JP2020053271A - Battery ambient temperature estimation device - Google Patents

Battery ambient temperature estimation device Download PDF

Info

Publication number
JP2020053271A
JP2020053271A JP2018181703A JP2018181703A JP2020053271A JP 2020053271 A JP2020053271 A JP 2020053271A JP 2018181703 A JP2018181703 A JP 2018181703A JP 2018181703 A JP2018181703 A JP 2018181703A JP 2020053271 A JP2020053271 A JP 2020053271A
Authority
JP
Japan
Prior art keywords
battery
temperature
temperature sensor
ecu
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018181703A
Other languages
Japanese (ja)
Other versions
JP7072997B2 (en
Inventor
康正 大西
Yasumasa Onishi
康正 大西
宏二 小澤
Koji Ozawa
宏二 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018181703A priority Critical patent/JP7072997B2/en
Publication of JP2020053271A publication Critical patent/JP2020053271A/en
Application granted granted Critical
Publication of JP7072997B2 publication Critical patent/JP7072997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To make it possible to accurately estimate the ambient temperature of a battery, excluding the influence caused by the operation of a vehicle equipped with the battery.SOLUTION: A battery ambient temperature estimation device estimates the temperature around a battery 50 on the basis of a temperature detected by a temperature sensor 21a that is attached to a positive terminal 51 of the battery 50 and detects the temperature, and a value of current discharged when the battery 50 is detecting the temperature of the temperature sensor 21a, and a correction coefficient used for estimation immediately after the start of the operation is set on the basis of a temperature change of the temperature sensor 21a.SELECTED DRAWING: Figure 1

Description

本発明は、主に自動車その他車両に搭載されるバッテリの周囲温度推定装置に関する。   The present invention relates to an apparatus for estimating an ambient temperature of a battery mainly mounted on an automobile or other vehicles.

従来、自動車等の車両において燃費を改善する方法としてバッテリの充電動作に着目して、車両の加速時に充電を抑制することで加速中のエンジン負荷を軽減する、減速時に充電量を増加させ減速エネルギーを回生させる等の手法が用いられている。このようなバッテリの充放電制御に際しては、バッテリの充放電特性はその温度によって変化するため、充電時の電圧・電流とともに温度を正確に検出することが重要とされる。そのための技術として、例えば、特許文献1においては、バッテリの電流検出装置の内部にバッテリの温度を測定するための温度センサを設けることが開示されている。具体的には、バッテリの電極端子に組み付けられるクランプに温度センサを取り付けることにより、電極端子を含めたバッテリ近傍の温度を推定し、これに基づきバッテリの温度を得るようにしている。   Conventionally, as a method of improving fuel efficiency in a vehicle such as an automobile, attention has been paid to a battery charging operation, and the engine load during acceleration is reduced by suppressing charging when the vehicle is accelerating. For example, a technique such as regenerating is used. In such charge / discharge control of the battery, since the charge / discharge characteristics of the battery change depending on its temperature, it is important to accurately detect the temperature together with the voltage and current during charging. As a technique for that purpose, for example, Patent Literature 1 discloses that a temperature sensor for measuring the temperature of the battery is provided inside the battery current detection device. Specifically, by attaching a temperature sensor to a clamp assembled to the electrode terminal of the battery, the temperature near the battery including the electrode terminal is estimated, and the temperature of the battery is obtained based on the estimated temperature.

特開2009−177903号公報JP 2009-177903 A

しかしながら、上記従来の技術には、以下の様な課題があった。すなわち、特許文献1に記載の技術による電流検出装置においては、通電によりバッテリの電極端子が温度上昇し、温度センサ自体の温度も上昇する。   However, the conventional technique has the following problems. That is, in the current detection device according to the technique described in Patent Literature 1, the temperature of the electrode terminal of the battery rises due to energization, and the temperature of the temperature sensor itself also rises.

この場合、温度センサへの通電量に基づく発熱を考慮して周囲温度を推定することが考えられるが、電流検出装置はバッテリに搭載された車両のイグニッションスイッチのON/OFFに応じてON/OFFされるため、車両の起動時において精度良く周囲温度を推定することが困難となることが見いだされた。   In this case, it is conceivable to estimate the ambient temperature in consideration of the heat generation based on the amount of electricity supplied to the temperature sensor. However, the current detection device is turned ON / OFF according to the ON / OFF of an ignition switch of the vehicle mounted on the battery. Therefore, it has been found that it is difficult to accurately estimate the ambient temperature when the vehicle starts.

本発明は、上記の課題に鑑みてなされたものであり、バッテリを搭載する車両の動作に起因する影響を除いて精度良くバッテリの周囲温度を推定することが可能なバッテリの周囲温度推定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a battery ambient temperature estimating device capable of accurately estimating the battery ambient temperature except for the influence due to the operation of a vehicle equipped with the battery. The purpose is to provide.

上記の目的を達成するために、本発明の側面は、バッテリの電極端子に組み付けられて温度を検出する温度センサが検出した温度及び前記バッテリが前記温度センサの温度検出中に放電する電流値に基づいて前記バッテリの周囲の温度を推定するバッテリの周囲温度推定装置であって、動作開始直後における前記推定に用いるパラメータを、前記温度センサ又は前記電極端子の温度変化に基づき設定する、バッテリの周囲温度推定装置である。   In order to achieve the above object, aspects of the present invention relate to a temperature detected by a temperature sensor that is attached to an electrode terminal of a battery and detects a temperature, and a current value that the battery discharges during the temperature detection of the temperature sensor. A battery ambient temperature estimating device for estimating the ambient temperature of the battery based on the temperature of the temperature sensor or the electrode terminal. It is a temperature estimation device.

なお本発明は、他の側面として、前記温度センサ又は前記電極端子の温度変化に関するデータを外部から取得することにより前記パラメータを設定するものであってもよい。   According to another aspect of the present invention, the parameter may be set by acquiring data on a temperature change of the temperature sensor or the electrode terminal from outside.

以上のような本発明は、バッテリを搭載する車両の動作に起因する影響を除いて精度良くバッテリの周囲温度を推定することが可能になるという効果を奏する。   The present invention as described above has an effect that it is possible to accurately estimate the ambient temperature of the battery, excluding the influence caused by the operation of the vehicle equipped with the battery.

本発明の実施の形態に係るバッテリの温度推定装置の構成を示すブロック図1 is a block diagram illustrating a configuration of a battery temperature estimating apparatus according to an embodiment of the present invention. 本発明の実施の形態に係るバッテリの電流・温度センサの外観構成を示す斜視図1 is a perspective view showing an external configuration of a battery current / temperature sensor according to an embodiment of the present invention. 本発明の実施の形態に係るバッテリの温度推定装置の動作のフローチャートFlow chart of the operation of the battery temperature estimating apparatus according to the embodiment of the present invention 本発明の実施の形態に係るバッテリの温度推定装置に用いられる演算の基となるバッテリの正極端子の測定温度と温度センサの検出値との関係を示すグラフ4 is a graph showing the relationship between the measured temperature of the positive terminal of the battery and the value detected by the temperature sensor, which is the basis of the calculation used in the battery temperature estimating apparatus according to the embodiment of the present invention. 本発明の実施の形態に係るバッテリの温度推定装置に用いられる演算の基となるバッテリの正極端子の測定温度、温度センサの検出値及びバッテリ周囲の測定温度との関係を示すグラフ4 is a graph showing a relationship between a measured temperature of a positive electrode terminal of a battery, a detected value of a temperature sensor, and a measured temperature around a battery, which is a basis of a calculation used in the battery temperature estimating apparatus according to the embodiment of the present invention. 本発明の実施の形態に係るバッテリの温度推定装置における演算のブロック線図FIG. 2 is a block diagram of a calculation in the battery temperature estimating apparatus according to the embodiment of the present invention. 本発明の実施の形態に係るバッテリの温度推定装置における各部の動作のタイミングチャートTiming chart of the operation of each unit in the battery temperature estimation device according to the embodiment of the present invention 本発明の実施の形態に係るバッテリの温度推定装置における温度センサの温度の時間変化を示すグラフFIG. 4 is a graph showing a time change of the temperature of the temperature sensor in the battery temperature estimating apparatus according to the embodiment of the present invention.

図1は、本発明の実施の形態に係るバッテリの温度推定装置が組み込まれた自動車のバッテリの充放電系統1の構成を示すブロック図である。図1に示すように、本実施の形態の充放電系統1において、エンジンECU10は、CPU、メモリ、例えばCANである通信バス40を介して他のECUと通信する通信装置等を有し、図示しない自動車のエンジンの動作を制御するとともに、エンジンの補機であるオルタネータ60を動作させる手段である。バッテリECU20は、エンジンECU10と同様のハードウェア構成を有し、温度センサ21a及び電流センサ21bの検出する諸量に基づき、バッテリ50の充放電制御を行う手段である。ボディECU30は、エンジンECU10と同様のハードウェア構成を有し、自動車のヘッドランプ等の電装系の動作を制御する手段である。   FIG. 1 is a block diagram showing a configuration of a battery charging / discharging system 1 of an automobile in which a battery temperature estimating apparatus according to an embodiment of the present invention is incorporated. As shown in FIG. 1, in a charge / discharge system 1 of the present embodiment, an engine ECU 10 includes a CPU, a memory, a communication device that communicates with another ECU via a communication bus 40, for example, a CAN, and the like. This is a means for controlling the operation of the engine of the vehicle not to be operated and for operating the alternator 60 which is an auxiliary device of the engine. The battery ECU 20 has a hardware configuration similar to that of the engine ECU 10, and is a unit that controls charging and discharging of the battery 50 based on various amounts detected by the temperature sensor 21a and the current sensor 21b. The body ECU 30 has the same hardware configuration as the engine ECU 10 and is a means for controlling the operation of an electrical system such as a headlamp of an automobile.

温度センサ21aは温度を検出する手段であり、電流センサ21bはバッテリ50に流れる電流値を検出する手段である。更に、温度センサ21a及び電流センサ21bは、図2に示すようにバッテリ50の正極端子51に組み付けられるクランプ端子21x、温度センサ21a及び電流センサ21bの検出本体が内蔵された本体部21y並びにケーブル21zを備えた電流・温度検出器21として一体化したハードウェア構成を有する。この構成により、温度センサ21aは直接的にはバッテリ50の正極端子51から温度を検出する。   The temperature sensor 21a is a unit for detecting a temperature, and the current sensor 21b is a unit for detecting a current value flowing through the battery 50. Further, as shown in FIG. 2, the temperature sensor 21a and the current sensor 21b include a clamp terminal 21x assembled to the positive electrode terminal 51 of the battery 50, a main body 21y having a built-in detection main body of the temperature sensor 21a and the current sensor 21b, and a cable 21z. Has a hardware configuration integrated as a current / temperature detector 21 having With this configuration, the temperature sensor 21a directly detects the temperature from the positive terminal 51 of the battery 50.

バッテリ50は、例として鉛バッテリとして実現される車載のバッテリであって、オルタネータ60により充電されるとともに、図示しない自動車の前照灯、尾灯、側灯、ファン、EPS(電動パワーステアリング装置)その他電装系の電源となる手段である。   The battery 50 is, for example, a vehicle-mounted battery realized as a lead battery, and is charged by the alternator 60, and also includes a headlight, a taillight, a sidelight, a fan, an EPS (electric power steering device), and the like (not shown). This is a means that serves as a power source for the electrical system.

以上の構成において、バッテリ50は本発明のバッテリに相当し、正極端子51は本発明の電極端子に相当し、温度センサ21aは本発明の温度センサに相当し、バッテリECU20及びボディECU30の組み合わせは本発明のバッテリの周囲温度推定装置に相当する。   In the above configuration, the battery 50 corresponds to the battery of the present invention, the positive electrode terminal 51 corresponds to the electrode terminal of the present invention, the temperature sensor 21a corresponds to the temperature sensor of the present invention, and the combination of the battery ECU 20 and the body ECU 30 It corresponds to the battery ambient temperature estimation device of the present invention.

本実施の形態のバッテリの温度推定装置は、上記の構成を備えたことにより、バッテリ50の正極端子51を介して温度センサ21aが検出した温度と、電流センサ21bが検出した電流値とに基づいてバッテリECU20がバッテリ50の周囲温度を推定し、当該推定温度に基づきバッテリ50の電槽内の液温を算出する。これにより、バッテリ50への通電による電極端子の温度上昇の影響を除いて、精度良くバッテリの温度を得ることが可能となる。   The battery temperature estimating apparatus according to the present embodiment has the above-described configuration, and is based on the temperature detected by temperature sensor 21a via positive electrode terminal 51 of battery 50 and the current value detected by current sensor 21b. The battery ECU 20 estimates the ambient temperature of the battery 50 and calculates the liquid temperature in the battery case of the battery 50 based on the estimated temperature. Thus, the temperature of the battery can be obtained with high accuracy, excluding the effect of the temperature rise of the electrode terminals due to the current supply to the battery 50.

以下、図3のフローチャートを参照して、本実施の形態のバッテリの温度推定装置によるバッテリ50の温度の演算の一例について説明する。はじめに、バッテリECU20は、バッテリ50の正極端子51に接続された温度センサ21aが検出した温度を取得し(S10)、次いで電流センサ21bより正極端子51から放電されるバッテリ50の電流値を取得する(S11)。   Hereinafter, an example of the calculation of the temperature of the battery 50 by the battery temperature estimating device of the present embodiment will be described with reference to the flowchart of FIG. First, the battery ECU 20 acquires the temperature detected by the temperature sensor 21a connected to the positive terminal 51 of the battery 50 (S10), and then acquires the current value of the battery 50 discharged from the positive terminal 51 from the current sensor 21b. (S11).

次に、バッテリECU20は、S10に取得した温度センサ21aが検出した温度及びS11にて取得したバッテリ50の電流値から、バッテリ50周囲の温度を推定する演算を行う(S12)。   Next, the battery ECU 20 performs an operation of estimating the temperature around the battery 50 from the temperature detected by the temperature sensor 21a acquired in S10 and the current value of the battery 50 acquired in S11 (S12).

ここでバッテリ50周囲の温度の推定の説明を行う。すなわち、本発明者は鋭意研究に基づき(イ)バッテリ50の温度上昇は、バッテリ50全体を抵抗とみなすことによりバッテリ50の電流値の二乗に比例すること、(ロ)図4に示す測定結果(車速0km/h、放電電流量250A)から、正極端子51及び電流・温度検出器21のクランプ端子21xの温度の時間変化は略同一の傾向があること、(ハ)図5に示す測定結果(車速0km/h、放電電流量250A:図4と同一条件)から、電流・温度検出器21の本体部21yは正極端子51に対して線型な温度上昇の傾向があること、(ニ)図5に示す測定結果から、正極端子51はバッテリ50周囲の温度に対して線型な温度上昇の傾向があること、の各要件を見いだした。   Here, the estimation of the temperature around the battery 50 will be described. That is, the present inventor has made extensive studies based on (i) that the temperature rise of the battery 50 is proportional to the square of the current value of the battery 50 by regarding the entire battery 50 as a resistance, and (b) the measurement results shown in FIG. From (vehicle speed 0 km / h, discharge current amount 250 A), the time change of the temperature of the positive electrode terminal 51 and the temperature of the clamp terminal 21 x of the current / temperature detector 21 tend to be substantially the same, (c) the measurement results shown in FIG. (Vehicle speed: 0 km / h, discharge current: 250 A: same conditions as in FIG. 4), the main body portion 21y of the current / temperature detector 21 tends to linearly increase in temperature with respect to the positive electrode terminal 51, FIG. From the measurement results shown in FIG. 5, it was found that each requirement that the positive electrode terminal 51 tend to linearly increase in temperature with respect to the temperature around the battery 50.

上記(イ)〜(ニ)の要件に基づき、S10における実測値である温度センサ21aの検出した温度及び電流値を用いることでバッテリ50の周囲温度は以下の工程により推定できる。   Based on the requirements of (a) to (d) above, the ambient temperature of the battery 50 can be estimated by the following steps by using the temperature and the current value detected by the temperature sensor 21a, which are the actually measured values in S10.

正極端子51の推定温度Tp(s)は、バッテリ50の電流値I及び温度センサ21aの検出した温度Tth(s)を用いて   The estimated temperature Tp (s) of the positive electrode terminal 51 is calculated using the current value I of the battery 50 and the temperature Tth (s) detected by the temperature sensor 21a.

Tp(s)=Tth(s)+G1(s)×I(s)…(式1) Tp (s) = Tth (s) + G1 (s) × I 2 (s) (1)

と評価することができる。   Can be evaluated.

更に正極端子51の推定温度Tp(s)は、バッテリ50の電流値I及びバッテリ50周囲の推定温度Tatm(s)を用いて   Further, the estimated temperature Tp (s) of the positive electrode terminal 51 is calculated using the current value I of the battery 50 and the estimated temperature Tatm (s) around the battery 50.

Tp(s)=Tatm(s)+G2(s)×I(s)…(式2) Tp (s) = Tatm (s) + G2 (s) × I 2 (s) (Equation 2)

と評価することもできる。ここでG1、G2は上記各要件の実測値に基づく計算により設定され、予めバッテリECU20内に記憶された伝達関数であり、実測値の補正に用いられる。   Can also be evaluated. Here, G1 and G2 are transfer functions that are set by calculation based on the measured values of the above requirements, and are stored in the battery ECU 20 in advance, and are used for correcting the measured values.

これにより、バッテリ50周囲の推定温度Tatm(s)は、実測定値である電流値I及び温度センサ21aの検出した温度Tth(s)の関数として   Thus, the estimated temperature Tatm (s) around the battery 50 is a function of the current value I, which is the actual measurement value, and the temperature Tth (s) detected by the temperature sensor 21a.

Tatm(s)=Tth(s)−{G2(s)−G1(s)}I(s)…(式3) Tatm (s) = Tth (s) − {G2 (s) −G1 (s)} I 2 (s) (Equation 3)

として求めることができる。   Can be obtained as

なお、図6に、(式3)の演算ブロック線図を示す。図6において伝達関数G1は   FIG. 6 shows a calculation block diagram of (Equation 3). In FIG. 6, the transfer function G1 is

G1(s)=R1/(Ts+1)…(式4)   G1 (s) = R1 / (Ts + 1) (Equation 4)

伝達関数G2は   The transfer function G2 is

G1(s)=R2/(Ts+1)…(式5)   G1 (s) = R2 / (Ts + 1) (Equation 5)

の一次遅れ要素として表される。ここでR1、R2はゲイン、Tは時定数である。   Expressed as a first-order lag element. Here, R1 and R2 are gains, and T is a time constant.

再び図3のフローチャートに戻って、バッテリECU20は、上記(式3)の演算を実行して、バッテリ50の周囲温度を推定する。   Returning to the flowchart of FIG. 3 again, the battery ECU 20 executes the calculation of (Equation 3) to estimate the ambient temperature of the battery 50.

最後に、バッテリECU20は、バッテリ50周囲の推定温度Tatmを更に補正して、バッテリ50の液温として導出する(S13)。   Finally, the battery ECU 20 further corrects the estimated temperature Tatm around the battery 50 and derives it as the liquid temperature of the battery 50 (S13).

以上の工程により算出したバッテリ50の液温に基づきバッテリECU20はバッテリ50の充放電を制御する。また、得られたバッテリ50の液温はエンジンECU10へ出力され、オルタネータ60を駆動するエンジンの制御に用いられる。   The battery ECU 20 controls charging and discharging of the battery 50 based on the liquid temperature of the battery 50 calculated in the above steps. The obtained liquid temperature of the battery 50 is output to the engine ECU 10 and used for controlling the engine that drives the alternator 60.

ところで、イグニッションスイッチ11がOFFとなり車両が動作を停止すると、バッテリの充放電系統1においてエンジンECU10もOFFとなる。このとき伝達関数G1、G2による補正値も0にリセットされるため、イグニッションスイッチ11を再度ONとした場合、推定温度Tatm(s)は初期値として温度センサ21aの検出温度に基づく値がそのまま出力されてしまい、実値との乖離が大きくなってしまう。   By the way, when the ignition switch 11 is turned off and the vehicle stops operating, the engine ECU 10 in the battery charging / discharging system 1 is also turned off. At this time, the correction values based on the transfer functions G1 and G2 are also reset to 0. Therefore, when the ignition switch 11 is turned on again, the estimated temperature Tatm (s) is directly output as the initial value based on the temperature detected by the temperature sensor 21a. And the deviation from the actual value increases.

これに対し、本実施の形態では、エンジンECU10とボディECU30とが通信を行い、イグニッションスイッチ11がOFFになる直前における温度センサ21aの検出した温度に基づく補正計数をボディECU30に記憶させておくようにしている。後にイグニッションスイッチ11がONになりエンジンECU10が起動すると、ボディECU30から補正係数を取得して、伝達関数G1、G2のゲインに乗算させる。これにより、イグニッションスイッチ11がONになった後の推定温度Tatm(s)と実値との乖離を抑えて、精度良くバッテリの周囲温度を推定することが可能となる。   In contrast, in the present embodiment, the engine ECU 10 and the body ECU 30 communicate with each other, and a correction count based on the temperature detected by the temperature sensor 21a immediately before the ignition switch 11 is turned off is stored in the body ECU 30. I have to. Later, when the ignition switch 11 is turned on and the engine ECU 10 is started, a correction coefficient is obtained from the body ECU 30 and multiplied by the gain of the transfer functions G1 and G2. As a result, it is possible to suppress the difference between the estimated temperature Tatm (s) after the ignition switch 11 is turned on and the actual value, and to accurately estimate the ambient temperature of the battery.

以下、図7の車両のイグニッションスイッチ11のON/OFFに応じた自動車のバッテリの充放電系統1の各部の動作のタイミングチャートを参照して説明する。イグニッションスイッチがON状態になる時刻t1−t3間にて、温度センサ21aの温度は時刻t1−t2間におけるバッテリ50からの電流の通電に基づき上昇するとともに、伝達関数G1に基づく補正(G1)及び伝達関数G2に基づく補正(G2)により、バッテリ50周囲の推定温度Tatmとして良好な値が出力される。   Hereinafter, a description will be given with reference to the timing chart of the operation of each part of the battery charging / discharging system 1 of the vehicle according to the ON / OFF of the ignition switch 11 of the vehicle in FIG. During the time t1-t3 when the ignition switch is turned on, the temperature of the temperature sensor 21a rises based on the supply of current from the battery 50 during the time t1-t2, and the correction (G1) based on the transfer function G1 and By the correction (G2) based on the transfer function G2, a good value is output as the estimated temperature Tatm around the battery 50.

一方、イグニッションスイッチがOFF状態になる時刻t3−t4間にて、温度センサ21aの温度は低下する一方、補正(G1)及び(G2)は実行されないため補正値はリセットされる。   On the other hand, during time t3-t4 when the ignition switch is turned off, the temperature of the temperature sensor 21a decreases while the correction values (G1) and (G2) are not executed, so that the correction value is reset.

次いで、時刻t4に再度イグニッションスイッチ11がONとなると、温度センサ21aの温度は時刻t4−t6間におけるバッテリ50からの電流の通電に基づき上昇するとともに、通信バス40上におけるエンジンECU10とボディECU30との通信が確立する時刻t5までは補正(G1)及び補正(G2)による補正値は初期値0から演算されるため、バッテリ50周囲の推定温度Tatmは実値との乖離が大きいと考えられるが、時刻t5以降はボディECU30からの補正係数が補正(G1)及び補正(G2)に乗じられることにより実値との乖離は抑えられ、推定された周囲温度の精度は良好なものに復帰する。   Next, when the ignition switch 11 is turned on again at time t4, the temperature of the temperature sensor 21a rises based on the supply of current from the battery 50 during time t4 to t6, and the engine ECU 10 and the body ECU 30 on the communication bus 40 Until the time t5 when the communication is established, the correction values by the correction (G1) and the correction (G2) are calculated from the initial value 0, so that the estimated temperature Tatm around the battery 50 is considered to have a large deviation from the actual value. After time t5, the difference from the actual value is suppressed by multiplying the correction (G1) and the correction (G2) by the correction coefficient from the body ECU 30, and the accuracy of the estimated ambient temperature is restored to a good value.

ボディECU30に記憶される補正(G1)及び補正(G2)の補正係数は、以下のように定められる。すなわち、図8に示すように、イグニッションスイッチ11がOFFとなる時刻toffから温度センサ21aの実測値TTがバッテリ50の周囲温度の実測値TE近傍に収束する迄の時間(例:800〜1000sec)までの温度変化をプロットしておき、各時間における温度センサ21aの実測値TTが取得されるような時間の変数として補正係数を設定する。なお、補正係数は、本発明の推定に用いるパラメータに相当する。   The correction coefficients of the correction (G1) and the correction (G2) stored in the body ECU 30 are determined as follows. That is, as shown in FIG. 8, the time from the time toff when the ignition switch 11 is turned off to the time when the measured value TT of the temperature sensor 21a converges to the vicinity of the measured value TE of the ambient temperature of the battery 50 (for example, 800 to 1000 sec). Are plotted, and a correction coefficient is set as a time variable such that the measured value TT of the temperature sensor 21a at each time is obtained. Note that the correction coefficient corresponds to a parameter used for estimation in the present invention.

エンジンECU10及びバッテリECU20がOFFになってからONになるまでの時間の計測及び時間毎の補正係数の記憶はボディECU30側の動作となるが、当該動作はバッテリ50からの暗電流に基づき実行されるため、イグニッションスイッチ11のON/OFFに基づく自動車のバッテリの充放電系統1の動作の影響を受けることはない。   The measurement of the time from when the engine ECU 10 and the battery ECU 20 are turned off to when they are turned on and the storage of the correction coefficient for each time are operations on the side of the body ECU 30. The operations are performed based on the dark current from the battery 50. Therefore, the operation of the charging / discharging system 1 of the battery of the vehicle based on the ON / OFF of the ignition switch 11 is not affected.

以上のように、本実施の形態のバッテリの温度推定装置によれば、バッテリ50の正極端子51を介して温度センサ21aが検出した温度と、電流センサ21bが検出した電流値とに基づいてバッテリECU20がバッテリ50の周囲温度を推定するとともに、イグニッションスイッチ11のON/OFFに伴うバッテリ50周囲の推定温度の実値との乖離を抑制する。   As described above, according to the battery temperature estimating device of the present embodiment, the battery temperature is detected based on the temperature detected by temperature sensor 21a via positive terminal 51 of battery 50 and the current value detected by current sensor 21b. The ECU 20 estimates the ambient temperature of the battery 50 and suppresses the deviation of the estimated temperature around the battery 50 from the actual value due to ON / OFF of the ignition switch 11.

これにより、バッテリ50への通電による電極端子の温度上昇や車両の動作の影響を除いて、精度良くバッテリの周囲温度や温度を推定することが可能となる。ひいては、バッテリ50の充放電時に放電許容量が過大に設定される恐れを軽減して、充電不足やバッテリ上がりの発生を抑制することが可能となる。   This makes it possible to accurately estimate the ambient temperature and temperature of the battery, excluding the influence of the temperature rise of the electrode terminals and the operation of the vehicle due to the energization of the battery 50. As a result, it is possible to reduce the possibility that the allowable discharge amount is set to be excessively large when the battery 50 is charged and discharged, and to suppress the occurrence of insufficient charging and dead battery.

更に、本実施の形態においては、温度の補正はバッテリECU20内のソフトウェア的な処理及びバッテリECU20とボディECU30との通信により実行できることから、高価なセンサ等を別途用いる必要なく、低コストな構成によりバッテリ50の温度を精度良く得ることが可能となる。   Further, in the present embodiment, since the temperature correction can be executed by software processing in the battery ECU 20 and communication between the battery ECU 20 and the body ECU 30, there is no need to separately use an expensive sensor or the like, and a low-cost configuration is used. The temperature of the battery 50 can be accurately obtained.

以上のように、本発明の実施の形態のバッテリの温度推定装置によれば、通電に起因する影響や車両の動作に起因する影響を除いて精度良くバッテリの温度を得ることが可能になるという効果を奏する。   As described above, according to the battery temperature estimating apparatus of the embodiment of the present invention, it is possible to accurately obtain the battery temperature excluding the influence due to the energization and the influence due to the operation of the vehicle. It works.

しかしながら、本発明は、上記の実施の形態により限定されるものではない。   However, the present invention is not limited by the above embodiment.

上記の説明においては、本発明のバッテリの周囲温度の推定装置は、バッテリECU20及びボディECU30の組み合わせは本発明のバッテリの周囲温度推定装置に相当するものとしたが、ボディECU30の動作はバッテリECU20に受け持たせるものとしてもよい。この場合、図7に示す通信バス40上におけるエンジンECU10とボディECU30との通信が確立するまでの時間Dを省略して、精度良い温度推定をより速やかに行うことが可能となる。   In the above description, the battery ambient temperature estimating device of the present invention is based on the assumption that the combination of battery ECU 20 and body ECU 30 corresponds to the battery ambient temperature estimating device of the present invention. It is good also as what is assigned to. In this case, it is possible to omit the time D until the communication between the engine ECU 10 and the body ECU 30 on the communication bus 40 shown in FIG. 7 is established, and to perform accurate temperature estimation more quickly.

また、上記の説明においては、補正(G1)及び補正(G2)の補正係数は温度センサ21aによる実測値に基づくものであるとしたが、バッテリ50の正極端子51の温度の実測値に基づくものであるとしてもよい。   Further, in the above description, the correction coefficients of the correction (G1) and the correction (G2) are based on the actually measured value of the temperature sensor 21a, but are based on the actually measured value of the temperature of the positive terminal 51 of the battery 50. It may be.

更に、上記の説明においては、本発明のバッテリとして鉛バッテリであるバッテリ50を例としたが、本発明は、充放電可能なバッテリであれば、リチウムイオン二次電池その他任意のバッテリに対して適用してもよく、この場合、本発明のバッテリの温度は電解質の温度に相当する。   Further, in the above description, the battery 50 which is a lead battery is taken as an example of the battery of the present invention. However, the present invention is applicable to a lithium ion secondary battery and any other batteries as long as they can be charged and discharged. It may be applied, in which case the temperature of the battery according to the invention corresponds to the temperature of the electrolyte.

また、上記の説明においては、本発明は自動車のバッテリの充放電系統1に組み込まれて実施されるものとしたが、本発明は、バッテリ及び当該バッテリに対して充放電を行う機能を有するものであれば、二輪車、列車、その他の車両、船舶、航空機他、任意の機械類において実施してもよい。   In the above description, the present invention has been described as being incorporated into the battery charging / discharging system 1 of an automobile, but the present invention has a function of charging and discharging the battery and the battery. If it is, you may implement in a motorcycle, a train, other vehicles, a ship, an aircraft, etc., and arbitrary machinery.

以上のように、本発明は、バッテリの電極端子に組み付けられて温度を検出する温度センサが検出した温度及び前記バッテリが前記温度センサの温度検出中に放電する電流値に基づいて前記バッテリの周囲の温度を推定するバッテリの周囲温度推定装置であって、動作開始直後における前記推定に用いるパラメータを、前記温度センサ又は前記電極端子の温度変化に基づき設定するものであればよく、その他の具体的な目的、用途、構成によって限定されるものではない。   As described above, the present invention provides a method for controlling the temperature around the battery based on the temperature detected by the temperature sensor attached to the electrode terminal of the battery and detecting the temperature and the current value at which the battery discharges during the temperature detection by the temperature sensor. A battery ambient temperature estimating device for estimating the temperature of the battery, as long as the parameter used for the estimation immediately after the start of operation is set based on a temperature change of the temperature sensor or the electrode terminal. The purpose, application, and configuration are not limited.

したがって、本発明は、その要旨を逸脱しない範囲内であれば、以上説明したものを含め、上記実施の形態に種々の変更を加えたものとして実施してもよい。   Therefore, the present invention may be embodied as various changes to the above-described embodiment, including those described above, without departing from the scope of the invention.

以上のような本発明は、バッテリを搭載する車両の動作に起因する影響を除いて精度良くバッテリの周囲温度を推定することが可能になるという効果を奏し、例えばエンジン自動車やハイブリッド自動車等の車両への適用において有用である。   The present invention as described above has an effect that it is possible to accurately estimate the ambient temperature of the battery except for the influence caused by the operation of the vehicle on which the battery is mounted. Useful in applications to

1 自動車のバッテリの充放電系統
10 エンジンECU
11 イグニッションスイッチ
20 バッテリECU
21 電流・温度検出器
21a 温度センサ
21b 電流センサ
21x クランプ端子
21y 本体部
21z ケーブル
30 ボディECU
40 通信バス
50 バッテリ
51 正極端子
60 オルタネータ
1 Battery charging / discharging system for automobile 10 Engine ECU
11 Ignition switch 20 Battery ECU
21 Current / Temperature Detector 21a Temperature Sensor 21b Current Sensor 21x Clamp Terminal 21y Body 21z Cable 30 Body ECU
40 communication bus 50 battery 51 positive terminal 60 alternator

Claims (1)

バッテリの電極端子に組み付けられて温度を検出する温度センサが検出した温度及び前記バッテリが前記温度センサの温度検出中に放電する電流値に基づいて前記バッテリの周囲の温度を推定するバッテリの周囲温度推定装置であって、
動作開始直後における前記推定に用いるパラメータを、前記温度センサ又は前記電極端子の温度変化に基づき設定する、
バッテリの周囲温度推定装置。
Ambient temperature of the battery estimating a temperature around the battery based on a temperature detected by a temperature sensor attached to an electrode terminal of the battery and detecting a temperature and a current value discharged by the battery during temperature detection by the temperature sensor. An estimating device,
The parameter used for the estimation immediately after the start of operation is set based on a temperature change of the temperature sensor or the electrode terminal,
Battery ambient temperature estimation device.
JP2018181703A 2018-09-27 2018-09-27 Battery ambient temperature estimator Active JP7072997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018181703A JP7072997B2 (en) 2018-09-27 2018-09-27 Battery ambient temperature estimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181703A JP7072997B2 (en) 2018-09-27 2018-09-27 Battery ambient temperature estimator

Publications (2)

Publication Number Publication Date
JP2020053271A true JP2020053271A (en) 2020-04-02
JP7072997B2 JP7072997B2 (en) 2022-05-23

Family

ID=69997580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181703A Active JP7072997B2 (en) 2018-09-27 2018-09-27 Battery ambient temperature estimator

Country Status (1)

Country Link
JP (1) JP7072997B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459839A (en) * 2021-07-23 2021-10-01 吉林省中赢高科技有限公司 Method and device based on temperature compensation of direct-current charging seat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063584A (en) * 2001-08-13 2009-03-26 Hitachi Maxell Ltd Battery capacity detector
JP2012215578A (en) * 2008-03-27 2012-11-08 Panasonic Corp Environmental temperature measuring method, liquid sample measuring method and measuring instrument
WO2018135507A1 (en) * 2017-01-23 2018-07-26 パナソニックIpマネジメント株式会社 Contact failure detection system
JP2018159613A (en) * 2017-03-22 2018-10-11 パナソニックIpマネジメント株式会社 Temperature detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063584A (en) * 2001-08-13 2009-03-26 Hitachi Maxell Ltd Battery capacity detector
JP2012215578A (en) * 2008-03-27 2012-11-08 Panasonic Corp Environmental temperature measuring method, liquid sample measuring method and measuring instrument
WO2018135507A1 (en) * 2017-01-23 2018-07-26 パナソニックIpマネジメント株式会社 Contact failure detection system
JP2018159613A (en) * 2017-03-22 2018-10-11 パナソニックIpマネジメント株式会社 Temperature detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459839A (en) * 2021-07-23 2021-10-01 吉林省中赢高科技有限公司 Method and device based on temperature compensation of direct-current charging seat
WO2023001231A1 (en) * 2021-07-23 2023-01-26 吉林省中赢高科技有限公司 Temperature compensation method and apparatus based on direct current charging base
CN113459839B (en) * 2021-07-23 2023-04-25 吉林省中赢高科技有限公司 Method and device based on direct-current charging seat temperature compensation

Also Published As

Publication number Publication date
JP7072997B2 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
US10601230B2 (en) Electric power supply system for vehicle
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US10928458B2 (en) Secondary battery state detection device and secondary battery state detection method
WO2019111878A1 (en) Measurement device, storage device, measurement system, and method for measuring offset error
US20050269991A1 (en) Battery state-of-charge estimator
JP6029751B2 (en) Storage battery state detection device and storage battery state detection method
US10396407B2 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
US20150362557A1 (en) State detecting method and state detecting device of secondary battery
JP2007292648A (en) Device for estimating charged state of secondary battery
WO2015125657A1 (en) Charging control device
JP4383596B2 (en) Battery internal temperature detection device
WO2019131740A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
EP3756937B1 (en) Apparatus and method for estimating soc
JP6350886B2 (en) Lithium-ion battery deterioration judgment method
CN110361669B (en) Battery degradation determination device
JP2005037286A (en) Battery charge/discharge current detection device
JP2018170263A (en) Secondary battery internal temperature estimating apparatus and secondary battery internal temperature estimating method
JP2018197708A (en) Failure determination device of current measuring circuit
JP2020053271A (en) Battery ambient temperature estimation device
JP2012192811A (en) Device and method for estimating secondary battery temperature
KR20150033081A (en) Current Measurement Apparatus and The Method of Using Temperature Dependent Resistance
JP2019184440A (en) Battery controller
US11644514B2 (en) Deterioration amount estimation device, energy storage system, deterioration amount estimation method, and computer program
CN112969928A (en) Management device, management method, and vehicle
JP2018182810A (en) Power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7072997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150