は、単一のプロセッサー(CPUやMPUなど、以下同様)で構成することができる。或いは、これらブロックは、適宜、専用のプロセッサーを用いて構成してもよい。
なお、記憶部90は、遠隔地に配置してもよく、例えば、ネットワークを介して多数の患者や病院等のデータを統括的に管理するサーバー(図示せず)の大容量記憶媒体を使用してもよい。
また、図3で後述するように、動き類似度算出部50による類似度算出および平滑化部60による平滑化機能を用いずに、動きベクトル算出部30で検出された動きベクトル(動き情報)を、表示部80に表示する構成としてもよい。この場合、動きベクトル算出部30の算出結果を、記憶部90に直接出力する、あるいは動き類似度算出部50および平滑化部60を経由して記憶部90に出力すればよい。また、この場合は、動きベクトル算出部30が付加情報(色付き矢印のパターン等)を生成すればよい。
次に、図2以下を参照して、取得された超音波画像から組織の動きや動きの類似度等を算出する方法等を説明する。図2Aおよび図2Bは、説明の便宜のため、組織の癒着の有無に応じた、異なる二種類の組織の動きを単純化して表した図である。図2Aおよび図2Bでは、動画像取得部10で取得された超音波画像に2つの異なる組織が映された場合を仮定しており、この例では関心領域の下方に筋膜Fが、関心領域の上方に筋肉Mが映されている。
一具体例では、超音波画像により組織の癒着を調べる場合において、患部を動かす動作(例えば、手首や指を屈曲する動作)が行われる場合、以下のような手順が必要とされる。
手順1:予めプローブを体表(本実施形態においては、腕)に固定する。
手順2:測定開始ボタン(図示せず)をONにして超音波画像の取得を開始する(図2Aおよび図2B中の時刻t参照)。
手順3:測定者の指示により、測定用の動作(例えば、手首の屈曲運動)を開始する(図2Aおよび図2B中の時刻t参照)。
ここで、図2Aおよび2B中、白丸「○」で示す各部位は、時刻tにおいて互いに相対する筋膜Fと筋肉Mの部位を示す。この状態から、観察のために患者の手首等を所定方向に動かした際に、図2Aに示す事例と図2Bに示す事例とでは、上記相対する部位の動く方向が異なることが分かる。
具体的には、図2Aに示す例では、時刻t〜t間において筋膜Fと筋肉Mの相対する部位(図中の白丸「○」)が、同じ方向に動いており、このため筋膜Fと筋肉Mが癒着していると判断できる。他方、図2Bに示す例では、時刻t〜t間において筋膜Fと筋肉Mが互いに異なる方向に動いていることから、筋膜Fと筋肉Mは癒着していないと判断できる。
図2Aおよび2Bに示す例は、組織の一部分(一点)の動きを時刻tから時刻tまで複数フレームに亘ってトラッキング(追跡)した場合を仮定している。
現在の超音波診断装置では、主として、二次元の超音波画像を取得するプローブが使用されていることから、組織が三次元方向(奥行方向)に動いた場合に、追跡できない問題がある。
加えて、組織を動かしながら観察を行うため、プローブと体表との間で相対的な位置ずれが生じやすいこと等の問題がある。このため、図2Aまたは図2Bに示すような事例で、時刻tから時刻tまで例えばフレーム10枚分の超音波画像が得られた場合、1枚目のフレームで白丸「○」でプロットできた生体の一部が、5〜10枚目のフレームでは既に映っていないため追跡できないケースも発生しうる。
このように、取得された超音波画像から組織の動きを連続的に追跡することは難しい。その一方で、癒着の有無や程度を数値化できる装置が望まれていた。
これに対して、本発明者らは、筋や腱などの運動器を動かしながら種々の実験を行った。この結果、組織が複雑な動きをした場合であっても、短時間(典型的には、時間的に連続した2フレーム間)であれば、ほぼ同じ組織を捉えることができるとの知見を得るに至った。
かかる知見に基づき、本実施の形態では、生体内組織の動きを複数フレームで経時的に追跡するのではなく、時間的に近接した連続した2フレーム間に閉じた組織の動きを測定し、測定した動きを時系列に亘って平均化することで、互いに異なる組織の癒着の有無や、滑走性ないし癒着の程度を定量的に評価できるようにした。
また、本発明者らは、上述した組織の三次元的な動きが発生した場合にも対処できるように、生体内組織の一部(一点)のみを追跡するのではなく、関心領域内の動きを解析することにより、癒着の程度を評価できるようにした。
図3は、本発明者らが実際に本実施の形態に係る装置を試作して組織の画像化および測定を行った結果として、表示部80に表示された内容を模式的に示している。図3中、表示部80の表示画面の上下方向の略中央に筋膜Fが画像化され、筋膜Fの上側と下側に筋肉Mが画像化されている(図4Aも参照)。また、図3に示す例では、癒着の有無の観察対象となる複数の異なる組織を含むように関心領域Aを設定している。
本実施の形態では、表示部80がタッチパネル式ディスプレイであり、ユーザーが表示画面の任意の点をタッチすることにより、タッチされた点の上下および左右方向に所定距離だけ離れた領域を含む所定形状(図3では矩形)の関心領域Aが自動設定される。自動設定された関心領域Aの位置や大きさ等は、タッチパネル上での操作または図示しないトラックボール等の入力操作により適宜修正することができる。
かくして、確定された関心領域Aは、本装置での評価に関する処理(後述する図6のステップS10〜ステップS80、および図7のステップS100〜ステップS220)の実行中は固定される。他方、組織を動かしながら観察を行うため、関心領域Aの位置ずれが生じる可能性がある。このため、一具体例では、動きベクトル算出部30および動き検出部40の算出結果に基づいて、関心領域Aの位置ずれ補正の処理を行うことが望ましい。なお、位置ずれの補正対象は、関心のある動きへの寄与が少ない動きであり、例えば、水平方向の動きに関心がある場合、深さ方向の位置ずれのみを補正する。
さらに、図3中、動きベクトル算出部30が算出した関心領域A内の筋膜Fおよび筋肉Mの各部の動き(連続する2つのフレーム間での動く方向)を、矢印で表示している。具体的には、動きベクトル算出部30は、動画像取得部10から出力される連続した2つのフレーム間での関心領域A内の組織についての各画素または各小領域の移動方向および移動量を、公知のトラッキング技術(この例ではオプティカルフロー技術)を用いて、算出する。図3に示す事例では、関心領域A内に映った筋膜Fおよび筋肉Mが互いに同じ方向(この例では右方向)に移動しており、これらの組織間で癒着が生じていると判断できる。
なお、図3では、動きベクトル算出部30が算出した関心領域A内の各部の動きの方向を矢印で表示しているが、関心領域A内の各部の動きの方向を色付の画素で表示する構成としてもよい。すなわち、右方向に移動している部位は赤色の画素、左方向に移動している部位は青色の画素、右上方向に移動している部位はオレンジ色の画素、右下方向に移動している部位は黄色の画素、停止または奥行き方向に移動している部位は緑色の画素、のように、移動方向に応じて異なる色で表示する構成としてもよい。このような表示とすることにより、組織の各部の動きが視認しやすくなる。また、動きの方向を、色付きの矢印で示す構成としてもよい。
図4Aおよび図4Bは、超音波画像および評価領域等の他の表示態様を示す図であり、動き類似度算出部50による類似度の算出結果、または後述する平滑化部60の算出結果を、付加情報として、関心領域Aの右側に表示している。
本実施の形態では、動き類似度算出部50は、動きベクトル算出部30により算出された関心領域A内の各画素または各小領域の動きベクトルの平均ベクトル(mvmean)を、下記の数式(1)に従って算出する。
Figure 2020054634
数式(1)は、関心領域A内の動きベクトルがn個ある場合、当該n個の動きベクトル(動きの方向と動きの量)の平均値を求めるための式である。
このため、動き類似度算出部50は、数式(1)に従って算出された平均ベクトルと、関心領域A内の各画素または各小領域の動きベクトルと、のコサイン類似度(cossim)(または、単に内積値)を、下記の数式(2)に従って算出する。
Figure 2020054634
数式(2)において、ベクトルa(a,a)は、関心領域A内で特定された一画素または一の小領域の動きベクトル(平面ベクトル)であり、ベクトルb(b,b)は、数式(1)で算出されたn個の動きベクトルの平均ベクトルである。動き類似度算出部50は、関心領域A内のn個の動きベクトルの各々について、数式(2)に従ってコサイン類似度(cossim)を算出する。
さらに、動き類似度算出部50は、関心領域A内のn個の動きベクトルのコサイン類似度の平均値(cossimmean)を、下記の数式(3)に従って算出し、かかる算出値を類似度の値として平滑化部60に出力する。
Figure 2020054634
図4Aに示す事例は、図3で上述した事例と対応または類似する事例であり、関心領域A内で検出した組織の動きベクトル(すなわち筋膜Fおよび筋肉Mの各部の動く方向および量)が全て揃っている場合を仮定する。この場合、類似度として100/100が表示される。
これに対して、図4Bは、関心領域A内に映った組織の動きベクトルが揃っていない事例を示しており、類似度として低い値(この例では24/100)が表示される。
このように、関心領域A内の動きベクトルの分布の類似度を数値で表示することにより、関心領域A内に画像化された組織全体の動きひいては癒着の有無や程度を半定量的に評価することが容易になる。
なお、動きベクトル算出部30および動き類似度算出部50は、動画像取得部10から連続的に出力される2フレームを用いて、関心領域A内の動きベクトルおよびその類似度を算出し、各々、算出値を出力する。ここで、動きベクトル算出部30および動き類似度算出部50の算出値は、フレームが変わる毎に変動し得るため、かかる算出値を表示部80に表示した場合、ユーザーにとって視認しにくくなり、滑走性などの判断が困難になる可能性がある。
このため、本実施の形態では、図1に示すように、動き類似度算出部50の後段に平滑化部60を設け、動き類似度算出部50から逐次取得した類似度の値を平滑化し、平滑化された類似度の値を表示する構成としている(図4B等を参照)。
また、図4Aおよび図4Bの表示態様につき、算出された類似度(ないし平滑化値、以下同じ)のレベルに応じて、関心領域A内の全ての領域に、予め定められた一の色が付加して表示される構成とすることが好ましい。一具体例では、類似度が高い図4Aの事例では関心領域A内が全て青色に表示され、類似度が低い図4Bの事例では関心領域A内が全て黄色に表示される。
また、本実施の形態では、類似度が上がった場合(例えば25/100〜50/100)には関心領域A内が全て緑色に表示され、類似度がさらに上がった場合(例えば51/100〜75/100)には関心領域A内が全て紫色に表示される。そして、類似度が76/100以上の場合には図4Aと同様に関心領域A内が全て青色に表示される。このような表示とすることにより、観察対象となる組織の癒着の有無や癒着の程度が視認しやすくなる。
付加的または代替的な他の例として、動き類似度算出部50は、動きベクトルの分布の広がりについての統計解析を行い、かかる解析値(ヒストグラムなど)を類似度の値として平滑化部60に出力してもよい。
図5に、動きベクトルの統計値としてのヒストグラム(H1,H2)の例を示す。図5の例では、横軸に動きベクトルの平均値(平均ベクトル)との差(例えば、前述したコサイン類似度または内積値の逆数)を示し、縦軸に頻度を示す。図5に示す2つのヒストグラムH1およびH2を比較すると、ヒストグラムH1の方がヒストグラムH2よりも動きベクトルの類似度が高いことが分かる。
すなわち、ヒストグラムH1では、平均ベクトルとの差が小さい動きベクトル(言い換えると、互いに同一ないし近似する方向に動く)の頻度がより高く、平均ベクトルからの差が大きいベクトル(異なる方向に動く)の頻度がより低い。これに対してヒストグラムH2は、ヒストグラムH1とは逆の頻度分布となっている。従って、「組織の癒着の程度」の観点からは、ヒストグラムH2の方が癒着が弱い(滑走性が高い)ことが分かる。
図3〜図5で上述した表示内容は、自動的に、あるいはユーザーの設定操作に基づいて適宜、記憶部90に格納(一時記憶ないし長期保存)することができ、また、必要に応じて図示しないカラープリンタ等によって用紙上に出力してもよい。
次に、図6および図7を参照して、超音波診断装置1において組織の動きの分布を評価する処理の具体例を説明する。ここで、図6は、上述した図3の表示例に対応した処理フローであり、簡明のため、動きベクトル算出部30の算出結果を、記憶部90に直接出力する構成(図1参照)を前提とする。他方、図7は、図1に示す全てのブロックを使用した場合の処理フローである。一具体例では、図6および図7に示す処理は、超音波診断装置1内の単一のプロセッサーが、RAMに格納されたプログラムを読み出して実行することにより、行われる。
なお、図6または図7に示す処理を開始するに先立って、ユーザーは、超音波診断装置1の不図示のプローブを体表に接触(固定)させて、当該組織(上述した筋膜Fおよび筋肉M)の超音波画像を表示部80に表示させる。そして、癒着の有無等の測定のため、表示部80に映っている組織の内、測定対象となる組織(一例では、筋膜Fおよび筋肉Mの境界)の領域を関心領域Aとして指定し表示部80に表示させる。さらに、当該組織を動かす直前に、ユーザーが測定開始のための入力操作を行うことで、図6または図7に示す処理が開始される。
図6のステップS10において、動画像取得部10は、上述した画像生成ユニットから動画像(静止画像が記録された連続するフレーム)を取得し、連続する2フレーム(説明の便宜上、フレーム1およびフレーム2と称する)の画像を動きベクトル算出部30に出力する。
なお、ノイズをフィルタリングして構造物を明瞭化するために、画像生成ユニット内の処理部(プロセッサー)によって、超音波の送受信方向を変えた画像を複数枚生成し、かかる複数枚の画像を合成する空間コンパウンドの技術が使われる場合がある。すなわち、画像生成ユニット内の処理部は、第1の方向に超音波を送信することにより得られた超音波画像と当該第1の方向とは異なる第2の方向に超音波を送信することにより得られた超音波画像とを用いて空間コンパウンド処理を行う。
一方、空間コンパウンドの処理によって複数枚の画像が合成されて1フレーム化された場合、時間方向に平滑化される作用が働くことで、動きベクトル算出部30における動きベクトルの検出感度が低下するおそれがある。したがって、空間コンパウンドの技術を用いる場合には、上述した「2フレーム」は、処理部により空間コンパウンド処理が施されていない超音波画像、すなわち、空間コンパウンドする前の画像で、同じ方向に超音波を送受信した画像を使う(例えば、右方向同士、左方向同士)。これに対して、空間コンパウンドの技術を使わない場合には、時間的に連続した2フレームを使う。
続いて、動きベクトル算出部30は、取得した2フレーム(1および2)について、公知のトラッキング技術により、関心領域Aの画素単位での動きベクトルを算出する(ステップS20およびステップS40)。
具体的には、ステップS20において、動きベクトル算出部30は、フレーム1の関心領域A内における組織の各画素に対して、フレーム2の関心領域A中の対応する組織の画素(例えば輝度が近似する画素)をn個検出する。かかる処理により、関心領域A中の各小領域での組織の部位が、2フレーム間で対応付けられる。
続くステップS40において、動きベクトル算出部30は、検出されたn個の画素の動きベクトル(動く方向および動く量)を、当該画素毎に算出する。ここで、動く方向は、フレーム1の2次元平面(XY座標)上の画素の座標位置と、フレーム2の2次元平面上の対応する画素の座標位置と、のなす方向ないし角度から算出される。また、動く量は、各フレーム1、2における対応する画素の座標位置の距離から算出される。さらに、動きベクトル算出部30は、評価結果(ここでは超音波画像に重畳させる付加情報)として、各々の画素の動きの方向に応じた色または矢印のパターンをn個生成する(ステップS50)。生成された付加情報は、動きベクトル算出部30から記憶部90に出力され、記憶される。
ステップS70において、表示制御部70は、上述した操作入力部(トラックボール等)の入力信号を監視して、動きベクトル算出部30による算出結果の表示指示が入力されたか否かを判定する。かかる表示指示が入力されていないと判定した場合(ステップS70、NO)、表示制御部70は、ステップS10に処理を戻し、上述したステップS10〜ステップS70の処理を繰り返す。一方、表示指示が入力されたと判定した場合(ステップS70、YES)、表示制御部70は、ステップS80に移行する。
なお、ステップS10に処理が戻った場合、動画像取得部10は、適宜、上述した画像生成ユニットから動画像(新たなフレーム)を取得し、次の1枚分のフレーム(ここではフレーム3)の画像を動きベクトル算出部30に出力する。また、動きベクトル算出部30は、次の2枚のフレーム(取得したフレーム3および直近のフレーム2)について、関心領域Aの画素単位での動きベクトルを算出する(ステップS20およびステップS40)。
ステップS80において、表示制御部70は、上述した付加情報を記憶部90から読み出して、関心領域A内で特定された各々の画素の動きを示す色または矢印のパターンを、表示部80に表示する(図3参照)。このとき、表示制御部70は、操作入力部(トラックボール等)の操作に応じて、関心領域A内の画素の動きを示す色または矢印のパターンを、時系列的に(すなわちフレーム順に)表示する。
上記のような処理を行うことにより、関心領域A内の組織の各小領域の動きがフレームの時系列に従って表示されるので、互いに異なる組織の癒着の有無や、滑走性ないし癒着の程度を、直感的ひいては定量的に評価することが容易になる。
次に、図7を参照して、図1の各ブロックを使用した場合の処理の具体例を説明する。
ステップS100は、図6で上述したステップS10と同様である。すなわち、動画像取得部10は、画像生成ユニットから動画像を取得し、連続する2フレーム(フレーム1およびフレーム2)の画像を動きベクトル算出部30に出力する(ステップS100)。
続いて、動きベクトル算出部30は、取得した2フレーム(1および2)について、公知のトラッキング技術により、関心領域Aの画素単位での動きベクトルを算出する(ステップS120)。かかる算出の処理は、図6のステップS20およびステップS40で上述した処理と同様である。一方、動きベクトル算出部30は、算出したn個の動きベクトルを、動き情報として、動き検出部40と、動き類似度算出部50と、に各々出力する(図1を参照)。このとき、動き検出部40は、動きベクトル算出部30から受信したn個の動きベクトルのうち、最大の大きさを有する動きベクトルを検出し、動き量として平滑化部60に出力する。
続くステップS140において、平滑化部60は、動き検出部40で検出した動き量が、予め定められた規定値を超えているか否かを判定する。そして、平滑化部60は、動き検出部40で検出した動き量が規定値を超えている(ステップS140、YES)と判定した場合、ステップS160に移行する。
一方、平滑化部60は、かかる動き量が規定値を超えていない(ステップS140、NO)と判定した場合、ステップS100に処理を戻す。かかる処理により、動き量が規定値を超えていないフレーム(この例ではフレーム1およびフレーム2)が平滑化の対象から除外される。
このような処理を行うことにより、組織が静止状態または殆ど動いていない状態(例えば、測定前後の状態)における超音波画像を評価対象とせずに、測定用の動作開始後における超音波画像のみを評価することができる。したがって、平滑化部60における後述する時系列的な評価(ステップS200)の処理により算出された値の信頼性が担保される。
他の処理例として、平滑化部60は、動き検出部40で検出した動き量が予め定められた規定値を超えていない(ステップS140、NO)と判定した場合、当該規定値を超えていないフレームの重みを低くする設定を行って、ステップS160に移行してもよい。
ステップS160において、動き類似度算出部50および平滑化部60によって、関心領域A内の動きベクトルの類似度を評価する処理を実行する。
具体的には、ステップS160において、動き類似度算出部50は、動きベクトル算出部30から取得した各画素または各小領域の動きベクトルの類似度を算出する。かかる算出の手法は上述した通りであり、動き類似度算出部50は、算出した類似度(cossimmean)の値を平滑化部60に出力する。
続くステップS180において、平滑化部60は、動き類似度算出部50から取得し、上記のように平滑化の対象とされる類似度の算出フレーム数が、予め定められた規定数に達したか否かを判定する。
ここで、平滑化部60は、規定数に達したと判定した場合(ステップS180、YES)、ステップS200に移行して、時系列的な評価値の算出を開始する。一具体例では、平滑化部60は、動き類似度算出部50から取得した複数の類似度の値を平滑化する処理を行い、かかる平滑化値を表示制御部70に出力する。
他方、平滑化部60は、規定数に達していないと判定した場合(ステップS180、NO)、動き類似度算出部50から取得した類似度の値を一時的に記憶して、ステップS100に処理を戻す。すなわち、取得した類似度の値が1個だけでは上述した平滑化値を算出できないため、平滑化部60は、平滑化の対象とされる類似度の値の採用数が予め定められた数(例えば5個)に達した場合に、ステップS200に移行する。
なお、ステップS100に処理が戻った場合、動画像取得部10は、適宜、上述した画像生成ユニットから動画像(新たなフレーム)を取得し、次の1枚分のフレーム(ここではフレーム3)の画像を動きベクトル算出部30に出力する。また、ステップS120において、動きベクトル算出部30は、次の2枚のフレーム(取得したフレーム3および直近のフレーム2)について、動きベクトルを求める。ステップS140以下の処理は、上述と同様であり、説明を省略する。
かくして、ステップS100〜ステップS180の処理を繰り返して、平滑化の対象とされる類似度の値が規定数に達すると(ステップS180、YES)、平滑化部60は、ステップS200に移行する。ステップS200において、平滑化部60は、動き類似度算出部50から取得した複数の類似度の値を平滑化し、かかる平滑化値を評価結果として表示制御部70に出力する。
続く、ステップS220において、表示制御部70は、平滑化部60から取得した評価結果(平滑化値)に基づいて、表示部80に表示される超音波画像の付加情報を生成し、生成した付加情報を超音波画像とともに表示するように、表示部80を制御する。
一具体例では、表示制御部70は、図4Aおよび図4Bで説明したように、取得した平滑化値を予め定められた位置(図4の例では関心領域Aの右側)に表示するとともに、関心領域A内の全領域を、かかる平滑化値(類似度)のレベルに対応した色で表示する。
このような処理を行う本実施の形態によれば、超音波画像として映った組織の滑走性(癒着)についての定量的な測定を行うことができる。
なお、本実施の形態では、上述したステップS220における表示部80への表示状態において、ユーザーが操作入力部を操作してデータ保存の処理を行うことができる。この場合、表示制御部70は、表示部80に表示した組織の超音波画像および各部(30〜60)による評価結果を、当該患者の患者IDとともに記憶部90にファイル化して保存する。
このようなデータ保存の処理を行うことにより、例えば、治療やリハビリ前後、といった異なった状態における各々の測定結果を、その都度保存し、組織の状態の経過を把握することができる。
図8は、記憶部90に保存された過去の測定結果を表示部80の左側に測定画像1として表示し、今回(現在)測定中の結果を表示部80の右側に測定画像2として並べて表示した例を示す図である。かかる表示は、例えばユーザーが上述したステップS100の実行前に、患者IDを入力する操作を併せて行った場合に、表示制御部70が、当該患者IDに対応付けられた測定画像1に係るファイルを記憶部90から読み出すことによって行われる。
図8に示す例では、治療前に測定された画像を測定画像1として表示部80の表示画面の左側に表示し、かかる治療後に測定された画像を測定画像2として、表示画面の右側に表示している。
このとき、表示制御部70は、測定画像1に係るファイルを記憶部90から読み出して、測定に用いた1フレーム分の画像および評価結果(評価値等)を表示画面の左側に表示するように表示部80を制御する。また、表示制御部70は、動画像取得部10から入力される動画像(リアルタイム画像)を測定画像2として、測定画像1の右側に並べて表示するように表示部80を制御する。
このような処理を行うことにより、ユーザーは、今回(測定画像2)の測定の際に、表示画面の左側に表示されている測定画像1の画像を参照して、プローブを前回(測定画像1)の測定時と同一の条件(すなわち組織の同一位置および同一角度等)に合わせることが容易になる。
加えて、本実施の形態では、前回の測定と今回の測定とで測定条件を出来るだけ一致させて再現性を向上させるために、表示画面内の測定画像1および2の間の領域に、測定画像1および測定画像2の画像の類似度(この例では関心領域Aの画像の類似度)を表示する構成としている。かかる表示に関する処理は、例えば以下のようにして行う。
ユーザーは、測定画像2について図7に示す処理を開始するに先立って、表示部80の表示画面内の右側に測定画像2として映っている画像(リアルタイム画像)が、左側に表示されている測定画像1の画像と出来るだけ同一になるように、プローブの位置等を調整し、関心領域Aを設定する。このとき、表示制御部70は、評価部を構成するいずれかのブロック(一例では動き類似度算出部50)に、かかる測定画像2の関心領域Aの画像と、測定画像1の関心領域Aの画像とを入力し、当該2つの画像の類似度を算出するように命令を出力する。ここで、動き類似度算出部50は、当該2つの画像の類似度の値を、例えば公知のパターンマッチング技術により算出する。表示制御部70は、動き類似度算出部50が算出した類似度の値を、例えば表示画面の中央下側に表示するように表示部80を制御する(図8を参照)。
このような処理を行うことにより、組織の超音波観察を複数回に亘って行う場合における、当該組織の撮影条件の再現性を向上させることができる。
図8は、上述したような前処理の後、図7で説明した各処理を実行することにより表示部80に表示された状態を示す。ここで、測定画像1と測定画像2とでは、平滑化部60により算出された評価値(平滑化値)が異なっており、かかる差異により、関心領域A内に付加された色も異なっている(図8中、かかる色の違いをハッチングの違いで表している)。
図8に示す例では、表示画面内の測定画像1および2の間の領域に、測定画像1の評価値(16/100)と測定画像2の評価値(84/100)との差分の値(この例では68/100)が表示されている。かかる表示に関する処理は、例えば以下のようにして行う。
すなわち、上述したステップS200において、平滑化部60は、測定画像2の評価値(平滑化値)を算出して、かかる算出値(この例では84/100)を測定画像2の評価結果として表示制御部70に出力する。さらに、平滑化部60は、かかる算出値(84/100)と測定画像1の評価値(16/100)との差分を算出し、かかる算出値を、測定画像1および2の評価値の差分として、表示制御部70に出力する。
図8に示す評価値および差分の値によれば、治療前(測定画像1)は組織(関心領域A内の組織、以下同じ)の滑走性が良好であったのに対して、治療後(測定画像2)では組織の滑走性が悪化して癒着が生じていることが容易に把握することができる。この後、組織の滑走性を回復させるためのリハビリを行った後、再度の測定を行って測定画像3を生成および保存し、測定画像1〜3および各々の評価値および差分の値を表示部80の表示画面に表示してもよい。
上述した実施の形態では、評価部(動きベクトル算出部30等)によって評価する対象となる超音波画像のフレームを、動き検出部40の検出結果に基づいて、平滑化部60が取捨選択する構成とした。
他の構成として、評価部により評価する対象となる超音波画像のフレーム(以下、評価対象フレームという)を、ユーザーによって選択できる構成としてもよい。
一具体例では、評価対象フレームは、ユーザーが所定の操作をしてから画面が大きく切り替わる直前までに生成されたフレームとすることができる。ここで、「所定の操作」とは、例えば、操作入力部の所定のボタンを押す、タッチパネルのスタートボタンを押す、トラックボールを動かす、関心領域Aを設定する操作など、種々の態様があり得る。また、「画面が大きく切り替わる」とは、表示部80に表示されている超音波画像中の測定対象となる組織が表示されなくなることである。かかる画面の大きな切り替わり(遷移)は、動き検出部40の検出結果から判別することができ、あるいは使用するプローブの種類によっては、プローブの検出信号から判別することができる。
他の具体例では、評価対象フレームは、画面が大きく切り替わる直前までの所定の時間範囲分のフレームとしてもよい。ここで、「所定の時間範囲」は、測定時に組織を動かす時間に応じて、予めユーザーが任意に設定できるようにするとよい。
以上、詳細に説明したように、本実施の形態によれば、取得された超音波画像の連続する2つのフレーム内における組織の動きの分布を評価し、評価結果を出力する構成を備えることにより、組織についての定量的な測定を行うことができる。
上述した実施の形態では、出力制御部として表示部80を制御する表示制御部70を用い、超音波画像および評価結果の情報を表示部80の表示画面に画像表示する構成について説明した。出力制御部の代替的ないし付加的な他の例として、超音波画像および評価結果の情報を印刷(すなわちプリントアウト)する制御、あるいは評価結果(数値等)を音声出力する制御を行う構成としてもよい。
その他、上記実施の形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
1 超音波診断装置(超音波画像評価装置)
10 動画像取得部(画像取得部)
20 関心領域設定部
30 動きベクトル算出部(評価部)
40 動き検出部(評価部)
50 動き類似度算出部(評価部)
60 平滑化部(評価部)
70 表示制御部(出力制御部)
80 表示部
90 記憶部(記憶部)
A 関心領域
F 筋膜
M 筋肉

Claims (22)

  1. 超音波に基づいて生成された第1の超音波画像と前記第1の超音波画像よりも前に生成された第2の超音波画像とを取得する画像取得部と、
    前記第1の超音波画像内の組織の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価する評価部と、
    前記評価部の評価結果を出力する制御を行う出力制御部と、
    を備える超音波画像評価装置。
  2. 前記評価部は、前記組織の部分及び前記対応する前記組織の部分の動きの方向に基づき、前記動きの分布を評価する、
    請求項1に記載の超音波画像評価装置。
  3. 前記評価部は、前記第1の超音波画像内の前記組織の複数の部分及び前記第2の超音波画像内の前記対応する組織の複数の部分の動きの方向に基づき、前記動きの分布を評価する、
    請求項2に記載の超音波画像評価装置。
  4. 前記評価部は、前記評価結果として、前記動きの方向に応じた色または矢印のパターンを生成する、請求項2または3に記載の超音波画像評価装置。
  5. 前記評価部は、前記動きの分布を数値化した評価値を前記評価結果として生成する、
    請求項1から4のいずれかに記載の超音波画像評価装置。
  6. 前記第1の超音波画像と前記第2の超音波画像とは、時系列で連続する2つのフレームである、
    請求項1から5のいずれかに記載の超音波画像評価装置。
  7. 第1の方向に超音波を送信することにより得られた超音波画像と前記第1の方向とは異なる第2の方向に超音波を送信することにより得られた超音波画像とを用いて空間コンパウンド処理を行う処理部を有し、
    前記第1の超音波画像及び前記第2の超音波画像は、前記処理部により空間コンパウンド処理が施されていない超音波画像である、
    請求項1から6のいずれかに記載の超音波画像評価装置。
  8. 前記評価部は、前記第1の超音波画像及び前記第2の超音波画像における画素又は複数画素を含む領域の動きベクトルに基づいて、前記評価値を生成する、
    請求項5に記載の超音波画像評価装置。
  9. 前記評価部は、動きの分布を評価する際に、動きベクトルの分布の広がりに基づいて、前記評価値を生成する、
    請求項5または8に記載の超音波画像評価装置。
  10. 前記評価部は、前記超音波画像において設定された関心領域内の少なくとも2つの前記組織の動きの分布を評価する、
    請求項1から9のいずれかに記載の超音波画像評価装置。
  11. 前記出力制御部は、
    前記超音波画像を表示する表示部を制御し、前記評価部の評価結果を前記超音波画像に付加して表示させる表示制御部を備える、
    請求項1から10のいずれかに記載の超音波画像評価装置。
  12. 前記表示制御部は、前記評価部の評価結果に応じて、前記表示部に表示した前記超音波画像内の関心領域の色を変更する、
    請求項11に記載の超音波画像評価装置。
  13. 前記評価部は、前記画像取得部により第1の時期に取得された前記超音波画像に対する第1の評価値と、前記画像取得部により第2の時期に取得された前記超音波画像に対する第2の評価値と、に基づいて、前記動きの分布を評価する、
    請求項12に記載の超音波画像評価装置。
  14. 前記評価部は、前記第1の評価値と、前記第2の評価値との差分によって、前記動きの分布を評価する、
    請求項13に記載の超音波画像評価装置。
  15. 前記表示制御部は、前記第1の評価値および対応する前記超音波画像と、前記第2の評価値および対応する前記超音波画像と、を、前記表示部に表示する、
    請求項13または14に記載の超音波画像評価装置。
  16. 前記評価部は、前記第1の評価値に対応する前記超音波画像と、前記第2の評価値に対応する前記超音波画像と、の画像の類似度を算出し、
    前記表示制御部は、算出された類似度を前記表示部に表示する、
    請求項13から15のいずれかに記載の超音波画像評価装置。
  17. 前記超音波画像と、当該超音波画像に対する前記評価部の評価結果と、を記憶する記憶部を有し、
    前記表示制御部は、前記第2の評価値の算出前に、前記第1の評価値および対応する前記超音波画像を前記記憶部から読み出して前記表示部に表示する、
    請求項13から16のいずれかに記載の超音波画像評価装置。
  18. 前記評価部によって評価される対象のフレームは、ユーザーの選択に応じて設定される、
    請求項1から17のいずれかに記載の超音波画像評価装置。
  19. 前記評価部は、前記超音波画像の動き量に応じて、当該フレームに係る類似度の値を除外するか否かを決定する、
    請求項16に記載の超音波画像評価装置。
  20. 前記画像取得部は、異なる2種以上の組織が撮影された超音波画像を取得する、
    請求項1から19のいずれかに記載の超音波画像評価装置。
  21. 超音波に基づいて生成された第1の超音波画像と前記第1の超音波画像よりも前に生成された第2の超音波画像とを取得し、
    前記第1の超音波画像内の組織の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価し、
    評価結果を出力する、
    超音波画像評価方法。
  22. コンピューターに、
    超音波に基づいて生成された第1の超音波画像と前記第1の超音波画像よりも前に生成された第2の超音波画像とを取得する処理と、
    前記第1の超音波画像内の組織の部分及び前記第2の超音波画像内の対応する組織の部分における動きの分布を評価する処理と、
    評価結果を出力する処理と、
    を実行させるための超音波画像評価プログラム。
JP2018187516A 2018-10-02 2018-10-02 超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム Active JP7215053B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018187516A JP7215053B2 (ja) 2018-10-02 2018-10-02 超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム
US16/566,516 US11430120B2 (en) 2018-10-02 2019-09-10 Ultrasound image evaluation apparatus, ultrasound image evaluation method, and computer-readable non-transitory recording medium storing ultrasound image evaluation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187516A JP7215053B2 (ja) 2018-10-02 2018-10-02 超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム

Publications (2)

Publication Number Publication Date
JP2020054634A true JP2020054634A (ja) 2020-04-09
JP7215053B2 JP7215053B2 (ja) 2023-01-31

Family

ID=69946316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187516A Active JP7215053B2 (ja) 2018-10-02 2018-10-02 超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム

Country Status (2)

Country Link
US (1) US11430120B2 (ja)
JP (1) JP7215053B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890143B2 (en) * 2021-04-30 2024-02-06 GE Precision Healthcare LLC Ultrasound imaging system and method for identifying connected regions
WO2024145750A1 (zh) * 2023-01-03 2024-07-11 深圳迈瑞动物医疗科技股份有限公司 一种评估跟腱康复情况的方法和超声成像设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080077011A1 (en) * 2006-09-27 2008-03-27 Takashi Azuma Ultrasonic apparatus
JP2013118984A (ja) * 2011-12-08 2013-06-17 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理プログラム
JP2013188300A (ja) * 2012-03-13 2013-09-26 Shinji Kume 超音波診断装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377436A (ja) 1986-09-19 1988-04-07 富士通株式会社 超音波診断装置
US6638221B2 (en) * 2001-09-21 2003-10-28 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus, and image processing method
ES2246029T3 (es) * 2003-04-11 2006-02-01 Medcom Gesellschaft Fur Medizinische Bildverarbeitung Mbh Combinacion de los datos de las imagenes primarias y secundarias de un objeto.
US7678051B2 (en) * 2005-09-27 2010-03-16 Siemens Medical Solutions Usa, Inc. Panoramic elasticity ultrasound imaging
CN101304692B (zh) * 2005-11-08 2012-11-07 皇家飞利浦电子股份有限公司 心肌同步的超声诊断
CN101516271B (zh) * 2006-10-03 2011-08-17 奥林巴斯医疗株式会社 超声波图像处理装置以及超声波诊断装置
US9119557B2 (en) * 2008-11-10 2015-09-01 Hitachi Medical Corporation Ultrasonic image processing method and device, and ultrasonic image processing program
JP2011224346A (ja) * 2010-03-31 2011-11-10 Toshiba Corp 超音波診断装置、画像処理装置および画像処理方法
EP2637570A4 (en) * 2010-11-10 2014-07-02 Echometrix Llc SYSTEM AND METHOD FOR PROCESSING ECHOGRAPHIC IMAGES
US20150272547A1 (en) * 2014-03-31 2015-10-01 Siemens Medical Solutions Usa, Inc. Acquisition control for elasticity ultrasound imaging
KR102156297B1 (ko) * 2014-04-17 2020-09-15 삼성메디슨 주식회사 의료 영상 장치 및 그 동작방법
US11138735B2 (en) * 2017-10-17 2021-10-05 Canon Medical Systems Corporation Image processing apparatus and medical image taking apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080077011A1 (en) * 2006-09-27 2008-03-27 Takashi Azuma Ultrasonic apparatus
JP2008079792A (ja) * 2006-09-27 2008-04-10 Hitachi Ltd 超音波診断装置
JP2013118984A (ja) * 2011-12-08 2013-06-17 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理プログラム
JP2013188300A (ja) * 2012-03-13 2013-09-26 Shinji Kume 超音波診断装置

Also Published As

Publication number Publication date
JP7215053B2 (ja) 2023-01-31
US11430120B2 (en) 2022-08-30
US20200104997A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US8172754B2 (en) Ultrasonograph
US9072493B1 (en) Ultrasonic diagnostic apparatus and elastic evaluation method
US9801614B2 (en) Ultrasound diagnostic apparatus, ultrasound image processing method, and non-transitory computer readable recording medium
WO2014081006A1 (ja) 超音波診断装置、画像処理装置および画像処理方法
US20110313291A1 (en) Medical image processing device, medical image processing method, medical image diagnostic apparatus, operation method of medical image diagnostic apparatus, and medical image display method
JP7078487B2 (ja) 超音波診断装置及び超音波画像処理方法
JP2011224346A (ja) 超音波診断装置、画像処理装置および画像処理方法
JP5726081B2 (ja) 超音波診断装置及び弾性画像の分類プログラム
JP6648587B2 (ja) 超音波診断装置
JP2021506470A (ja) 超音波システムのためのエコー窓のアーチファクト分類及び視覚的インジケータ
JP2016112285A (ja) 超音波診断装置
JP7215053B2 (ja) 超音波画像評価装置、超音波画像評価方法および超音波画像評価プログラム
KR20190094974A (ko) 초음파 진단 장치 및 초음파 진단 장치의 제어 방법
CN112674791A (zh) 肌肉超声弹性成像的优化方法及系统
JP5918325B2 (ja) 超音波診断装置
US20220361852A1 (en) Ultrasonic diagnostic apparatus and diagnosis assisting method
JP6212160B1 (ja) 超音波診断装置
JP2009160336A (ja) 超音波診断装置
JP7294996B2 (ja) 超音波診断装置及び表示方法
KR102122767B1 (ko) 초음파 검사 지원 장치 및 방법
JP6286926B2 (ja) 超音波診断装置、画像処理方法、およびプログラム
JP7008590B2 (ja) 超音波画像処理装置
CN114098687B (zh) 用于超声运动模式的自动心率测量的方法和系统
JP7457571B2 (ja) 超音波診断装置及び診断支援方法
US12076191B2 (en) Ultrasound diagnosis apparatus, method for displaying ultrasound image, and computer program product

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R150 Certificate of patent or registration of utility model

Ref document number: 7215053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150