JP2020048435A - Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray - Google Patents

Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray Download PDF

Info

Publication number
JP2020048435A
JP2020048435A JP2018178967A JP2018178967A JP2020048435A JP 2020048435 A JP2020048435 A JP 2020048435A JP 2018178967 A JP2018178967 A JP 2018178967A JP 2018178967 A JP2018178967 A JP 2018178967A JP 2020048435 A JP2020048435 A JP 2020048435A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
measurement
cells
measuring
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018178967A
Other languages
Japanese (ja)
Inventor
光善 中尾
Mitsuyoshi Nakao
光善 中尾
信次朗 日野
Shinjiro Hino
信次朗 日野
健作 興梠
Kensaku Korogi
健作 興梠
卓哉 岩佐
Takuya Iwasa
卓哉 岩佐
熊谷 聡士
Satoshi Kumagai
聡士 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Kumamoto University NUC
Original Assignee
Japan Vilene Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd, Kumamoto University NUC filed Critical Japan Vilene Co Ltd
Priority to JP2018178967A priority Critical patent/JP2020048435A/en
Publication of JP2020048435A publication Critical patent/JP2020048435A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a measuring tray for real-time measurement which can carry living cells having floating property simply, rigidly and non-invasively on a well bottom surface, and a measuring apparatus equipped with the tray, and a real-time measuring method using the measuring tray.SOLUTION: The measuring tray is used in measuring metabolism of living cells having floating property in real-time, and includes wells in which nonwoven fabric capable of capturing the living cells in a gap is arranged on a bottom surface.SELECTED DRAWING: None

Description

本発明は、浮遊性細胞のリアルタイム測定トレイと測定装置、ならびにそれを用いた測定方法に関する。   The present invention relates to a real-time measurement tray and measurement device for planktonic cells, and a measurement method using the same.

例えば、医薬品等の開発の分野において、細胞の性状や薬剤に対する応答をさらに詳細に評価することが求められてきた。そのため、生きた細胞を無侵襲かつリアルタイムで評価する手法が考案されている。このリアルタイム評価では、被検物質を含む複数の薬剤を連続的に添加し、細胞応答の経時的変化を把握できることから、細胞培養の終点での評価だけではできなかった様々な生命現象を解析することができる。このような評価機器として、例えば、細胞のエネルギー代謝経路の分析を行う細胞外フラックスアナライザー(Agilent Technologies)が知られている(特許文献1)。   For example, in the field of development of pharmaceuticals and the like, it has been required to evaluate cell properties and response to drugs in more detail. Therefore, a method of non-invasively evaluating live cells in real time has been devised. In this real-time evaluation, multiple drugs including the test substance are continuously added, and changes over time in the cell response can be grasped, so various life phenomena that could not be evaluated only at the end point of cell culture are analyzed. be able to. As such an evaluation device, for example, an extracellular flux analyzer (Agilent Technologies) for analyzing an energy metabolic pathway of a cell is known (Patent Document 1).

リアルタイム評価では、薬剤の添加、撹拌、測定を繰り返し行うため、評価の間、細胞は生きたまま測定トレイの各ウェル底面に固定されていることが望ましい。これは、例えば細胞外フラックスアナライザーの場合、測定用のセンサーをウェル底面から200μmの位置まで挿入してウェル底面の細胞の周辺環境の測定を行うが、評価中に細胞が剥がれて培地表面に浮いてしまうと、測定の度に対象の細胞数が異なってしまい、正確な評価ができなくなるためである。   In the real-time evaluation, the addition, agitation, and measurement of the drug are repeatedly performed. Therefore, during the evaluation, it is preferable that the cells be alive and fixed to the bottom of each well of the measurement tray. For example, in the case of an extracellular flux analyzer, a sensor for measurement is inserted up to 200 μm from the bottom of the well to measure the surrounding environment of the cells on the bottom of the well, but the cells are peeled off and float on the surface of the medium during the evaluation. If this is done, the number of target cells will be different each time measurement is performed, and accurate evaluation will not be possible.

特表2016−503299号公報JP 2006-503299 A

接着性細胞をリアルタイムで測定する場合、接着性細胞はウェル底面に接着し得るため、特殊な準備は必要なく評価を開始できる。一方、浮遊性細胞の場合、細胞接着剤を用いてウェル底面に強制的に接着させるという方法がとられてきた。
しかしながら、細胞接着剤は、事前準備が煩雑であり準備に多くの時間を要する。また、接着力が弱く、評価中に細胞が剥離してしまい、正確な評価ができなかった。さらに、本来は浮遊状態で生育する細胞を強制的にウェルに接着させるため、細胞膜に傷害を与える、また、細胞機能が変化する恐れがあった。
When measuring the adherent cells in real time, the evaluation can be started without any special preparation because the adherent cells can adhere to the bottom of the well. On the other hand, in the case of floating cells, a method of forcibly adhering to the bottom of a well using a cell adhesive has been adopted.
However, preparation of the cell adhesive is complicated and preparation requires a lot of time. In addition, the adhesion was weak, and the cells peeled off during the evaluation, so that accurate evaluation could not be performed. Furthermore, since cells that originally grow in a floating state are forcibly adhered to the wells, cell membranes may be damaged and cell functions may be changed.

従って、本発明の課題は、リアルタイム測定用の測定トレイであって、浮遊性を有する生細胞を簡便、強固、且つ無侵襲で、前記測定トレイのウェル底面に担持することのできる測定トレイ、及びそれを備えた測定装置、並びに前記測定トレイを用いるリアルタイム測定方法を提供することにある。   Accordingly, an object of the present invention is a measurement tray for real-time measurement, which is a simple, robust, and non-invasive living cell having buoyancy, and can be supported on the bottom surface of the well of the measurement tray, and It is an object of the present invention to provide a measuring device having the same and a real-time measuring method using the measuring tray.

前記課題は、以下の本発明により解決することができる:
[1]浮遊性を有する生細胞の代謝をリアルタイム測定する際に使用する、
前記生細胞を空隙内に捕捉可能な不織布が底面に配置されたウェルを備える、測定トレイ。
[2]前記[1]の測定トレイと、前記測定トレイのウェルに挿入して使用する、生細胞の代謝をリアルタイム測定可能なセンサーを備える、測定装置。
[3]前記不織布の厚さがリアルタイム測定時に前記センサーと接触する厚さである、[2]の測定装置。
[4](1)浮遊性を有する生細胞を空隙内に捕捉可能な不織布が底面に配置されたウェルを備える、測定トレイを用意する工程、
(2)前記不織布における前記底面と反対側の主面へ前記生細胞懸濁液を付与することで、前記不織布の空隙内に前記生細胞を捕捉させる工程、
(3)浮遊性を有する生細胞の代謝をリアルタイム測定可能なセンサーを前記測定トレイのウェル内へ挿入し、前記生細胞の代謝をリアルタイム測定する工程、
を備える、浮遊性を有する生細胞の代謝をリアルタイム測定する方法。
[5]前記(3)の工程において、前記センサーが前記不織布と接触した状態でリアルタイム測定する、[4]の方法。
The problem can be solved by the present invention described below:
[1] used for real-time measurement of metabolism of living cells having buoyancy,
A measurement tray comprising a well in which a nonwoven fabric capable of capturing the living cells in a void is arranged on a bottom surface.
[2] A measurement device comprising the measurement tray of [1] and a sensor which is used by being inserted into a well of the measurement tray and capable of measuring the metabolism of living cells in real time.
[3] The measuring device according to [2], wherein the thickness of the nonwoven fabric is a thickness that comes into contact with the sensor during real-time measurement.
[4] (1) a step of preparing a measurement tray including a well in which a nonwoven fabric capable of capturing living cells having buoyancy in a void is provided on a bottom surface;
(2) a step of applying the live cell suspension to a main surface of the nonwoven fabric opposite to the bottom surface, thereby capturing the live cells in the voids of the nonwoven fabric;
(3) inserting a sensor capable of measuring the metabolism of living cells having buoyancy in real time into the well of the measurement tray, and measuring the metabolism of the living cells in real time;
A method for measuring the metabolism of living cells having buoyancy in real time, comprising:
[5] The method according to [4], wherein in the step (3), the sensor is measured in real time while the sensor is in contact with the nonwoven fabric.

本発明の[1]の測定トレイ、本発明の[2]の測定装置、本発明の[4]の測定方法によれば、浮遊性を有する生細胞を、測定トレイのウェルの底面に配置した不織布に捕捉することにより前記ウェル底面に担持するために、測定前の前処理が簡便である。また、前記細胞が前記不織布の間隙中に入り込み、不織布に捕捉されるため、ウェル底面に強固に、且つ、無侵襲で保持することができる。更には、ウェル底面に強固に保持できることから、測定中に剥離する細胞数を低減することができ、その結果、準備する初期細胞数が少量で済み、また、測定結果が均一化する。   According to the measuring tray of [1] of the present invention, the measuring device of [2] of the present invention, and the measuring method of [4] of the present invention, living cells having buoyancy are arranged on the bottom surface of the well of the measuring tray. The pretreatment before measurement is simple because it is carried on the bottom of the well by being captured by a nonwoven fabric. Further, since the cells enter the gaps of the nonwoven fabric and are captured by the nonwoven fabric, the cells can be firmly and noninvasively held on the bottom surface of the well. Furthermore, since the cells can be firmly held on the bottom surface of the well, the number of cells detached during the measurement can be reduced, and as a result, the initial number of cells to be prepared is small and the measurement results are uniform.

本発明の[3]の測定装置、本発明の[5]の測定方法によれば、リアルタイム測定時に、測定用センサーと不織布とを接触させることができるため、不織布内部に進入した細胞とセンサーとの距離を小さくすることができ、細胞のより近傍の環境を測定することが可能なため、細胞の代謝をより反映した測定結果を得ることができる。また、殆どの細胞が不織布内部に存在するため、測定用センサーと不織布とを接触させても、前記センサーが細胞と直接接触することを回避することができ、細胞表面への傷害や代謝への影響を小さくすることができると考えられる。   According to the measuring device of [3] of the present invention and the measuring method of [5] of the present invention, the sensor for measurement and the nonwoven fabric can be brought into contact with each other at the time of real-time measurement. Can be reduced, and the environment closer to the cell can be measured, so that a measurement result that more reflects the metabolism of the cell can be obtained. Further, since most cells are present inside the nonwoven fabric, even when the sensor for measurement and the nonwoven fabric are brought into contact with each other, the sensor can be prevented from coming into direct contact with the cells, thereby preventing damage to the cell surface and metabolism. It is thought that the influence can be reduced.

本発明の測定トレイを用いて、ヒト白血病細胞株HELを測定トレイの各ウェルの底面に保持した状態で実施した、細胞外酸性化速度(ECAR値)のリアルタイム測定の結果を示すグラフである。It is a graph which shows the result of the real-time measurement of the extracellular acidification rate (ECAR value) performed in the state which hold | maintained human leukemia cell line HEL in the bottom of each well of a measurement tray using the measurement tray of this invention. 従来法である細胞接着剤を用いて、ヒト白血病細胞株HELを測定トレイの各ウェルの底面に固定した状態で実施した、細胞外酸性化速度(ECAR値)のリアルタイム測定の結果を示すグラフである。FIG. 7 is a graph showing the results of real-time measurement of the extracellular acidification rate (ECAR value) performed in a state where the human leukemia cell line HEL was fixed to the bottom surface of each well of the measurement tray using a conventional cell adhesive. is there. 実施例および比較例(比較例1)の各測定点(11測定点)における変動係数を示すグラフである。It is a graph which shows the variation coefficient in each measurement point (11 measurement points) of an Example and a comparative example (Comparative example 1).

本発明の測定トレイ、本発明の測定装置は、浮遊性を有する状態の生細胞(以下、単に「浮遊細胞」と称することがある)の代謝をリアルタイム測定する際に使用するものである。
浮遊細胞としては、本発明で用いる不織布に捕捉可能で、その状態でリアルタイム測定できる細胞であれば特に限定されるものではないが、例えば、元々接着性を有していない細胞(血球系細胞、白血病細胞など)でもよく、また、元々は接着性を有するものであったが採取や実験の過程あるいは病変のために接着性が弱まったり失われた細胞(動物から分離採取した細胞、転移状態のがん細胞など)などを挙げることができる。さらに、元々は接着性細胞であるが、浮遊状態の代謝を解析する目的で人工的に浮遊懸濁液状に調製した細胞(幹細胞など)であって、測定中に接着性が発揮されない状態にある細胞であってもよい。
The measuring tray of the present invention and the measuring device of the present invention are used for real-time measurement of the metabolism of living cells having a floating property (hereinafter sometimes simply referred to as “floating cells”).
The suspended cells are not particularly limited as long as they can be captured by the nonwoven fabric used in the present invention and can be measured in real time in that state. For example, cells that originally have no adhesiveness (blood cells, (E.g., leukemia cells), and cells that originally had an adhesive property but lost or lost their adhesion due to collection or experimental processes or lesions (cells isolated and collected from animals, Cancer cells). Furthermore, originally adherent cells, but cells (such as stem cells) that have been artificially prepared in the form of a suspension suspension for the purpose of analyzing metabolism in the suspension state, and are in a state where adhesion is not exhibited during the measurement. It may be a cell.

本発明を利用することのできる生細胞代謝のリアルタイム測定としては、生細胞を底面に固定できるウェルを備えた測定トレイと、前記ウェルに挿入して使用し、且つ、生細胞代謝のリアルタイム測定が可能なセンサーとを使用する測定であれば、特に限定されるものではないが、例えば、特表2016−503299号公報に記載の分析装置および分析方法を挙げることができ、例えば、細胞外フラックスアナライザー(Agilent Technologies)が市販されている。   As the real-time measurement of live cell metabolism that can utilize the present invention, a measurement tray provided with a well that can fix live cells on the bottom surface, and used by inserting into the well, and real-time measurement of live cell metabolism The measurement is not particularly limited as long as the measurement is performed using a possible sensor, and examples thereof include an analyzer and an analysis method described in JP-T-2006-503299. For example, an extracellular flux analyzer (Agilent Technologies) is commercially available.

前記細胞外フラックスアナライザーでは、24ウェル又は96ウェルの細胞培養用マイクロプレートのウェル中で細胞を培養し、前記マイクロプレートを本体にセットすると、OやpHの変動といった細胞の代謝に起因する現象を測定するための各蛍光センサー(OセンサーやHセンサー)を先端に固定したセンサーカートリッジが降下し、ウェル中の解析培地に浸漬する。プレートとカートリッジにより形成される微小環境(容量:7μL(XF24用細胞培養用マイクロプレート使用時)、ウェル底面からセンサー面まで距離:200μm)において、解析培地中の細胞によるわずかな酸素消費(酸素消費速度(OCR:Oxygen Consumption Rate))と、細胞外に排出される水素イオン濃度の変化(ECAR:Extracellular Acidification Rate))を捉えることにより、ミトコンドリア呼吸、解糖系の代謝状態を評価することができる。 Phenomenon wherein the extracellular flux analyzer, cells were cultured in 24-well or 96-well microplate for cell culture well, setting the microplate body, due to the metabolism of the cell, such as O 2 and pH variations in the A sensor cartridge having a fluorescent sensor (O 2 sensor or H + sensor) fixed to the tip thereof for measuring the concentration is lowered and immersed in the analysis medium in the well. In the microenvironment formed by the plate and the cartridge (volume: 7 μL (when using a cell culture microplate for XF24), distance from the bottom of the well to the sensor surface: 200 μm), slight oxygen consumption (oxygen consumption) by cells in the analysis medium The metabolic state of mitochondrial respiration and glycolysis can be evaluated by capturing the rate (OCR: Oxygen Consumption Rate) and the change in the concentration of hydrogen ions discharged extracellularly (ECAR: Extracellular Acidification Rate). .

本発明においては、リアルタイム測定を行うウェルの底面に、浮遊細胞を空隙内に捕捉可能な不織布を配置する。前記不織布は、浮遊細胞を空隙内に捕捉することができ、その状態でリアルタイム測定できるものであれば、特に限定されるものではない。
本明細書において「浮遊細胞を不織布の空隙内に捕捉可能」とは、ウェル底面に配置した不織布における底面と反対側の主面(以下、細胞付与面と称する)へ浮遊細胞を付与したときに、大部分の浮遊細胞が不織布の内部空隙に入り込み、少なくともリアルタイム測定中は不織布内に保持できることを意味する。なお、「大部分」の浮遊細胞とは60%以上の浮遊細胞を意味する。保持できる浮遊細胞の百分率が高いほど正確な測定結果が得られることから、該百分率は70%以上であるのが好ましく、80%以上であるのがより好ましい。
In the present invention, a nonwoven fabric capable of capturing floating cells in a void is arranged on the bottom surface of a well for performing real-time measurement. The non-woven fabric is not particularly limited as long as the non-woven fabric can capture floating cells in the void and can perform real-time measurement in that state.
In the present specification, "capable of capturing floating cells in the voids of the nonwoven fabric" means that when the floating cells are applied to the main surface opposite to the bottom surface of the nonwoven fabric disposed on the well bottom surface (hereinafter, referred to as a cell application surface). Means that most floating cells enter the internal voids of the nonwoven and can be retained within the nonwoven at least during real-time measurement. In addition, "the majority" of floating cells means 60% or more of floating cells. Since the higher the percentage of the suspended cells that can be retained, the more accurate the measurement result is, the percentage is preferably 70% or more, more preferably 80% or more.

浮遊細胞を不織布に付与する方法としては、例えば、浮遊細胞を適当な培地に懸濁し、その細胞懸濁液を不織布の細胞付与面に滴下し、静置する方法、前記滴下の後に遠心処理する方法、あるいは、注射針状の器具を用いて不織布内に細胞懸濁液を注入する方法等を挙げることができる。   As a method of applying the floating cells to the nonwoven fabric, for example, a method of suspending the floating cells in an appropriate medium, dropping the cell suspension onto the cell-applied surface of the nonwoven fabric, and allowing the suspension to stand, and centrifuging after the dropping And a method of injecting the cell suspension into the non-woven fabric using a needle-shaped device.

本発明で用いる不織布としては、例えば、無機系繊維不織布は、細胞を不織布の内部空隙に固定することができ、種々の試薬を含む解析培地に耐性である好適である。特に、空隙率が90%以上の無機系繊維不織布は、細胞を不織布の内部空隙に固定しやすいばかりでなく、不織布を浮遊細胞の培養液や測定に使用する試薬などが通過し易いことで、浮遊細胞の活性の低下や測定の妨げとなるのを防止でき好ましい。このような空隙率が90%以上の無機繊維不織布として、例えば、特開2010−185164号公報に記載の無機系繊維不織布を用いることができる。   As the nonwoven fabric used in the present invention, for example, an inorganic fiber nonwoven fabric is suitable since cells can be fixed in the internal voids of the nonwoven fabric and resistant to an analysis medium containing various reagents. In particular, the inorganic fiber non-woven fabric having a porosity of 90% or more is not only easy to fix the cells to the internal voids of the non-woven fabric, but also easy to pass the non-woven fabric through a culture solution of floating cells or a reagent used for measurement. It is preferable because it can prevent a decrease in the activity of the floating cells and hinder measurement. As such an inorganic fiber nonwoven fabric having a porosity of 90% or more, for example, an inorganic fiber nonwoven fabric described in JP-A-2010-185164 can be used.

無機系繊維不織布の構成繊維の材料としては、例えば、SiO、Al、B、TiO、ZrO、CeO、FeO、Fe、Fe、VO、V、SnO、CdO、LiO、WO、Nb、Ta、In、GeO、PbTi、LiNbO、BaTiO、PbZrO、KTaO、Li、NiFe、SrTiOなどを挙げることができ、これらの一成分の酸化物から構成されていても、二成分以上の酸化物から構成されていても良い。例えば、SiO−Alの二成分から構成することができる。 As the material of the fibers constituting the inorganic fiber nonwoven fabric, for example, SiO 2, Al 2 O 3 , B 2 O 3, TiO 2, ZrO 2, CeO 2, FeO, Fe 3 O 4, Fe 2 O 3, VO 2 , V 2 O 5, SnO 2 , CdO, LiO 2, WO 3, Nb 2 O 5, Ta 2 O 5, In 2 O 3, GeO 2, PbTi 4 O 9, LiNbO 3, BaTiO 3, PbZrO 3, KTaO 3 , Li 2 B 4 O 7 , NiFe 2 O 4 , SrTiO 3, etc., and may be composed of a single component oxide or two or more components. . For example, it can be composed of two components of SiO 2 —Al 2 O 3 .

本発明で用いる不織布の空隙率は91%以上であるのが好ましく、より好ましくは92%以上、更に好ましくは93%以上、更に好ましくは94%以上である。一方で、空隙率の上限は特に限定するものではないが、形態安定性に優れるように、99.9%以下であるのが好ましい。   The porosity of the nonwoven fabric used in the present invention is preferably at least 91%, more preferably at least 92%, further preferably at least 93%, further preferably at least 94%. On the other hand, the upper limit of the porosity is not particularly limited, but is preferably 99.9% or less so as to provide excellent form stability.

また、本発明で用いる不織布は、測定時のセンサーとの接触によって破損しにくく、取り扱い性に優れているように、引張破断強度が0.2MPa以上であるのが好ましく、より好ましくは0.3MPa以上であり、更に好ましくは0.4MPa以上であり、更に好ましくは0.5MPa以上であり、更に好ましくは0.55MPa以上である。この引張破断強度は切断荷重を不織布の断面積で除した商である。なお、切断荷重は次の条件で測定した値であり、断面積は測定時の試験片の幅と厚さの積から得られる値である。
製品名:小型引張試験機
型式:TSM−01−cre サーチ株式会社製
試験サイズ:5mm幅×40mm長
チャック間間隔:20mm
引張速度:20mm/min.
初荷重:50mg/1d
Further, the nonwoven fabric used in the present invention is preferably hardly broken by contact with the sensor during measurement, and preferably has a tensile breaking strength of 0.2 MPa or more, more preferably 0.3 MPa, so as to be excellent in handleability. And more preferably 0.4 MPa or more, more preferably 0.5 MPa or more, and still more preferably 0.55 MPa or more. The tensile breaking strength is a quotient obtained by dividing the cutting load by the cross-sectional area of the nonwoven fabric. The cutting load is a value measured under the following conditions, and the cross-sectional area is a value obtained from the product of the width and the thickness of the test piece at the time of measurement.
Product name: Small tensile tester Model: TSM-01-cre Search Co., Ltd. Test size: 5mm width x 40mm length Chuck interval: 20mm
Tensile speed: 20 mm / min.
Initial load: 50mg / 1d

本発明で用いる不織布を構成する繊維の平均繊維径は、特に限定するものではないが、繊維が細胞を保持しやすい大きさの孔を形成しやすいように、3μm以下であるのが好ましく、2μm以下であるのがより好ましく、1.5μm以下であるのが更に好ましく、1μm以下であるのが更に好ましい。なお、平均繊維径の下限は特に限定するものではないが、0.01μm以上であるのが好ましい。本発明における「平均繊維径」は50点における繊維径の算術平均値をいい、「繊維径」は10本以上の繊維が写る視野で不織布を撮影した電子顕微鏡写真をもとに測定した繊維の太さをいう。   The average fiber diameter of the fibers constituting the non-woven fabric used in the present invention is not particularly limited, but is preferably 3 μm or less, and preferably 2 μm so that the fibers can easily form pores having a size that can easily hold cells. It is more preferably at most 1.5 μm, more preferably at most 1.5 μm, even more preferably at most 1 μm. The lower limit of the average fiber diameter is not particularly limited, but is preferably 0.01 μm or more. The “average fiber diameter” in the present invention refers to the arithmetic average value of the fiber diameter at 50 points, and the “fiber diameter” is the fiber diameter measured based on an electron micrograph of a nonwoven fabric taken in a field of view of 10 or more fibers. We say thickness.

本発明で用いる不織布の平均目付は、特に限定するものではないが、必要以上に目付が高いと不織布を浮遊細胞の培養液や測定に使用する試薬などが通過し難いことで、浮遊細胞の活性の低下や測定の妨げとなるおそれがあるため、20g/m以下であるのが好ましく、15g/m以下であるのがより好ましく、10g/m以下であるのが更に好ましい。なお、平均目付の下限は特に限定するものではないが、1g/m以上であるのが好ましい。本発明における「平均目付」は、20個の試料(不織布)の目付の算術平均値をいい、「目付」は、最も面積の広い面の面積及び質量を測定し、この面積と質量から、面積1m当たりの質量に換算した値をいう。 The average basis weight of the nonwoven fabric used in the present invention is not particularly limited, but if the basis weight is higher than necessary, it is difficult for the nonwoven fabric to pass through a culture solution of floating cells or a reagent used for measurement, and the activity of floating cells is increased. It is preferably 20 g / m 2 or less, more preferably 15 g / m 2 or less, and even more preferably 10 g / m 2 or less, since there is a risk of lowering the measurement and hindering measurement. The lower limit of the average basis weight is not particularly limited, but is preferably 1 g / m 2 or more. The "average basis weight" in the present invention refers to the arithmetic average value of the basis weight of 20 samples (non-woven fabric), and the "basis weight" is obtained by measuring the area and mass of the surface having the largest area, and calculating the area from this area and mass. It means a value converted to mass per 1 m 2 .

本発明で用いる不織布の平均厚さは、特に限定するものではないが、細胞のより近傍の環境を測定できるように、測定時の不織布とセンサーの距離が近くなるあるいは軽度に接触する厚さが好ましい。しかし、必要以上に厚いと、測定時にセンサーが降下した際、センサーに不織布が強く圧縮され、不織布がセンサーを傷付けたり、不織布やその内部に保持された細胞が破壊されること恐れがある。そのため、細胞外フラックスアナライザーでは、測定時のウェル底面からセンサー下端面まで距離が200μmであることを考慮すると、不織布の厚みは240μm以下であるのが好ましく、220μm以下であるのがより好ましく、200μmであるのが更に好ましい。なお、平均厚さの下限は特に限定するものではないが、20μm以上であるのが好ましい。
なお、リアルタイム測定時に、測定用センサーと不織布とを接触させることができるよう、不織布の厚さは、測定時のウェル底面からセンサー下端面までの距離以上の厚さ(例えば、測定時のウェル底面からセンサー下端面まで距離が200μmである場合には、200μm以上)であるのが好ましい。
本発明における「平均厚さ」は、試料(不織布)の厚さの27箇所における算術平均値をいい、「厚さ」は、最も面積の広い面と面の長さを、マイクロメーター法[荷重:0.5N(測定面積:直径14.3mm)]で測定した値をいう。
The average thickness of the nonwoven fabric used in the present invention is not particularly limited, but the thickness at which the distance between the nonwoven fabric and the sensor at the time of measurement is short or the contact is light is set so that the environment closer to the cells can be measured. preferable. However, if the thickness is more than necessary, when the sensor is dropped during measurement, the nonwoven fabric is strongly compressed by the sensor, and the nonwoven fabric may damage the sensor or destroy the nonwoven fabric and cells held therein. Therefore, in the extracellular flux analyzer, the thickness of the nonwoven fabric is preferably 240 μm or less, more preferably 220 μm or less, considering that the distance from the bottom of the well to the lower end of the sensor at the time of measurement is 200 μm. Is more preferable. The lower limit of the average thickness is not particularly limited, but is preferably 20 μm or more.
Note that the thickness of the nonwoven fabric is equal to or greater than the distance from the bottom surface of the well at the time of measurement to the lower end surface of the sensor so that the sensor for measurement and the nonwoven fabric can be contacted during real-time measurement (for example, (If the distance from the sensor to the lower end surface of the sensor is 200 μm, it is preferably 200 μm or more).
In the present invention, the “average thickness” refers to an arithmetic average value of the thickness of the sample (nonwoven fabric) at 27 places, and the “thickness” refers to the surface having the largest area and the length of the surface by the micrometer method [load : 0.5 N (measurement area: diameter 14.3 mm)].

本発明で用いる不織布における荷重を受けた際の変形率(%)は適宜調整できるが、測定用センサーと不織布を接触させリアルタイム測定を行う際に、不織布が変形し易いことで、期待する程度まで不織布内部に進入した細胞とセンサーとの距離を小さくするという効果が発揮できる不織布であるよう、前記変形率は25%以上であるのが好ましく、35%以上であるのがより好ましく、45%以上であるのが更に好ましい。また、本構成を備える不織布であることによって、不織布が測定用センサーと接触した時に測定用センサーを傷付ける可能性が低減され好ましい。
なお、「荷重を受けた際の変形率」は、不織布など測定対象物(10点の試料の各々について)の主面へ厚さ方向から、3kPaの荷重を10秒間作用させた直後の不織布の厚さ(μm)と、その後、荷重を15kPaに変更して1分間作用させた直後の不織布の厚さ(μm)を以下式に代入することで算出した値の、平均値(n=10)である。
P=(T−T)/T×100
P:荷重を受けた際の変形率(%)
:3kPaの荷重を10秒間作用させた直後の不織布の厚さ(μm)
:15kPaの荷重を1分間作用させた直後の不織布の厚さ(μm)
The deformation rate (%) of the nonwoven fabric used in the present invention when receiving a load can be adjusted as appropriate. However, when the measurement sensor is brought into contact with the nonwoven fabric to perform real-time measurement, the nonwoven fabric is easily deformed. The deformation rate is preferably 25% or more, more preferably 35% or more, and more preferably 45% or more so that the nonwoven fabric can exhibit the effect of reducing the distance between the cell that has entered the inside of the nonwoven fabric and the sensor. Is more preferable. Further, the nonwoven fabric having this configuration is preferable because the possibility of damaging the measurement sensor when the nonwoven fabric comes into contact with the measurement sensor is reduced.
The “deformation rate under load” refers to the non-woven fabric immediately after a load of 3 kPa is applied for 10 seconds from the thickness direction to the main surface of the measurement object (for each of the 10 samples) such as the nonwoven fabric. The average value (n = 10) of the thickness (μm) and the value calculated by substituting the thickness (μm) of the nonwoven fabric immediately after the load was changed to 15 kPa and applied for 1 minute into the following equation. It is.
P = (T 0 −T 1 ) / T 0 × 100
P: Deformation rate under load (%)
T 0 : Thickness (μm) of the nonwoven fabric immediately after applying a load of 3 kPa for 10 seconds
T 1 : thickness (μm) of the nonwoven fabric immediately after applying a load of 15 kPa for 1 minute

本発明で用いる不織布における圧縮弾性率(%)は適宜調整できるが、測定用センサーと不織布を複数回接触および離間させリアルタイム測定を行う際に、測定用センサーと不織布を離間させた後に再び各接触させた時における接触条件(例えば、不織布の厚さや空隙率など)を変化させ難い不織布であるよう、前記圧縮弾性率は90%以上であるのが好ましく、92%以上であるのがより好ましく、94%以上であるのが更に好ましい。
なお、「圧縮弾性率」は、不織布など測定対象物(10点の試料の各々について)の主面へ厚さ方向から、3kPaの荷重を10秒間作用させた直後の不織布の厚さ(μm)と、その後、荷重を15kPaに変更して1分間作用させた直後の不織布の厚さ(μm)、更にその後、15kPaの荷重を取り除いてから1分間経過した後に再び3kPaの荷重を10秒間作用させた直後の不織布の厚さ(μm)を以下式に代入することで算出した値の、平均値(n=10)である。
=(T´−T)/(T−T)×100
:圧縮弾性率(%)
:3kPaの荷重を10秒間作用させた直後の不織布の厚さ(μm)
:15kPaの荷重を1分間作用させた直後の不織布の厚さ(μm)
´:15kPaの荷重を取り除いてから1分間経過した後に再び3kPaの荷重を10秒間作用させた直後の不織布の厚さ(μm)
The compression elastic modulus (%) of the nonwoven fabric used in the present invention can be adjusted as appropriate. However, when the sensor for measurement and the nonwoven fabric are contacted and separated a plurality of times to perform real-time measurement, each contact is made again after the sensor for measurement is separated from the nonwoven fabric. The compression elastic modulus is preferably 90% or more, more preferably 92% or more so that the nonwoven fabric hardly changes the contact conditions (for example, the thickness and porosity of the nonwoven fabric) at the time of the application. More preferably, it is at least 94%.
The “compression modulus” is the thickness (μm) of the nonwoven fabric immediately after a load of 3 kPa is applied for 10 seconds from the thickness direction to the main surface of the measurement object (for each of the 10 samples) such as the nonwoven fabric. After that, the thickness of the non-woven fabric (μm) immediately after the load was changed to 15 kPa and applied for 1 minute, and thereafter, the load of 3 kPa was applied again for 10 seconds after one minute passed after removing the 15 kPa load. The average value (n = 10) of the values calculated by substituting the thickness (μm) of the nonwoven fabric immediately after the above into the following equation.
P e = (T 0 '- T 1) / (T 0 -T 1) × 100
Pe : compression modulus (%)
T 0 : Thickness (μm) of the nonwoven fabric immediately after applying a load of 3 kPa for 10 seconds
T 1 : thickness (μm) of the nonwoven fabric immediately after applying a load of 15 kPa for 1 minute
T 0 ′: Thickness (μm) of the nonwoven fabric immediately after a load of 3 kPa was applied again for 10 seconds after a lapse of 1 minute after removing the load of 15 kPa.

本発明で用いる不織布の平均孔径は、測定対象となる浮遊細胞を保持できるならば、特に限定するものではない。直径約20μm前後の一般的な細胞を保持しやすいように、2〜40μmであるのが好ましく、4〜20μmであるのがより好ましく、6〜10μmであるのが更に好ましい。なお、平均孔径は、ASTM−F316に規定されている方法により得られる平均流量孔径の値をいい、例えば、ポロメータ[Polometer、コールター(Coulter)社製]を用いて、ミーンフローポイント法により測定することができる。   The average pore size of the nonwoven fabric used in the present invention is not particularly limited as long as it can hold floating cells to be measured. The thickness is preferably from 2 to 40 μm, more preferably from 4 to 20 μm, and still more preferably from 6 to 10 μm so as to easily hold general cells having a diameter of about 20 μm. The average pore diameter refers to a value of an average flow pore diameter obtained by a method specified in ASTM-F316, and is measured by, for example, a mean flow point method using a porometer [Polometer, manufactured by Coulter Corporation]. be able to.

本発明で用いる不織布の構成繊維は長繊維であるのが好ましく、連続繊維であるのが更に好ましい。これは、構成繊維が短繊維であると、不織布の孔内に保持された細胞が移動した場合に、繊維の端部が細胞を傷つける可能性が高いが、長繊維で構成された不織布であると繊維の端部の数が少ないことで、繊維の端部が細胞を傷つける可能性を低くでき、連続繊維で構成された不織布であると前述の可能性をより低くできるためである。なお、繊維長が10mm〜100mmの繊維を長繊維とし、繊維長がそれよりも長い繊維を連続繊維とする。   The constituent fibers of the nonwoven fabric used in the present invention are preferably long fibers, and more preferably continuous fibers. This is a nonwoven fabric composed of long fibers, when the constituent fibers are short fibers, and when the cells held in the pores of the nonwoven fabric move, the ends of the fibers are likely to damage the cells. The reason for this is that the possibility of damaging cells at the ends of the fibers can be reduced by reducing the number of ends of the fibers, and the above-mentioned possibility can be further reduced if the nonwoven fabric is made of continuous fibers. A fiber having a fiber length of 10 mm to 100 mm is defined as a long fiber, and a fiber having a longer fiber length is defined as a continuous fiber.

本発明で用いる不織布は無機系接着剤で接着されているのが好ましい。形態安定性に優れ、細胞を保持するための孔を維持しやすく、また、不織布が破損するのを防ぐ効果があるためである。特に、不織布の内部を含む全体において、繊維同士間に被膜を形成することなく接着剤で接着していると、細胞を効率よく孔で捕捉でき、不織布内の培地、試薬などの流動性が滞らないため好適である。   The nonwoven fabric used in the present invention is preferably bonded with an inorganic adhesive. This is because it has excellent morphological stability, easily maintains pores for retaining cells, and has an effect of preventing the nonwoven fabric from being damaged. In particular, if the entirety including the inside of the nonwoven fabric is adhered with an adhesive without forming a coating between the fibers, the cells can be efficiently captured by the pores, and the fluidity of the medium, the reagent, etc. in the nonwoven fabric is impaired. It is suitable because there is no.

本発明で用いることのできる無機系繊維不織布は、公知の静電紡糸法、好ましくは、ゾルゲル法と中和紡糸法とを組み合わせた静電紡糸法、例えば、特開2010−185164号公報に記載の製造方法により製造することができる。特開2010−185164号公報に記載の製造方法は、
(1)無機成分を主体とする化合物を含む紡糸用無機系ゾル溶液から、静電紡糸法により無機系ゲル状繊維を紡糸する工程、
(2)前記無機系ゲル状繊維とは反対極性のイオンを照射し、集積させ、ゲル状繊維ウエブを形成する工程、
(3)前記ゲル状繊維ウエブを焼成して無機系繊維ウエブを形成する工程、
(4)前記無機系繊維ウエブの内部を含む全体に、無機成分を主体とする化合物を含む接着用無機系ゾル溶液を付与し、余剰の接着用無機系ゾル溶液を通気により除去し、接着用無機系ゾル溶液含有無機系繊維ウエブを形成する工程、
(5)前記接着用無機系ゾル溶液含有無機系繊維ウエブを熱処理し、内部を含む全体において、無機系接着剤で接着した無機系繊維不織布を形成する工程
を含む。
Inorganic fiber nonwoven fabric that can be used in the present invention is a known electrostatic spinning method, preferably an electrostatic spinning method combining a sol-gel method and a neutralization spinning method, for example, described in JP-A-2010-185164. It can be manufactured by the manufacturing method described above. The production method described in JP-A-2010-185164,
(1) a step of spinning an inorganic gel fiber from an inorganic sol solution for spinning containing a compound mainly composed of an inorganic component by an electrostatic spinning method;
(2) a step of irradiating and accumulating ions having a polarity opposite to that of the inorganic gel fiber to form a gel fiber web;
(3) baking the gel-like fiber web to form an inorganic fiber web;
(4) An adhesive inorganic sol solution containing a compound mainly composed of an inorganic component is applied to the entire surface including the inside of the inorganic fiber web, and excess adhesive inorganic sol solution is removed by aeration to form an adhesive. Forming an inorganic sol solution-containing inorganic fiber web,
(5) A step of heat-treating the inorganic fiber web containing the inorganic sol solution for bonding to form an inorganic fiber nonwoven fabric bonded with an inorganic adhesive over the whole including the inside.

本発明で用いる不織布の形状は、特に限定するものではなく、ウェルの底面の形状に応じて底面全体を覆う形状であることもできるし、あるいは、底面の形状とは関係なく、例えば、円形(真円、楕円等)、多角形(六角形、四角形等)等を挙げることができる。   The shape of the nonwoven fabric used in the present invention is not particularly limited, and may be a shape that covers the entire bottom surface according to the shape of the bottom surface of the well. Alternatively, regardless of the shape of the bottom surface, for example, a circular shape ( A perfect circle, an ellipse, and the like), a polygon (a hexagon, a square, and the like), and the like.

本発明で用いる不織布をウェル底面に配置する方法としては、リアルタイム測定中に不織布が底面から剥がれたり、移動しなければ特に限定されるものではないが、例えば、接着剤により接着する、押さえ冶具により挟着する、不織布外周部に枠を設けてウェルに嵌着する等の手段を挙げることができる。   The method of arranging the nonwoven fabric used in the present invention on the bottom of the well is not particularly limited as long as the nonwoven fabric peels off from the bottom during the real-time measurement or does not move, for example, is bonded by an adhesive, by a holding jig. For example, there may be mentioned a method of sandwiching, a method of providing a frame around the outer periphery of the nonwoven fabric, and fitting the frame to the well.

本発明の測定装置は、本発明の測定トレイを備えていること以外は、生細胞の代謝をリアルタイム測定できる従来公知の測定装置と同様の構成とすることができる。本発明の測定装置は、本発明の測定トレイに加えて、生細胞の代謝をリアルタイム測定可能なセンサーを備えており、更に、前記センサーをウェル内に移動させ、且つ、ウェル外に移動させることのできる移動手段、測定データの解析手段等を備えることができる。   The measuring device of the present invention can have the same configuration as a conventionally known measuring device capable of measuring the metabolism of living cells in real time, except that the measuring device of the present invention is provided with the measuring tray of the present invention. The measurement device of the present invention, in addition to the measurement tray of the present invention, includes a sensor that can measure the metabolism of living cells in real time, and further moves the sensor into and out of the well. And a means for analyzing measured data.

前記センサーとしては、従来公知の測定装置に設けられた各種センサーを用いることができ、例えば、Oセンサー、pHセンサー、Hセンサー、COセンサー、Naセンサー、Kセンサー、NH4+センサー、Ca2+センサー、各種糖センサー、各種アミノ酸センサー、浸透圧センサー等を挙げることができる。前記Oセンサーによれば、解析培地中の細胞によるわずかな酸素消費(OCR)を測定することができ、解糖系の代謝状態をリアルタイム測定できる。前記pHセンサー(Hセンサー)によれば、細胞外に排出される水素イオン濃度の変化(ECAR)を捉えることができ、ミトコンドリア呼吸の代謝状態をリアルタイム測定できる。 As the sensor, various sensors provided in a conventionally known measuring device can be used. For example, an O 2 sensor, a pH sensor, an H + sensor, a CO 2 sensor, a Na + sensor, a K + sensor, an NH 4 + sensor , Ca 2+ sensors, various sugar sensors, various amino acid sensors, osmotic pressure sensors and the like. According to the O 2 sensor can be measured slight oxygen consumption by the cells under analysis medium (OCR), it can be measured in real time the metabolic state of the glycolytic pathway. According to the pH sensor (H + sensor), a change in the concentration of hydrogen ions (ECAR) discharged out of the cell can be detected, and the metabolic state of mitochondrial respiration can be measured in real time.

前記移動手段は、センサーをウェル内に移動させ、且つ、ウェル外に移動させることができる限り、特に限定されるものではなく、センサーを移動させるものであっても、測定トレイを移動させるものであってもよく、センサー及び測定トレイの両方を移動させるものであってもよい。   The moving means is not particularly limited as long as it can move the sensor into the well and out of the well, and even if it moves the sensor, it moves the measurement tray. Or both the sensor and the measurement tray may be moved.

本発明の測定方法は、
(1)浮遊性を有する生細胞を空隙内に捕捉可能な不織布が底面に配置されたウェルを備える、測定トレイを用意する工程、
(2)前記不織布における前記底面と反対側の主面へ前記生細胞懸濁液を付与することで、前記不織布の空隙内に前記生細胞を捕捉させる工程、
(3)浮遊性を有する生細胞の代謝をリアルタイム測定可能なセンサーを前記測定トレイのウェル内へ挿入し、前記生細胞の代謝をリアルタイム測定する工程
を含む。
The measuring method of the present invention,
(1) a step of preparing a measurement tray, including a well in which a nonwoven fabric capable of capturing living cells having buoyancy in a gap is disposed on a bottom surface;
(2) a step of applying the live cell suspension to a main surface of the nonwoven fabric opposite to the bottom surface, thereby capturing the live cells in the voids of the nonwoven fabric;
(3) a step of inserting a sensor capable of measuring the metabolism of living cells having a floating property in real time into a well of the measurement tray and measuring the metabolism of the living cells in real time.

前記(1)の用意工程で準備する測定トレイは、浮遊性を有する生細胞を空隙内に捕捉可能な不織布が底面に配置されたウェルを備えており、前記「浮遊性を有する生細胞」、前記「不織布」については、本発明の測定トレイにおける当該説明をそのまま適用することができる。   The measurement tray prepared in the preparation step (1) includes a well in which a nonwoven fabric capable of capturing living cells having a floating property in a gap is disposed on a bottom surface, and the “viable living cells having a floating property”; Regarding the “nonwoven fabric”, the description of the measurement tray of the present invention can be applied as it is.

前記(2)の捕捉工程では、不織布の細胞付与面へ浮遊細胞を付与することで、不織布の空隙内に浮遊細胞を捕捉させる。浮遊細胞を不織布に付与する方法としては、本発明の測定トレイにおける当該説明をそのまま適用することができる。   In the capturing step (2), the floating cells are applied to the cell-applied surface of the nonwoven fabric, so that the floating cells are captured in the voids of the nonwoven fabric. As a method for applying the floating cells to the nonwoven fabric, the description in the measurement tray of the present invention can be applied as it is.

前記(3)の測定工程は、浮遊細胞を本発明の測定トレイに捕捉した状態で生細胞の代謝をリアルタイム測定すること以外は、従来公知のリアルタイム測定と同様に実施することができる。前記「センサー」、「代謝をリアルタイム測定する」については、本発明の測定トレイ、本発明の測定装置における当該説明をそのまま適用することができる。   The measurement step (3) can be performed in the same manner as the conventionally known real-time measurement, except that the metabolism of living cells is measured in real time while the floating cells are captured in the measurement tray of the present invention. Regarding the “sensor” and “measure metabolism in real time”, the description of the measurement tray of the present invention and the measurement device of the present invention can be applied as they are.

本発明の測定方法では、前記(3)の測定工程において、センサーが不織布と接触した状態でリアルタイム測定することが好ましい。本明細書における「接触」には、センサーと不織布との間に相互に応力が発生しない接触(すなわち、不織布が変形しない接触;以下、非変形接触と称する)と、センサーが不織布を押込み、不織布が変形する接触(以下、変形接触と称する)の両方を含む。
非変形接触では、不織布内部の細胞に重力以外の外力がかからないため、細胞表面への傷害や代謝への影響を小さくすることができると考えられる。
変形接触では、不織布内部の細胞とセンサーとの距離を小さくすることができるため、ウェルに添加する初期細胞数が少なくても均一な測定結果を得ることができる。
In the measurement method of the present invention, in the measurement step (3), it is preferable to perform real-time measurement in a state where the sensor is in contact with the nonwoven fabric. The term “contact” in the present specification includes a contact where no stress is generated between the sensor and the nonwoven fabric (that is, a contact where the nonwoven fabric does not deform; hereinafter, referred to as a non-deformable contact), Includes both deformable contacts (hereinafter, referred to as deformed contacts).
In the non-deformable contact, since no external force other than gravity is applied to the cells inside the nonwoven fabric, it is considered that damage to the cell surface and influence on metabolism can be reduced.
In the deformed contact, the distance between the cell inside the nonwoven fabric and the sensor can be reduced, so that a uniform measurement result can be obtained even when the initial number of cells added to the well is small.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described specifically with reference to Examples, but these do not limit the scope of the present invention.

《実施例》
(シリカ繊維不織布の調製)
テトラエトキシシランおよびエタノール、水、1規定塩酸を、1:5:2:0.003のモル比で混合し、温度80℃で10時間の還流操作を行い、次いで、ロータリーエバポレーターにより濃縮した後、温度60℃で3時間加熱して、粘度が2ポイズのゾル溶液を調製した。
得られたゾル溶液を用いて、静電紡糸法によりゲル状シリカ連続繊維を紡糸するとともに、前記ゲル状シリカ連続繊維とは反対極性のイオンを照射し、集積させ、ゲル状シリカ連続繊維ウエブを形成した。
次に、前記ゲル状シリカ連続繊維ウエブを、温度800℃で3時間の焼成し、焼結シリカ連続繊維ウエブを得た。
続いて、テトラエトキシシラン、エタノール、水、硝酸を、1:7.2:7:0.0039のモル比で混合し、温度25℃で15時間反応させた後、二酸化ケイ素の固形分濃度が0.25%となるようにエタノールで希釈してシリカゾル溶液を調製し、接着剤とした。
次いで、前記焼結シリカ連続繊維ウエブを前記シリカゾル溶液接着剤に浸漬した後、吸引により余剰のシリカゾル溶液を除去し、温度500℃で3時間焼成して、内部を含む全体における焼結シリカ繊維同士を、被膜を形成することなくシリカで接着したシリカ連続繊維不織布(空隙率:98%、平均繊維径:0.73μm、目付:7.3g/m、厚さ:210μm、平均孔径:7.9μm、荷重を受けた際の変形率:54%、圧縮弾性率:94%)を作製した。
"Example"
(Preparation of silica fiber nonwoven fabric)
Tetraethoxysilane, ethanol, water and 1N hydrochloric acid are mixed at a molar ratio of 1: 5: 2: 0.003, refluxed at a temperature of 80 ° C. for 10 hours, and then concentrated by a rotary evaporator. By heating at a temperature of 60 ° C. for 3 hours, a sol solution having a viscosity of 2 poise was prepared.
Using the obtained sol solution, while spinning the gel-like silica continuous fiber by the electrostatic spinning method, irradiating ions of the opposite polarity to the gel-like silica continuous fiber and accumulating, the gel-like silica continuous fiber web is formed. Formed.
Next, the gel silica continuous fiber web was fired at a temperature of 800 ° C. for 3 hours to obtain a sintered silica continuous fiber web.
Subsequently, tetraethoxysilane, ethanol, water, and nitric acid were mixed at a molar ratio of 1: 7.2: 7: 0.0039 and reacted at a temperature of 25 ° C. for 15 hours. A silica sol solution was prepared by diluting with 0.25% with ethanol and used as an adhesive.
Next, after immersing the sintered silica continuous fiber web in the silica sol solution adhesive, excess silica sol solution is removed by suction, and baked at a temperature of 500 ° C. for 3 hours. Was bonded with silica without forming a coating film on a silica continuous fiber nonwoven fabric (porosity: 98%, average fiber diameter: 0.73 μm, basis weight: 7.3 g / m 2 , thickness: 210 μm, average pore diameter: 7. 9 μm, deformation rate under load: 54%, compression modulus: 94%).

(測定トレイの調製)
市販のポリスチレン製細胞培養用マイクロプレート(Agilent Technologies社製、Seahorse XF24 V7 PS Cell Culture Microplates、#100777−004)の各ウェル(培養部)の底面にシランカップリング剤(信越化学工業社製、#LS−3150)を塗布し、ウェル底面を覆う大きさの前記シリカ繊維不織布を接着することにより測定トレイを調製した。
(Preparation of measurement tray)
A silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .; # 100777-004) was placed on the bottom surface of a commercially available polystyrene cell culture microplate (manufactured by Agilent Technologies, Seahorse XF24V7 PS Cell Culture Microplates, # 100777-004). LS-3150) was applied, and the silica fiber nonwoven fabric having a size to cover the bottom of the well was bonded to prepare a measurement tray.

(細胞の解糖系活性のリアルタイム測定)
前記測定トレイの各ウェルに市販のRPMI−1640倍地(Sigma Aldrich社製、R1383)で2x10cells/mLに懸濁した、浮遊細胞であるヒト白血病細胞株HELを500μL/well(1x10cells/well)ずつ、ウェル底面に配置されたシリカ繊維不織布の前記ウェル底面と反対側の主面上に滴下することで播種した。37℃のインキュベータで30分間静置後、細胞外フラックスアナライザー(Agilent Technologies、Agilent Seahorse XF24 Analyzer,#XF24、ウェル底面と測定中のセンサー下端部との距離:200μm)を用いて細胞の解糖系活性(細胞外酸性化速度:ECAR値)をリアルタイム評価(約90分間、11測定点)した。結果を図1に示す。
(Real-time measurement of glycolytic activity of cells)
500 μL / well (1 × 10 5 cells) of human leukemia cell line HEL, which is a floating cell, was suspended in each well of the measurement tray at 2 × 10 5 cells / mL with commercially available RPMI-1640 medium (manufactured by Sigma Aldrich, R1383). / Well), and seeding was carried out by dropping the silica fiber nonwoven fabric disposed on the bottom surface of the well on the main surface opposite to the bottom surface of the well. After leaving still in an incubator at 37 ° C. for 30 minutes, glycolysis of the cells was performed using an extracellular flux analyzer (Agilent Technologies, Agilent Seahorse XF24 Analyzer, # XF24, distance between the bottom of the well and the lower end of the sensor being measured: 200 μm). Activity (extracellular acidification rate: ECAR value) was evaluated in real time (about 90 minutes, 11 measurement points). The results are shown in FIG.

《比較例1》
実施例で使用した細胞培養用マイクロプレートに添付の浮遊細胞を測定する場合の説明書に従って、各ウェルの底面に細胞接着剤(Corning社製、Corning(登録商標)Cell−Tak(商標)Cell and Tissue Adhesive,1mg、#354240)をコートし、ヒト白血病細胞株HELを接着させた。
具体的コート手順は以下の通りである。細胞接着剤を5%酢酸を用いて33.6μg/mLに希釈し、そこに体積比で半分量の1N 水酸化ナトリウム水溶液を加えた。この溶液を直ちに細胞培養用マイクロプレートに50μL/wellずつ添加し、室温で20分間静置した。このウェルを200μL/wellの純水で2回洗浄した。ここに前記RPMI−1640培地で5x10cells/mLに懸濁したHEL細胞を100μL/well(5x10cells/well)ずつ播種した。細胞を播種したマイクロプレートを1分間、200xgで遠心処理し、37℃のインキュベータで30分間静置した。その後、37℃に温めた400μLのRPMI−1640培地を各ウェルに穏やかに添加し、顕微鏡で細胞が剥がれていないことを確認した。
再び37℃のインキュベータで25分間静置後、実施例と同様にして、細胞の解糖系活性(細胞外酸性化速度:ECAR値)をリアルタイム評価(約90分間、11測定点)した。結果を図2に示す。
<< Comparative Example 1 >>
According to the instructions for measuring floating cells attached to the cell culture microplate used in the examples, a cell adhesive (Corning (registered trademark) Cell-Tak (trademark) Cell and Tissue Adhesive, 1 mg, # 354240) was coated, and the human leukemia cell line HEL was adhered.
The specific coating procedure is as follows. The cell adhesive was diluted to 33.6 μg / mL with 5% acetic acid, and half the volume of 1N aqueous sodium hydroxide was added thereto. This solution was immediately added to the cell culture microplate at 50 μL / well, and left at room temperature for 20 minutes. This well was washed twice with 200 μL / well of pure water. Here, HEL cells suspended at 5 × 10 6 cells / mL in the RPMI-1640 medium were seeded at 100 μL / well (5 × 10 5 cells / well). The microplate on which the cells were seeded was centrifuged at 200 × g for 1 minute, and left still in an incubator at 37 ° C. for 30 minutes. Thereafter, 400 μL of RPMI-1640 medium warmed to 37 ° C. was gently added to each well, and it was confirmed with a microscope that the cells had not detached.
After standing still in a 37 ° C. incubator for 25 minutes, the glycolytic activity (extracellular acidification rate: ECAR value) of the cells was evaluated in real time (about 90 minutes, 11 measurement points) in the same manner as in the Examples. The results are shown in FIG.

《比較例2》
ウェルに播種した細胞数を1x10cells/wellとしたこと以外は、比較例1の操作を繰り返すことにより、細胞の解糖系活性(細胞外酸性化速度:ECAR値)をリアルタイム評価した。
<< Comparative Example 2 >>
The glycolytic activity (extracellular acidification rate: ECAR value) of the cells was evaluated in real time by repeating the operation of Comparative Example 1 except that the number of cells seeded in the wells was 1 × 10 5 cells / well.

《結果》
実施例は比較例に対し、前処理が簡便であった。
また、実施例は比較例1の1/5量の細胞数で測定が可能であった(図1、図2)。なお、データを示していないが、比較例を実施例と同じ1/5量の細胞数(1x10cells/well)で実施した場合(比較例2)、解析結果が得られなかった。これは、比較例は細胞の接着力が弱く、細胞が多く剥離してウェル底面から消失したことにより、評価が適切に実施できなかったためと考えられた。実際、評価後の比較例のマイクロプレートを目視で確認したところ、多数の剥離した細胞が培地表面に浮いていることが確認された。一方、実施例では、このような剥離細胞はほとんど確認されず、細胞の捕捉力が高いことが示唆された。
"result"
In the example, the pretreatment was simpler than the comparative example.
Further, in the example, measurement was possible with a cell number of の of that in Comparative Example 1 (FIGS. 1 and 2). Although data is not shown, when the comparative example was performed with the same 1/5 cell number (1 × 10 5 cells / well) as in the example (Comparative Example 2), no analysis result was obtained. This was considered to be due to the fact that the comparative example had poor adhesion to the cells, and many cells were peeled off and disappeared from the bottom of the well, so that the evaluation could not be properly performed. Actually, when the microplate of the comparative example after the evaluation was visually confirmed, it was confirmed that many detached cells were floating on the surface of the medium. On the other hand, in Examples, such detached cells were scarcely confirmed, suggesting that the cell-capturing power was high.

実施例および比較例(比較例1)の各測定点(11測定点)における変動係数を図3に示す。
変動係数は、全測定点において実施例は比較例に対して低くなり、実施例は測定値のバラつきを抑える効果が認められた。これについても、評価中の細胞剥離の程度が原因と考えられ、細胞剥離が多く生じる比較例では測定値のバラつきが大きくなったと考えられた。
FIG. 3 shows the coefficient of variation at each measurement point (11 measurement points) in the example and the comparative example (comparative example 1).
The coefficient of variation was lower in the example than in the comparative example at all measurement points, and the example was found to have the effect of suppressing the variation in the measured values. This was also considered to be due to the degree of cell detachment during the evaluation, and it was considered that the variation in the measured values was increased in the comparative example in which cell detachment occurred frequently.

本発明は、浮遊性を有する生細胞の代謝をリアルタイム測定するのに使用することができ、例えば、医薬品等の開発、病態解明、細胞を用いた製品の品質管理等に有用である。   INDUSTRIAL APPLICABILITY The present invention can be used to measure the metabolism of living cells having buoyancy in real time, and is useful for, for example, development of pharmaceuticals, elucidation of disease states, quality control of products using cells, and the like.

Claims (5)

浮遊性を有する生細胞の代謝をリアルタイム測定する際に使用する、
前記生細胞を空隙内に捕捉可能な不織布が底面に配置されたウェルを備える、測定トレイ。
Used when measuring the metabolism of living cells with buoyancy in real time,
A measurement tray comprising a well in which a nonwoven fabric capable of capturing the living cells in a void is arranged on a bottom surface.
請求項1に記載の測定トレイと、前記測定トレイのウェルに挿入して使用する、生細胞の代謝をリアルタイム測定可能なセンサーを備える、測定装置。   A measurement device comprising: the measurement tray according to claim 1; and a sensor which is used by being inserted into a well of the measurement tray and capable of measuring the metabolism of living cells in real time. 前記不織布の厚さがリアルタイム測定時に前記センサーと接触する厚さである、請求項2に記載の測定装置。   The measuring device according to claim 2, wherein the thickness of the nonwoven fabric is a thickness that comes into contact with the sensor during real-time measurement. (1)浮遊性を有する生細胞を空隙内に捕捉可能な不織布が底面に配置されたウェルを備える、測定トレイを用意する工程、
(2)前記不織布における前記底面と反対側の主面へ前記生細胞懸濁液を付与することで、前記不織布の空隙内に前記生細胞を捕捉させる工程、
(3)浮遊性を有する生細胞の代謝をリアルタイム測定可能なセンサーを前記測定トレイのウェル内へ挿入し、前記生細胞の代謝をリアルタイム測定する工程、
を備える、浮遊性を有する生細胞の代謝をリアルタイム測定する方法。
(1) a step of preparing a measurement tray, including a well in which a nonwoven fabric capable of capturing living cells having buoyancy in a gap is disposed on a bottom surface;
(2) a step of applying the live cell suspension to a main surface of the nonwoven fabric opposite to the bottom surface, thereby capturing the live cells in the voids of the nonwoven fabric;
(3) inserting a sensor capable of measuring the metabolism of living cells having buoyancy in real time into the well of the measurement tray, and measuring the metabolism of the living cells in real time;
A method for measuring the metabolism of living cells having buoyancy in real time, comprising:
前記(3)の工程において、前記センサーが前記不織布と接触した状態でリアルタイム測定する、請求項4に記載の方法。   The method according to claim 4, wherein in the step (3), the measurement is performed in real time while the sensor is in contact with the nonwoven fabric.
JP2018178967A 2018-09-25 2018-09-25 Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray Pending JP2020048435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018178967A JP2020048435A (en) 2018-09-25 2018-09-25 Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178967A JP2020048435A (en) 2018-09-25 2018-09-25 Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray

Publications (1)

Publication Number Publication Date
JP2020048435A true JP2020048435A (en) 2020-04-02

Family

ID=69993911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178967A Pending JP2020048435A (en) 2018-09-25 2018-09-25 Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray

Country Status (1)

Country Link
JP (1) JP2020048435A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505316A (en) * 2003-09-10 2007-03-08 シーホース バイオサイエンス インコーポレイテッド Method and apparatus for measuring a plurality of physiological properties of a cell
JP2015159778A (en) * 2014-02-28 2015-09-07 日本バイリーン株式会社 Cell cultivation carrier for optical measurement, well plate for optical measurement and method for optically measuring cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505316A (en) * 2003-09-10 2007-03-08 シーホース バイオサイエンス インコーポレイテッド Method and apparatus for measuring a plurality of physiological properties of a cell
JP2015159778A (en) * 2014-02-28 2015-09-07 日本バイリーン株式会社 Cell cultivation carrier for optical measurement, well plate for optical measurement and method for optically measuring cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第86回大腸癌研究会 プログラム・抄録集, JPN6022020684, 2017, pages 57 - 1, ISSN: 0004785939 *

Similar Documents

Publication Publication Date Title
Lind et al. Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening
Maoz et al. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities
Xing et al. Dynamic monitoring of cytotoxicity on microelectronic sensors
Prabhulkar et al. Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker
EP3505925B1 (en) Real-time and quantitative method for measuring cell traction force
WO2016060260A1 (en) Tissue fragment
US9448223B2 (en) Impedance-based sensing of adherent cells on a digital microfluidic device
Liu et al. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants
TW201250243A (en) Apparatus for detecting tumor cells
US11066630B2 (en) Device and method for analysis of tissue constructs
CA2790873A1 (en) Methods of generating engineered innervated tissue and uses thereof
He et al. Hollow nanoneedle-electroporation system to extract intracellular protein repetitively and nondestructively
WO2002055653A1 (en) Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
Ali et al. Intracellular K $^+ $ Determination With a Potentiometric Microelectrode Based on ZnO Nanowires
Islam et al. Wearable sensors for physiological parameters measurement: physics, characteristics, design and applications
Myers et al. Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters
JP2020048435A (en) Real-time measuring tray of floating cells, measuring apparatus, and measuring method using the tray
JP2016114591A (en) Skin viscoelasticity marker and use of the same
Yadav et al. Development of multi-depth probing 3D microelectrode array to record electrophysiological activity within neural cultures
TWI584779B (en) Hexagonal-type micro sensing probe and method for fabricating the same
Phouphetlinthong et al. Protruding cantilever microelectrode array to monitor the inner electrical activity of cerebral organoids
JP6706948B2 (en) Cell culture and method for producing the same
JP6801856B2 (en) Grip
KR101771340B1 (en) Manufacturing method of invasive bio device for diagnosis and therapy, and thereof bio device
JP2017176005A (en) Cell cultivation product and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221129