JP2020051605A - Manufacturing method of high-pressure tank - Google Patents

Manufacturing method of high-pressure tank Download PDF

Info

Publication number
JP2020051605A
JP2020051605A JP2018184710A JP2018184710A JP2020051605A JP 2020051605 A JP2020051605 A JP 2020051605A JP 2018184710 A JP2018184710 A JP 2018184710A JP 2018184710 A JP2018184710 A JP 2018184710A JP 2020051605 A JP2020051605 A JP 2020051605A
Authority
JP
Japan
Prior art keywords
resin
tank
temperature
fiber
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018184710A
Other languages
Japanese (ja)
Inventor
健 八田
Takeshi Hatta
健 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018184710A priority Critical patent/JP2020051605A/en
Publication of JP2020051605A publication Critical patent/JP2020051605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a manufacturing method of a high-pressure tank which is suppressed in variation of Vf and the lowering of tank rigidity.SOLUTION: This invention relates to a manufacturing method of a high-pressure tank which includes: a first process for adjusting a primary intermediate product tank by winding a resin-impregnated fiber around an external periphery of a hollow liner being a tank vessel; and a second process for adjusting the high-pressure tank by hardening the resin-impregnated fiber in the primary intermediate product tank which is adjusted in the first process, by applying heat treatment by electromagnetic induction heating. The second process has: a step for adjusting a secondary intermediate product tank by applying a resin hardener to an external periphery of the primary intermediate product tank when the heat treatment is in a low-viscosity state at a temperature lower than a temperature at which the resin-impregnated fiber starts to be hardened; and a step for adjusting the high-pressure tank by hardening the resin-impregnated fiber by applying a hardening reaction accelerator to an external periphery of the secondary intermediate product tank after the temperature of the heat treatment is raised to the temperature or higher at which the resin-impregnated fiber starts to be hardened.SELECTED DRAWING: Figure 3

Description

本発明は、高圧タンクの製造方法、特に燃料電池自動車に使用される高圧タンクの製造方法に関する。   The present invention relates to a method for manufacturing a high-pressure tank, and particularly to a method for manufacturing a high-pressure tank used for a fuel cell vehicle.

燃料電池自動車や天然ガス自動車等には、燃料ガスとしての水素ガスや天然ガス等を貯蔵する高圧タンクが搭載される。高圧タンクとして、樹脂製又は金属製のタンク(ライナー:内容器)の外周に単位密度あたりの強度が非常に高い繊維強化プラスチック材(FRP材)、例えば炭素繊維強化プラスチック材(CFRP材)等を巻き付けて補強した高圧タンクが知られている。このような高圧タンクを製造する際、例えばフィラメントワインディング法が用いられる。フィラメントワインディング法では、樹脂製タンクの外周に炭素繊維等をその繊維束に未硬化のエポキシ樹脂等のマトリックス樹脂を含浸させた状態で巻き付けて繊維層を形成し、その後、マトリックス樹脂を硬化させて補強層を形成させる。   A high-pressure tank for storing hydrogen gas, natural gas, or the like as a fuel gas is mounted on a fuel cell vehicle, a natural gas vehicle, and the like. As a high-pressure tank, a fiber-reinforced plastic material (FRP material) having a very high strength per unit density, such as a carbon fiber-reinforced plastic material (CFRP material), is provided around the outer periphery of a resin or metal tank (liner: inner container). BACKGROUND ART A high-pressure tank reinforced by winding is known. When manufacturing such a high-pressure tank, for example, a filament winding method is used. In the filament winding method, a carbon fiber or the like is wound around a resin tank in a state where the fiber bundle is impregnated with a matrix resin such as an uncured epoxy resin to form a fiber layer, and then the matrix resin is cured. A reinforcing layer is formed.

例えば、特許文献1は、ライナーと前記ライナーの外面に繊維を巻き付けた繊維層を含んで構成された補強層とを有する高圧タンクを製造するための高圧タンクの製造装置であって、マトリックス樹脂を含浸させた繊維束を前記ライナーの外面に巻き付ける際に前記繊維束に樹脂を塗布するための樹脂塗布手段を有することを特徴とする高圧タンクの製造装置を開示しており、樹脂を加熱する手段としてIH加熱(電磁誘導加熱)を挙げている。   For example, Patent Literature 1 is an apparatus for manufacturing a high-pressure tank for manufacturing a high-pressure tank having a liner and a reinforcing layer configured to include a fiber layer in which fibers are wound around the outer surface of the liner. A device for manufacturing a high-pressure tank, characterized by having a resin applying means for applying a resin to the fiber bundle when the impregnated fiber bundle is wound around the outer surface of the liner, and means for heating the resin As IH heating (electromagnetic induction heating).

特許文献2は、未硬化の状態の第1の熱硬化性樹脂を含浸した繊維を中空のライナーに巻回して内層を形成する工程と、未硬化の状態の第2の熱硬化性樹脂を含浸した繊維を内層に巻回して外層を形成する工程と、外層側から加熱して硬化させる工程と、を有し、前記第2の熱硬化性樹脂は、加熱硬化時に、第1の熱硬化性樹脂が低粘度化する前に硬化する硬化特性を有することを特徴とする高圧タンクの成型方法を開示している。   Patent Document 2 discloses a process of winding an uncured state of a first thermosetting resin-impregnated fiber around a hollow liner to form an inner layer, and impregnating an uncured state of a second thermosetting resin. Forming the outer layer by winding the formed fiber around the inner layer; and heating and curing the outer layer from the outer layer side. A method for molding a high-pressure tank, characterized in that the resin has a curing property of being cured before the viscosity of the resin decreases, is disclosed.

特許文献3は、高圧ガスタンクの製造方法であって、タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、前記タンク中間生成品を加圧環境下に置いた上でタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる工程(b)とを備える高圧ガスタンクの製造方法を開示している。   Patent Document 3 discloses a method for manufacturing a high-pressure gas tank, which is a tank intermediate product having a fiber-reinforced resin layer formed by winding fibers impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container. (A) preparing the tank intermediate product using an induction heating coil that induces high-frequency induction heating while rotating the tank intermediate product around a tank axis while placing the intermediate product in a pressurized environment; And (b) thermally curing the fiber-reinforced resin layer by induction heating.

特開2011−245740号公報JP 2011-245740 A 特開2011−230321号公報JP 2011-230321 A 特開2013−103395号公報JP 2013-103395 A

燃料電池自動車に使用される高圧タンクにおいて、フィラメントワインディング法に用いられる装置により、エポキシ樹脂等の樹脂を含浸させた炭素繊維等の繊維(「樹脂含浸繊維」ともいう)を巻回して繊維層を形成し、その後、硬化炉で繊維層を硬化させる場合、タンクのような厚肉製品を間接加熱で加熱すると、繊維層の厚さ方向における外気に面している側(「外層側」ともいう)の表層のみが昇温され、繊維層の厚さ方向におけるライナー側(「内層側」ともいう)にまで熱が伝達されるのに非常に時間がかかる。   In a high-pressure tank used in a fuel cell vehicle, a fiber layer is formed by winding fibers (also referred to as “resin-impregnated fibers”) such as carbon fibers impregnated with a resin such as an epoxy resin using a device used in a filament winding method. When forming and then curing the fiber layer in a curing furnace, when a thick product such as a tank is heated by indirect heating, the side facing the outside air in the thickness direction of the fiber layer (also referred to as the “outer layer side”) It takes a very long time for only the surface layer of (1) to rise in temperature and to transfer heat to the liner side (also referred to as “inner layer side”) in the thickness direction of the fiber layer.

一方で、直接加熱法のIH加熱(電磁誘導加熱)は、タンクのような厚肉製品に対しても急速昇温が見込めるため有用である。しかしながら、IH加熱では、内層側の温度が高くなり過ぎて、内層側の樹脂粘度が低下し、内層側の樹脂が外層側等の外部に染み出し、その結果、内層側のFRP材の層内単位体積あたりの繊維と樹脂との比率(Vf:fiver volume content、繊維体積含有率(繊維/CFRP))が高くなり、Vfのばらつきや、タンク強度の低下が発生する。   On the other hand, IH heating (electromagnetic induction heating) of the direct heating method is useful because a rapid temperature rise can be expected even for a thick product such as a tank. However, in the IH heating, the temperature on the inner layer side becomes too high, the viscosity of the resin on the inner layer decreases, and the resin on the inner layer seeps out to the outside such as the outer layer side. The ratio of fiber to resin per unit volume (Vf: fiber volume content, fiber volume content (fiber / CFRP)) increases, causing variations in Vf and reduction in tank strength.

さらに、内層側の温度が高くなることで、繊維層内部にエアが発生しやすくなり、硬化時においてエア抜けが悪いと、ボイド等が発生して、外観不良や性能低下を生じる。   Furthermore, when the temperature on the inner layer side is increased, air is easily generated inside the fiber layer, and if air is hardly removed during curing, voids and the like are generated, resulting in poor appearance and reduced performance.

そこで、本発明は、Vfのばらつきや、タンク強度の低下を防止した高圧タンクの製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a method for manufacturing a high-pressure tank in which variation in Vf and reduction in tank strength are prevented.

本発明者は、樹脂硬化時の外層側の樹脂密度及び架橋密度を上昇させることで最外層からの樹脂の染み出しを防止するために、樹脂用硬化剤(単に「硬化剤」ともいう)及び硬化反応促進剤(単に「促進剤」ともいう)を、硬化炉内で、樹脂の硬化反応状態に応じて、タンク外周に塗布することで、Vfのばらつきや、タンク強度の低下を防止することができることを見出し、本発明を完成した。   The present inventor has set a resin curing agent (also simply referred to as a “curing agent”) for increasing the resin density and the crosslinking density on the outer layer side during resin curing to prevent the resin from seeping out from the outermost layer. By applying a curing reaction accelerator (also simply referred to as “accelerator”) to the outer periphery of the tank in a curing furnace according to the curing reaction state of the resin, to prevent variations in Vf and a reduction in tank strength. The present invention was completed.

すなわち、本発明の要旨は以下の通りである。
(1)タンク容器となる中空のライナーの外周に樹脂含浸繊維を巻回して一次中間生成タンクを調製する第一の工程と、
第一の工程において調製した一次中間生成タンクにおける樹脂含浸繊維を電磁誘導加熱による熱処理により硬化させて高圧タンクを調製する第二の工程であって、
熱処理が、
樹脂含浸繊維が硬化開始する温度未満の低粘度状態において一次中間生成タンクの外周に樹脂用硬化剤を塗布して二次中間生成タンクを調製するステップ、及び
樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に硬化反応促進剤を塗布して、樹脂含浸繊維を硬化させて高圧タンクを調製するステップ
を有する
第二の工程と、
を含む高圧タンクの製造方法。
That is, the gist of the present invention is as follows.
(1) a first step of winding a resin impregnated fiber around the outer periphery of a hollow liner serving as a tank container to prepare a primary intermediate production tank;
The second step of preparing the high-pressure tank by curing the resin-impregnated fibers in the primary intermediate production tank prepared in the first step by heat treatment by electromagnetic induction heating,
Heat treatment
Preparing a secondary intermediate production tank by applying a resin curing agent to the outer periphery of the primary intermediate production tank in a low-viscosity state lower than the temperature at which the resin-impregnated fibers start to cure; and A second step having a step of applying a curing reaction accelerator to the outer periphery of the secondary intermediate production tank after preparing and curing the resin-impregnated fiber to prepare a high-pressure tank,
Method for producing a high-pressure tank including

本発明により、Vfのばらつきや、タンク強度の低下を防止した高圧タンクの製造方法が提供される。   According to the present invention, there is provided a method for manufacturing a high-pressure tank in which variation in Vf and reduction in tank strength are prevented.

IH加熱硬化炉の一例の模式図を示す。The schematic diagram of an example of an IH heating hardening furnace is shown. IH加熱硬化炉内における硬化剤及び促進剤を樹脂の硬化反応状態に応じてタンクの外周に塗布するための機構の一例の模式図を示す。FIG. 3 is a schematic view of an example of a mechanism for applying a curing agent and an accelerator in an IH heating curing furnace to the outer periphery of a tank according to a curing reaction state of a resin. 本発明の熱処理工程における熱処理温度プロファイル(時間とワーク温度の関係)の一例を示す図である。FIG. 4 is a diagram illustrating an example of a heat treatment temperature profile (relation between time and work temperature) in a heat treatment step of the present invention.

以下、本発明の好ましい実施形態について詳細に説明する。
本明細書では、適宜図面を参照して本発明の特徴を説明する。図面では、明確化のために各部の寸法及び形状を誇張しており、実際の寸法及び形状を正確に描写してはいない。それ故、本発明の技術的範囲は、これら図面に表された各部の寸法及び形状に限定されるものではない。なお、本発明の高圧タンクの製造方法は、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
In this specification, features of the present invention will be described with reference to the drawings as appropriate. In the drawings, the size and shape of each part are exaggerated for clarity, and the actual size and shape are not accurately depicted. Therefore, the technical scope of the present invention is not limited to the size and shape of each part shown in these drawings. In addition, the manufacturing method of the high-pressure tank of the present invention is not limited to the following embodiment, and may be modified or improved by a person skilled in the art in various forms without departing from the gist of the present invention. Can be implemented.

本発明は、(1)タンク容器となる中空のライナーの外周に樹脂含浸繊維を巻回して一次中間生成タンクを調製する第一の工程と、(2)第一の工程において調製した一次中間生成タンクにおける樹脂含浸繊維を電磁誘導加熱による熱処理により硬化させて高圧タンクを調製する第二の工程であって、熱処理が、(i)樹脂含浸繊維が硬化開始する温度未満の低粘度状態において一次中間生成タンクの外周に樹脂用硬化剤を塗布して二次中間生成タンクを調製するステップ、及び(ii)樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に硬化反応促進剤を塗布して、樹脂含浸繊維を硬化させて高圧タンクを調製するステップを有する第二の工程と、を含む高圧タンクの製造方法に関する。   The present invention provides (1) a first step of preparing a primary intermediate production tank by winding resin-impregnated fibers around the outer periphery of a hollow liner serving as a tank container, and (2) a primary intermediate production tank prepared in the first step. The second step of preparing the high-pressure tank by curing the resin-impregnated fiber in the tank by heat treatment by electromagnetic induction heating, wherein the heat treatment is performed by (i) a primary intermediate in a low-viscosity state lower than the temperature at which the resin-impregnated fiber starts to cure. Preparing a secondary intermediate production tank by applying a curing agent for resin to the outer periphery of the production tank, and (ii) accelerating the curing reaction on the outer periphery of the secondary intermediate production tank after the temperature is equal to or higher than the temperature at which the resin-impregnated fibers start curing. A step of preparing a high-pressure tank by applying an agent and curing the resin-impregnated fibers, and a second step of manufacturing the high-pressure tank.

(1)タンク容器となる中空のライナーの外周に樹脂含浸繊維を巻回する第一の工程
本発明の第一の工程では、タンク容器となる中空のライナーの外周に樹脂含浸繊維を巻回して一次中間生成タンクを調製する。
(1) First step of winding resin-impregnated fibers around the outer periphery of a hollow liner serving as a tank container In the first step of the present invention, the resin-impregnated fibers are wound around the outer periphery of a hollow liner serving as a tank container. Prepare the primary intermediate production tank.

ライナーの材質としては、当該技術分野において従来知られている水素ガスに対するガスバリア性を有する容器を使用することができる。ライナーの材質としては、限定されないが、例えば、アルミニウム等の金属、ポリエチレン樹脂、ポリプロピレン樹脂、ナイロン樹脂等の硬質樹脂が挙げられる。ライナーの材質としては、高強度、耐衝撃性が必要であるため、ナイロン樹脂等のエンジニアリングプラスチックが好ましい。   As a material of the liner, a container having a gas barrier property against hydrogen gas conventionally known in the technical field can be used. Examples of the material of the liner include, but are not limited to, metals such as aluminum, and hard resins such as polyethylene resin, polypropylene resin, and nylon resin. As a material of the liner, engineering plastics such as nylon resin are preferable because high strength and impact resistance are required.

樹脂含浸繊維における繊維としては、当該技術分野において従来知られているものを使用することができる。繊維としては、限定されないが、例えば、金属繊維、ガラス繊維、炭素繊維、アルミナ繊維等の無機繊維、アラミド繊維等の合成有機繊維、及び綿等の天然有機繊維が用いられる。これらの繊維は、単独で使用してもよいし、混合して(混繊として)使用してもよい。繊維としては、軽量、高強度であるため、炭素繊維が好ましい。   As the fibers in the resin-impregnated fibers, those conventionally known in the art can be used. Examples of the fiber include, but are not limited to, metal fiber, glass fiber, carbon fiber, inorganic fiber such as alumina fiber, synthetic organic fiber such as aramid fiber, and natural organic fiber such as cotton. These fibers may be used alone or in combination (as a mixed fiber). As the fiber, carbon fiber is preferable because of its light weight and high strength.

樹脂含浸繊維における樹脂としては、当該技術分野において従来知られている樹脂用硬化剤との反応により熱硬化する樹脂を使用することができる。樹脂としては、限定されないが、例えば、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、エポキシ樹脂等が挙げられる。樹脂としては、繊維の接着性が必要であるため、エポキシ樹脂が好ましい。   As the resin in the resin-impregnated fiber, a resin that is thermally cured by a reaction with a resin curing agent conventionally known in the art can be used. Examples of the resin include, but are not limited to, phenol resin, urea resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, and epoxy resin. As the resin, an epoxy resin is preferable since the adhesiveness of the fibers is required.

エポキシ樹脂としては、当該技術分野において従来知られているものを使用することができる。エポキシ樹脂としては、限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂等が挙げられる。エポキシ樹脂としては、直鎖型であっても分岐型であってもよい。   As the epoxy resin, those conventionally known in the art can be used. Examples of the epoxy resin include, but are not limited to, bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, glycidyl ester type epoxy resin and the like. . The epoxy resin may be linear or branched.

樹脂含浸繊維は、当該技術分野において従来知られている方法により調製することができる。樹脂含浸繊維は、限定されないが、例えば、炭素繊維に液状の樹脂を含浸させるプリプレグ成形により調製することができる。   Resin-impregnated fibers can be prepared by methods conventionally known in the art. The resin-impregnated fiber is not limited, but can be prepared, for example, by prepreg molding in which carbon fiber is impregnated with a liquid resin.

本発明におけるライナーの外周に樹脂含浸繊維を巻回する方法は、従来知られている方法により実施することができる。本発明におけるライナーの外周に樹脂含浸繊維を巻回する方法は、限定されないが、例えば、以下のような方法が挙げられる。   The method of winding the resin-impregnated fiber around the outer periphery of the liner in the present invention can be performed by a conventionally known method. The method of winding the resin-impregnated fiber around the outer periphery of the liner in the present invention is not limited, and examples thereof include the following method.

まず、ライナーとして、例えば水素ガスに対するガスバリア性を有する樹脂製容器を用意する。ライナーは、半径が均一である略円筒形状のシリンダー部と、シリンダー部両端に設けられた凸曲面形状のドーム部を有する。ドーム部は、等張力曲面によって構成されており、その頂点に、外部配管等と接続するための口金を有する。   First, as a liner, for example, a resin container having gas barrier properties against hydrogen gas is prepared. The liner has a substantially cylindrical cylinder portion having a uniform radius, and a convex curved dome portion provided at both ends of the cylinder portion. The dome portion is constituted by a curved surface having an equal tension, and has a base at a vertex for connection to an external pipe or the like.

次に、ライナーの外周に樹脂含浸繊維を巻回する。樹脂含浸繊維の巻回には、従来知られているフィラメントワインディング装置を用いることができる。フィラメントワインディング装置は、ライナーの外周に、樹脂含浸繊維を繰り返し巻回することができ、ライナーの外周に、樹脂含浸繊維による繊維層を形成する。樹脂としてエポキシ樹脂、繊維として炭素繊維を使用する場合には、ライナーの外周に、繊維層としてエポキシ樹脂が含浸された炭素繊維層が形成される。これにより、ライナーの外周に樹脂硬化前の繊維層を有する一次中間生成タンクが得られる。   Next, resin-impregnated fibers are wound around the outer periphery of the liner. For winding the resin-impregnated fiber, a conventionally known filament winding device can be used. The filament winding device can repeatedly wind resin-impregnated fibers around the outer periphery of the liner, and forms a fiber layer of resin-impregnated fibers around the outer periphery of the liner. When an epoxy resin is used as the resin and a carbon fiber is used as the fiber, a carbon fiber layer impregnated with the epoxy resin is formed as a fiber layer on the outer periphery of the liner. Thereby, a primary intermediate production tank having a fiber layer before resin curing on the outer periphery of the liner is obtained.

巻回の回数は限定されないが、樹脂含浸繊維は、ライナーの外周に形成される繊維層の厚さが、通常10mm〜30mmになるまで巻回される。   The number of windings is not limited, but the resin-impregnated fibers are wound until the thickness of the fiber layer formed on the outer periphery of the liner is usually 10 mm to 30 mm.

(2)第一の工程において調製した一次中間生成タンクにおける樹脂含浸繊維を電磁誘導加熱による熱処理により硬化する第二の工程
本発明の第二の工程では、第一の工程において調製した一次中間生成タンクにおける樹脂含浸繊維を電磁誘導加熱による熱処理により硬化させて高圧タンクを調製する。
(2) Second step of curing the resin-impregnated fiber in the primary intermediate production tank prepared in the first step by heat treatment by electromagnetic induction heating In the second step of the present invention, the primary intermediate produced in the first step is prepared. The resin-impregnated fibers in the tank are cured by heat treatment using electromagnetic induction heating to prepare a high-pressure tank.

電磁誘導加熱による熱処理により、一次中間生成タンクを急速昇温することができ、樹脂含浸繊維を均一に、効率よく硬化することができる。   By the heat treatment by electromagnetic induction heating, the temperature of the primary intermediate production tank can be rapidly raised, and the resin-impregnated fibers can be uniformly and efficiently cured.

第二の工程では、熱処理は、(i)樹脂含浸繊維が硬化開始する温度未満の低粘度状態において一次中間生成タンクの外周に樹脂用硬化剤を塗布して二次中間生成タンクを調製するステップ、及び(ii)樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に硬化反応促進剤を塗布して、樹脂含浸繊維を硬化させて高圧タンクを調製するステップを有する。   In the second step, the heat treatment includes: (i) preparing a secondary intermediate production tank by applying a resin curing agent to the outer periphery of the primary intermediate production tank in a low-viscosity state lower than the temperature at which the resin-impregnated fibers start to cure. And (ii) preparing a high-pressure tank by applying a curing reaction accelerator to the outer periphery of the secondary intermediate production tank after setting the temperature at which the resin-impregnated fibers start to cure or higher, and curing the resin-impregnated fibers.

(i)樹脂含浸繊維が硬化開始する温度未満の低粘度状態において一次中間生成タンクの外周に樹脂用硬化剤を塗布するステップ
(i)のステップでは、樹脂含浸繊維が硬化開始する温度未満の低粘度状態において一次中間生成タンクの外周に樹脂用硬化剤を塗布して二次中間生成タンクを調製する。
(I) A step of applying a resin curing agent to the outer periphery of the primary intermediate production tank in a low-viscosity state lower than the temperature at which the resin-impregnated fiber starts to cure. In the step (i), the low-temperature lower than the temperature at which the resin-impregnated fiber starts to cure. In the viscosity state, a curing agent for resin is applied to the outer periphery of the primary intermediate production tank to prepare a secondary intermediate production tank.

硬化剤としては、当該技術分野において従来知られている熱硬化樹脂を反応により得ることができるものであれば限定されない。硬化剤としては、例えば、脂肪族アミン、芳香族アミン、変性アミン等の第一級アミン、第二級アミン、第三級アミンであり、具体的には、ピペリジン、N,N−ジメチルピペラジン、トリエチレンジアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール等のアミン系硬化剤、テトラヒドロ無水フタル酸等の酸無水物系硬化剤、メルカプタン系硬化剤、及びトリアジンチオール等のチオール系硬化剤等が挙げられる。硬化剤としては、硬化時間短縮のために、芳香族アミン系硬化剤、酸無水物系硬化剤が好ましい。   The curing agent is not limited as long as a thermosetting resin conventionally known in the technical field can be obtained by a reaction. Examples of the curing agent include primary amines such as aliphatic amines, aromatic amines, and modified amines, secondary amines, and tertiary amines. Specifically, piperidine, N, N-dimethylpiperazine, Amine-based curing agents such as triethylenediamine, 2,4,6-tris (dimethylaminomethyl) phenol, benzyldimethylamine and 2- (dimethylaminomethyl) phenol; acid anhydride-based curing agents such as tetrahydrophthalic anhydride; mercaptan And a thiol-based curing agent such as triazine thiol. As the curing agent, an aromatic amine-based curing agent and an acid anhydride-based curing agent are preferable for shortening the curing time.

(i)のステップでは、熱処理において一次中間生成タンクの外周に硬化剤を塗布することができるように、硬化炉内に、硬化剤をタンクの外周に塗布するための機構が存在することが好ましい。   In the step (i), a mechanism for applying the curing agent to the outer periphery of the tank is preferably present in the curing furnace so that the curing agent can be applied to the outer periphery of the primary intermediate production tank in the heat treatment. .

(i)のステップにおいて、樹脂含浸繊維が硬化開始する温度未満は、繊維に含浸させる樹脂に依存して変化するものである。樹脂含浸繊維が硬化開始する温度未満の範囲は、ガラス転移温度より低いことが好ましく、樹脂が低粘度状態であることがさらに好ましい。例えば樹脂としてエポキシ樹脂を使用する場合、樹脂の硬化温度が140〜150℃であるため、樹脂含浸繊維が硬化開始する温度未満は、通常80℃〜120℃、好ましくは90℃〜100℃である。   In the step (i), the temperature lower than the temperature at which the resin-impregnated fiber starts to harden varies depending on the resin to be impregnated into the fiber. The range below the temperature at which the resin-impregnated fibers start to cure is preferably lower than the glass transition temperature, and more preferably the resin is in a low viscosity state. For example, when using an epoxy resin as the resin, since the curing temperature of the resin is 140 to 150 ° C, the temperature lower than the temperature at which the resin-impregnated fiber starts to cure is usually 80 ° C to 120 ° C, preferably 90 ° C to 100 ° C. .

(i)のステップでは、硬化剤の塗布中、温度は、樹脂含浸繊維が硬化開始する温度未満であれば、一定であっても、上昇していてもよい。   In the step (i), during the application of the curing agent, the temperature may be constant or may be increased as long as the temperature is lower than the temperature at which the resin-impregnated fibers start to cure.

(i)のステップにおいて、樹脂含浸繊維が硬化開始する温度未満において一次中間生成タンクの外周に硬化剤を塗布して二次中間生成タンクを調製することによって、樹脂含浸繊維中の樹脂が低粘度の状態において二次中間生成タンク表面の架橋密度が上昇され、繊維層内部に発生したエアを外に出しつつ、内層側の樹脂の染み出しが抑制される。   In the step (i), the resin in the resin-impregnated fiber has a low viscosity by applying a curing agent to the outer periphery of the primary intermediate production tank at a temperature lower than the temperature at which the resin-impregnated fiber starts to cure to prepare the secondary intermediate production tank. In this state, the crosslink density of the surface of the secondary intermediate production tank is increased, and while the air generated inside the fiber layer is taken out, the exudation of the resin on the inner layer side is suppressed.

(ii)樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に硬化反応促進剤を塗布して、樹脂含浸繊維を硬化させるステップ
(ii)のステップでは、樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に硬化反応促進剤を塗布して、樹脂含浸繊維を硬化させて高圧タンクを調製する。
(Ii) A step of applying a curing reaction accelerator to the outer periphery of the secondary intermediate production tank after setting the temperature at which the resin-impregnated fiber starts to be cured or higher, and curing the resin-impregnated fiber. After the temperature is set to be equal to or higher than the temperature at which curing starts, a curing reaction accelerator is applied to the outer periphery of the secondary intermediate production tank, and the resin-impregnated fibers are cured to prepare a high-pressure tank.

促進剤としては、当該技術分野において従来知られている熱硬化反応を促進することができるものであれば限定されない。促進剤としては、例えば、カプセル型アミン類等が挙げられる。   The accelerator is not limited as long as it can promote a thermosetting reaction conventionally known in the art. Examples of the accelerator include capsule-type amines.

(ii)のステップでは、熱処理において二次中間生成タンクの外周に促進剤を塗布することができるように、硬化炉内に、促進剤をタンクの外周に塗布するための機構が存在することが好ましい。   In the step (ii), a mechanism for applying the accelerator to the outer periphery of the tank may be present in the curing furnace so that the accelerator can be applied to the outer periphery of the secondary intermediate production tank in the heat treatment. preferable.

(ii)のステップにおいて、樹脂含浸繊維が硬化開始する温度以上は、繊維に含浸させる樹脂に依存して変化するものである。樹脂含浸繊維が硬化開始する温度以上の範囲は、当該温度より高いことが好ましく、20℃以上高いことがさらに好ましい。   In the step (ii), the temperature at which the resin-impregnated fiber starts to harden varies depending on the resin to be impregnated into the fiber. The range above the temperature at which the resin-impregnated fiber starts to cure is preferably higher than the temperature, more preferably 20 ° C or higher.

(ii)のステップでは、促進剤は、二次中間生成タンクの繊維層内部に発生したエアが放出された後に塗布されることが好ましい。   In the step (ii), the accelerator is preferably applied after the air generated inside the fiber layer of the secondary intermediate production tank is released.

(ii)のステップでは、促進剤の塗布中、温度は、樹脂含浸繊維が硬化開始する温度以上であれば、一定であっても、上昇していてもよい。   In the step (ii), during the application of the accelerator, the temperature may be constant or may increase as long as the temperature is equal to or higher than the temperature at which the resin-impregnated fiber starts to cure.

(ii)のステップにおいて、樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に促進剤を塗布して、樹脂含浸繊維を硬化させて高圧タンクを調製することによって、二次中間生成タンクの繊維層内部及び繊維層表面近傍のエアの発生を抑えつつ、タンク表面の硬化が促進され、内層側の樹脂の染み出しが防止される。   In the step (ii), after the temperature is set to be equal to or higher than the temperature at which the resin-impregnated fiber starts to harden, an accelerator is applied to the outer periphery of the secondary intermediate production tank, and the resin-impregnated fiber is hardened to prepare a high-pressure tank. While suppressing the generation of air inside the fiber layer and near the fiber layer surface of the next intermediate production tank, the curing of the tank surface is promoted, and the resin on the inner layer side is prevented from seeping out.

熱処理において、(i)及び(ii)のステップを効率よく実施するために、硬化炉内には、硬化剤及び促進剤を樹脂の硬化反応状態に応じてタンクの外周に塗布するための機構が存在することが好ましい。   In the heat treatment, in order to efficiently perform the steps (i) and (ii), a mechanism for applying a curing agent and an accelerator to the outer periphery of the tank according to the curing reaction state of the resin is provided in the curing furnace. Preferably it is present.

本発明による熱処理によって、樹脂硬化時の外層側の樹脂密度及び架橋密度が上昇され、最外層からの樹脂の染み出しを防止することができる。   By the heat treatment according to the present invention, the resin density and the crosslink density on the outer layer side at the time of curing the resin are increased, and the exudation of the resin from the outermost layer can be prevented.

図1に、IH加熱硬化炉1の一例の模式図を示し、図2に、IH加熱硬化炉1内における硬化剤及び促進剤を樹脂の硬化反応状態に応じてタンク3の外周に塗布するための機構の一例の模式図を示す。   FIG. 1 shows a schematic diagram of an example of the IH heating / curing furnace 1, and FIG. 2 shows a case where the curing agent and the accelerator in the IH heating / curing furnace 1 are applied to the outer periphery of the tank 3 according to the curing reaction state of the resin. FIG. 2 shows a schematic view of an example of the mechanism of FIG.

図1及び2では、IH加熱硬化炉1は、高周波誘導加熱炉として構成され、架台に、タンク3両端のタンク軸支シャフトを介してタンク3を回転可能に軸支し、タンク回転機構7にてタンク3を加熱の過程において回転させることができる。   In FIGS. 1 and 2, the IH heating / curing furnace 1 is configured as a high-frequency induction heating furnace, rotatably supports the tank 3 on a gantry via tank supporting shafts at both ends of the tank 3, and Thus, the tank 3 can be rotated during the heating process.

さらに、IH加熱硬化炉1は、誘導加熱コイル4を有する。誘導加熱コイル4は、軸支したタンク3をタンク長手方向に沿ってタンク軸周囲をらせん状に取り囲むよう配設される。誘導加熱コイル4は、高周波電流生成電源と接続され、制御機器による高周波電流生成電源の制御を経て高周波電流の通電を受けて磁束を形成し、タンク3の樹脂含浸繊維を導体として繊維層を誘導加熱する。   Further, the IH heating curing furnace 1 has an induction heating coil 4. The induction heating coil 4 is provided so as to spirally surround the tank 3 that is pivotally supported along the tank longitudinal direction along the tank longitudinal direction. The induction heating coil 4 is connected to a high-frequency current generation power supply, receives control of the high-frequency current generation power supply by a control device, receives a high-frequency current, forms a magnetic flux, and induces a fiber layer using the resin-impregnated fiber of the tank 3 as a conductor. Heat.

また、IH加熱硬化炉1の上部には、硬化剤及び促進剤をタンク外周に均一に塗布することができるような、タンク長手方向に沿って移動することができる硬化剤塗布ノズル5及び促進剤塗布ノズル6を備えた塗布装置2が設置されている。なお、図2では、促進剤が、促進剤塗布ノズル6からタンク3に塗布される様子が描かれている。   Also, at the upper part of the IH heating and curing furnace 1, a curing agent application nozzle 5 and a promoter that can move along the longitudinal direction of the tank so that the curing agent and the accelerator can be uniformly applied to the outer periphery of the tank. An application device 2 having an application nozzle 6 is provided. FIG. 2 illustrates a state in which the accelerator is applied to the tank 3 from the accelerator application nozzle 6.

IH加熱硬化炉1を用いた熱処理では、IH加熱硬化炉1への繊維層を形成済みの一次中間生成タンク3の搬入に先だち、一次中間生成タンク3にタンク軸支シャフトを装着する。タンク軸支シャフトは、中間生成タンク3の両端の口金に挿入され、タンク両端からシャフトを出した状態で、一次中間生成タンク3を、架台を介して水平に軸支する。こうして一次中間生成タンク3を軸支した後、IH加熱硬化炉1は、一次中間生成タンク3を熱処理に処する。この熱処理では、架台にセットした一次中間生成タンク3をタンク軸支シャフトごとタンク回転機構7にて定速で回転させ、その回転を熱処理の間に亘って維持する。タンク回転と同時に、あるいは、定速回転となると、IH加熱硬化炉1は、制御機器にて誘導加熱コイル4に高周波電流生成電源から高周波電流を通電して繊維層を誘導加熱する。IH加熱硬化炉1中、樹脂含浸繊維が硬化開始する温度未満において、一次中間生成タンク3の外周に前記の硬化剤を、塗布装置2に備えられた硬化剤塗布ノズル5により均一に塗布する。硬化剤の塗布中、温度は、樹脂含浸繊維が硬化開始する温度未満であれば、一定であっても、上昇していてもよい。また、一次中間生成タンク3への硬化剤の塗布は、樹脂含浸繊維が硬化開始する温度未満であればよいため、誘導加熱直後から実施してもよい。一次中間生成タンク3への硬化剤の塗布を完了させて二次中間生成タンク3を調製し、IH加熱硬化炉1において、温度が、樹脂含浸繊維が硬化開始する温度以上になったら、二次中間生成タンク3の外周に、前記の促進剤を、塗布装置2に備えられた促進剤塗布ノズル6により均一に塗布する。促進剤の塗布は、二次中間生成タンクの繊維層内部に発生したエアが放出された後に実施することが好ましい。促進剤の塗布中、温度は、樹脂含浸繊維が硬化開始する温度以上であれば、一定であっても、上昇していてもよい。二次中間生成タンクへの促進剤の塗布が完了し、繊維層の形成に用いた前記の熱硬化樹脂の熱硬化が完了したら、加熱を停止し、冷却を開始する。   In the heat treatment using the IH heating / curing furnace 1, a tank shaft is mounted on the primary intermediate producing tank 3 before the primary intermediate producing tank 3 having the fiber layer formed thereon is carried into the IH heating / curing furnace 1. The tank supporting shaft is inserted into the bases at both ends of the intermediate production tank 3, and horizontally supports the primary intermediate production tank 3 via a gantry with the shafts protruding from both ends of the tank. After supporting the primary intermediate production tank 3 in this way, the IH heating and curing furnace 1 subjects the primary intermediate production tank 3 to heat treatment. In this heat treatment, the primary intermediate production tank 3 set on the gantry is rotated at a constant speed by the tank rotation mechanism 7 together with the tank support shaft, and the rotation is maintained during the heat treatment. Simultaneously with the rotation of the tank or at a constant speed, the IH heating / curing furnace 1 controls the induction heating coil 4 to supply a high-frequency current from a high-frequency current generating power supply to the induction heating coil 4 to induction-heat the fiber layer. In the IH heating and curing furnace 1, at a temperature lower than the temperature at which the resin-impregnated fiber starts to cure, the curing agent is uniformly applied to the outer periphery of the primary intermediate production tank 3 by the curing agent application nozzle 5 provided in the application device 2. During the application of the curing agent, the temperature may be constant or may increase as long as the temperature is lower than the temperature at which the resin-impregnated fibers start to cure. Further, the application of the curing agent to the primary intermediate production tank 3 may be performed immediately after the induction heating because it is sufficient that the temperature is lower than the temperature at which the resin-impregnated fibers start to cure. The application of the curing agent to the primary intermediate production tank 3 is completed to prepare the secondary intermediate production tank 3, and in the IH heating / curing furnace 1, when the temperature becomes equal to or higher than the temperature at which the resin-impregnated fibers start to cure, the secondary The above-mentioned accelerator is uniformly applied to the outer periphery of the intermediate production tank 3 by an accelerator application nozzle 6 provided in the application device 2. The application of the accelerator is preferably performed after the air generated inside the fiber layer of the secondary intermediate production tank is released. During the application of the accelerator, the temperature may be constant or may increase as long as the temperature is equal to or higher than the temperature at which the resin-impregnated fiber starts to cure. When the application of the accelerator to the secondary intermediate production tank is completed and the thermosetting of the thermosetting resin used for forming the fiber layer is completed, the heating is stopped and the cooling is started.

例えば、本発明の熱処理工程において、当該機構を利用した熱処理温度プロファイルの一例を図3に示す。   For example, FIG. 3 shows an example of a heat treatment temperature profile using the mechanism in the heat treatment step of the present invention.

図3の熱処理温度プロファイルでは、IH加熱硬化炉1において、タンク回転機構7により定速で回転される一次中間生成タンク3の樹脂含浸繊維(繊維層)、例えばエポキシ樹脂を含浸させた炭素繊維を、制御機器にて誘導加熱コイル4に高周波電流生成電源から高周波電流を通電して、室温である約20℃から約2℃/分の昇温速度で誘導加熱する。IH加熱硬化炉1中、樹脂含浸繊維が硬化開始する温度未満である約100℃において、一次中間生成タンク3の外周に前記の硬化剤、例えば芳香族アミン系硬化剤を、塗布装置2に備えられた硬化剤塗布ノズル5により均一に塗布する。硬化剤の塗布中、温度は、約100℃を保つ。なお、この温度では、樹脂含浸繊維中の樹脂、例えばエポキシ樹脂は低粘度の状態であり、硬化剤の塗布により、繊維層の外層側の架橋密度が上昇される。一次中間生成タンク3への硬化剤の塗布を完了させて二次中間生成タンク3を調製した後、IH加熱硬化炉1において、加熱を約3℃/分の昇温速度で再開する。樹脂含浸繊維が硬化開始する温度以上である約120℃になったら、二次中間生成タンク3の外周に前記の促進剤、例えばカプセル型アミン類を、塗布装置2に備えられた促進剤塗布ノズル6により均一に塗布する。促進剤の塗布中、温度を約3℃/分の上昇速度で上昇させる。二次中間生成タンク3への促進剤の塗布が完了した後、繊維層の形成に用いた熱硬化樹脂の熱硬化が十分に生じる温度である約160℃で加熱をし、約40分、約160℃を保つ。硬化が完了した後、加熱を停止し、急冷して、燃料電池用の高圧タンクを製造する。   In the heat treatment temperature profile of FIG. 3, in the IH heating / curing furnace 1, resin-impregnated fibers (fiber layers) of the primary intermediate production tank 3 rotated at a constant speed by the tank rotating mechanism 7, for example, carbon fibers impregnated with epoxy resin, are used. Then, a high-frequency current is supplied to the induction heating coil 4 from the high-frequency current generating power supply by the control device, and the induction heating is performed at a heating rate of about 2 ° C./min from room temperature of about 20 ° C. At about 100 ° C., which is lower than the temperature at which the resin-impregnated fiber starts to harden, in the IH heating and curing furnace 1, the above-mentioned curing agent, for example, an aromatic amine-based curing agent is provided on the outer periphery of the primary intermediate production tank 3 in the coating device 2. The hardener coating nozzle 5 is applied uniformly. During the application of the curing agent, the temperature is kept at about 100 ° C. At this temperature, the resin in the resin-impregnated fibers, for example, the epoxy resin, is in a low-viscosity state, and the application of the curing agent increases the crosslink density on the outer layer side of the fiber layer. After the application of the curing agent to the primary intermediate production tank 3 is completed and the secondary intermediate production tank 3 is prepared, in the IH heating / curing furnace 1, heating is resumed at a rate of about 3 ° C./min. When the temperature of the resin-impregnated fiber reaches about 120 ° C., which is equal to or higher than the temperature at which the resin-impregnated fiber starts to cure, the above-mentioned accelerator, for example, a capsule type amine, is coated on the outer periphery of the secondary intermediate production tank 3 with an accelerator coating nozzle provided in the coating device 2. 6. Apply evenly. During application of the accelerator, the temperature is increased at a rate of about 3 ° C / min. After the application of the accelerator to the secondary intermediate production tank 3 is completed, heating is performed at about 160 ° C., which is a temperature at which thermosetting of the thermosetting resin used for forming the fiber layer is sufficiently generated, and the heating is performed for about 40 minutes. Maintain 160 ° C. After curing is completed, heating is stopped and quenched to produce a high-pressure tank for a fuel cell.

1.IH加熱硬化炉、2.塗布装置、3.タンク(一次中間生成タンク、二次中間生成タンク、高圧タンク)、4.誘導加熱コイル、5.硬化剤塗布ノズル、6.促進剤塗布ノズル、7.タンク回転機構 1. 1. IH heating curing furnace; Coating device, 3. 3. Tanks (primary intermediate production tank, secondary intermediate production tank, high-pressure tank); 4. induction heating coil; 5. hardener application nozzle; 6. Accelerator application nozzle; Tank rotation mechanism

Claims (1)

タンク容器となる中空のライナーの外周に樹脂含浸繊維を巻回して一次中間生成タンクを調製する第一の工程と、
第一の工程において調製した一次中間生成タンクにおける樹脂含浸繊維を電磁誘導加熱による熱処理により硬化させて高圧タンクを調製する第二の工程であって、
熱処理が、
樹脂含浸繊維が硬化開始する温度未満の低粘度状態において一次中間生成タンクの外周に樹脂用硬化剤を塗布して二次中間生成タンクを調製するステップ、及び
樹脂含浸繊維が硬化開始する温度以上とした後に二次中間生成タンクの外周に硬化反応促進剤を塗布して、樹脂含浸繊維を硬化させて高圧タンクを調製するステップ
を有する
第二の工程と、
を含む高圧タンクの製造方法。
A first step of winding a resin-impregnated fiber around the outer periphery of a hollow liner serving as a tank container to prepare a primary intermediate production tank,
The second step of preparing the high-pressure tank by curing the resin-impregnated fibers in the primary intermediate production tank prepared in the first step by heat treatment by electromagnetic induction heating,
Heat treatment
Preparing a secondary intermediate production tank by applying a resin curing agent to the outer periphery of the primary intermediate production tank in a low-viscosity state lower than the temperature at which the resin-impregnated fibers start to cure; and A second step having a step of applying a curing reaction accelerator to the outer periphery of the secondary intermediate production tank after preparing the resin-impregnated fiber to prepare a high-pressure tank,
A method for manufacturing a high-pressure tank including:
JP2018184710A 2018-09-28 2018-09-28 Manufacturing method of high-pressure tank Pending JP2020051605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184710A JP2020051605A (en) 2018-09-28 2018-09-28 Manufacturing method of high-pressure tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184710A JP2020051605A (en) 2018-09-28 2018-09-28 Manufacturing method of high-pressure tank

Publications (1)

Publication Number Publication Date
JP2020051605A true JP2020051605A (en) 2020-04-02

Family

ID=69996530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184710A Pending JP2020051605A (en) 2018-09-28 2018-09-28 Manufacturing method of high-pressure tank

Country Status (1)

Country Link
JP (1) JP2020051605A (en)

Similar Documents

Publication Publication Date Title
US9186855B2 (en) High-pressure gas tank production method
JP6099039B2 (en) Manufacturing method of composite container
IL88032A (en) Fiber/resin composites and method of making the same
CN112606423B (en) System and method for manufacturing composite articles
JP2011136491A (en) Process of producing composite container
JP2011206933A (en) Method for manufacturing composite container and composite container
JP2004099814A (en) Prepreg and fiber-reinforced composite material
CN107236250A (en) The resin combination of body parts prepreg high speed curable and prepreg product comprising it are made by extrusion
JP2012148544A (en) Method for manufacturing gas tank
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP5261264B2 (en) Manufacturing method of composite container
JP5218889B2 (en) Tank manufacturing method and retaining member
US11148351B2 (en) Manufacturing method for tank
JP2020051605A (en) Manufacturing method of high-pressure tank
JP2009012341A (en) Manufacturing method of frp molding and heater
JP6923578B2 (en) Pressure vessel
JP2009138858A (en) Tank manufacturing method, tank manufacturing facility, and tank
US20210370577A1 (en) Method of manufacturing high-pressure tank
US20230003177A1 (en) Fiber reinforced polymer composite structures and electromagnetic induction process for making same
JP2011140966A (en) Composite vessel
JP2017172713A (en) Tank manufacturing method
CN112606440A (en) Method of manufacturing composite articles using low energy curing
KR102344168B1 (en) Thermoelastic filament winding device and method using thereof
JP2019086035A (en) Method of manufacturing high-pressure tank
JP2011230398A (en) Method and equipment for manufacturing high pressure gas tank