JP2020047776A - Gas-permeable capacitor element, sensor element, and measurement method using them - Google Patents

Gas-permeable capacitor element, sensor element, and measurement method using them Download PDF

Info

Publication number
JP2020047776A
JP2020047776A JP2018175229A JP2018175229A JP2020047776A JP 2020047776 A JP2020047776 A JP 2020047776A JP 2018175229 A JP2018175229 A JP 2018175229A JP 2018175229 A JP2018175229 A JP 2018175229A JP 2020047776 A JP2020047776 A JP 2020047776A
Authority
JP
Japan
Prior art keywords
capacitor element
gas
amount
change
permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018175229A
Other languages
Japanese (ja)
Inventor
星野 聰
Satoshi Hoshino
聰 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018175229A priority Critical patent/JP2020047776A/en
Publication of JP2020047776A publication Critical patent/JP2020047776A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a capacitor element and a sensor element that can be used to measure one or more of the presence or absence of permeation, permeation amount, temporal change of permeation amount of substances in gas, and a change in perspiration amount and can be made into a wearable device without the need for a blowing mechanism.SOLUTION: At least a capacitor element with a dielectric layer sandwiched between a pair of electrodes, which has the air permeability of 0.5 cm/(cmmin) or more when the pressure difference between one side and the other side is 125 Pa is used to measure the presence or absence of permeation and the permeation amount of substances (water vapor, other gases, mist, etc.) in gas, and a change in perspiration amount without using a blowing mechanism such as a blowing air pump.SELECTED DRAWING: Figure 1

Description

本発明は、発汗量や気体中物質等の計測に使用可能なコンデンサ素子、センサ素子、及び、それらを用いた発汗量や気体中物質等の計測方法に関する。   The present invention relates to a capacitor element and a sensor element that can be used for measuring the amount of perspiration and substances in gas, and a method for measuring the amount of perspiration and substances in gas using the same.

近年、国民の長寿化の進展や高齢化社会の到来もあって、人々の健康意識が高まっており、各種医療施設等で健康診断などが幅広く実施されているだけでなく、各個人が日常生活を送りながら健康状態等を常時モニタリングすることにも関心が持たれるようになっており、それに伴い、心拍、血圧、体温、呼吸数などの健康状態等に関わる指標を簡易にモニタリングできるウエアラブルデバイス(Wearable device)も普及し始めている。そのようなヘルスケア用ウエアラブルデバイスの利用は、健康状態等に関わる指標の記録管理だけでなく、情報通信技術や人工知能技術を利用することで遠隔診断や治療などへの応用展開も期待されている。   In recent years, due to the prolonged life of the people and the advent of an aging society, people's awareness of health has increased, and not only medical examinations have been widely conducted at various medical facilities, but also individual There is also an interest in constantly monitoring health conditions while sending data, and with this, wearable devices that can easily monitor indices related to health conditions such as heart rate, blood pressure, body temperature, and respiratory rate ( Wearable devices) are also becoming popular. The use of such wearable devices for health care is expected to be applied not only to record management of indices related to health status and the like, but also to application development to remote diagnosis and treatment by using information communication technology and artificial intelligence technology. I have.

そのような健康意識の高まりを背景として、発汗は、運動や気温の変化による体温の上昇、緊張、味覚や嗅覚などの感覚器官への刺激等によって起こる生理現象であって、発汗量の変化は、熱中症の予防や、疾病の診断、人体に加わるストレスや種々の刺激の評価などに有効な指標になると考えられており、ヘルスケア用ウエアラブルデバイスによる計測対象として関心が寄せられている。   Against the background of such a rise in health consciousness, sweating is a physiological phenomenon that occurs due to an increase in body temperature due to exercise and changes in temperature, tension, stimulation of sensory organs such as taste and smell, etc. It is considered to be an effective index for prevention of heat stroke, diagnosis of disease, evaluation of stress applied to the human body and various stimuli, and is attracting attention as a measurement target by a wearable device for health care.

一般に発汗の計測は、汗腺から皮膚表面に浸出する汗に対して、水分による物質の呈色や皮膚表面の電気抵抗値の変化として発汗の有無を検出する手法(特許文献1,2)のほか、水分量を定量的に計測する手法として換気カプセル法(特許文献3)が主として利用されている。
換気カプセル法は、発汗を計測する皮膚上に空気の出入り口のついたカプセルを密着して取り付け、エアポンプによりこのカプセル内に十分量の空気を流して皮膚表面上の汗の水分を強制的に気化させ、カプセルを透過する前後の空気の湿度の差と流した空気の量から単位表面積、単位時間当たりの発汗水分量を定量する方法であり、この方法を用いた装置が市販もされている。
In general, the measurement of perspiration is based on a method of detecting the presence or absence of perspiration as a change in the color of a substance due to moisture or a change in the electric resistance value of the skin surface with respect to sweat leaching from the sweat glands to the skin surface (Patent Documents 1 and 2). As a technique for quantitatively measuring the amount of water, the ventilation capsule method (Patent Document 3) is mainly used.
In the ventilation capsule method, a capsule with an air inlet / outlet is closely attached to the skin to measure perspiration, and a sufficient amount of air is flowed into this capsule by an air pump to forcibly vaporize the moisture of the sweat on the skin surface In this method, the amount of perspired moisture per unit surface area and per unit time is determined from the difference between the humidity of the air before and after passing through the capsule and the amount of the flowed air, and an apparatus using this method is commercially available.

発汗量の計測とは直接の関係はないが、誘電体層とその両面の2つの導電性層とを具備し、周囲環境から水蒸気の誘電体層への拡散を可能とする裂け目が表面側の導電性層に設けられた容量型湿度センサ素子も知られている(特許文献4)。   Although not directly related to the measurement of the amount of perspiration, a crack is provided on the surface side, which has a dielectric layer and two conductive layers on both surfaces thereof, and allows a water vapor to diffuse from the surrounding environment to the dielectric layer. A capacitive humidity sensor element provided on a conductive layer is also known (Patent Document 4).

特開2010−46196号公報JP 2010-46196 A 特開平5−3875号公報JP-A-5-3875 特開昭63−46131号公報JP-A-63-46131 特開平3−87642号公報JP-A-3-87642

本発明者は、上記のような従来技術について検討したが、次の(1)〜(4)のような問題点などが存在することを認識した。
(1)水分による物質の呈色や皮膚表面の電気抵抗値の変化として発汗の有無を検出する手法は、発汗の有無を検出できるだけで、ヘルスケアを目的とした発汗量の定量は困難である。
(2)換気カプセル法は、測定誤差を生じさせないため、無効発汗と呼ばれる皮膚表面に水滴として残る汗を排除するために、十分な空間体積を持つカプセル、及び発汗量が多い状態でも汗の水分を能動的に気化させるために相応の流量の空気を送風することができるエアポンプを必要とする。またカプセルに流入出する空気のそれぞれの湿度を計測するために最低でも二つの湿度センサ素子が必要となる。この手法におけるこうした測定原理、測定手法に起因する検出部や装置全体の小型化、薄型化の必然的な限界はウエアラブルデバイス化に大きな課題であり、発汗を定量的に測定可能で、より小型軽量化、薄型化、柔軟性の付与が可能な新たな発汗量計測手法とセンサ素子の開発が望ましい。
(3)表面側の導電性層に裂け目が設けられた容量型湿度センサ素子は、周囲環境の水蒸気が表面側導電性層の裂け目を介して拡散により誘電体層に出入りする構造であるため、周囲環境の定常的な水蒸気量は定量できるものの、発汗の際の水蒸気量やその時々刻々の変化を定量することは困難である。
(4)発汗量の計測だけでなく、幅広く各種の気体中に存在する物質の有無や透過量等を簡易に計測できるセンサ素子や計測方法の開発も望まれる。
The present inventor has studied the above-described related art, but has recognized that the following problems (1) to (4) exist.
(1) A method of detecting the presence or absence of perspiration as a change in the color of a substance due to moisture or a change in the electric resistance value of the skin surface can only detect the presence or absence of perspiration, and it is difficult to quantify the amount of perspiration for health care. .
(2) Since the ventilation capsule method does not cause measurement errors, a capsule having a sufficient space volume to eliminate sweat, which is referred to as ineffective sweat, remaining as water droplets on the skin surface, and moisture in sweat even when the amount of sweat is large. Requires an air pump capable of blowing a corresponding flow of air to actively vaporize the air. Also, at least two humidity sensor elements are required to measure the respective humidity of the air flowing into and out of the capsule. The inevitable limitations of this method, such as the measurement principle and the miniaturization and thinning of the detection unit and the entire device caused by the measurement method, are major issues in making a wearable device. It is desirable to develop a new method for measuring the amount of perspiration and a sensor element that can be made thinner, thinner and more flexible.
(3) Since the capacitive humidity sensor element in which a crack is provided in the conductive layer on the front side has a structure in which water vapor in the surrounding environment enters and exits the dielectric layer by diffusion through the crack in the conductive layer on the front side, Although the steady-state amount of water vapor in the surrounding environment can be quantified, it is difficult to quantify the amount of water vapor during perspiration and its change every moment.
(4) In addition to measuring the amount of perspiration, it is also desired to develop a sensor element and a measuring method that can easily measure the presence or absence of a substance present in various gases and the amount of permeation in a wide variety of gases.

本発明は、前記従来技術や該従来技術に対する本発明者の前記認識を背景としたものであり、送風用エアポンプ等の送風機構を必要とすることなく、発汗量の変化を含めた気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上の計測に用いることが可能で、かつ、ウエアラブルデバイス化が可能なコンデンサ素子やセンサ素子を提供することを課題とする。
また、本発明は、前記コンデンサ素子や計測センサ素子を用い、発汗量の変化を含めた気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を、送風用エアポンプ等の送風機構を必要とすることなく計測することができる計測方法を提供することを課題とする。
The present invention is based on the background art and the recognition of the inventor of the present invention with respect to the conventional technology, and does not require a blowing mechanism such as an air pump for blowing, and includes a method for measuring the amount of perspiration in a gas including a change in the amount of perspiration. Provided are a capacitor element and a sensor element that can be used for measurement of one or more of presence / absence, permeation amount, and temporal change of permeation amount of a substance, and can be made into a wearable device. Make it an issue.
In addition, the present invention uses the capacitor element or the measurement sensor element to determine at least one of presence / absence of permeation of a substance in a gas including a change in perspiration, a permeation amount, and a temporal change in a permeation amount. It is another object of the present invention to provide a measuring method capable of performing measurement without requiring a blowing mechanism such as a blowing air pump.

本発明者は、前記課題のもとで鋭意研究し、少なくとも一対の電極で誘電体層を挟んだコンデンサ素子であって、一面側と他面側の差圧が125Paであるときの通気性(以下、単に「通気性」ということがある。)が0.5cm3/(cm2・分)以上となる大きな通気性を有するコンデンサ素子を用いることにより、送風用エアポンプ等の送風機構を用いることなく、発汗量の変化を含めた気体中の物質(水蒸気、その他の気体、ミスト等)の透過の有無、透過量、透過量の時間的変化をコンデンサ素子の電気容量の変化として計測できることを知見した。 The inventor of the present invention has conducted intensive studies on the above problem, and has studied a capacitor element in which a dielectric layer is sandwiched between at least a pair of electrodes, and has a gas permeability when a pressure difference between one surface side and the other surface side is 125 Pa ( Hereinafter, it may be simply referred to as “air permeability”.) By using a capacitor element having a large air permeability of not less than 0.5 cm 3 / (cm 2 · minute), a blowing mechanism such as an air pump for blowing air is used. It is found that the presence or absence of permeation of substances (water vapor, other gases, mist, etc.) in the gas including the change in the amount of perspiration, the amount of permeation, and the temporal change in the amount of permeation can be measured as the change in the capacitance of the capacitor element. did.

本発明は上記のような知見に基づくものであり、本件では、以下のような発明が提供される。
<1>少なくとも一対の電極で誘電体層を挟んだコンデンサ素子であって、一面側と他面側の差圧が125Paであるときの通気性が0.5cm3/(cm2・分)以上であるコンデンサ素子。
<2>可撓性を有するものである<1>に記載のコンデンサ素子。
<3>厚さが3.0mm以下である<1>又は<2>に記載のコンデンサ素子。
<4><1>〜<3>のいずれか1項に記載のコンデンサ素子において、一方の電極表面に、さらに、吸液層を具備し、吸液層から他方の電極表面側へ移動又は拡散する物質を計測する吸液層付きコンデンサ素子。
<5>前記吸液層は、蒸発面側の比表面積が吸収面側より大きい吸液発散層である請求項4に記載のコンデンサ素子。
<6><1>〜<5>のいずれか1項に記載のコンデンサ素子を含み、前記コンデンサ素子の電気容量の変化により気体中の所定物質の透過の有無、透過量、及び、透過量の時間的変化のうちの一つ以上を計測するセンサ素子。
<7><6>に記載のセンサ素子において、前記コンデンサ素子を計測対象の表面に装着する装着具をさらに含むセンサ素子。
<8><6>又は<7>に記載のセンサ素子において、計測対象が人体であり、発汗量及び/又はその時間的変化を定量する発汗量センサ素子。
<9><1>〜<5>のいずれか1項に記載のコンデンサ素子を用い、一方の電極側から対向する電極側へ気体を透過させ、前記コンデンサ素子の電気容量の変化により気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を計測する、気体中物質の計測方法。
<10><6>〜<8>のいずれか1項に記載のセンサ素子を用い、一方の電極側から対向する電極側へ気体を透過させ、前記コンデンサ素子の電気容量の変化により気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を計測する、気体中物質の計測方法。
The present invention is based on the above findings, and the present invention provides the following inventions.
<1> A capacitor element having a dielectric layer sandwiched between at least a pair of electrodes, and having a gas permeability of 0.5 cm 3 / (cm 2 · min) or more when the pressure difference between one surface and the other surface is 125 Pa. Is a capacitor element.
<2> The capacitor element according to <1>, which has flexibility.
<3> The capacitor element according to <1> or <2>, wherein the thickness is 3.0 mm or less.
<4> The capacitor element according to any one of <1> to <3>, further including a liquid absorbing layer on one electrode surface, and moving or diffusing from the liquid absorbing layer to the other electrode surface side. Capacitor element with a liquid absorbing layer that measures substances to be absorbed.
<5> The capacitor element according to claim 4, wherein the liquid-absorbing layer is a liquid-absorbing divergent layer having a specific surface area on the evaporation surface side larger than the absorption surface side.
<6> The capacitor according to any one of <1> to <5>, wherein the presence / absence, permeation amount, and permeation amount of a predetermined substance in gas are determined by a change in the capacitance of the capacitor element. A sensor element that measures one or more of temporal changes.
<7> The sensor element according to <6>, further including a mounting tool for mounting the capacitor element on a surface to be measured.
<8> The sensor element according to <6> or <7>, wherein the measurement target is a human body, and the amount of perspiration and / or its temporal change is determined.
<9> The capacitor element according to any one of <1> to <5>, wherein gas is transmitted from one electrode side to the opposite electrode side, and the gas in the gas is changed due to a change in the capacitance of the capacitor element. A method for measuring a substance in a gas, comprising measuring one or more of presence or absence of a substance, a transmission amount, and a temporal change in the transmission amount.
<10> The sensor element according to any one of <6> to <8>, wherein gas is transmitted from one electrode side to the opposite electrode side, and the gas in the gas is changed by a change in electric capacity of the capacitor element. A method for measuring a substance in a gas, comprising measuring one or more of presence or absence of a substance, a transmission amount, and a temporal change in the transmission amount.

本発明のコンデンサ素子や計測センサを用いることにより、発汗量の変化を含めた気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を、送風用エアポンプ等の送風機構の使用を必要とすることなく計測することができる。
また、本発明の計測方法によれば、発汗量の変化を含めた気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を、送風用エアポンプ等の送風機構の使用を必要とすることなく計測することができる。
By using the capacitor element and the measurement sensor of the present invention, one or more of the presence or absence of the substance in the gas including the change in the amount of perspiration, the amount of permeation, and the temporal change of the amount of permeation are used for ventilation. The measurement can be performed without requiring the use of a blowing mechanism such as an air pump.
According to the measuring method of the present invention, one or more of the presence or absence of permeation of the substance in the gas including the change in the amount of perspiration, the amount of permeation, and the temporal change of the amount of permeation are determined by an air pump for air blowing or the like. Can be measured without requiring the use of an air blowing mechanism.

本発明の1実施態様の吸液層(吸液発散層)付きコンデンサ素子乃至センサ素子を模式的に示す図である。It is a figure showing typically a capacitor element or a sensor element with a liquid absorption layer (liquid absorption divergence layer) of one embodiment of the present invention. 実施例1で作製したコンデンサ素子(誘電体層の平均孔径0.22μm、コンデンサ素子の通気性が1.8cm3/(cm2・分))の両電極間に5Vの交流電圧を印加し、周波数を200ヘルツから2メガヘルツまで掃引した際の該コンデンサ素子のインピーダンスと電気容量の周波数依存性を示す図である。An AC voltage of 5 V was applied between both electrodes of the capacitor element (the average pore diameter of the dielectric layer was 0.22 μm, and the air permeability of the capacitor element was 1.8 cm 3 / (cm 2 · minute)) prepared in Example 1. FIG. 4 is a diagram showing the frequency dependence of the impedance and capacitance of the capacitor element when the frequency is swept from 200 Hz to 2 MHz. 実施例1で作製したコンデンサ素子(誘電体層の平均孔径0.22μm、コンデンサ素子の通気性が1.8cm3/(cm2・分))の両電極間に5Vの交流電圧を印加し、周波数を200ヘルツから2メガヘルツまで掃引した際の該コンデンサ素子の電気容量の周波数依存性に関して、水蒸気暴露下で測定した場合と通常の大気下で測定した場合とを対比して示す図である。An AC voltage of 5 V was applied between both electrodes of the capacitor element (the average pore diameter of the dielectric layer was 0.22 μm, and the air permeability of the capacitor element was 1.8 cm 3 / (cm 2 · minute)) prepared in Example 1. FIG. 4 is a diagram showing, in comparison with the case of measurement under water vapor exposure and the case of measurement under normal atmosphere, the frequency dependence of the capacitance of the capacitor element when the frequency is swept from 200 Hz to 2 MHz. 実施例3で作製した紙片付きコンデンサ素子(誘電体層の平均孔径0.22μm、紙片を含まないコンデンサ素子単独の通気性が1.8cm3/(cm2・分))の両電極間に5V、300ヘルツの交流電圧を印加した状態で、紙片の中央に1〜5μLの水滴を間欠的に含浸させた際の該コンデンサ素子の電気容量の時間変化を示す図である。5 V between both electrodes of the capacitor element with a paper piece (the average pore diameter of the dielectric layer was 0.22 μm, and the permeability of the capacitor element alone without the paper piece was 1.8 cm 3 / (cm 2 · min)) produced in Example 3. FIG. 5 is a diagram showing a change over time of the capacitance of the capacitor element when a center of a paper piece is intermittently impregnated with 1 to 5 μL of water droplets in a state where an AC voltage of 300 Hz is applied. 実施例4で作製した紙片付きコンデンサ素子(誘電体層の平均孔径0.1μm、紙片を含まないコンデンサ素子単独の通気性1.6cm3/(cm2・分))の両電極間に5V、300ヘルツの交流電圧を印加した状態で、紙片の中央に1〜5μLの水滴を間欠的に含浸させた際の該コンデンサ素子の電気容量の時間変化を示す図である。A voltage of 5 V was applied between both electrodes of the capacitor element with paper strip (average pore diameter of dielectric layer: 0.1 μm, air permeability of the capacitor element alone without paper strip: 1.6 cm 3 / (cm 2 · min)) produced in Example 4. FIG. 6 is a diagram showing a change over time of the capacitance of the capacitor element when a center of a paper piece is intermittently impregnated with 1 to 5 μL of water droplets while an AC voltage of 300 Hz is applied. 実施例5で作製した紙片付きコンデンサ素子(誘電体層の平均孔径0.45μm、紙片を含まないコンデンサ素子単独の通気性6.1cm3/(cm2・分))の両電極間に5V、300ヘルツの交流電圧を印加した状態で、紙片の中央に1〜5μLの水滴を間欠的に含浸させた際の該コンデンサ素子の電気容量の時間変化を示す図である。A voltage of 5 V was applied between both electrodes of the capacitor element with a paper strip (average pore diameter of the dielectric layer of 0.45 μm, air permeability of the capacitor element alone without a paper strip of 6.1 cm 3 / (cm 2 · min)) produced in Example 5. FIG. 6 is a diagram showing a change over time of the capacitance of the capacitor element when a center of a paper piece is intermittently impregnated with 1 to 5 μL of water droplets while an AC voltage of 300 Hz is applied. 実施例6で作製した紙片付きコンデンサ素子(誘電体層の平均孔径0.65μm、紙片を含まないコンデンサ素子単独の通気性は測定していないが、6.1cm3/(cm2・分)超である。)の両電極間に5V、300ヘルツの交流電圧を印加した状態で、紙片の中央に1〜5μLの水滴を間欠的に含浸させた際の該コンデンサ素子の電気容量の時間変化を示す図である。Capacitor element with paper piece manufactured in Example 6 (average pore diameter of dielectric layer 0.65 μm, air permeability of capacitor element alone without paper piece is not measured, but exceeds 6.1 cm 3 / (cm 2 · min) In the state where an AC voltage of 5 V and 300 Hz is applied between both electrodes, the time change of the electric capacity of the capacitor element when the center of a paper piece is intermittently impregnated with 1 to 5 μL of water droplets is shown. FIG. 実施例7で作製した織布付きコンデンサ素子(誘電体層の平均孔径0.22μm、織布を含まないコンデンサ素子単独の通気性が1.8cm3/(cm2・分))の両電極間に、5V、300ヘルツの交流電圧を印加した状態で、織布に水を毎分50ナノLで総量1μLを吐出した際の該コンデンサ素子の電気容量の時間変化を示す図である。Between the two electrodes of the capacitor element with a woven fabric produced in Example 7 (the average pore diameter of the dielectric layer is 0.22 μm, and the permeability of the capacitor element alone without the woven fabric is 1.8 cm 3 / (cm 2 · min)) FIG. 5 is a diagram showing a change over time in the capacitance of the capacitor element when a total amount of 1 μL of water is discharged onto a woven fabric at a rate of 50 nanoL / min while applying an AC voltage of 5 V and 300 Hz. 実施例3で作製した紙片付きコンデンサ素子(誘電体層の平均孔径0.22μm、紙片を含まないコンデンサ素子単独の通気性が1.8cm3/(cm2・分))の両電極間に5V、300ヘルツの交流電圧を印加した状態で、紙片の中央に1〜5μLのエチルアルコールを間欠的に含浸させた際の該コンデンサ素子の電気容量の時間変化を示す図である。5 V between both electrodes of the capacitor element with a paper piece (the average pore diameter of the dielectric layer was 0.22 μm, and the permeability of the capacitor element alone without the paper piece was 1.8 cm 3 / (cm 2 · min)) produced in Example 3. FIG. 4 is a diagram showing a change over time in the electric capacity of the capacitor element when 1-5 μL of ethyl alcohol is intermittently impregnated into the center of a paper piece with an AC voltage of 300 Hz applied.

本発明を実施するための形態について、以下、具体例を挙げて説明するが、本発明の要旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
なお、本明細書において数値範囲を示す「〜」は、その前後に記載される数値を下限値および上限値として含む意味として使用される。
Embodiments for carrying out the present invention will be described below with reference to specific examples. However, the present invention is not limited to the following contents without departing from the gist of the present invention, and can be carried out with appropriate modifications.
In this specification, “to” indicating a numerical value range is used as a meaning including numerical values described before and after the numerical value range as a lower limit value and an upper limit value.

図1に、本発明の実施態様のコンデンサ素子乃至センサ素子を模式的に示す。本発明のコンデンサ素子は、誘電性材料からなる誘電体層1と、該誘電体層を両側から挟んで対向し、該誘電体層に電界を印加するための導電性材料からなる少なくとも一対の電極2、3を含む。
誘電体層と両電極とは、ともに気体透過性を有し、コンデンサ素子の一面側と他面側の差圧が125Paであるときのコンデンサ素子の通気性(以下、単に「通気性」ということがある。)が0.5cm3/(cm2・分)以上〔好ましくは1.0cm3/(cm2・分)以上、より好ましくは1.5cm3/(cm2・分)以上〕とすることにより、送風用エアポンプ等の送風機構を用いることなく、気体の円滑な透過を実現して発汗量の変化を含めた気体中の物質(水蒸気、その他の気体、ミスト等)の透過の有無、透過量、透過量の時間的変化を計測できる。コンデンサ素子の前記通気性の上限値は、限定するものではないが、あまり大きくなると測定感度が低下傾向となるので、10cm3/(cm2・分)以下が好ましく、8cm3/(cm2・分)以下がより好ましい。
なお、本発明における通気性(=Q/A)は、フラジール形通気試験(JIS L1096)に準じ、コンデンサ素子の一面側と他面側の差圧が125Paであるときの空気透過量Qを測定し、測定面積Aで除して算出するが、その際、測定面積Aの値や位置は、コンデンサ素子の表面領域が直径9mmの円より大きいか否かに応じて、次の(ア)又は(イ)によって設定する。
(ア)コンデンサ素子の表面領域が直径9mmの円より大きい場合には、空気透過量が最も大きくなるように位置が選択された直径9mmの円(例えば、誘電体層の通気性が均一な場合において、円内の電極に形成された孔の合計面積が最も大きくなる直径9mmの円)の内側を測定面積(0.638cm2)とする。
(イ)コンデンサ素子の使用する表面領域が小さく、直径9mmの円内とすることが不可能な場合には、コンデンサ素子で使用する表面領域(全域)を測定面積とする。
ただし、コンデンサ素子の表面領域が直径9mmの円より大きい場合において、本発明で規定した通気性の下限値の要件〔すなわち、0.5cm3/(cm2・分)以上、1.0cm3/(cm2・分)以上、又は、1.5cm3/(cm2・分)以上〕を満足することは、コンデンサ素子の表面領域内の直径9mmの円のいずれかを測定面積としたときにその下限値の要件を満足すれば、確認されたことになる。それ故、通気性の下限値の要件の満足だけを確認する場合には、上記(ア)で述べたような、空気通過量が最も大きくなるような位置の円を選択することは、必ずしも必要ではない。
FIG. 1 schematically shows a capacitor element or a sensor element according to an embodiment of the present invention. The capacitor element of the present invention comprises a dielectric layer 1 made of a dielectric material and at least one pair of electrodes opposed to each other with the dielectric layer interposed therebetween, and made of a conductive material for applying an electric field to the dielectric layer. Includes 2 and 3.
Both the dielectric layer and both electrodes have gas permeability, and the air permeability of the capacitor element when the differential pressure between one side and the other side of the capacitor element is 125 Pa (hereinafter, simply referred to as “air permeability”) Is 0.5 cm 3 / (cm 2 · min) or more [preferably 1.0 cm 3 / (cm 2 · min) or more, more preferably 1.5 cm 3 / (cm 2 · min) or more]. By doing so, it is possible to realize the smooth permeation of gas without using an air blowing mechanism such as an air pump for air blowing, and to check for the permeation of substances in the gas (water vapor, other gases, mist, etc.) including changes in the amount of perspiration , The amount of transmission, and the temporal change in the amount of transmission can be measured. The upper limit of the air permeability of the capacitor element, but are not limited to, the so large a measurement sensitivity is lowered tendency, preferably 10cm 3 / (cm 2 · min) or less, 8cm 3 / (cm 2 · Min) The following is more preferred.
The air permeability (= Q / A) in the present invention is measured by measuring the air permeation amount Q when the differential pressure between one side and the other side of the capacitor element is 125 Pa according to the Frazier-type air permeability test (JIS L1096). Then, the value is calculated by dividing by the measurement area A. At this time, the value and the position of the measurement area A are determined according to whether the surface area of the capacitor element is larger than a circle having a diameter of 9 mm or not. Set by (a).
(A) When the surface area of the capacitor element is larger than the circle having a diameter of 9 mm, a circle having a diameter of 9 mm whose position is selected so as to maximize the amount of air permeation (for example, when the air permeability of the dielectric layer is uniform) In ( 2 ), the inside of a circle having a diameter of 9 mm where the total area of the holes formed in the electrodes in the circle is the largest is defined as a measurement area (0.638 cm 2 ).
(A) If the surface area used by the capacitor element is small and cannot be within a circle having a diameter of 9 mm, the surface area (entire area) used by the capacitor element is used as the measurement area.
However, when the surface area of the capacitor element is larger than a circle having a diameter of 9 mm, the lower limit of the air permeability defined in the present invention [that is, 0.5 cm 3 / (cm 2 · min) or more, 1.0 cm 3 / (Cm 2 · min) or 1.5 cm 3 / (cm 2 · min) or more is satisfied when any of the circles having a diameter of 9 mm in the surface area of the capacitor element is used as a measurement area. If the requirement of the lower limit is satisfied, it is confirmed. Therefore, when confirming only the satisfaction of the requirement of the lower limit value of the air permeability, it is not always necessary to select the circle at the position where the amount of air passage becomes the largest as described in (a) above. is not.

一般に、コンデンサ素子の電気容量は、電極面積と誘電体層の誘電率と厚さによって決定される。誘電体層に気体や絶縁性液体の移動、透過が可能な適当な空隙を形成したコンデンサ素子を形成すれば、誘電体層中での気体や絶縁性液体の濃度や密度に応じて誘電体層の誘電率を変化させることができるので、当該コンデンサ素子に一定の電圧を印加して電気容量を測定しながら誘電体層に気体や絶縁性液体を透過させると、誘電体層を透過する物質量及びその時間的な変動をコンデンサ素子の電気容量の変化に換算して求めることが可能となる。   Generally, the electric capacity of a capacitor element is determined by the electrode area and the dielectric constant and thickness of a dielectric layer. If a capacitor element is formed in the dielectric layer that has an appropriate gap through which gas or insulating liquid can move and permeate, the dielectric layer can be adjusted according to the concentration and density of the gas or insulating liquid in the dielectric layer. When a constant voltage is applied to the capacitor element and a gas or insulating liquid is allowed to pass through the dielectric layer while measuring the capacitance, the amount of the substance passing through the dielectric layer can be changed. And its temporal variation can be obtained by converting it into a change in the capacitance of the capacitor element.

誘電体層1は、その内部を気体や液体が拡散等により移動可能な多孔質構造を有し、かつ、対向する電極2と電極3との間の電気的絶縁性を確保し、内部を移動する気体や液体によって化学的、物理的に大きな変化を起こさない材質のものから選択される。そのような誘電体層としては、限定するものではないが、例えば、多孔性セラミックスやガラス繊維からなるもの、化学的に安定な高分子の多孔質膜などが挙げられる。多孔質膜の高分子としては、限定するものではないが、ポリ(フッ化ビニリデン)、ポリテトラフルオロエチレン、それらの類縁共重合体、ポリプロピレン、ポリエチレン、ポリカーボネート等が挙げられる。
誘電体層の厚さは、電気的絶縁性と機械的強度、及び流体の透過性が担保される範囲でできるだけ薄くした方が、動作電圧を低く設定できるという点で好ましい。通常、2mm以下、好ましくは1mm以下、より好ましくは500μm以下、さらにウエアラブルデバイスへ適用する場合は、5〜200μm、好ましくは5〜100μmである。
誘電体層の空隙率〔=(真密度−みかけ密度)×100/真密度〕は、通気性と使用強度を確保できる範囲から選択できる。誘電体の材質にもよるが、好ましくは30〜90%、より好ましくは50〜80%である。
誘電体層の通気性は、コンデンサ素子がその通気性の要件を満足するものであればどのような範囲のものでもよいが、通常は、1.0cm3/(cm2・分)以上、好ましくは2.0cm3/(cm2・分)以上、より好ましくは2.5cm3/(cm2・分)以上である。誘電体層の通気性の上限値は、下限値と同様、限定するものではないが、あまり大きくなると測定感度が低下傾向となるので、20cm3/(cm2・分)以下が好ましく、10cm3/(cm2・分)以下がより好ましい。
誘電体層の通気性は、コンデンサ素子と同様に、フラジール形通気試験(JIS L1096)に準じ、誘電体層の一面側と他面側の差圧が125Paであるときの空気透過量Qを測定し、測定面積Aで除して算出する。その際、コンデンサ素子と同様に、測定面積Aの値や位置を上記(ア)又は(イ)によって設定しても良いが、誘電体層の通気性が測定面積の位置に関わらず均一である場合には、任意の位置の任意の測定面積(例えば、直径5〜20mmの範囲内の円)を採用することができる。
The dielectric layer 1 has a porous structure in which gas and liquid can move by diffusion and the like, and secures electrical insulation between the opposed electrodes 2 and 3 to move inside. The material is selected from materials that do not significantly change chemically and physically due to the changing gas or liquid. Examples of such a dielectric layer include, but are not limited to, those made of porous ceramics and glass fibers, and chemically stable polymer porous films. Examples of the polymer of the porous membrane include, but are not limited to, poly (vinylidene fluoride), polytetrafluoroethylene, an analogous copolymer thereof, polypropylene, polyethylene, and polycarbonate.
The thickness of the dielectric layer is preferably as thin as possible within a range where electrical insulation, mechanical strength, and fluid permeability are ensured, in that the operating voltage can be set low. Usually, it is 2 mm or less, preferably 1 mm or less, more preferably 500 μm or less, and when applied to a wearable device, it is 5 to 200 μm, preferably 5 to 100 μm.
The porosity of the dielectric layer [= (true density−apparent density) × 100 / true density] can be selected from a range in which air permeability and use strength can be ensured. Although it depends on the material of the dielectric, it is preferably 30 to 90%, more preferably 50 to 80%.
The air permeability of the dielectric layer may be in any range as long as the capacitor element satisfies the air permeability requirements, but is usually at least 1.0 cm 3 / (cm 2 · min), preferably Is at least 2.0 cm 3 / (cm 2 · min), more preferably at least 2.5 cm 3 / (cm 2 · min). The upper limit of the air permeability of the dielectric layer is not limited as in the case of the lower limit, but if it is too large, the measurement sensitivity tends to decrease. Therefore, the upper limit is preferably 20 cm 3 / (cm 2 · min) or less, and more preferably 10 cm 3. / (Cm 2 · min) or less is more preferable.
The air permeability of the dielectric layer is measured by measuring the air permeation Q when the pressure difference between one side and the other side of the dielectric layer is 125 Pa, in accordance with the Frazier-type air permeability test (JIS L1096), similarly to the capacitor element. Then, it is divided by the measurement area A and calculated. At this time, similarly to the capacitor element, the value and position of the measurement area A may be set according to the above (A) or (A), but the permeability of the dielectric layer is uniform regardless of the position of the measurement area. In this case, an arbitrary measurement area at an arbitrary position (for example, a circle having a diameter of 5 to 20 mm) can be adopted.

電極2及び電極3は、高い導電性(電気伝導率 105S/m以上)を有する材料で気体や液体の透過を阻害しない構造を有し、かつ透過させる気体や液体によって化学的、物理的に大きな変化を起こさないものが選択される。そのような電極としては、限定するものではないが、適当な大きさの穴やスリット等の貫通孔がパンチング加工等により所定の分布状態で形成された金属板や箔、金属の細線によって編まれた金属メッシュなどが挙げられる。
対向する電極は、前記条件を満たせば、必ずしも同一素材、同一形状である必要はないし、また、誘電体層の少なくとも一方側の面の電極を複数個の部分電極とすることもできるが、気体や液体の誘電体層中への拡散による誘電率の変化をコンデンサ素子の電気容量の変化としてより大きく得るという点で、誘電体層1、及び電極2と電極3が同一形状、同一面積でずれることなく重なる方がより好ましい。
電極及び誘電体層の面積は、大きいほど電気容量の変化が大きくなるが、ウエアラブルデバイス化に不利となるので、通常は、1〜1000mm2、好ましくは5〜500mm2、より好ましくは10〜200mm2である。
電極の厚さは、通常,1mm以下、好ましくは500μm以下、さらにウエアラブルデバイスに適用する場合には、5〜200μm、より好ましくは5〜100μmである。
ウエアラブルデバイスに適用する場合には、金属箔や金属メッシュの材料としてステンレス鋼、チタンなどが金属アレルギー等を起こしづらいという点で好ましい。
The electrode 2 and the electrode 3 are made of a material having high conductivity (electrical conductivity of 10 5 S / m or more) and having a structure that does not hinder the permeation of gas or liquid. Are selected that do not cause significant changes in Examples of such an electrode include, but are not limited to, a metal plate, a foil, and a thin metal wire in which through holes such as holes and slits of an appropriate size are formed in a predetermined distribution state by punching or the like. Metal mesh and the like.
Opposing electrodes do not necessarily have to be the same material and the same shape as long as the above conditions are satisfied, and the electrode on at least one surface of the dielectric layer may be a plurality of partial electrodes. That the dielectric layer 1 and the electrodes 2 and 3 are shifted in the same shape and the same area in that the change in the dielectric constant due to the diffusion of the liquid or the liquid into the dielectric layer is obtained as a change in the capacitance of the capacitor element. It is more preferable that they do not overlap.
The area of the electrode and the dielectric layer is larger, the larger the change in electric capacity is, but it is disadvantageous for a wearable device, so it is usually 1 to 1000 mm 2 , preferably 5 to 500 mm 2 , more preferably 10 to 200 mm. 2
The thickness of the electrode is usually 1 mm or less, preferably 500 μm or less, and when applied to a wearable device, is 5 to 200 μm, more preferably 5 to 100 μm.
When applied to a wearable device, stainless steel, titanium, or the like is preferable as a material for the metal foil or the metal mesh because metal allergy or the like is unlikely to occur.

コンデンサ素子やセンサ素子を発汗などの浸出液やその蒸気の計測に用いる場合には、コンデンサ素子の浸出液側の電極に、一方の面で浸出液を吸収し、他方の面から蒸気として蒸発させる吸液層4を、蒸発面を電極に接するように添付した吸液層付きコンデンサ素子乃至吸液層付きセンサ素子とすることができる。吸液層のうち、一方の面で浸出液を効率よく吸収し、他方の面から素早く蒸気として蒸発させる機能を向上させた吸液発散層4を、蒸発面を電極に接するように添付した吸液発散層付きコンデンサ素子乃至吸液発散層付きセンサ素子とすることもできる。吸液層(吸液発散層を含む)を添付する場合、電極2と電極3との気体透過性に異方性を持たせ、吸液層(吸液発散層を含む)4の添付を気体透過効率に優れる向きに合わせることで計測をより効率的に行うことができる。
吸液層としては、限定するものではないが、吸液性の紙(洋紙、和紙)、織布、不織布、親水性樹脂製多孔体乃至発泡体などが挙げられる。
吸液発散層としては、限定するものではないが、吸汗速乾素材乃至吸水速乾素材などとして市販乃至公知のもの(例えば、東レ(株) フィールドセンサー秒乾(登録商標)、東洋紡績紡(株) メガテックドライ(登録商標))、それらの類似構造物が挙げられる。吸液発散層の構造例としては、毛細管効果を利用して一方の面から吸収した液体を、吸収面とは反対側に効率よく移動させ、吸液面側より比表面積が大きく形成された表面側から蒸気として素早く蒸発拡散させるポリエステルやポリプロピレンなどの化学繊維からなる織布、吸水性織布層と撥水性織布層を含む織布積層体が挙げられる。
When the capacitor element or sensor element is used for measuring leachate such as perspiration or its vapor, the liquid on the electrode on the leachate side of the capacitor element absorbs leachate on one surface and evaporates as vapor from the other surface. 4 can be a capacitor element with a liquid absorbing layer or a sensor element with a liquid absorbing layer attached so that the evaporation surface is in contact with the electrode. One of the liquid absorbing layers, a liquid absorbing and diffusing layer 4 having an improved function of efficiently absorbing leachate on one surface and quickly evaporating the vapor as vapor from the other surface. A capacitor element with a divergence layer or a sensor element with a liquid absorption divergence layer can also be used. When a liquid absorbing layer (including a liquid absorbing layer) is attached, the gas permeability between the electrode 2 and the electrode 3 is made anisotropic, and the liquid absorbing layer (including the liquid absorbing layer) 4 is attached with a gas. The measurement can be performed more efficiently by adjusting the direction to be superior in transmission efficiency.
Examples of the liquid absorbing layer include, but are not limited to, liquid absorbing paper (paper, Japanese paper), woven fabric, nonwoven fabric, and porous or foamed materials made of hydrophilic resin.
The liquid absorbing layer is not limited, but is commercially available or known as a sweat-absorbing quick-drying material or a water-absorbing quick-drying material (for example, Toray Co., Ltd. Field Sensor Second Dry (registered trademark), Toyobo Co., Ltd.) Megatech Dry (registered trademark)) and similar structures thereof. As an example of the structure of the liquid absorbing layer, the liquid absorbed from one surface using the capillary effect is efficiently moved to the opposite side to the absorbing surface, and the specific surface area is larger than the liquid absorbing surface side. A woven fabric made of a chemical fiber such as polyester or polypropylene which quickly evaporates and diffuses as vapor from the side, and a woven fabric laminate including a water-absorbent woven fabric layer and a water-repellent woven fabric layer.

本発明のコンデンサ素子やセンサ素子は、人体等の計測対象面への装着を容易化するための装着具を含むことができる。そのような装着具としては、コンデンサ素子やセンサ素子の一方の電極又は吸液層(吸液発散層)を、計測対象面に接着乃至粘着させる接合具、計測対象面に密着保持するバンド、ベルト等の保持具などが挙げられる。   The capacitor element and the sensor element of the present invention can include a mounting tool for facilitating mounting on a measurement target surface such as a human body. Examples of such a mounting tool include a bonding tool for bonding or adhering one electrode or a liquid absorbing layer (liquid absorbing layer) of a capacitor element or a sensor element to a surface to be measured, a band or a belt for closely holding the surface to be measured. And the like.

以上のような本発明のコンデンサ素子やセンサ素子は、電極及び誘電体層双方の気体透過性に基づく比較的高い通気性を有するので、この通気性を利用し、各種の発生源から大気中等に自然拡散する気体中物質(水蒸気、その他の気体、ミスト等)を発生源近傍に配置したコンデンサ素子の一方の面から他方の面へ透過させ、誘電体層の誘電率が該物質の量に応じて変化することを利用して、該物質の透過量をコンデンサ素子の電気容量変化として定量可能とすることができる。
また、吸液層を一方の電極面に添付することにより、発汗作用によって人体に生じた汗等の液体を吸液層により吸収させ、気化した蒸気として漏れなくコンデンサ素子に送り込むことができるので、汗によって体外に排泄される水分量等の各種浸出液量などを電気容量の変化としてより正確、迅速に検出することが可能になると考えられる。
計測対象の気体中の物質としては、限定するものではないが、絶縁性の液体や蒸気、ミスト等であり、例えば、汗などの水、各種アルコールなどが挙げられる。
Since the capacitor element and the sensor element of the present invention as described above have a relatively high air permeability based on the gas permeability of both the electrode and the dielectric layer, the air permeability is utilized from various sources by utilizing this air permeability. A substance in gas that diffuses naturally (water vapor, other gas, mist, etc.) is transmitted from one surface of the capacitor element placed near the source to the other surface, and the dielectric constant of the dielectric layer depends on the amount of the substance. By utilizing the change, the amount of transmission of the substance can be quantified as a change in the capacitance of the capacitor element.
Also, by attaching the liquid absorbing layer to one of the electrode surfaces, liquid such as sweat generated in the human body by the sweating action can be absorbed by the liquid absorbing layer and sent to the capacitor element as vaporized vapor without leakage. It is considered that the amount of various exudates such as the amount of water excreted outside the body due to sweat can be more accurately and quickly detected as a change in electric capacity.
The substance in the gas to be measured is, but not limited to, an insulating liquid, vapor, mist, or the like, and includes, for example, water such as sweat and various alcohols.

本発明のコンデンサ素子、センサ素子を実施例により更に具体的に説明するが、本発明はこれらの実施例に何ら限定されない。   EXAMPLES The capacitor element and the sensor element of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
片面がシリコーン系粘着剤で接着性処理された厚さ40μmの可撓性ステンレス鋼箔(マクセル製 8834番ステンレステープ)を直径12.5mmの円形に加工し、直径1mmの円形の貫通孔を円の中心、及び直径3.8mmと7.6mmの同心円上等間隔に、それぞれ 1、6、12個開け気体透過性を有した電極を作製した。本電極を2枚用いて、平均孔径0.22μm、空隙率70%、厚さ125μm、差圧が125Paであるときの通気性(以下、単に「通気性」ということがある。)が3.2cm3/(cm2・分)〕を持つポリ(フッ化ビニリデン)製多孔質膜(メルクミリポア製 デュラポア(登録商標)メンブレン)を、接着面を利用して挟み込むことで気体透過性をもつ直径12.5mmの円形の可撓性コンデンサ素子〔通気性:1.8cm3/(cm2・分)〕を作製した。本素子の両電極間に周波数200ヘルツから2メガヘルツ、5Vの交流電圧を、周波数を掃引しながら印加し、電気容量とインピーダンスを室温大気下で測定した。図3に印加交流電圧の周波数と電気容量及びインピーダンスの関係を示す。電気容量は周波数に対して大きな変化を示さなかったが、インピーダンスは周波数の上昇とともに指数関数的に減少するコンデンサ素子に典型的な傾向が確認され、本可撓性素子がコンデンサ素子として成立していることを確認した。
(Example 1)
A 40 μm thick flexible stainless steel foil (Maxell's 8834 stainless steel tape), one surface of which is adhesively treated with a silicone adhesive, is processed into a 12.5 mm diameter circle, and a 1 mm diameter circular through hole is formed. 1, 6, and 12 electrodes were opened at equal intervals on the center of the circle and at equal intervals on concentric circles having diameters of 3.8 mm and 7.6 mm, respectively, to produce electrodes having gas permeability. Using two of these electrodes, the air permeability when the average pore diameter is 0.22 μm, the porosity is 70%, the thickness is 125 μm, and the differential pressure is 125 Pa (hereinafter, may be simply referred to as “air permeability”) is 3. 2 cm 3 / (cm 2 · min)], a porous membrane made of poly (vinylidene fluoride) (Durapore (registered trademark) made by Merck Millipore) is sandwiched by using an adhesive surface, so that a gas-permeable diameter can be obtained. A 12.5 mm circular flexible capacitor element (air permeability: 1.8 cm 3 / (cm 2 · minute)) was produced. An AC voltage having a frequency of 200 Hz to 2 MHz and 5 V was applied between both electrodes of the device while sweeping the frequency, and the capacitance and impedance were measured at room temperature in the atmosphere. FIG. 3 shows the relationship between the frequency of the applied AC voltage and the capacitance and impedance. Although the capacitance did not show a large change with respect to the frequency, the impedance showed a typical tendency for the capacitor element to decrease exponentially with the increase in the frequency, and the present flexible element was established as a capacitor element. I confirmed that.

(実施例2)
水を含浸したスポンジ(幅12mm、長さ30mm)の直上に、実施例1で作製した可撓性コンデンサ素子〔通気性:1.8cm3/(cm2・分)〕を、一方の電極面がスポンジ表面から約2mm離れて平行となるように配置して、スポンジから自然蒸発する水蒸気に暴露した状態で、実施例1と同様に、周波数200ヘルツから2メガヘルツ、5Vの交流電圧を周波数を掃引しながら印加し、電気容量を測定した。図3に、印加交流電圧の周波数と電気容量の関係を、図2において示した実施例1での通常大気下での測定結果と合わせて示す。水蒸気暴露下においてはおよそ200ヘルツから6キロヘルツの周波数帯域でコンデンサ素子を構成する多孔質誘電体層内を拡散透過する水蒸気による容量の変化に相当する電気容量の上昇が検出された。このことから、実施例1で作製した気体透過型の可撓性コンデンサ素子が、素子の透過する気体分子の量的変化を、電気容量の変化として検出可能にする気体(水蒸気)センサ素子として動作することが確認された。
(Example 2)
The flexible capacitor element [air permeability: 1.8 cm 3 / (cm 2 · min)] prepared in Example 1 was placed directly above a water-impregnated sponge (12 mm wide, 30 mm long) on one electrode surface. Are placed in parallel with each other at a distance of about 2 mm from the surface of the sponge, and are exposed to water vapor that naturally evaporates from the sponge, and in the same manner as in Example 1, an AC voltage of 200 Hz to 2 MHz and 5 V AC voltage is applied. The voltage was applied while sweeping, and the capacitance was measured. FIG. 3 shows the relationship between the frequency of the applied AC voltage and the electric capacity together with the measurement results under the normal atmosphere in Example 1 shown in FIG. Under water vapor exposure, an increase in electric capacity corresponding to a change in capacitance due to water vapor diffused and transmitted through the porous dielectric layer constituting the capacitor element was detected in a frequency band of about 200 Hz to 6 kHz. From this, the gas-permeable flexible capacitor element manufactured in Example 1 operates as a gas (water vapor) sensor element that can detect a quantitative change in gas molecules passing through the element as a change in electric capacity. It was confirmed that.

(実施例3)
実施例1で作製した可撓性コンデンサ素子〔通気性:1.8cm3/(cm2・分)〕の一方の電極面に直径10mmの円形の吸水性に優れる紙片を同心状に密着添付した。この素子の両電極間に5V、300ヘルツの交流電圧を印加した状態で、紙片の中央にマイクロシリンジで微量の水滴を滴下し水分を紙片に含浸させ、紙片を介して蒸発する水蒸気に対するコンデンサ素子の電気容量の時間変化を測定した。図4に、紙片に1〜5μLの水滴を滴下した時のコンデンサ素子が示す電気容量の時間変化を示す。各滴下量に応じて、紙片に含浸した水分が水蒸気となって蒸発し乾燥することによる蒸発量の時間的な増減が、コンデンサ素子が示す電気容量の時間変化として検出できることが確認された。このことから、実施例1で作製した気体透過性コンデンサ素子と吸水発散層を組み合わせることによって、吸収した水滴の量、及びその時間的変化が計測可能な気体(水蒸気)センサ素子として機能することを確認した。
(Example 3)
A circular piece of paper having a diameter of 10 mm and having excellent water absorbability was concentrically attached to one electrode surface of the flexible capacitor element [air permeability: 1.8 cm 3 / (cm 2 · minute)] produced in Example 1. . With an AC voltage of 5 V and 300 Hz applied between both electrodes of the element, a small amount of water is dropped with a micro syringe at the center of the sheet to impregnate the sheet with water, and a capacitor element for water vapor evaporating through the sheet. The time change of the electric capacity of the sample was measured. FIG. 4 shows the change over time of the capacitance of the capacitor element when 1 to 5 μL of water droplets are dropped on a piece of paper. It was confirmed that, depending on the amount of each drop, the temporal increase or decrease in the amount of evaporation caused by the evaporation and drying of the moisture impregnated into the paper pieces as water vapor can be detected as a time change in the electric capacity of the capacitor element. From this, it can be seen that the combination of the gas-permeable capacitor element manufactured in Example 1 and the water-absorptive layer functions as a gas (water vapor) sensor element capable of measuring the amount of absorbed water droplets and its temporal change. confirmed.

(実施例4)
実施例1において、平均孔径 0.22μm、通気性3.2cm3/(cm2・分)のデュラポアメンブレンの替わりに、空隙率70%、厚さ125μmが同じで、平均孔径 0.1 μm、通気性1.8cm3/(cm2・分)が異なるデュラポアメンブレンを用いた以外は実施例1と同様にして可撓性コンデンサ素子〔通気性が1.6cm3/(cm2・分)〕を作製し、実施例3と同様にして紙片に1〜5μLの水滴を滴下した時のコンデンサ素子が示す電気容量の時間変化を調べた。その結果を図5に示す。通気性が実施例1より低い実施例4の可撓性コンデンサ素子の応答性(電気容量の変化量)は、実施例1よりも多少低かったが、センサ素子として機能することが確認された。
(Example 4)
In Example 1, instead of the Durapore membrane having an average pore diameter of 0.22 μm and air permeability of 3.2 cm 3 / (cm 2 · min), the porosity is 70% and the thickness is 125 μm, and the average pore diameter is 0.1 μm. , breathable 1.8cm 3 / (cm 2 · minute), except that was used different Durapore membrane in the same manner as in example 1 flexible capacitor element [air permeability 1.6cm 3 / (cm 2 · min )], And the time change of the capacitance of the capacitor element when 1 to 5 μL of water droplets were dropped on a piece of paper was examined in the same manner as in Example 3. The result is shown in FIG. The responsivity (the amount of change in electric capacity) of the flexible capacitor element of Example 4 whose air permeability was lower than that of Example 1 was slightly lower than that of Example 1, but it was confirmed that the flexible capacitor element functioned as a sensor element.

(実施例5)
実施例1において、平均孔径 0.22μm、通気性3.2cm3/(cm2・分)のデュラポアメンブレンの替わりに、空隙率70%、厚さ125μmが同じで、平均孔径 0.45 μm、通気性13.1cm3/(cm2・分)が異なるデュラポアメンブレンを用いた以外は実施例1と同様にして可撓性コンデンサ素子〔通気性が6.1cm3/(cm2・分)〕を作製し、実施例3と同様にして紙片に1〜5μLの水滴を滴下した時のコンデンサ素子が示す電気容量の時間変化を調べた。その結果を図6に示す。通気性が実施例1より高い実施例5の可撓性コンデンサ素子の応答性(電気容量の変化量)は、実施例1や実施例4よりも大幅に低かったが、センサ素子として機能することが確認された。
(Example 5)
In Example 1, instead of the Durapore membrane having an average pore diameter of 0.22 μm and a gas permeability of 3.2 cm 3 / (cm 2 · min), the porosity is 70%, the thickness is 125 μm, and the average pore diameter is 0.45 μm. , breathable 13.1cm 3 / (cm 2 · minute), except that was used different Durapore membrane in the same manner as in example 1 flexible capacitor element [air permeability 6.1cm 3 / (cm 2 · min )], And the time change of the capacitance of the capacitor element when 1 to 5 μL of water droplets were dropped on a piece of paper was examined in the same manner as in Example 3. FIG. 6 shows the result. The responsivity (the amount of change in electric capacity) of the flexible capacitor element of Example 5, which has higher air permeability than that of Example 1, was significantly lower than that of Examples 1 and 4, but functioned as a sensor element. Was confirmed.

(実施例6)
実施例1において、平均孔径 0.22μm、通気性3.2cm3/(cm2・分)のデュラポアメンブレンの替わりに、空隙率70%、厚さ125μmが同じで、平均孔径 0.65 μm、通気性〔測定していないが、通気性が13.1cm3/(cm2・分)を超えるもの。〕が異なるデュラポアメンブレンを用いた以外は実施例1と同様にして可撓性コンデンサ素子〔測定していないが、通気性が6.1cm3/(cm2・分)を超えるもの。〕を作製し、実施例3と同様にして紙片に1〜5μLの水滴を滴下した時のコンデンサ素子が示す電気容量の時間変化を調べた。その結果を図7に示す。通気性が実施例5より高い実施例6の可撓性コンデンサ素子の応答性(電気容量の変化量)は、実施例5よりもさらに低かったが、センサ素子として機能することが確認された。
以上の実施例3〜6からみて、コンデンサ素子は、その通気性が0.5cm3/(cm2・分)以上のものを採用でき、好ましい通気性は、1.0cm3/(cm2・分)以上、より好ましくは、1.5cm3/(cm2・分)以上と考えられる。また、通気性の上限については限定するものではないが、測定感度が大きく低下しないように、20cm3/(cm2・分)以下のものを採用でき、好ましくは10cm3/(cm2・分)以下と考えられる。
(Example 6)
In Example 1, instead of the Durapore membrane having an average pore diameter of 0.22 μm and air permeability of 3.2 cm 3 / (cm 2 · min), the porosity is 70% and the thickness is 125 μm, and the average pore diameter is 0.65 μm. , Air permeability [not measured, but air permeability exceeding 13.1 cm 3 / (cm 2 · minute)]. ] Except that a Durapore membrane was used in the same manner as in Example 1 [not measured, but having a gas permeability exceeding 6.1 cm 3 / (cm 2 · min). ], And the change over time of the electric capacity indicated by the capacitor element when 1 to 5 μL of water droplets were dropped on a piece of paper was examined in the same manner as in Example 3. FIG. 7 shows the result. The responsivity (the amount of change in electric capacity) of the flexible capacitor element of Example 6 having higher air permeability than that of Example 5 was lower than that of Example 5, but it was confirmed that the flexible capacitor element functioned as a sensor element.
In view of the above Examples 3 to 6, the capacitor element having a gas permeability of 0.5 cm 3 / (cm 2 · min) or more can be adopted, and a preferable gas permeability is 1.0 cm 3 / (cm 2 ·· cm). Min) or more, more preferably 1.5 cm 3 / (cm 2 · min) or more. Further, without limitation on the upper limit of the air permeability, as measurement sensitivity is not lowered significantly, 20cm 3 / (cm 2 · min) can adopt the following ones, preferably 10cm 3 / (cm 2 · min ) It is considered as follows.

(実施例7)
実施例1で作製したコンデンサ素子〔通気性:1.8cm3/(cm2・分)〕の一方の電極面に、一方の表面で水滴を素早く吸収し、吸水した水分を毛細管現象を利用し他方の表面に移動させ、他方の表面から素早く水分を水蒸気として発散させる機能を有する高吸水速乾性ポリエステル織布(東レ(株) フィールドセンサー秒乾(登録商標))を直径10mmの円形に切り抜き、水蒸気の発散面を接するように同心状に密着添付し、発汗センサ素子を構成した。皮膚表面の発汗現象を模擬するため、シリンジポンプを用いて、マイクロシリンジから任意の流速で吐出する微量の水分を、内径125μmのチューブを介して、チューブ先端から前記コンデンサ素子に密着添付したポリエステル織布の吸水面に導入し、実施例3と同様に、コンデンサ素子の両電極間に5V、300ヘルツの交流電圧を印加した状態で水の吐出速度と電気容量の時間的な変化の関係を調べた。図8に水を毎分50ナノL、及び毎分100ナノLの速度で吐出し、総吐出量が1μLになるまでポリエステル織布に吸収させた場合の本発汗量センサ素子が示す電気容量の時間変化を示す。主に上昇した体温を下げるために起こる温熱性の発汗作用の低レベル領域に相当する水分の放出が、本センサ素子が示す電気容量の時間的な変化として検出可能であることが確認された。
(Example 7)
Water droplets were quickly absorbed on one electrode surface of the capacitor element [air permeability: 1.8 cm 3 / (cm 2 · minute)] manufactured in Example 1, and the absorbed water was removed by capillary action. It is moved to the other surface, and a high water absorption fast drying polyester woven fabric (Toray Co., Ltd. Field Sensor Second Dry (registered trademark)) having a function of quickly evaporating moisture as water vapor from the other surface is cut out into a circular shape having a diameter of 10 mm. A sweat sensor element was formed by concentrically adhering and attaching the water vapor diverging surfaces so as to be in contact with each other. In order to simulate the sweating phenomenon on the skin surface, using a syringe pump, a small amount of water discharged from the micro syringe at an arbitrary flow rate was attached to the capacitor element from the tip of the tube through a tube with an inner diameter of 125 μm. Introduced to the water-absorbing surface of the cloth, and in the same manner as in Example 3, the relationship between the discharge rate of water and the change over time of the electric capacity was examined with an AC voltage of 5 V and 300 Hz applied between both electrodes of the capacitor element. Was. FIG. 8 shows the electric capacity of the perspiration rate sensor element when water is discharged at a rate of 50 nanoL per minute and 100 nanoL per minute and absorbed by a polyester woven fabric until the total discharge amount becomes 1 μL. Shows the time change. It was confirmed that the release of water corresponding to the low-level region of the thermal sweating action, which is mainly caused by lowering the elevated body temperature, can be detected as a temporal change in the electric capacity indicated by the present sensor element.

(実施例8)
実施例3で作製したコンデンサ素子〔通気性が1.8cm3/(cm2・分)〕の一方の電極面に直径10mmの円形の吸水性に優れる紙片を同心状に密着添付した紙片付きコンデンサ素子に、実施例3と同様に、5V、300ヘルツの交流電圧を印加した状態で、紙片の中央にマイクロシリンジで微量のエチルアルコール(濃度99.5体積%)を滴下し、アルコールを紙片に含浸させ、紙片を介して蒸発するアルコール蒸気に対するコンデンサ素子の電気容量の時間変化を測定した。図9に、紙片に1〜5μLのエチルアルコールを滴下した時のコンデンサ素子が示す電気容量の時間変化を示す。各滴下量に応じて、紙片に含浸したエチルアルコールが蒸気となって蒸発し乾燥することによる蒸発量の時間的な増減が、コンデンサ素子が示す電気容量の時間変化として検出できることが確認された。このことから、実施例1で作製した気体透過性コンデンサ素子が、水蒸気以外にも、蒸発発散した気体状化合物の量、及びその時間的な変化を電気容量の変化として計測可能にする気体(アルコール蒸気)センサ素子として機能することを確認した。
(Example 8)
A capacitor with a paper sheet having a 10 mm-diameter circular water-absorbing paper sheet that is closely attached concentrically to one electrode surface of the capacitor element (air permeability: 1.8 cm 3 / (cm 2 · minute)) produced in Example 3. A small amount of ethyl alcohol (concentration: 99.5% by volume) was dropped into the center of the piece of paper with a microsyringe in a state where an AC voltage of 5 V and 300 Hz was applied to the element as in Example 3, and the alcohol was applied to the piece of paper. The change over time of the capacitance of the capacitor element with respect to the alcohol vapor that was impregnated and evaporated through a piece of paper was measured. FIG. 9 shows a change over time of the capacitance of the capacitor element when 1 to 5 μL of ethyl alcohol is dropped on a piece of paper. It was confirmed that, depending on the amount of each drop, the time-dependent increase or decrease in the amount of evaporation caused by the evaporation and drying of the ethyl alcohol impregnated in the paper pieces as vapor can be detected as a time-dependent change in the capacitance indicated by the capacitor element. From this, the gas-permeable capacitor element manufactured in Example 1 can measure the amount of the gaseous compound evaporated and diverged in addition to the water vapor, and the gas (alcohol) capable of measuring the change with time as a change in electric capacity. It was confirmed that it functioned as a (vapor) sensor element.

本発明のコンデンサ素子やセンサ素子は、発汗量の変化を含めた気体中の物質の透過の有無、透過量、透過量の時間的変化を、送風機構の使用を必要とすることなく計測することができるので、発汗量の計測だけでなく、各種の絶縁性浸出液やその蒸気の計測、気流中の気体乃至蒸気やミストの計測に幅広く使用することができるし、また、小型軽量化、薄型化、可撓性化することも容易であるのでウエアラブルデバイスとして利用することも期待される。   The capacitor element and the sensor element of the present invention are capable of measuring the presence / absence of the substance in the gas including the change in the amount of perspiration, the amount of permeation, and the temporal change in the amount of permeation without requiring the use of a ventilation mechanism. It can be widely used not only for measuring the amount of perspiration, but also for measuring various types of insulating leachate and its vapor, measuring gas or vapor and mist in the airflow, and is also small, light and thin. Since it can be easily made flexible, it is expected to be used as a wearable device.

1:気体透過性を有する多孔質誘電体層、
2、3:導電性材料からなる気体透過性を有する電極、
4:吸液層(吸液発散層)
1: a porous dielectric layer having gas permeability,
2, 3: a gas-permeable electrode made of a conductive material;
4: Liquid absorption layer (liquid absorption divergence layer)

Claims (10)

少なくとも一対の電極で誘電体層を挟んだコンデンサ素子であって、一面側と他面側の差圧が125Paであるときの通気性が0.5cm3/(cm2・分)以上であるコンデンサ素子。 A capacitor element having a dielectric layer sandwiched between at least a pair of electrodes, and having a gas permeability of 0.5 cm 3 / (cm 2 · min) or more when the pressure difference between one surface and the other surface is 125 Pa. element. 可撓性を有するものである請求項1に記載のコンデンサ素子。   The capacitor element according to claim 1, wherein the capacitor element has flexibility. 厚さが3.0mm以下である請求項1又は2に記載のコンデンサ素子。   3. The capacitor element according to claim 1, wherein the thickness is 3.0 mm or less. 請求項1〜3のいずれか1項に記載のコンデンサ素子において、一方の電極表面に、さらに、吸液層を具備し、吸液層から他方の電極表面側へ移動又は拡散する物質を計測する吸液層付きコンデンサ素子。   The capacitor element according to any one of claims 1 to 3, further comprising a liquid absorbing layer on one electrode surface, and measuring a substance which moves or diffuses from the liquid absorbing layer to the other electrode surface side. Capacitor element with a liquid absorbing layer. 前記吸液層は、蒸発面側の比表面積が吸収面側より大きい吸液発散層である請求項4に記載のコンデンサ素子。   The capacitor element according to claim 4, wherein the liquid absorbing layer is a liquid absorbing and diffusing layer having a specific surface area on the evaporation surface side larger than that on the absorption surface side. 請求項1〜5のいずれか1項に記載のコンデンサ素子を含み、前記コンデンサ素子の電気容量の変化により気体中の所定物質の透過の有無、透過量、及び、透過量の時間的変化のうちの一つ以上を計測するセンサ素子。   It includes the capacitor element according to any one of claims 1 to 5, wherein the presence / absence, permeation amount, and permeation amount of a predetermined substance in a gas are changed by a change in electric capacity of the capacitor element. Sensor element that measures one or more of 請求項6に記載のセンサ素子において、前記コンデンサ素子を計測対象の表面に装着する装着具をさらに含むセンサ素子。   7. The sensor element according to claim 6, further comprising a mounting tool for mounting the capacitor element on a surface to be measured. 請求項6又は7に記載のセンサ素子において、計測対象が人体であり、発汗量及び/又はその時間的変化を定量する発汗量センサ素子。   8. The sensor element according to claim 6, wherein the measurement target is a human body, and the amount of perspiration and / or its temporal change is determined. 請求項1〜5のいずれか1項に記載のコンデンサ素子を用い、一方の電極側から対向する電極側へ気体を透過させ、前記コンデンサ素子の電気容量の変化により気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を計測する、気体中物質の計測方法。   The capacitor element according to any one of claims 1 to 5, wherein gas is transmitted from one electrode side to an opposite electrode side, and the presence or absence of permeation of a substance in the gas due to a change in the capacitance of the capacitor element. A method for measuring a substance in a gas, the method comprising measuring one or more of a transmission amount, and a temporal change in the transmission amount. 請求項6〜8のいずれか1項に記載のセンサ素子を用い、一方の電極側から対向する電極側へ気体を透過させ、前記コンデンサ素子の電気容量の変化により気体中の物質の透過の有無、透過量、及び、透過量の時間的変化のうちの1つ以上を計測する、気体中物質の計測方法。   The sensor element according to any one of claims 6 to 8, wherein gas is transmitted from one electrode side to the opposite electrode side, and the presence or absence of permeation of a substance in the gas due to a change in the capacitance of the capacitor element. A method for measuring a substance in a gas, the method comprising measuring one or more of a transmission amount, and a temporal change in the transmission amount.
JP2018175229A 2018-09-19 2018-09-19 Gas-permeable capacitor element, sensor element, and measurement method using them Pending JP2020047776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175229A JP2020047776A (en) 2018-09-19 2018-09-19 Gas-permeable capacitor element, sensor element, and measurement method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175229A JP2020047776A (en) 2018-09-19 2018-09-19 Gas-permeable capacitor element, sensor element, and measurement method using them

Publications (1)

Publication Number Publication Date
JP2020047776A true JP2020047776A (en) 2020-03-26

Family

ID=69901712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175229A Pending JP2020047776A (en) 2018-09-19 2018-09-19 Gas-permeable capacitor element, sensor element, and measurement method using them

Country Status (1)

Country Link
JP (1) JP2020047776A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365643A (en) * 1989-06-19 1991-03-20 Testoterm Messtechnik Gmbh & Co Capacitance humidity sensor
JPH0387642A (en) * 1989-08-11 1991-04-12 Vaisala Oy Construction of capacitive moisture sensor and manufacture thereof
JPH053857A (en) * 1991-06-25 1993-01-14 Matsushita Electric Ind Co Ltd Perspiration sensor
JP2004146236A (en) * 2002-10-25 2004-05-20 Denso Corp Fuel cell system
JP2010194132A (en) * 2009-02-26 2010-09-09 Terumo Corp Living body dynamic measuring apparatus
WO2016121952A1 (en) * 2015-01-29 2016-08-04 アラム株式会社 Liquid sensor
JP2017023408A (en) * 2015-07-22 2017-02-02 ライフケア技研株式会社 Perspiration amount measuring patch and perspiration amount measuring instrument
JP2017116460A (en) * 2015-12-25 2017-06-29 株式会社チノー Porous electrode, manufacturing method for the same, and humidity sensor using porous electrode
US20170273599A1 (en) * 2016-03-24 2017-09-28 Bend Labs, Inc. Compliant sensors for force sensing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365643A (en) * 1989-06-19 1991-03-20 Testoterm Messtechnik Gmbh & Co Capacitance humidity sensor
JPH0387642A (en) * 1989-08-11 1991-04-12 Vaisala Oy Construction of capacitive moisture sensor and manufacture thereof
JPH053857A (en) * 1991-06-25 1993-01-14 Matsushita Electric Ind Co Ltd Perspiration sensor
JP2004146236A (en) * 2002-10-25 2004-05-20 Denso Corp Fuel cell system
JP2010194132A (en) * 2009-02-26 2010-09-09 Terumo Corp Living body dynamic measuring apparatus
WO2016121952A1 (en) * 2015-01-29 2016-08-04 アラム株式会社 Liquid sensor
JP2017023408A (en) * 2015-07-22 2017-02-02 ライフケア技研株式会社 Perspiration amount measuring patch and perspiration amount measuring instrument
JP2017116460A (en) * 2015-12-25 2017-06-29 株式会社チノー Porous electrode, manufacturing method for the same, and humidity sensor using porous electrode
US20170273599A1 (en) * 2016-03-24 2017-09-28 Bend Labs, Inc. Compliant sensors for force sensing

Similar Documents

Publication Publication Date Title
US10136831B2 (en) Sweat sensing with chronological assurance
CN210383905U (en) Device for collecting a fluid sample from a subject and transport sleeve
JP2017522924A (en) Device with reduced sweat volume between sensor and sweat gland
US11212916B2 (en) Flexible printed circuits for dermal applications
US10687984B2 (en) Wound dressing with a sensor
US11435340B2 (en) Low cost test strip and method to measure analyte
ES2333315T3 (en) FABRICS WITH BARRIER TO EXTREMELY ELEVATED LIQUIDS.
JP6548013B2 (en) Perspiration measurement patch and perspiration measurement device
WO2017019573A1 (en) Devices with reduced wicking volume between sensors and sweat glands
CN111372510B (en) Fluid treatment detector
JP3212682U (en) Body fluid receiving structure and body fluid analyzer having the same
KR20070043692A (en) Moisture sensor
JP2009521259A (en) Personal care products with sensors for detecting trace chemical odors
EP3478186A1 (en) Devices with reduced microfluidic volume between sensors and sweat glands
Gao et al. Wearable multifunction sensor for the detection of forehead EEG signal and sweat rate on skin simultaneously
JP2020047776A (en) Gas-permeable capacitor element, sensor element, and measurement method using them
JP7101968B2 (en) Portable emission monitoring device
US20180271416A1 (en) Headgear-mounted sweat sensing devices
US10888244B2 (en) Sweat sensing with chronological assurance
US20180020967A1 (en) Sweat sensing devices with excess sweat flow management
CN111430060A (en) Silk flexible electrode and manufacturing method thereof
Yokus et al. Wearable Sweat Rate Sensors
CN107205648B (en) Hydration status indicator
Kudo et al. A flexible transcutaneous oxygen sensor using polymer membranes
Honda et al. Wireless, Flexible, Ionic, Perspiration‐Rate Sensor System with Long‐Time and High Sweat Volume Functions Toward Early‐Stage, Real‐Time Detection of Dehydration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108