JP2020046900A - Automatic driving assistance system and automatic driving assistance method - Google Patents

Automatic driving assistance system and automatic driving assistance method Download PDF

Info

Publication number
JP2020046900A
JP2020046900A JP2018174484A JP2018174484A JP2020046900A JP 2020046900 A JP2020046900 A JP 2020046900A JP 2018174484 A JP2018174484 A JP 2018174484A JP 2018174484 A JP2018174484 A JP 2018174484A JP 2020046900 A JP2020046900 A JP 2020046900A
Authority
JP
Japan
Prior art keywords
vehicle
light
automatic driving
unit
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018174484A
Other languages
Japanese (ja)
Inventor
一久 高橋
Kazuhisa Takahashi
一久 高橋
人嗣 堀部
Hitoshi Horibe
人嗣 堀部
文平 森田
Bunpei Morita
文平 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2018174484A priority Critical patent/JP2020046900A/en
Priority to PCT/JP2019/032767 priority patent/WO2020059402A1/en
Publication of JP2020046900A publication Critical patent/JP2020046900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/507Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking specific to autonomous vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/508Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking specific to vehicles driving in fleets or convoys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Optical Communication System (AREA)

Abstract

To provide an automatic driving assistance system which enables high-safety platoon traveling to be implemented in automatic driving, and an automatic driving assistance method.SOLUTION: A first vehicle 2a transmits traveling system information Sb on itself relating to a vehicle travel to a following second vehicle 2b which travels in a platoon, via a light-emitting pattern of light of a light-emitting unit which is provided in a vehicle body. The second vehicle 2b images the light-emitting pattern of the light that is transmitted from the first vehicle 2a traveling ahead, by an imaging section 6. An actuation processing section 17 of the second vehicle 2b analyzes the light-emitting pattern of the light from the picked-up image of the imaging section 6 and causes the second vehicle 2b to execute automatic traveling on the basis of the light-emitting pattern.SELECTED DRAWING: Figure 1

Description

本発明は、車両の自動運転を支援する自動運転支援システム及び自動運転支援方法に関する。   The present invention relates to an automatic driving support system and an automatic driving support method for supporting automatic driving of a vehicle.

近年、例えば高速道路等の運転時に車両の自動運転を実現する自動運転支援システムの技術開発が進んでいる。また、この種の自動運転では、前後車両の間で無線(電波)によって車車間通信を行い、前を走行する車両に対して後の車両を一定の車間距離を空けて追従走行させることにより、複数車両を、隊列を組んで走行させる技術が周知である(特許文献1,2等参照)。   2. Description of the Related Art In recent years, technical development of an automatic driving support system that realizes automatic driving of a vehicle at the time of driving on a highway or the like is progressing. In this type of automatic driving, vehicle-to-vehicle communication is performed by radio (radio wave) between the front and rear vehicles, and the following vehicle is caused to follow the preceding vehicle by keeping a certain inter-vehicle distance. 2. Description of the Related Art A technique of running a plurality of vehicles in a platoon is known (see Patent Documents 1 and 2).

特開2002−74577号公報JP-A-2002-74577 特開2008−165611号公報JP 2008-165611 A

ところで、例えば第三者等によって車車間通信が不正に改竄されてしまうと、正常な隊列走行を実現できなくなる。よって、自動運転において複数の車両が隊列を組んで走行する場合に、その安全性を確保できる技術開発のニーズがあった。   By the way, if the inter-vehicle communication is tampered with by a third party or the like, normal platooning cannot be realized. Therefore, there is a need for technology development that can ensure safety when a plurality of vehicles travel in a row in automatic driving.

本発明の目的は、自動運転において安全性の高い隊列走行を実現可能にした自動運転支援システム及び自動運転支援方法を提供することにある。   An object of the present invention is to provide an automatic driving support system and an automatic driving support method that can realize highly safe platooning in automatic driving.

前記問題点を解決する自動運転支援システムは、車両の周囲状況を検出する検出部を前記車両に設け、当該検出部の検出信号を基に、前後車両が隊列を組んで走行するように自動運転を制御する構成であって、前記車両に設けられた複数の発光部からなる発光ユニットと、前記発光ユニットの発光パターンを制御する発光制御部と、前記発光ユニットから出力される光の発光パターンを前後の少なくとも一方の車両の受光部で受信した場合に当該発光パターンを認識し、その認識結果を前記自動運転に反映させる作動処理部とを備えた。   The automatic driving support system that solves the above problem is provided with a detection unit that detects a surrounding situation of the vehicle in the vehicle, and based on a detection signal of the detection unit, automatically drives the front and rear vehicles so as to travel in a platoon. A light emitting unit including a plurality of light emitting units provided in the vehicle, a light emitting control unit that controls a light emitting pattern of the light emitting unit, and a light emitting pattern of light output from the light emitting unit. An operation processing unit that recognizes the light emission pattern when the light is received by the light receiving units of at least one of the front and rear vehicles, and reflects the recognition result in the automatic driving.

本構成によれば、隊列を組んで車両が自動走行する場合に、車車間の光通信を通じて、自車から相手側車両に各種情報を伝達して、好適な態様で自動運転を実施させる。このため、隊列を組んで走行する車両群に対し、例えば離れた場所から電波を送信して不正作動させるなどの行為に対して影響を受けないようにすることが可能となる。よって、自動運転において安定した隊列走行を実現することが可能となる。   According to this configuration, when vehicles are automatically driven in a platoon, various kinds of information are transmitted from the own vehicle to the other vehicle through optical communication between the vehicles, and the automatic driving is performed in a suitable mode. For this reason, it is possible to protect the group of vehicles traveling in a platoon from being affected by an action such as transmitting a radio wave from a distant place and performing an illegal operation. Therefore, it is possible to realize stable platooning in automatic driving.

前記自動運転支援システムにおいて、前記発光制御部は、車両間の一方から他方に対し、車両走行に関わる自身の車両走行系情報を、前記発光ユニットの光の前記発光パターンを通じて送信し、前記車両走行系情報を前記受光部で受信した前記車両の前記作動処理部は、受信した当該車両走行系情報を基に、当該車両走行系情報に準じた車間距離をとりながら、隊列走行の制御を行うことが好ましい。この構成によれば、複数車両が隊列を組んで自動走行する場合に、光通信を通じて相手側車両に伝達した車両走行系情報に基づく最適な車間距離とすることが可能となる。これにより、車間距離を最小限とした自動走行が可能となる。よって、渋滞の緩和や車両の燃費向上に寄与する。   In the automatic driving support system, the light emission control unit transmits its own vehicle traveling system information related to vehicle traveling from one side to the other between vehicles through the light emission pattern of light of the light emitting unit, and the vehicle traveling The operation processing unit of the vehicle, which has received the system information by the light receiving unit, controls the platooning while taking an inter-vehicle distance according to the vehicle traveling system information based on the received vehicle traveling system information. Is preferred. According to this configuration, when a plurality of vehicles form a platoon and automatically travel, it is possible to set an optimum inter-vehicle distance based on vehicle travel system information transmitted to the opponent vehicle via optical communication. As a result, automatic traveling with a minimum inter-vehicle distance becomes possible. Therefore, it contributes to alleviation of traffic congestion and improvement of fuel efficiency of the vehicle.

前記自動運転支援システムにおいて、前記受光部は、前記検出部の要素が共用されていることが好ましい。この構成によれば、部品点数を抑制するのに寄与する。
前記自動運転支援システムにおいて、前記受光部は、車両周囲を撮影する撮影部であることが好ましい。この構成によれば、自動運転のために予め設置された撮影部の撮影画像を利用して、車車間の光通信によって伝達される光の発光パターンを取得することが可能となる。
In the automatic driving support system, it is preferable that the light receiving unit shares the element of the detection unit. According to this configuration, the number of components is reduced.
In the automatic driving support system, it is preferable that the light receiving unit is a photographing unit that photographs around the vehicle. According to this configuration, it is possible to acquire the light emission pattern of the light transmitted by the optical communication between the vehicles by using the image captured by the image capturing unit installed in advance for the automatic driving.

前記自動運転支援システムにおいて、車両走行に関わる車両走行系情報は、前記車両の走行性能に関わる車両スペック情報であることが好ましい。この構成によれば、各車両の走行性能に応じた適切な車間距離を設定することが可能となる。よって、例えば車両の加減速のスペックに応じた適切な車間距離を設定することが可能となるので、渋滞の緩和や車両の燃費向上に一層有利となる。   In the automatic driving support system, it is preferable that the vehicle traveling system information relating to vehicle traveling is vehicle specification information relating to traveling performance of the vehicle. According to this configuration, it is possible to set an appropriate inter-vehicle distance according to the traveling performance of each vehicle. Therefore, for example, it is possible to set an appropriate inter-vehicle distance in accordance with the specifications of acceleration and deceleration of the vehicle, which is further advantageous in alleviating traffic congestion and improving fuel efficiency of the vehicle.

前記自動運転支援システムにおいて、前方を走行する第1車両は、自身の車体後部に設けられた前記発光ユニットから光を照射し、前記第1車両の後方を走行する第2車両は、前記第1車両の発光ユニットから照射される光の発光パターンを、自身の車体前部に設けられた前記受光部を介して取得することが好ましい。この構成によれば、前後を走行する第1車両及び第2車両の間で光通信を行い、この光通信を通じて、第2車両を第1車両に追従させるように自動走行させる。よって、第1車両に対して第2車両を最適な車間距離で追従走行させることが可能となる。   In the automatic driving support system, a first vehicle traveling ahead emits light from the light-emitting unit provided at a rear part of the vehicle, and a second vehicle traveling behind the first vehicle includes the first vehicle. It is preferable that the light emission pattern of the light emitted from the light emitting unit of the vehicle is obtained via the light receiving unit provided at the front part of the vehicle. According to this configuration, optical communication is performed between the first vehicle and the second vehicle traveling back and forth, and the second vehicle is automatically driven to follow the first vehicle through the optical communication. Therefore, it is possible to cause the second vehicle to follow the first vehicle at an optimum inter-vehicle distance.

前記自動運転支援システムにおいて、前記作動処理部は、道路設置物に設けられた前記発光ユニットから、道路上の車両走行に係る発光パターンに準じた光を受信した場合、当該発光パターンを認識し、その認識結果を前記自動運転に反映させることが好ましい。この構成によれば、道路設置物に設けた発光ユニットから光通信を通じて送信される各種情報も、隊列を組んで走行する車両の自動走行に反映させることが可能となる。よって、渋滞の緩和や車両の燃費向上に一層有利となる。   In the automatic driving support system, the operation processing unit, from the light emitting unit provided on the road installation, when receiving light according to the light emitting pattern according to the vehicle traveling on the road, recognizes the light emitting pattern, Preferably, the recognition result is reflected in the automatic driving. According to this configuration, various types of information transmitted from the light-emitting unit provided on the road-installed object through optical communication can be reflected on the automatic traveling of the vehicles traveling in the platoon. Therefore, it is more advantageous for alleviating traffic congestion and improving the fuel efficiency of the vehicle.

前記自動運転支援システムにおいて、前記作動処理部は、隊列走行から離脱する旨の要求を、他車両から前記光の発光パターンを通じて取得した場合、隊列から離脱する前記他車両と自車両との間の車間距離を大きくとる制御を行うことが好ましい。この構成によれば、隊列から離脱する際に、追従する車両との間の車間距離を大きくとることが可能となるので、隊列離脱時の車両の安全を確保することが可能となる。   In the automatic driving support system, when the operation processing unit obtains a request to depart from the platoon running through the light emission pattern of the light from another vehicle, the operation processing unit determines whether the other vehicle and the own vehicle depart from the platoon. It is preferable to perform control to increase the inter-vehicle distance. According to this configuration, when leaving the platoon, it is possible to increase the inter-vehicle distance with the following vehicle, so that it is possible to ensure the safety of the vehicle when leaving the platoon.

前記問題点を解決する自動運転支援方法は、車両の周囲状況を検出する検出部を前記車両に設け、当該検出部の検出信号を基に、前後車両が隊列を組んで走行するように自動運転を制御する方法であって、前記車両に設けられた複数の発光部からなる発光ユニットの発光パターンを制御するステップと、前記発光ユニットから出力される光の発光パターンを前後の少なくとも一方の車両の受光部で受信した場合に当該発光パターンを認識し、その認識結果を前記自動運転に反映させるステップとを備えた。   An automatic driving support method that solves the above problem is provided with a detection unit that detects a surrounding situation of the vehicle in the vehicle, and based on a detection signal of the detection unit, performs automatic driving so that front and rear vehicles run in a platoon. Controlling the light emission pattern of a light emitting unit comprising a plurality of light emitting units provided in the vehicle, the light emission pattern of the light output from the light emitting unit of at least one of the front and rear of the vehicle Recognizing the light emission pattern when received by the light receiving unit, and reflecting the recognition result in the automatic driving.

本発明によれば、自動運転において安全性の高い隊列走行を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the highly safe platooning in automatic driving | operation can be implement | achieved.

第1実施形態の自動運転支援システムの構成図。FIG. 1 is a configuration diagram of an automatic driving support system according to a first embodiment. 車体前部の発光ユニットを示す概要図。FIG. 2 is a schematic diagram showing a light emitting unit at the front of the vehicle body. 車体後部の発光ユニットを示す概要図。FIG. 2 is a schematic diagram showing a light emitting unit at the rear of the vehicle body. 複数車両の隊列走行のイメージ図。The image figure of the platoon running of a several vehicle. 車車間の光通信を通じた自動運転の制御態様を示す説明図。Explanatory drawing which shows the control aspect of the automatic driving | operation through the optical communication between vehicles. (a)〜(c)は車間距離の取り方を示す説明図。(A)-(c) is explanatory drawing which shows how to take inter-vehicle distance. ITS連携の光通信を通じた自動運転の制御態様を示す説明図。Explanatory drawing which shows the control aspect of the automatic driving | operation through the optical communication of ITS cooperation. (a),(b)は隊列走行から離脱する際の車両の作動図。(A), (b) is an operation | movement figure of the vehicle at the time of leaving | separating from platooning.

以下、自動運転支援システム及び自動運転支援方法の一実施形態を図1〜図8に従って説明する。
図1に示すように、自動運転支援システム1は、例えば車両2のエンジンや操舵輪の作動を自動で制御することにより、車両2を自動運転させるものである。自動運転は、運転者に手動操作を課すことなく、車両2が自立して自ら走行する状態をいう。また、本例の自動運転支援システム1は、前を走行する車両(第1車両2a)に後の車両(第2車両2b)が追従することにより隊列を組んで走行する隊列走行機能を備える。本例の場合、第1車両2aを進行方向前側の先行車両とし、第2車両2bを進行方向後側の後続車両とする。なお、隊列を組み車両の総数は、図に示した2台に限定されず、3台以上としてもよい。また、追従する第2車両2bは、有人無人のいずれも問わない。
Hereinafter, an embodiment of an automatic driving support system and an automatic driving support method will be described with reference to FIGS.
As shown in FIG. 1, the automatic driving support system 1 automatically drives the vehicle 2 by automatically controlling the operation of the engine and the steered wheels of the vehicle 2, for example. The automatic driving refers to a state in which the vehicle 2 travels independently by itself without imposing a manual operation on the driver. In addition, the automatic driving support system 1 of the present example has a row running function of running in a row by following a preceding vehicle (first vehicle 2a) with a following vehicle (second vehicle 2b). In the case of this example, the first vehicle 2a is a preceding vehicle on the front side in the traveling direction, and the second vehicle 2b is a succeeding vehicle on the rear side in the traveling direction. Note that the total number of vehicles in the formation is not limited to two as shown in the figure, and may be three or more. Further, the second vehicle 2b to follow may be either manned or unmanned.

車両2は、車両2の走行を制御するコントローラ3を備える。コントローラ3は、車両2が自動運転に設定された際に自動運転(隊列走行)を制御する自動運転制御部4を備える。自動運転制御部4は、例えば車両2の周囲状況を検出すべく設けられた検出部5から取得する検出信号Saを基に、自動運転を制御する。検出部5は、例えば車両2の周囲状況を撮影する撮影部6や、電波を通じて車両2の周囲状況を検出するレーダ部7であることが好ましい。撮影部6は、カメラであることが好ましく、車体前後に配置されている。本例の場合、撮影部6は、車体前部の撮影部6を「6a」とし、車体後部の撮影部6を「6b」とする。レーダ部7は、ミリ波レーダであることが好ましい。自動運転制御部4は、検出部5の検出信号Saを基に車速及び操舵を制御しながら、自動運転(隊列走行)を実行する。   The vehicle 2 includes a controller 3 that controls traveling of the vehicle 2. The controller 3 includes an automatic operation control unit 4 that controls automatic operation (platform running) when the vehicle 2 is set to automatic operation. The automatic driving control unit 4 controls automatic driving based on, for example, a detection signal Sa obtained from a detecting unit 5 provided to detect a surrounding situation of the vehicle 2. The detecting unit 5 is preferably, for example, a photographing unit 6 that photographs the surroundings of the vehicle 2 or a radar unit 7 that detects the surroundings of the vehicle 2 through radio waves. The photographing unit 6 is preferably a camera, and is arranged in front and rear of the vehicle body. In the case of this example, the photographing unit 6 sets the photographing unit 6 at the front of the vehicle body to “6a” and the photographing unit 6 at the rear of the vehicle body to “6b”. The radar unit 7 is preferably a millimeter wave radar. The automatic driving control unit 4 executes automatic driving (platform running) while controlling the vehicle speed and the steering based on the detection signal Sa of the detecting unit 5.

自動運転支援システム1は、光通信を通じた車車間通信により自動運転を制御する機能(車車間通信運転制御機能)を備える。本例の場合、この車車間通信運転制御機能には、隊列走行する車両間の車間距離Lを最適化したり、隊列走行から離脱する車両2の運転をサポートしたりする機能がある。   The automatic driving support system 1 has a function of controlling automatic driving by inter-vehicle communication through optical communication (inter-vehicle communication driving control function). In the case of the present example, the inter-vehicle communication operation control function has a function of optimizing the inter-vehicle distance L between vehicles running in the platoon and supporting the driving of the vehicle 2 leaving the platooning.

この場合、自動運転支援システム1は、複数の発光部10からなる発光ユニット11を備える。発光部10は、例えば小型のLEDであることが好ましい。発光ユニット11は、コントローラ3に接続されるとともに、車体の前後に配置されている。本例の場合、車体前部の発光ユニット11を「11a」とし、車体後部の発光ユニット11を「11b」とする。撮影部6及び発光ユニット11は、車内外を問わず取り付けることが可能であり、ユニット単体(部品単体)で防水構造及び防塵構造を有することが好ましい。防水構造及び防塵構造は、周知の構造を適宜採用できる。   In this case, the automatic driving support system 1 includes a light emitting unit 11 including a plurality of light emitting units 10. The light emitting unit 10 is preferably, for example, a small LED. The light-emitting units 11 are connected to the controller 3 and are arranged before and after the vehicle body. In the case of this example, the light emitting unit 11 at the front of the vehicle body is “11a”, and the light emitting unit 11 at the rear of the vehicle body is “11b”. The photographing unit 6 and the light emitting unit 11 can be attached regardless of the inside or outside of the vehicle, and it is preferable that the unit (unit alone) has a waterproof structure and a dustproof structure. As the waterproof structure and the dust-proof structure, known structures can be appropriately adopted.

図2に示すように、車体前部の発光ユニット11aは、車体前部に設けられたフロントグリル12に配置されている。発光ユニット11aの複数の発光部10は、自車の前方に光を照射するものであって、車幅方向に並ぶように直線状に配列されている。車体前部の撮影部6a及び発光ユニット11aは、近傍に配置されることが好ましい。   As shown in FIG. 2, the light emitting unit 11a at the front of the vehicle body is disposed on a front grill 12 provided at the front of the vehicle body. The plurality of light emitting units 10 of the light emitting unit 11a irradiate light in front of the own vehicle, and are arranged linearly so as to be arranged in the vehicle width direction. It is preferable that the photographing unit 6a and the light emitting unit 11a at the front of the vehicle body are arranged in the vicinity.

図3に示すように、車体後部の発光ユニット11bは、例えば車体後部に設けられたガーニッシュ13に配置されている。発光ユニット11bの複数の発光部10は、自車の後方に光を照射するものであって、車幅方向に並ぶように直線状に配列されている。車体後部の撮影部6b及び発光ユニット11bは、近傍に配置されることが好ましい。   As shown in FIG. 3, the light emitting unit 11b at the rear of the vehicle body is disposed, for example, on a garnish 13 provided at the rear of the vehicle body. The plurality of light-emitting units 10 of the light-emitting unit 11b emit light toward the rear of the vehicle, and are linearly arranged in the vehicle width direction. It is preferable that the photographing unit 6b and the light emitting unit 11b at the rear of the vehicle body are arranged in the vicinity.

図1に戻り、自動運転支援システム1は、発光ユニット11(複数の発光部10)の作動を制御する発光制御部16を備える。発光制御部16は、光通信を通じて伝達する車両走行系情報Sbに応じた発光パターンで発光ユニット11が点灯するように、複数の発光部10の点灯消灯を制御する。車両走行系情報Sbは、車両2の走行性能(加速性能、減速性能等)に関わる車両スペック情報Sb1や、車両走行の現在状況(車速、操舵量、目的地等)に関わる走行情報Sb2などを含む。従って、発光制御部16は、車車間の光通信を通じて、自車から他車に車両スペック情報Sb1や走行情報Sb2等を逐次通知する。発光パターンは、各発光部10の発光順及び発光回数の組み合わせからなる。   Returning to FIG. 1, the automatic driving support system 1 includes a light emission control unit 16 that controls the operation of the light emitting unit 11 (the plurality of light emitting units 10). The light emission control unit 16 controls turning on and off of the plurality of light emission units 10 so that the light emission units 11 are turned on in a light emission pattern according to the vehicle traveling system information Sb transmitted through optical communication. The vehicle traveling system information Sb includes vehicle specification information Sb1 relating to traveling performance (acceleration performance, deceleration performance, etc.) of the vehicle 2 and traveling information Sb2 relating to the current situation of vehicle traveling (vehicle speed, steering amount, destination, etc.). Including. Therefore, the light emission control unit 16 sequentially notifies the vehicle specification information Sb1 and the traveling information Sb2 from the own vehicle to the other vehicles through the optical communication between the vehicles. The light emission pattern includes a combination of the light emission order and the number of times of light emission of each light emitting unit 10.

自動運転支援システム1は、車車間の光通信を通じて取得した光の発光パターンを基に車両2を作動させる作動処理部17を備える。作動処理部17は、他車両の発光ユニット11から出力された光を自車両の受光部18で受信した場合、その発光パターンを認識し、その認識結果を自動運転に反映させる。本例の場合、受光部18は、検出部5の要素(撮影部6)が共用されている。   The automatic driving support system 1 includes an operation processing unit 17 that operates the vehicle 2 based on a light emission pattern of light obtained through optical communication between vehicles. When the light output unit 11 of the other vehicle receives the light output from the light emitting unit 11 of the other vehicle, the operation processing unit 17 recognizes the light emission pattern and reflects the recognition result in the automatic driving. In the case of this example, the light receiving unit 18 shares the element of the detection unit 5 (the imaging unit 6).

作動処理部17は、撮影部6の撮影画像Sa1から車車間の光通信の画像(発光パターン画像Sa2)を分離する信号分離部19と、分離後に得た発光パターン画像Sa2から発光ユニット11の発光パターンを解析する解析部20と、解析部20の解析結果に準じた指示内容を生成する指示内容生成部21とを備える。指示内容生成部21は、生成した指示内容を車両2の自動運転制御部4に出力することにより、車車間の光通信に準じた作動で車両2を走行させる、本例の場合、第1車両2aの信号分離部19、解析部20、指示内容生成部21をそれぞれ「19a,20a、21a」とし、第2車両2bの信号分離部19、解析部20、指示内容生成部21をそれぞれ「19b,20b,21b」とする。   The operation processing unit 17 includes a signal separation unit 19 that separates an optical communication image (light emission pattern image Sa2) between vehicles from the captured image Sa1 of the imaging unit 6, and a light emission unit 11 that emits light from the light emission pattern image Sa2 obtained after the separation. An analysis unit 20 for analyzing a pattern and an instruction content generation unit 21 for generating instruction content based on the analysis result of the analysis unit 20 are provided. The instruction content generation unit 21 outputs the generated instruction content to the automatic driving control unit 4 of the vehicle 2 to cause the vehicle 2 to travel by an operation according to the optical communication between the vehicles. In the case of this example, the first vehicle The signal separating unit 19, the analyzing unit 20, and the instruction content generating unit 21 of the second vehicle 2a are respectively set to "19a, 20a, 21a", and the signal separating unit 19, the analyzing unit 20, and the instruction content generating unit 21 of the second vehicle 2b are each set to "19b". , 20b, 21b ".

次に、図4〜図8を用いて、本実施形態の自動運転支援システム1の作用及び効果について説明する。
図4に示すように、自車両2cは、隊列走行モードに操作された場合、隊列を組んで走行している他車両2dの群の中に編入し、前後の他車両2dとの間の車間距離Lを所定量空けた状態で隊列を組んで自走する状態をとる。なお、隊列走行への参加は、例えば自車両2cにおいて隊列走行への移行を意図した操作が行われたのであれば、手動運転及び自動運転のいずれの走行においても、隊列へ編入することができる。
Next, the operation and effect of the automatic driving support system 1 of the present embodiment will be described with reference to FIGS.
As shown in FIG. 4, when the own vehicle 2c is operated in the platoon running mode, the own vehicle 2c is incorporated into a group of other vehicles 2d running in a platoon, and has a headway between the front and rear other vehicles 2d. The vehicle runs in a row with the distance L left by a predetermined amount. It should be noted that participation in the platooning can be transferred to the platoon in any of the manual driving and the automatic driving, for example, if an operation intended to shift to the platooning is performed in the own vehicle 2c. .

図5に示すように、隊列走行時、前方を走行する第1車両2aの車体前部の撮影部6aは、周辺状況を撮影し、その撮影画像Sa1を、第1車両2aのコントローラ3に出力する。第1車両2aが隊列走行の先頭の場合、撮影画像Sa1には、第1車両2aの前方の周囲状況の映像(周囲状況画像)のみが映り込んでおり、車車間の光通信に準じた映像である発光パターン画像Sa2は映っていない。よって、コントローラ3は、撮影画像Sa1から発光パターン画像Sa2を分離して解析する処理が必要ないと判断し、撮影画像Sa1を自動運転制御部4に送る。   As shown in FIG. 5, during the platooning, the photographing unit 6a at the front of the body of the first vehicle 2a traveling ahead photographs the surrounding situation and outputs the photographed image Sa1 to the controller 3 of the first vehicle 2a. I do. When the first vehicle 2a is in the front of the platoon, only the image of the surrounding situation in front of the first vehicle 2a (surrounding situation image) is reflected in the captured image Sa1, and the picture conforms to the optical communication between the vehicles. Is not shown. Accordingly, the controller 3 determines that it is not necessary to perform a process of separating and analyzing the light emission pattern image Sa2 from the captured image Sa1, and sends the captured image Sa1 to the automatic operation control unit 4.

自動運転制御部4は、撮影画像Sa1を解析し、その解析結果を基に自動運転走行に係る指示内容、すなわち制御指令を生成する。そして、自動運転制御部4は、この制御指令を第1車両2aの各ECU等に出力する。これにより、第1車両2aは、周囲状況に応じた自動運転を実行する。   The automatic driving control unit 4 analyzes the photographed image Sa1 and generates an instruction content relating to the automatic driving, that is, a control command, based on the analysis result. Then, the automatic driving control unit 4 outputs this control command to each ECU or the like of the first vehicle 2a. As a result, the first vehicle 2a performs automatic driving according to the surrounding situation.

また、隊列走行時、前方を走行する第1車両2aの発光制御部16は、車体後部の発光ユニット11b(複数の発光部10)の発光パターンを通じて、後方を走行する第2車両2bに、第1車両2aの車両走行系情報Sbを車車間の光通信によって送信する。車両走行系情報Sbとしては、例えば第1車両2aの車両スペック情報Sb1及び走行情報Sb2が通知される。車両走行系情報Sbは、定期又は不定期に送信されてもよいし、車両2に走行系の操作(例えば運転の手動操作)があったタイミングで送信されてもよい。   In addition, during the platooning, the light emission control unit 16 of the first vehicle 2a traveling ahead sends the second vehicle 2b traveling backward through the light emission pattern of the light emission unit 11b (plurality of light emission units 10) at the rear of the vehicle body. The vehicle traveling system information Sb of one vehicle 2a is transmitted by optical communication between vehicles. As the vehicle traveling system information Sb, for example, vehicle specification information Sb1 and traveling information Sb2 of the first vehicle 2a are notified. The vehicle traveling system information Sb may be transmitted regularly or irregularly, or may be transmitted at a timing when the vehicle 2 has been operated by the traveling system (for example, a manual operation of driving).

車両スペック情報Sb1は、例えば第1車両2aの加速性能(加速能力)を表す加速情報、第1車両2aの減速性能(制動力)を表す減速情報のいずれか1つ、もしくはこれら情報の組み合わせからなることが好ましい。また、走行情報Sb2は、隊列走行する前方の第1車両2aの目的地、現在車速、現在操舵量等のいずれか1つ、もしくはこれら情報の組み合わせからなることが好ましい。   The vehicle specification information Sb1 is obtained from, for example, any one of acceleration information indicating the acceleration performance (acceleration ability) of the first vehicle 2a, deceleration information indicating the deceleration performance (braking force) of the first vehicle 2a, or a combination of these pieces of information. Preferably, The traveling information Sb2 preferably includes any one of the destination, the current vehicle speed, the current steering amount, and the like of the first vehicle 2a ahead traveling in the platoon, or a combination of these information.

第2車両2bの車体前部の撮影部6aは、第1車両2aの車体後部の発光ユニット11bが照らし出す発光パターンの光を撮影し、その撮影画像Sa1をコントローラ3に出力する。コントローラ3は、撮影画像Sa1に発光パターン画像Sa2が映り込んでいる場合、撮影画像Sa1を第2車両2bの信号分離部19bに送る。この信号分離部19bは、撮影画像Sa1を入力すると、撮影画像Sa1から発光パターン画像Sa2を分離し、その発光パターン画像Sa2を、第2車両2bの解析部20bに出力する。なお、第2車両2bの撮影部6aの撮影画像Sa1は、自動運転の制御のために、自動運転制御部4にも送られる。   The photographing unit 6a at the front of the vehicle body of the second vehicle 2b photographs light having a light emission pattern illuminated by the light emitting unit 11b at the rear of the vehicle body of the first vehicle 2a, and outputs the photographed image Sa1 to the controller 3. When the light emission pattern image Sa2 is reflected in the captured image Sa1, the controller 3 sends the captured image Sa1 to the signal separation unit 19b of the second vehicle 2b. When the photographed image Sa1 is input, the signal separating unit 19b separates the light-emitting pattern image Sa2 from the photographed image Sa1, and outputs the light-emitting pattern image Sa2 to the analyzing unit 20b of the second vehicle 2b. The photographed image Sa1 of the photographing unit 6a of the second vehicle 2b is also sent to the automatic driving control unit 4 for controlling automatic driving.

第2車両2bの解析部20bは、信号分離部19bによって分離された発光パターン画像Sa2を解析し、その解析結果を第2車両2bの指示内容生成部21bに出力する。画像解析の方法は、種々の画像処理の技術を用いることができる。   The analysis unit 20b of the second vehicle 2b analyzes the light emission pattern image Sa2 separated by the signal separation unit 19b, and outputs the analysis result to the instruction content generation unit 21b of the second vehicle 2b. As a method of image analysis, various image processing techniques can be used.

第2車両2bの指示内容生成部21bは、解析部20bによる解析結果を基に自動運転走行に係る指示内容、すなわち動作命令Scを生成する。そして、指示内容生成部21bは、この動作命令Scを第2車両2bの自動運転制御部4に出力する。   The instruction content generation unit 21b of the second vehicle 2b generates the instruction content related to the automatic driving, that is, the operation command Sc, based on the analysis result by the analysis unit 20b. Then, the instruction content generation unit 21b outputs the operation command Sc to the automatic driving control unit 4 of the second vehicle 2b.

第2車両2bの自動運転制御部4は、車体前部の撮影部6aからそのまま得た撮影画像Sa1から、発光ユニット11bの発光パターンを考慮に入れない画像(周囲状況画像)を認識し、この画像を基に自動運転の指示内容、すなわち制御指令を認識している。よって、第2車両2bの自動運転制御部4は、この制御指令と、指示内容生成部21bから取得した動作命令Scとを基に、自動運転(隊列走行)を制御する。これにより、第2車両2bは、周囲状況を考慮に入れ、かつ車車間の光通信(発光パターン)に応じた車間距離Lを空けならが、第1車両2aに追従して自動走行する。   The automatic driving control unit 4 of the second vehicle 2b recognizes an image (surrounding situation image) that does not take into account the light emission pattern of the light emitting unit 11b from the photographed image Sa1 directly obtained from the photographing unit 6a at the front of the vehicle body. The instruction content of the automatic operation, that is, the control command is recognized based on the image. Therefore, the automatic driving control unit 4 of the second vehicle 2b controls the automatic driving (platform running) based on this control command and the operation command Sc acquired from the instruction content generation unit 21b. As a result, the second vehicle 2b automatically travels following the first vehicle 2a while taking the surrounding situation into consideration and leaving the inter-vehicle distance L according to the optical communication (light emission pattern) between the vehicles.

本例の場合、第2車両2bの自動運転制御部4は、指示内容生成部21bから入力した動作命令Scを基に、自動運転(隊列走行)を制御する。すなわち、第2車両2bの自動運転制御部4は、車車間の光通信の発光パターンを通じて取得した車両走行系情報Sbを基に、隊列走行の自動運転を制御する。例えば、動作命令Scに車両スペック情報Sb1として加速情報や減速情報を考慮に入れた指令が含まれている場合、互いに衝突しない程度に車間距離Lを詰めて隊列走行を実施させる。   In the case of this example, the automatic driving control unit 4 of the second vehicle 2b controls the automatic driving (platform running) based on the operation command Sc input from the instruction content generation unit 21b. That is, the automatic driving control unit 4 of the second vehicle 2b controls the automatic driving of the platoon running based on the vehicle driving system information Sb acquired through the light emission pattern of the optical communication between the vehicles. For example, when the operation command Sc includes a command that takes into account acceleration information and deceleration information as the vehicle specification information Sb1, the inter-vehicle distance L is reduced to such an extent that they do not collide with each other, and platooning is performed.

図6(a),(b)に示すように、前後車両間で車車間の光通信を通じて車両スペック情報Sb1(加減速情報)が伝達された場合、その車両スペック情報Sb1(加減速情報)に応じた車間距離Lをとって隊列走行が実行される。ところで、例えば前方車両の加速性能が高い場合には、後続車両が先行車両に速やかに先行車両に追い付けるようにする必要がある。また、前方車両の減速性能が低い場合には、先行車両は急減速する可能性は低いと想定される。よって、これらの場合には、図6(a)に示すように、隊列走行時、車間距離Lを小さくするような車速に調整されることが好ましい。   As shown in FIGS. 6A and 6B, when vehicle specification information Sb1 (acceleration / deceleration information) is transmitted between the front and rear vehicles through optical communication between the vehicles, the vehicle specification information Sb1 (acceleration / deceleration information) is included in the vehicle specification information Sb1 (acceleration / deceleration information). The platooning is executed with the appropriate inter-vehicle distance L. By the way, for example, when the acceleration performance of the preceding vehicle is high, it is necessary for the following vehicle to quickly catch up with the preceding vehicle. When the deceleration performance of the preceding vehicle is low, it is assumed that the possibility that the preceding vehicle will suddenly decelerate is low. Therefore, in these cases, as shown in FIG. 6A, it is preferable that the vehicle speed is adjusted so as to reduce the inter-vehicle distance L during platooning.

一方、前方車両の加速性能が低い場合には、後続車両は直ぐに先行車両に追い付くことができるため、車間距離Lに余裕を持たせても差し支えない。また、前方車両の減速性能が高い場合には、先行車両の急減速時に後続車両が追突しないよう距離を空ける必要がある。よって、これらの場合には、図6(b)に示すように、隊列走行時、車間距離Lを大きくとるような車速に調整されることが好ましい。   On the other hand, when the acceleration performance of the preceding vehicle is low, the following vehicle can catch up with the preceding vehicle immediately, so that the inter-vehicle distance L may have a margin. Further, when the deceleration performance of the preceding vehicle is high, it is necessary to keep a distance so that the following vehicle does not collide when the preceding vehicle suddenly decelerates. Therefore, in these cases, it is preferable that the vehicle speed is adjusted so that the inter-vehicle distance L is increased during platooning, as shown in FIG. 6B.

隊列走行時、後続の第2車両2bは、光通信を通じて第1車両2aから得た走行情報Sb2から、前後車両の目的地が同一であると認識できる場合がある。この場合、第2車両2bは、光通信を通じて第1車両2aから入力する各種情報を基に、第1車両2aに単に追従していく自動走行をとってもよい。こうすれば、第2車両2bの自動運転が簡易的な自動走行となる。   During platooning, the subsequent second vehicle 2b may be able to recognize that the destinations of the front and rear vehicles are the same based on the driving information Sb2 obtained from the first vehicle 2a through optical communication. In this case, the second vehicle 2b may perform automatic traveling simply following the first vehicle 2a based on various information input from the first vehicle 2a through optical communication. In this case, the automatic driving of the second vehicle 2b becomes a simple automatic driving.

また、図6(c)に示すように、各車両間で車間距離Lが異なるように自動運転が制御されてもよい。図の例では、車両2r,2sの間の車間距離Lが「L1」であり、車両2s,2tの車間距離Lが「L2(>L1)」であり、車両2t,2uの車間距離Lが「L3(<L1<L2)」となっている。よって、車間距離Lが一層最適化される。   Further, as shown in FIG. 6C, the automatic driving may be controlled so that the inter-vehicle distance L differs between the vehicles. In the example of the figure, the inter-vehicle distance L between the vehicles 2r and 2s is “L1”, the inter-vehicle distance L between the vehicles 2s and 2t is “L2 (> L1)”, and the inter-vehicle distance L between the vehicles 2t and 2u is "L3 (<L1 <L2)". Therefore, the inter-vehicle distance L is further optimized.

図7に示すように、自動運転支援システム1は、通信技術を活用して交通の安全性向上や渋滞緩和等を実現する高度道路交通システム24、いわゆるITS(Intelligent Transport Systems)と連携した作動(ITS連携)をとってもよい。この場合、道路設置物25に発光ユニット11を設けて、光通信を介して、道路上の走行環境に係る運転サポート情報Sb3を車両2に送信可能にする。道路設置物25は、例えば交通信号機、道路標識、街路灯などがある。運転サポート情報Sb3は、いわゆるITS情報であって、例えば渋滞予測、事故情報、気象予報等の走行環境に関わる各種情報からなる。   As shown in FIG. 7, the automatic driving support system 1 operates in cooperation with an intelligent transportation system (ITS) 24, which realizes improvement of traffic safety and congestion mitigation by utilizing communication technology. ITS cooperation). In this case, the light-emitting unit 11 is provided on the road-installed object 25, and the driving support information Sb3 relating to the driving environment on the road can be transmitted to the vehicle 2 via optical communication. The road installation object 25 includes, for example, a traffic light, a road sign, a street light, and the like. The driving support information Sb3 is so-called ITS information, and includes various information related to the driving environment such as traffic congestion prediction, accident information, weather forecast, and the like.

車体前部の撮影部6a(車体後部の撮影部6bでも可)は、発光ユニット11から出力される光(発光パターン)を受光すると、その撮影画像Sa1を信号分離部19に出力する。そして、以降は、車両スペック情報Sb1や走行情報Sb2を受光したときと同様の処理を通じて、発光ユニット11から出力された発光パターン画像Sa2を取得する。そして、自動運転制御部4は、発光パターン画像Sa2から導出される動作命令Scを反映した自動運転(隊列走行)を実行する。なお、高度道路交通システム24によって通知される運転サポート情報Sb3には、光通信に限らず、電波経由のものもある。   When receiving the light (light emission pattern) output from the light emitting unit 11, the imaging unit 6 a at the front of the vehicle body (or the imaging unit 6 b at the rear of the vehicle body) outputs the captured image Sa 1 to the signal separation unit 19. Thereafter, the light emission pattern image Sa2 output from the light emitting unit 11 is obtained through the same processing as when the vehicle specification information Sb1 and the travel information Sb2 are received. Then, the automatic driving control unit 4 executes the automatic driving (platform running) reflecting the operation command Sc derived from the light emission pattern image Sa2. The driving support information Sb3 notified by the intelligent transportation system 24 is not limited to optical communication, but may include information via radio waves.

また、ITS連携の場合、他車両の割り込みに対し、割り込みブレーキによる渋滞発生の防止策の1つとして、割り込み車両に対する車間距離管理を実施してもよい。例えば、高速道路走行中、インターチェンジ等の合流に差し掛かった場合、車両合流を妨げず、かつ隊列走行の車両群の全体速度が落ちないような車間管理をしてもよい。仮に、渋滞になるような状況の場合は、無線ネットワーク(例えば、DCM:Data Communication Module)を用いて、渋滞の一定距離手前から、隊列走行する車両間の車間距離Lを広げ、合流地点での減速渋滞を緩和するようにしてもよい。   In the case of the ITS cooperation, the inter-vehicle distance management for the interrupted vehicle may be performed as one of the measures for preventing the occurrence of traffic congestion due to the interrupt brake in response to the interrupt of another vehicle. For example, if the vehicle approaches a junction such as an interchange while traveling on a highway, vehicle-to-vehicle management may be performed so that vehicle consolidation is not hindered and the overall speed of a group of vehicles traveling in platoon does not decrease. In a situation where traffic congestion occurs, the inter-vehicle distance L between vehicles running in platoon is increased from a certain distance before the traffic congestion by using a wireless network (for example, DCM: Data Communication Module), and the congestion point is determined. The deceleration traffic may be alleviated.

図8(a),(b)に示すように、隊列離脱の操作が第1車両2aで行われた場合(意志を示した場合)、後続車両である第2車両2bに、先行車両である第1車両2aの離脱をサポートする作動を実施させてもよい。第1車両2aは、隊列離脱の操作を認識すると、隊列走行から離脱する旨の要求(離脱要求Sb4)を、光の発光パターンを通じて第2車両2bに送信する。   As shown in FIGS. 8A and 8B, when the operation of leaving the platoon is performed by the first vehicle 2a (indicating the intention), the second vehicle 2b that is the succeeding vehicle is the preceding vehicle. An operation for supporting the detachment of the first vehicle 2a may be performed. When recognizing the operation of leaving the platoon, the first vehicle 2a transmits a request to leave the platoon running (leaving request Sb4) to the second vehicle 2b through the light emission pattern.

図8(b)に示すように、第2車両2b(作動処理部17)は、第1車両2aから離脱要求Sb4を入力すると、離脱する第1車両2aと自車両である第2車両2bとの間の車間距離Lを大きくとる制御を行う。本例の場合、第2車両2bの作動処理部17は、第1車両2aから光通信を通じて離脱要求Sb4を取得すると、第2車両2bの速度を一旦落とし、前方を走行する第1車両2aとの間の車間距離Lを広げる。これにより、第1車両2aが隊列離脱する際、自動運転から手動運転に切り替えられて運転操作が行われる場合でも、後方の第2車両2bとの車間が十分に確保された安全な離脱が確保される。   As shown in FIG. 8B, when the second vehicle 2b (the operation processing unit 17) receives the departure request Sb4 from the first vehicle 2a, the second vehicle 2b (the operation processing unit 17) and the departure first vehicle 2a and the own vehicle, the second vehicle 2b, Is controlled to increase the inter-vehicle distance L between. In the case of this example, when the operation processing unit 17 of the second vehicle 2b acquires the departure request Sb4 from the first vehicle 2a through optical communication, the operation processing unit 17 temporarily lowers the speed of the second vehicle 2b, and The distance L between vehicles is increased. Thereby, when the first vehicle 2a leaves the platoon, even if the driving operation is performed by switching from the automatic driving to the manual driving, a safe departure with a sufficient inter-vehicle distance with the second vehicle 2b behind is ensured. Is done.

さて、本例の場合、車両2が隊列を組んで自動走行する場合に、車車間の光通信を通じて、自車(本例は第1車両2a)から相手側車両(本例は第2車両2b)に各種情報を伝達して、好適な態様で自動運転を実施させる。このため、隊列を組んで走行する車両群に対し、例えば離れた場所から電波を送信して不正作動させるなどの行為に対して影響を受けないようにすることが可能となる。よって、自動運転において安全性の高い隊列走行を実現することができる。   By the way, in the case of the present example, when the vehicles 2 form a platoon and run automatically, the own vehicle (in this example, the first vehicle 2a) and the opponent vehicle (in this example, the second vehicle 2b) through the optical communication between the vehicles. ) To transmit the various information, and to execute the automatic driving in a suitable mode. For this reason, it is possible to protect the group of vehicles traveling in a platoon from being affected by an action such as transmitting a radio wave from a distant place and performing an illegal operation. Therefore, it is possible to realize platooning with high safety in automatic driving.

発光制御部16は、車両間の一方から他方に対し、車両走行に関わる自身の車両走行系情報Sbを、発光ユニットの光の発光パターンを通じて送信する。この車両走行系情報Sbを撮影部6で取得した車両2の作動処理部17は、受信した車両走行系情報Sbを基に、その車両走行系情報Sbに準じた車間距離Lをとりながら、隊列走行の制御を行う。このため、複数車両が隊列を組んで自動走行する場合に、光通信を通じて相手側車両に伝達した車両走行系情報Sbに基づく最適な車間距離Lとすることが可能となる。これにより、車間距離Lを最小限とした自動走行が可能となる。よって、渋滞の緩和や車両2の燃費向上に寄与する。   The light emission control unit 16 transmits its own vehicle traveling system information Sb related to vehicle traveling from one side to the other between the vehicles through the light emission pattern of the light emitting unit. The operation processing unit 17 of the vehicle 2 that has acquired the vehicle traveling system information Sb by the photographing unit 6 determines the inter-vehicle distance L based on the received vehicle traveling system information Sb, Controls traveling. For this reason, when a plurality of vehicles form a platoon and run automatically, it is possible to set the optimum inter-vehicle distance L based on the vehicle traveling system information Sb transmitted to the opponent vehicle through optical communication. As a result, automatic traveling with a minimum inter-vehicle distance L is possible. Therefore, it contributes to alleviation of traffic congestion and improvement of fuel efficiency of the vehicle 2.

受光部18は、検出部5の要素(本例は撮影部6)が共用されている。よって、部品点数を抑制するのに寄与する。
受光部18は、車両周囲を撮影する撮影部6である。よって、自動運転のために予め設置された撮影部6の撮影画像Sa1を利用して、車車間の光通信によって伝達される光の発光パターンを取得することができる。
The light receiving unit 18 shares the element of the detection unit 5 (the imaging unit 6 in this example). Therefore, it contributes to suppressing the number of parts.
The light receiving unit 18 is the photographing unit 6 that photographs the periphery of the vehicle. Therefore, the light emission pattern of the light transmitted by the optical communication between the vehicles can be acquired by using the photographed image Sa1 of the photographing unit 6 installed in advance for the automatic driving.

車両走行系情報Sbは、車両2の走行性能に関わる車両スペック情報Sb1である。これにより、各車両2の走行性能に応じた適切な車間距離Lを設定することが可能となる。よって、例えば車両2の加減速のスペックに応じた適切な車間距離Lを設定することが可能となるので、渋滞の緩和や車両2の燃費向上に一層有利となる。   The vehicle traveling system information Sb is vehicle specification information Sb1 related to the traveling performance of the vehicle 2. This makes it possible to set an appropriate inter-vehicle distance L according to the traveling performance of each vehicle 2. Therefore, for example, it is possible to set an appropriate inter-vehicle distance L according to the specifications of acceleration and deceleration of the vehicle 2, which is further advantageous for alleviating traffic congestion and improving the fuel efficiency of the vehicle 2.

前方を走行する第1車両2aは、自身の車体後部に設けられた発光ユニット11から光を照射する。第1車両2aの後方を走行する第2車両2bは、第1車両2aの発光ユニット11から照射される光の発光パターンを、自身の車体前部に設けられた受光部(本例は撮影部6)を介して取得する。このため、前後を走行する第1車両2a及び第2車両2bの間で光通信を行い、この光通信を通じて、第2車両2bを第1車両2aに追従させるように自動走行させる。よって、第1車両2aに対して第2車両2bを最適な車間距離Lで追従走行させることができる。   The first vehicle 2a traveling ahead emits light from the light emitting unit 11 provided at the rear of the vehicle body. The second vehicle 2b traveling behind the first vehicle 2a transmits a light emission pattern of light emitted from the light emitting unit 11 of the first vehicle 2a to a light receiving unit (a photographing unit in this example) provided in a front part of the vehicle body. 6) through to get. For this reason, optical communication is performed between the first vehicle 2a and the second vehicle 2b traveling back and forth, and the second vehicle 2b is automatically driven to follow the first vehicle 2a through this optical communication. Therefore, the second vehicle 2b can follow the first vehicle 2a with the optimum inter-vehicle distance L.

作動処理部17は、道路設置物25に設けられた発光ユニット11から、道路上の車両走行に係る発光パターン(本例は運転サポート情報Sb3)に準じた光を受信した場合、この発光パターンを認識し、その認識結果を自動運転に反映させる。このため、道路設置物25に設けた発光ユニット11から光通信を通じて送信される各種情報も、隊列を組んで走行する車両2の自動走行に反映させることが可能となる。よって、渋滞の緩和や車両の燃費向上に一層有利となる。   When the operation processing unit 17 receives light from the light-emitting unit 11 provided on the road-installed object 25 in accordance with a light-emitting pattern (vehicle driving support information Sb3 in this example) relating to vehicle traveling on the road, the operation processing unit 17 converts this light-emitting pattern. Recognize and reflect the recognition result on automatic driving. Therefore, various kinds of information transmitted from the light emitting unit 11 provided on the road installation object 25 through optical communication can be reflected on the automatic traveling of the vehicles 2 traveling in a platoon. Therefore, it is more advantageous for alleviating traffic congestion and improving the fuel efficiency of the vehicle.

作動処理部17は、隊列走行から離脱する旨の通知(離脱要求Sb4)を、他車両(本例は第1車両2a)から光の発光パターンを通じて取得した場合、隊列から離脱する他車両(本例は第1車両2a)と自車両(本例は第2車両2b)との間の車間距離Lを大きくとる制御を行う。よって、隊列から離脱する際に、追従車両との間の車間距離を大きくとることが可能となるので、隊列離脱時の車両2の安全を確保することができる。   When the operation processing unit 17 obtains a notification (leaving request Sb4) of leaving from the platoon running from another vehicle (in this example, the first vehicle 2a) through the light emission pattern, the other vehicle (vehicle) that leaves the platoon. In the example, control is performed to increase the inter-vehicle distance L between the first vehicle 2a) and the host vehicle (the second vehicle 2b in the present example). Therefore, when leaving the platoon, it is possible to increase the inter-vehicle distance with the following vehicle, so that the safety of the vehicle 2 when leaving the platoon can be ensured.

なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・後続の第2車両2bから前方を走行する第1車両2aに光通信を通じて車両走行系情報Sbを送信し、前方の第1車両2aの自動運転を制御して、所望の隊列走行を実現することもできる。
The present embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
The vehicle traveling system information Sb is transmitted through optical communication from the subsequent second vehicle 2b to the first vehicle 2a traveling ahead, and the automatic driving of the first vehicle 2a ahead is controlled to realize a desired platooning. You can also.

・隊列走行が3台以上の場合、例えば先頭の車両2の車両走行系情報Sbを2台目以降の後続の全ての車両2に送信して、隊列走行を制御することもできる。
・車両2の周囲状況は、周囲車両の動き、道路標識の種類、白線の位置、歩道位置、歩行者の有無及び動き、自転車の有無及び動きなど、種々のパラメータが採用できる。
When three or more vehicles are platooned, for example, the vehicle running system information Sb of the first vehicle 2 may be transmitted to all subsequent vehicles 2 after the second vehicle to control platooning.
Various parameters such as the movement of the surrounding vehicle, the type of road sign, the position of the white line, the sidewalk position, the presence / absence and movement of a pedestrian, the presence / absence and movement of a bicycle, and the presence / absence of a bicycle can be adopted as the surrounding conditions of the vehicle 2.

・検出部5は、撮影部6及びレーダ部7に限定されず、例えば赤外線センサなどの他の部材を用いてもよい。
・発光ユニット11の発光部10は、LEDに限定されず、光通信ができる部材であればよい。
The detection unit 5 is not limited to the imaging unit 6 and the radar unit 7, but may use another member such as an infrared sensor.
The light emitting unit 10 of the light emitting unit 11 is not limited to the LED, and may be any member that can perform optical communication.

・発光部10は、水平方向に整列した配置をとることに限定されず、例えば垂直方向や、垂直方向及び水平方向の並びの組み合わせなど、配置を適宜変更してもよい。
・発光ユニット11の発光パターンは、点灯消灯の組み合わせに限らず、例えば点灯時間や点滅間隔など、種々のパラメータも適用できる。
The arrangement of the light emitting units 10 is not limited to the arrangement aligned in the horizontal direction, and the arrangement may be changed as appropriate, for example, in the vertical direction, or in a combination of arrangement in the vertical and horizontal directions.
The light emitting pattern of the light emitting unit 11 is not limited to a combination of lighting and turning off, and various parameters such as a lighting time and a blinking interval can be applied.

・車両走行系情報Sbは、車両スペック情報Sb1に限らず、実施例で述べた走行情報Sb2、運転サポート情報Sb3、離脱要求Sb4を含む。また、車両走行系情報は、これら情報や要求に限定されず、隊列走行の維持や制御に必要な情報であれば、どのような内容を持つものでもよい。   The vehicle traveling system information Sb is not limited to the vehicle specification information Sb1, but includes the traveling information Sb2, the driving support information Sb3, and the departure request Sb4 described in the embodiment. Further, the vehicle traveling system information is not limited to these information and requests, and may have any content as long as it is information necessary for maintaining and controlling the platooning.

・車両走行系情報Sbは、自車に関わる走行の各種情報に限定されない。例えば、隊列走行に加わっていない付近を走行する別の車両2から得た各種情報でもよく、これを隊列走行する別の車両2に中継してもよい。   The vehicle traveling system information Sb is not limited to various types of traveling information relating to the own vehicle. For example, various types of information obtained from another vehicle 2 traveling in the vicinity not participating in platooning may be used, and this information may be relayed to another vehicle 2 traveling in platooning.

・車両スペック情報Sb1は、例えば車両重量、ガソリン残量、走行距離などの情報でもよい。
・第1車両2aが隊列走行から離脱する場合、第1車両2aが一旦加速して後続の第2車両2bとの車間距離Lを広げ、その後、第1車両2aが隊列から離脱する作動をとってもよい。
The vehicle specification information Sb1 may be, for example, information such as vehicle weight, gasoline remaining amount, and mileage.
When the first vehicle 2a leaves the platoon, the first vehicle 2a temporarily accelerates to increase the inter-vehicle distance L with the subsequent second vehicle 2b, and then the first vehicle 2a takes off from the platoon. Good.

・隊列走行からの離脱のサポートは、第2車両2bを対象としてもよい。この場合、第2車両2bから光通信を通じて第1車両2aに離脱要求Sb4を送り、第1車両2a及び第2車両2bの車間距離Lが通常よりも広げられる。この場合、第2車両2bが隊列走行から離脱する際の走行の安全性を確保することができる。   -Support for departure from platooning may be directed to the second vehicle 2b. In this case, a departure request Sb4 is sent from the second vehicle 2b to the first vehicle 2a through optical communication, and the inter-vehicle distance L between the first vehicle 2a and the second vehicle 2b is wider than usual. In this case, traveling safety when the second vehicle 2b departs from platooning can be ensured.

・光通信は、例えばレーザ光、赤外線、可視光、紫外線等を用いることができる。
・受光部18は、検出部5とは別の部材から構成されてもよい。
・受光部18は、撮影部6に限定されず、光を取得できるセンサ類であればよい。
For optical communication, for example, laser light, infrared light, visible light, ultraviolet light, or the like can be used.
-The light receiving part 18 may be comprised from a member different from the detection part 5.
The light receiving unit 18 is not limited to the photographing unit 6 and may be any sensor that can acquire light.

・車両2の隊列走行は、前後方向に車両2が並ぶ走行に限定されず、例えば左右に車両2が整列した走行(並列走行)でもよい。
・運転サポート情報Sb3は、例えば坂道、カーブ、トンネル等の情報を含んでもよい。
-The platooning of the vehicles 2 is not limited to running in which the vehicles 2 are lined up in the front-rear direction.
-The driving support information Sb3 may include information on, for example, a slope, a curve, a tunnel, and the like.

・運転サポート情報Sb3を電波によっても車両2に通知可能とする場合、基本的に光通信でやり取りされる情報を上位の位置付けとし、電波で送受信される情報はその下位の位置付けとすることが好ましい。   In the case where the driving support information Sb3 can be notified to the vehicle 2 also by radio waves, it is preferable that information exchanged by optical communication is basically positioned at a higher position, and information transmitted and received by radio waves is positioned at a lower position. .

・作動処理部17は、自動運転制御部4に組み込まれた構成でもよい。
・自動運転支援システム1は、既存車両に対して後付け可能に構成されてもよい。
・自動運転支援システム1は、車両間の車間距離Lを最適化する処理を実施することに限定されない。要は、車車間の光通信を通じて各種情報を車両間で送り合い、その情報を基に隊列を組んだ自動走行が実現されるものであればよい。
The operation processing unit 17 may be configured to be incorporated in the automatic operation control unit 4.
The automatic driving support system 1 may be configured to be retrofittable to an existing vehicle.
-The automatic driving support system 1 is not limited to performing the process of optimizing the inter-vehicle distance L between the vehicles. The point is that various types of information can be transmitted between the vehicles through optical communication between the vehicles, and automatic running in a platoon based on the information can be realized.

1…自動運転支援システム、2…車両、2a…第1車両、2b…第2車両、5…検出部、6(6a,6b)…撮影部、10…発光部、11(11a,11b)…発光ユニット、16…発光制御部、17…作動処理部、18…受光部、25…道路設置物、Sa…検出信号、Sb…車両走行系情報、Sb1…車両スペック情報、Sb2…走行情報、Sb3…運転サポート情報、Sb4…離脱要求、L…車間距離。   DESCRIPTION OF SYMBOLS 1 ... Automatic driving assistance system, 2 ... Vehicle, 2a ... 1st vehicle, 2b ... 2nd vehicle, 5 ... Detection part, 6 (6a, 6b) ... Photographing part, 10 ... Light emission part, 11 (11a, 11b) ... Light-emitting unit, 16: Light-emission control unit, 17: Operation processing unit, 18: Light-receiving unit, 25: Road installation, Sa: Detection signal, Sb: Vehicle traveling system information, Sb1: Vehicle specification information, Sb2: Travel information, Sb3 ... Driving support information, Sb4... Leaving request, L.

Claims (9)

車両の周囲状況を検出する検出部を前記車両に設け、当該検出部の検出信号を基に、前後車両が隊列を組んで走行するように自動運転を制御する自動運転支援システムであって、
前記車両に設けられた複数の発光部からなる発光ユニットと、
前記発光ユニットの発光パターンを制御する発光制御部と、
前記発光ユニットから出力される光の発光パターンを前後の少なくとも一方の車両の受光部で受信した場合に当該発光パターンを認識し、その認識結果を前記自動運転に反映させる作動処理部と
を備えた自動運転支援システム。
An automatic driving support system that includes a detection unit that detects a surrounding state of the vehicle in the vehicle, and controls automatic driving so that the front and rear vehicles run in a platoon based on a detection signal of the detection unit,
A light-emitting unit comprising a plurality of light-emitting units provided in the vehicle,
A light emission control unit that controls a light emission pattern of the light emitting unit,
An operation processing unit that recognizes the light emission pattern when the light emission pattern of the light output from the light emitting unit is received by at least one of the front and rear light receiving units of the vehicle, and reflects the recognition result in the automatic driving. Automatic driving support system.
前記発光制御部は、車両間の一方から他方に対し、車両走行に関わる自身の車両走行系情報を、前記発光ユニットの光の前記発光パターンを通じて送信し、
前記車両走行系情報を前記受光部で受信した前記車両の前記作動処理部は、受信した当該車両走行系情報を基に、当該車両走行系情報に準じた車間距離をとりながら、隊列走行の制御を行う
請求項1に記載の自動運転支援システム。
The light emission control unit, from one of the vehicles to the other, transmits its own vehicle travel system information related to the vehicle travel through the light emission pattern of the light of the light emitting unit,
The operation processing unit of the vehicle, which has received the vehicle traveling system information at the light receiving unit, controls the platoon traveling while taking an inter-vehicle distance according to the vehicle traveling system information based on the received vehicle traveling system information. The automatic driving support system according to claim 1, wherein
前記受光部は、前記検出部の要素が共用されている
請求項1又は2に記載の自動運転支援システム。
The automatic driving support system according to claim 1, wherein the light receiving unit shares an element of the detection unit.
前記受光部は、車両周囲を撮影する撮影部である
請求項1〜3のうちいずれか一項に記載の自動運転支援システム。
The automatic driving support system according to any one of claims 1 to 3, wherein the light receiving unit is a photographing unit that photographs the periphery of the vehicle.
車両走行に関わる車両走行系情報は、前記車両の走行性能に関わる車両スペック情報である
請求項1〜4のうちいずれか一項に記載の自動運転支援システム。
The automatic driving support system according to any one of claims 1 to 4, wherein the vehicle traveling system information relating to vehicle traveling is vehicle specification information relating to traveling performance of the vehicle.
前方を走行する第1車両は、自身の車体後部に設けられた前記発光ユニットから光を照射し、
前記第1車両の後方を走行する第2車両は、前記第1車両の発光ユニットから照射される光の発光パターンを、自身の車体前部に設けられた前記受光部を介して取得する
請求項1〜5のうちいずれか一項に記載の自動運転支援システム。
The first vehicle traveling ahead emits light from the light emitting unit provided at the rear of its own vehicle body,
The second vehicle traveling behind the first vehicle acquires a light emission pattern of light emitted from a light emitting unit of the first vehicle via the light receiving unit provided in a front part of the own vehicle. The automatic driving support system according to any one of 1 to 5.
前記作動処理部は、道路設置物に設けられた前記発光ユニットから、道路上の車両走行に係る発光パターンに準じた光を受信した場合、当該発光パターンを認識し、その認識結果を前記自動運転に反映させる
請求項1〜6のうちいずれか一項に記載の自動運転支援システム。
The operation processing unit, when receiving light from the light-emitting unit provided on a road-installed object according to a light-emitting pattern related to vehicle traveling on a road, recognizes the light-emitting pattern, and recognizes the recognition result as the automatic driving. The automatic driving assistance system according to any one of claims 1 to 6, wherein the automatic driving assistance system is reflected in the automatic driving assistance system.
前記作動処理部は、隊列走行から離脱する旨の要求を、他車両から前記光の発光パターンを通じて取得した場合、隊列から離脱する前記他車両と自車両との間の車間距離を大きくとる制御を行う
請求項1〜7のうちいずれか一項に記載の自動運転支援システム。
The operation processing unit, when a request to depart from the platoon is obtained from another vehicle through the light emission pattern of the light, control to increase the inter-vehicle distance between the other vehicle departing from the platoon and the own vehicle. The automatic driving support system according to any one of claims 1 to 7, which performs the operation.
車両の周囲状況を検出する検出部を前記車両に設け、当該検出部の検出信号を基に、前後車両が隊列を組んで走行するように自動運転を制御する自動運転支援方法であって、
前記車両に設けられた複数の発光部からなる発光ユニットの発光パターンを制御するステップと、
前記発光ユニットから出力される光の発光パターンを前後の少なくとも一方の車両の受光部で受信した場合に当該発光パターンを認識し、その認識結果を前記自動運転に反映させるステップと
を備えた自動運転支援方法。
An automatic driving support method for providing a detection unit for detecting a surrounding condition of the vehicle in the vehicle, and controlling automatic driving so that the front and rear vehicles run in a platoon based on a detection signal of the detection unit,
Controlling a light emitting pattern of a light emitting unit including a plurality of light emitting units provided in the vehicle;
Recognizing the light emitting pattern when the light emitting pattern of the light output from the light emitting unit is received by at least one of the light receiving units of the front and rear vehicles, and reflecting the recognition result in the automatic driving. How to help.
JP2018174484A 2018-09-19 2018-09-19 Automatic driving assistance system and automatic driving assistance method Pending JP2020046900A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018174484A JP2020046900A (en) 2018-09-19 2018-09-19 Automatic driving assistance system and automatic driving assistance method
PCT/JP2019/032767 WO2020059402A1 (en) 2018-09-19 2019-08-22 Automatic driving assistance system and automatic driving assistance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018174484A JP2020046900A (en) 2018-09-19 2018-09-19 Automatic driving assistance system and automatic driving assistance method

Publications (1)

Publication Number Publication Date
JP2020046900A true JP2020046900A (en) 2020-03-26

Family

ID=69887233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018174484A Pending JP2020046900A (en) 2018-09-19 2018-09-19 Automatic driving assistance system and automatic driving assistance method

Country Status (2)

Country Link
JP (1) JP2020046900A (en)
WO (1) WO2020059402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106015A (en) * 2020-05-28 2021-07-26 北京百度網訊科技有限公司 Vehicle group management method, device and related appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540366B (en) * 2020-11-18 2024-08-13 文思海辉智科科技有限公司 Method and device for calculating vehicle position relation, vehicle and readable storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1153689A (en) * 1997-08-05 1999-02-26 Toyota Motor Corp Inter-vehicle communication equipment
JP2001273588A (en) * 2000-03-28 2001-10-05 Mazda Motor Corp Controller for vehicles travelling in line
JP2013131065A (en) * 2011-12-21 2013-07-04 Toshiba Corp Communication device and vehicle
JP6341110B2 (en) * 2015-02-18 2018-06-13 株式会社オートネットワーク技術研究所 Notification device and notification system
EP4091894A1 (en) * 2016-03-03 2022-11-23 Volvo Truck Corporation A vehicle with autonomous driving capability
US10940795B2 (en) * 2017-01-18 2021-03-09 Baidu Usa Llc Method for keeping distance between an autonomous driving vehicle and a following vehicle using a braking light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106015A (en) * 2020-05-28 2021-07-26 北京百度網訊科技有限公司 Vehicle group management method, device and related appliance
JP7369156B2 (en) 2020-05-28 2023-10-25 阿波▲羅▼智▲聯▼(北京)科技有限公司 Vehicle fleet management methods, devices and related equipment

Also Published As

Publication number Publication date
WO2020059402A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US10077007B2 (en) Sidepod stereo camera system for an autonomous vehicle
EP3416862B1 (en) Intention signaling for an autonomous vehicle
US20200079371A1 (en) Prediction apparatus, vehicle, prediction method, and computer-readable storage medium
EP2955077B1 (en) Overtake assessment system and autonomous vehicle with an overtake assessment arrangement
JP6082638B2 (en) Travel control device and travel control system
US8855844B2 (en) System and method for optimal deceleration of a vehicle using regenerative braking
JP2017004471A (en) Notification system
JP7000202B2 (en) Vehicle control systems, vehicle control methods, and programs
JP2019156272A (en) Vehicle control device, vehicle control method, and program
JP2019156270A (en) Vehicle controller, vehicle control method and program
JP2019156269A (en) Vehicle controller, vehicle control method and program
US20190389366A1 (en) Motor Vehicle Comprising a Lighting Module for Generating a Set of Symbols
JP7225043B2 (en) Vehicle control system, vehicle control method, and program
KR20210077046A (en) System and method for controlling operation of autonomous vehicle
WO2020059402A1 (en) Automatic driving assistance system and automatic driving assistance method
JP7165109B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP2019152958A (en) Driving support device
US11577730B2 (en) Vehicle and control method thereof
CN114261405A (en) Vehicle control device, vehicle control method, and storage medium
CN116767193A (en) Driving support device, driving support method, and storage medium
US11977147B2 (en) Apparatus for assisting driving and method thereof
JP7097322B2 (en) Vehicle control devices, vehicle control methods, and programs
WO2023079665A1 (en) Drive control system
KR102702640B1 (en) Vehicle and control method thereof
JP7489414B2 (en) Driving assistance device, driving assistance method, and program