JP2020046525A - Polarization beam splitter - Google Patents

Polarization beam splitter Download PDF

Info

Publication number
JP2020046525A
JP2020046525A JP2018174450A JP2018174450A JP2020046525A JP 2020046525 A JP2020046525 A JP 2020046525A JP 2018174450 A JP2018174450 A JP 2018174450A JP 2018174450 A JP2018174450 A JP 2018174450A JP 2020046525 A JP2020046525 A JP 2020046525A
Authority
JP
Japan
Prior art keywords
polarization separation
separation film
optical member
optical
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018174450A
Other languages
Japanese (ja)
Inventor
吉田 俊也
Toshiya Yoshida
俊也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Soc Corp
Original Assignee
Showa Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Optronics Co Ltd filed Critical Showa Optronics Co Ltd
Priority to JP2018174450A priority Critical patent/JP2020046525A/en
Publication of JP2020046525A publication Critical patent/JP2020046525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

To provide a polarization beam splitter that does not require alignment adjustment between a plurality of polarization beam splitters for aligning optical axes and can achieve high extinction ratio.SOLUTION: A polarization beam splitter 10 composed of a plurality of optical members (21-25) bonded to each other comprises: an incident surface 11 receiving incident light 6 from a certain direction; a first polarization separation film 31 provided on an optical path of the light incident from the incident surface 11; a first emission surface 12 emitting P-polarized light transmitting through the first polarization separation film 31; a fourth polarization separation film 34 reflecting S-polarized light reflected on the first polarization separation film 31; a second polarization separation film 32 provided on an optical path of the S-polarized light reflected by the fourth polarization separation film 34; and a second emission surface 13 emitting S-polarized light reflected by the second polarization separation film 32. Triple polarization separation provides S-polarized light with a high extinction ratio.SELECTED DRAWING: Figure 8

Description

本開示は、複数の偏光分離膜によって偏光分離を行って高消光比を実現する偏光ビームスプリッタに関する。   The present disclosure relates to a polarization beam splitter that achieves a high extinction ratio by performing polarization separation by a plurality of polarization separation films.

投射型表示装置に用いられる偏光ビームスプリッタとして、2つのプリズムと2つのプリズムの間に設けられた偏光分離膜とからなる偏光分離膜型ビームスプリッタが知られている(例えば、特許文献1、2)。また、複屈折材料の異なる2つの全反射条件を利用した全反射型偏光ビームスプリッタも知られている(例えば、特許文献3、4)。   2. Description of the Related Art As a polarization beam splitter used in a projection display device, a polarization separation film type beam splitter including two prisms and a polarization separation film provided between the two prisms is known (for example, Patent Documents 1 and 2). ). Also, a total reflection type polarization beam splitter utilizing two total reflection conditions of different birefringent materials is known (for example, Patent Documents 3 and 4).

特開平11−258422号公報JP-A-11-258422 特開平9−54213号公報JP-A-9-54213 特開平9−90111号公報JP-A-9-90111 特開2013−15687号公報JP 2013-15687 A

従来の偏光分離膜型ビームスプリッタは、数十層の偏光分離膜を積層することでS偏光の光の反射率を増加させることができる。しかしながら、偏光分離膜を数十層積層しても、消光比は一般に30dB程度にしか高くすることができない。特許文献1記載の偏光ビームスプリッタでは、P偏光の光の反射率が0.04%であり、S偏光の光の消光比(P偏光に対するS偏光の光強度の比)は約35dBである。特許文献2記載の偏光ビームスプリッタは、複数の偏光分離膜型偏光ビームスプリッタを並べることで高い消光比を実現することができる。しかしながら、この偏光ビームスプリッタでは、高い消光比を実現できる入射角の範囲が狭いため、光軸を合わせるための各偏光分離膜型偏光ビームスプリッタのアライメント(配列)調整が難しかった。   A conventional polarization splitting film type beam splitter can increase the reflectance of S-polarized light by stacking several tens of polarization splitting films. However, even if dozens of polarization separation films are stacked, the extinction ratio can generally be increased only to about 30 dB. In the polarization beam splitter described in Patent Document 1, the reflectance of P-polarized light is 0.04%, and the extinction ratio of S-polarized light (the ratio of the intensity of S-polarized light to P-polarized light) is about 35 dB. The polarization beam splitter described in Patent Document 2 can realize a high extinction ratio by arranging a plurality of polarization separation film type polarization beam splitters. However, in this polarization beam splitter, since the range of the incident angle at which a high extinction ratio can be realized is narrow, it is difficult to adjust the alignment (array) of each polarization separation film type polarization beam splitter for aligning the optical axes.

一方、従来の全反射型偏光ビームスプリッタは、全反射を利用することで50dB以上の高い消光比を実現することができる。しかしながら、一般に偏光分離角は90度にならない(特許文献3参照)。特許文献4記載の全反射型偏光ビームスプリッタは、複屈折を持つ2つのプリズム材によって異なる材質からなる複屈折性板材を挟み込むことで50dB以上の消光比と90度の偏光分離角とを実現している。しかしながら、この全反射型偏光ビームスプリッタは、材料の光吸収性に起因して、紫外線波長域の光に適用することができない。   On the other hand, the conventional total reflection type polarization beam splitter can realize a high extinction ratio of 50 dB or more by using total reflection. However, the polarization separation angle generally does not reach 90 degrees (see Patent Document 3). The total reflection type polarization beam splitter described in Patent Document 4 realizes an extinction ratio of 50 dB or more and a polarization separation angle of 90 degrees by sandwiching a birefringent plate made of a different material between two prism materials having birefringence. ing. However, this total reflection type polarizing beam splitter cannot be applied to light in the ultraviolet wavelength region due to the light absorption of the material.

本発明は、このような背景に鑑み、光軸を合わせるために複数の偏光ビームスプリッタ間のアライメントを調整する必要がなく、高い消光比を実現できる偏光ビームスプリッタを提供することを課題とする。   In view of such a background, an object of the present invention is to provide a polarization beam splitter that can realize a high extinction ratio without having to adjust alignment between a plurality of polarization beam splitters in order to align optical axes.

このような課題を解決するために、本発明のある態様は、複数の光学部材(21〜25)を接合してなる偏光ビームスプリッタ(10)であって、所定の方向から入射光(6)を入射させる入射表面(11)と、前記入射表面(11)から入射した光の光路に設けられた第1偏光分離膜(31)と、前記第1偏光分離膜(31)を透過したP偏光の光を出射させる第1出射表面(12)と、前記第1偏光分離膜(31)で反射したS偏光の光を反射させる反射面(14、34)と、前記反射面(14、34)で反射した前記S偏光の光の光路に設けられた第2偏光分離膜(32)と、前記第2偏光分離膜(32)で反射した前記S偏光の光を出射させる第2出射表面(13)とを備えることを特徴とする。   In order to solve such a problem, an embodiment of the present invention relates to a polarizing beam splitter (10) formed by joining a plurality of optical members (21 to 25), wherein incident light (6) is incident from a predetermined direction. An incident surface (11) through which light is incident, a first polarization separation film (31) provided in an optical path of light incident from the incident surface (11), and P-polarized light transmitted through the first polarization separation film (31). A first emission surface (12) for emitting the light of the first order, a reflection surface (14, 34) for reflecting the S-polarized light reflected by the first polarization separation film (31), and the reflection surface (14, 34). A second polarization splitting film (32) provided in the optical path of the S-polarized light reflected by the second polarization splitting film (32), and a second emission surface (13) for emitting the S-polarized light reflected by the second polarization splitting film (32). ).

入射表面から偏光ビームスプリッタに入射した光は、第1偏光分離膜により、第1偏光分離膜を透過するP偏光の光と、第1偏光分離膜で反射するS偏光の光とに分離される。ここで、第1偏光分離膜を透過する光は、正確にはP偏光成分を多く含む透過光であるが、本明細書では単に「P偏光の光」ということがある。同様に、第1偏光分離膜で反射する光は、正確にはS偏光成分を多く含む反射光であるが、本明細書では単に「S偏光の光」ということがある。   Light incident on the polarization beam splitter from the incident surface is separated by the first polarization separation film into P-polarized light transmitted through the first polarization separation film and S-polarized light reflected by the first polarization separation film. . Here, the light transmitted through the first polarization splitting film is, to be precise, a transmitted light containing a large amount of P-polarized light components, but may be simply referred to as “P-polarized light” in this specification. Similarly, the light reflected by the first polarization splitting film is reflected light containing a large amount of S-polarized components, but may be simply referred to as “S-polarized light” in this specification.

また、減衰全反射(Frustrated Total Internal Reflection)を利用した偏光ビームスプリッタでは、偏光分離膜を透過する光がS偏光となり、反射する光がP偏光となり得る。例えば、以下の文献を参照されたい(L. Li and J. A. Dobrowolski, "High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle", Appl. Opt. 39, 2754-2771(2000))。本明細書において、偏光分離膜31〜35を透過する光は「P偏光の光」を指すが、減衰全反射を利用した場合には偏光分離膜31〜35を透過する光は「S偏光の光(振動電場が入射面に垂直振動する)」を指す。また本明細書において、偏光分離膜31〜35で反射する光は「S偏光の光」を指すが、減衰全反射を利用した場合には偏光分離膜31〜35で反射する光は「P偏光の光(振動電場が入射面内で振動する)」を指す。   In a polarization beam splitter using attenuated total internal reflection (Frustrated Total Internal Reflection), light transmitted through the polarization separation film can be S-polarized light, and reflected light can be P-polarized light. For example, see the following document (L. Li and JA Dobrowolski, "High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle", Appl. Opt. 39, 2754-2771 (2000)). . In this specification, light transmitted through the polarization separation films 31 to 35 refers to “P-polarized light”, but when attenuated total reflection is used, light transmitted through the polarization separation films 31 to 35 is “S-polarized light”. Light (the oscillating electric field vibrates perpendicularly to the plane of incidence). " Further, in this specification, light reflected by the polarization separation films 31 to 35 refers to “S-polarized light”, but when attenuated total reflection is used, light reflected by the polarization separation films 31 to 35 is “P-polarized light”. (The oscillating electric field oscillates in the plane of incidence) ".

第1偏光分離膜を透過するP偏光にはS偏光の光が混じり難いため、第1出射表面から出射するP偏光の光の消光比(S偏光に対するP偏光の光強度の比)は比較的高くなる。一方、第1偏光分離膜で反射するS偏光にはP偏光の光が混じり易いため、第1偏光分離膜で反射したS偏光の消光比(P偏光に対するS偏光の光強度の比)は比較的低くなる。このS偏光は反射面で反射した後、更に第2偏光分離膜で反射する。即ち、偏光ビームスプリッタに入射した光は、第1偏光分離膜及び第2偏光分離膜で2重に偏光分離する。そのため、第2出射表面から出射するS偏光の光の消光比も高くなる。また、複数の光学部材を接合してなる1つの偏光ビームスプリッタによって偏光分離できるため、光学部材の加工精度に応じた高い光軸精度を実現でき、光軸を合わせるために複数の偏光ビームスプリッタ間のアライメントを調整する必要がない。   Since it is difficult for S-polarized light to be mixed with P-polarized light transmitted through the first polarization separation film, the extinction ratio of P-polarized light emitted from the first emission surface (the ratio of P-polarized light intensity to S-polarized light) is relatively high. Get higher. On the other hand, since the P-polarized light is easily mixed with the S-polarized light reflected by the first polarized light separating film, the extinction ratio (the ratio of the light intensity of the S-polarized light to the P-polarized light) reflected by the first polarized light separating film is compared. Target lower. The S-polarized light is reflected by the reflection surface and then further reflected by the second polarization separation film. That is, the light incident on the polarization beam splitter is double-polarized and separated by the first and second polarization separation films. Therefore, the extinction ratio of S-polarized light emitted from the second emission surface also increases. Also, since polarization can be separated by one polarization beam splitter formed by joining a plurality of optical members, high optical axis accuracy can be realized in accordance with the processing accuracy of the optical members. There is no need to adjust the alignment.

本発明のある態様は、上記構成において、前記第1偏光分離膜(31)と前記第2偏光分離膜(32)とが同一平面上に設けられている。   In one embodiment of the present invention, in the above configuration, the first polarization separation film (31) and the second polarization separation film (32) are provided on the same plane.

本発明のある態様は、上記構成において、前記第1偏光分離膜(31)を透過した前記P偏光の光の光路に前記第1偏光分離膜(31)と平行に設けられた第3偏光分離膜(33)を更に備える。   In one embodiment of the present invention, in the above configuration, the third polarization separation film is provided in the optical path of the P-polarized light transmitted through the first polarization separation film (31) in parallel with the first polarization separation film (31). It further comprises a membrane (33).

本発明のある態様は、上記構成において、複数の前記光学部材(21〜25)が、側面視にて、台形をなす第1光学部材(21)と、前記第1光学部材(21)の下底に接合された長辺を有する長方形をなす第2光学部材(22)と、前記第2光学部材(22)の前記長辺に対向する対辺に接合された下底を有する台形をなす第3光学部材(23)とを含み、前記入射表面(11)及び前記第2出射表面(13)が前記第1光学部材(21)の側辺に設けられ、前記第1偏光分離膜(31)及び前記第2偏光分離膜(32)が前記第1光学部材(21)と前記第2光学部材(22)との界面に設けられ、前記第1出射表面(12)が前記第3光学部材の側辺の一方に設けられている。ここで、「側辺」とは、台形の脚(1組の対辺)を意味する。   In one embodiment of the present invention, in the above configuration, the plurality of optical members (21 to 25) have a trapezoidal first optical member (21) and a lower portion under the first optical member (21) in a side view. A second optical member (22) having a rectangular shape having a long side joined to the bottom, and a third trapezoid having a lower base joined to a side opposite to the long side of the second optical member (22). An optical member (23), wherein the incident surface (11) and the second emission surface (13) are provided on a side of the first optical member (21), and the first polarization separation film (31) and The second polarization separation film (32) is provided at an interface between the first optical member (21) and the second optical member (22), and the first emission surface (12) is on the side of the third optical member. It is provided on one of the sides. Here, “side” means a trapezoidal leg (a pair of opposite sides).

本発明のある態様は、上記構成において、複数の前記光学部材(21〜25)が、側面視において、台形をなす第1光学部材(21)と、前記第1光学部材(21)の下底に接合された一辺及びこれに対向する前記一辺に平行な対辺を有する四角形をなす第2光学部材(22)と、前記第2光学部材(22)の前記対辺に接合された斜辺を有する三角形をなす第3光学部材(23)とを含み、前記入射表面(11)及び前記第2出射表面(13)が前記第1光学部材(21)の側辺に設けられ、前記第1偏光分離膜(31)及び前記第2偏光分離膜(32)が前記第1光学部材(21)と前記第2光学部材(22)との界面に設けられ、前記第1出射表面(12)が前記第3光学部材(23)の前記斜辺と異なる辺に設けられている。   In one aspect of the present invention, in the above-described configuration, the plurality of optical members (21 to 25) are trapezoidal in a side view, and a lower bottom of the first optical member (21). A second optical member (22) having a rectangular shape having one side parallel to the one side and the opposite side parallel to the one side, and a triangle having a hypotenuse joined to the opposite side of the second optical member (22). A third optical member (23), the incident surface (11) and the second exit surface (13) are provided on a side of the first optical member (21), and the first polarization separation film ( 31) and the second polarization splitting film (32) are provided at the interface between the first optical member (21) and the second optical member (22), and the first emission surface (12) is provided on the third optical member (12). The member (23) is provided on a side different from the oblique side.

本発明のある態様は、上記構成において、前記反射面が全反射面(14)である。   In one embodiment of the present invention, in the above configuration, the reflection surface is a total reflection surface (14).

本発明のある態様は、上記構成において、前記反射面が、互いに隣接する2つの前記光学部材(21、24)の接合面間に設けられた第4偏光分離膜(34)からなる。   In one embodiment of the present invention, in the above-described configuration, the reflection surface includes a fourth polarization separation film (34) provided between a bonding surface of two optical members (21, 24) adjacent to each other.

本発明のある態様は、上記構成において、前記反射面(14、34)で反射して前記第2偏光分離膜(32)を透過した前記P偏光の残留光の光路に設けられた光吸収部材(43)を更に備える。   In one embodiment of the present invention, in the above-described configuration, a light absorbing member provided on an optical path of the P-polarized residual light reflected by the reflection surface (14, 34) and transmitted through the second polarization separation film (32). (43) is further provided.

本発明のある態様は、上記構成において、前記第4偏光分離膜(34)を透過した前記P偏光の残留光の光路に設けられた反射防止膜(41)又は光吸収部材(43)を更に備える。   In one embodiment of the present invention, the antireflection film (41) or the light absorbing member (43) provided on the optical path of the residual light of the P-polarized light transmitted through the fourth polarization separation film (34) is further provided. Prepare.

本発明のある態様は、上記構成において、前記第1出射表面(12)から出射される前記P偏光の光軸と前記第2出射表面(13)から出射される前記S偏光の光軸とがなす偏光分離角が90°である。   In one embodiment of the present invention, in the above configuration, the optical axis of the P-polarized light emitted from the first emission surface (12) and the optical axis of the S-polarized light emitted from the second emission surface (13) are arranged. The resulting polarization separation angle is 90 °.

本発明のある態様は、上記構成において、前記第1偏光分離膜及び前記第2偏光分離膜が、フッ化物、酸化物、硫化物及び半導体からなる群から選択された少なくとも1つの材料を含む。   In one embodiment of the present invention, in the above structure, the first polarization separation film and the second polarization separation film include at least one material selected from the group consisting of a fluoride, an oxide, a sulfide, and a semiconductor.

本発明のある態様は、上記構成において、複数の前記光学部材(21〜25)が、光学結晶、光学ガラス、セラミック及び半導体からなる群から選択された少なくとも1つの材料を含む。   In one embodiment of the present invention, in the above structure, the plurality of optical members (21 to 25) include at least one material selected from the group consisting of an optical crystal, an optical glass, a ceramic, and a semiconductor.

本発明のある態様は、上記構成において、互いに隣接する2つの前記光学部材(21〜25)が、オプティカルコンタクト、表面活性化接合、拡散接合及び接着剤による接合のいずれかによって互いに接合されている。   In one embodiment of the present invention, in the above configuration, the two optical members (21 to 25) adjacent to each other are joined to each other by any one of optical contact, surface activation joining, diffusion joining, and joining with an adhesive. .

このように本発明によれば、光軸を合わせるために複数の偏光ビームスプリッタ間のアライメントを調整する必要がなく、高い消光比を実現できる偏光ビームスプリッタを提供することができる。   As described above, according to the present invention, it is not necessary to adjust the alignment between a plurality of polarizing beam splitters to align the optical axes, and it is possible to provide a polarizing beam splitter that can realize a high extinction ratio.

第1実施形態に係る偏光分離装置の概略構成図Schematic configuration diagram of a polarization separation device according to the first embodiment 図1に示される偏光ビームスプリッタの側面図Side view of the polarizing beam splitter shown in FIG. 偏光分離膜の光の透過特性を示すグラフGraph showing light transmission characteristics of a polarization separation film 第2実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a second embodiment 迷光の発生原理の説明図Illustration of the principle of stray light generation 第3実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a third embodiment 第4実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a fourth embodiment 第5実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a fifth embodiment 第6実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a sixth embodiment 第7実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a seventh embodiment 第8実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to an eighth embodiment 第9実施形態に係る偏光ビームスプリッタの概略構成図Schematic configuration diagram of a polarization beam splitter according to a ninth embodiment

以下、図面を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

≪第1実施形態≫
まず、図1〜図3を参照して第1実施形態に係る偏光分離装置1について説明する。図1は第1実施形態に係る偏光分離装置1の概略構成を示す正面図であり、図2は図1に示される偏光ビームスプリッタ10の側面図である。図1及び図2に示されるように、実施形態に係る偏光分離装置1は、光源5と、光源5から放射された光をP偏光の光とS偏光の光とに分割する偏光ビームスプリッタ10とを備えている。
<< 1st Embodiment >>
First, a polarization separation device 1 according to a first embodiment will be described with reference to FIGS. FIG. 1 is a front view showing a schematic configuration of the polarization beam splitter 1 according to the first embodiment, and FIG. 2 is a side view of the polarization beam splitter 10 shown in FIG. As shown in FIGS. 1 and 2, a polarization separation device 1 according to the embodiment includes a light source 5 and a polarization beam splitter 10 that splits light emitted from the light source 5 into P-polarized light and S-polarized light. And

光源5は、紫外線波長域から赤外線波長域のうち所定の波長のレーザー光を放射するレーザー装置であってよい。本実施形態では、光源5が532nmの波長のレーザー光を発振し、偏光ビームスプリッタ10に入射光6として照射する。   The light source 5 may be a laser device that emits a laser beam having a predetermined wavelength in an ultraviolet wavelength range to an infrared wavelength range. In the present embodiment, the light source 5 oscillates a laser beam having a wavelength of 532 nm and irradiates the polarized beam splitter 10 as incident light 6.

偏光ビームスプリッタ10は、光源5から放射された光を入射光6として入射させる入射表面11を備えており、入射光6の光軸が入射表面11に直交するように入射光6の光路に配置される。偏光ビームスプリッタ10は、後述する光の透過、反射により、P偏光の光を出射させる第1出射表面12と、S偏光の光を出射させる第2出射表面13とを有している。第1出射表面12は、入射表面11に対向する位置に入射表面11と平行に設けられている。第2出射表面13は、偏光ビームスプリッタ10の中心から入射表面11の方向及び第1出射表面12の方向に対して直交する方向に設けられている。第2出射表面13は、入射表面11及び第1出射表面12に直交する方向に延在している。   The polarization beam splitter 10 has an incident surface 11 on which light emitted from the light source 5 is incident as incident light 6, and is arranged in an optical path of the incident light 6 so that an optical axis of the incident light 6 is orthogonal to the incident surface 11. Is done. The polarization beam splitter 10 has a first emission surface 12 that emits P-polarized light by transmitting and reflecting light, which will be described later, and a second emission surface 13 that emits S-polarized light. The first exit surface 12 is provided at a position facing the entrance surface 11 in parallel with the entrance surface 11. The second exit surface 13 is provided in a direction orthogonal to the direction of the entrance surface 11 and the direction of the first exit surface 12 from the center of the polarizing beam splitter 10. The second exit surface 13 extends in a direction orthogonal to the entrance surface 11 and the first exit surface 12.

偏光ビームスプリッタ10は、互いに接合された3つの光学部材(21〜23)によって構成されている。3つの光学部材は、偏光ビームスプリッタ10の側面視(後述する入射面に直交する方向視)にて、台形をなす第1光学部材21と、長方形をなす第2光学部材22と、台形をなす第3光学部材23とからなり、一定の厚さを有している。   The polarization beam splitter 10 includes three optical members (21 to 23) joined to each other. The three optical members are a first optical member 21 having a trapezoidal shape, a second optical member 22 having a rectangular shape, and a trapezoidal shape when viewed from the side of the polarizing beam splitter 10 (a direction orthogonal to an incident surface described later). The third optical member 23 has a constant thickness.

第1光学部材21は、下底に対してそれぞれ45°をなす1対の側辺を有している。第1光学部材21の1対の側辺の一方が入射表面11とされる。第2光学部材22は、第1光学部材21の下底と同じ長さを有し、第1光学部材21の下底に接合された長辺(上側長辺という)と、上側長辺に対向する上側長辺と平行な対辺(下側長辺という)とを有している。第2光学部材22の短辺の長さは第1光学部材21の台形の高さの2倍且つ第2光学部材22の長辺の長さの1/2とされている。第3光学部材23は、第2光学部材22の下側長辺と同じ長さの下底と、下底に対してそれぞれ45°をなす1対の側辺とを有しており、第2光学部材22の下側長辺をなす面に接合されている。第3光学部材23は第1光学部材21と同一形状をしている。   The first optical member 21 has a pair of side edges each forming 45 ° with the lower bottom. One of the pair of sides of the first optical member 21 is the incident surface 11. The second optical member 22 has the same length as the lower base of the first optical member 21, and is opposed to a long side (referred to as an upper long side) joined to the lower base of the first optical member 21 and an upper long side. And the opposite long side (referred to as the lower long side) parallel to the upper long side. The length of the short side of the second optical member 22 is twice the height of the trapezoid of the first optical member 21 and 21 of the length of the long side of the second optical member 22. The third optical member 23 has a lower base having the same length as the lower long side of the second optical member 22 and a pair of side sides each forming 45 ° with respect to the lower base. The optical member 22 is joined to a surface forming the lower long side. The third optical member 23 has the same shape as the first optical member 21.

第1光学部材21と第2光学部材22との界面(第1光学部材21の下底をなす面と第2光学部材22の上側長辺をなす面とによって構成される接合面)には、第1偏光分離膜31が設けられている。第1偏光分離膜31は、入射表面11から入射した光の一部を反射し、残りの一部を透過させる。ここで、第1偏光分離膜31は、両光学部材(21、22)の界面のうち、入射表面11から入射した光の光路(の領域)に設けられたものを意味する。但し、偏光分離膜は第1光学部材21と第2光学部材22との界面の全域に設けられており、偏光分離膜のうち図中左側部分が第1偏光分離膜31をなすのに対し、図中右側部分は後述する第2偏光分離膜32をなす。第1偏光分離膜31に入射する光の光軸と第1偏光分離膜31で反射した光の光軸とを含む面が入射面である。   The interface between the first optical member 21 and the second optical member 22 (the joint surface formed by the surface forming the lower bottom of the first optical member 21 and the surface forming the upper long side of the second optical member 22) A first polarization separation film 31 is provided. The first polarization separation film 31 reflects a part of the light incident from the incident surface 11 and transmits the remaining part. Here, the first polarization separation film 31 means a film provided in (the area of) the optical path of the light incident from the incident surface 11 among the interfaces between the two optical members (21, 22). However, the polarization splitting film is provided on the entire area of the interface between the first optical member 21 and the second optical member 22, and the left portion in the figure of the polarization splitting film forms the first polarization splitting film 31, The right portion in the figure forms a second polarization separation film 32 described later. The plane including the optical axis of the light incident on the first polarization separation film 31 and the optical axis of the light reflected on the first polarization separation film 31 is the incident surface.

第1偏光分離膜31は、振動電場が入射面内にある(入射面に平行な成分である)P偏光の光を透過させ、振動電場が入射面に垂直振動する(入射面に垂直な成分である)S偏光の光を反射させる。即ち、第1偏光分離膜31は、入射表面11から入射する光を、第1偏光分離膜31を透過するP偏光の光(正確にはP偏光成分を多く含む透過光)と第1偏光分離膜31で反射するS偏光(正確にはS偏光成分を多く含む反射光)の光とに分離する。   The first polarized light separating film 31 allows the oscillating electric field to transmit P-polarized light within the plane of incidence (a component parallel to the plane of incidence), and causes the oscillating electric field to oscillate perpendicularly to the plane of incidence (a component perpendicular to the plane of incidence). ) S-polarized light is reflected. That is, the first polarization splitting film 31 converts the light incident from the incident surface 11 into P-polarized light transmitted through the first polarization splitting film 31 (accurately, transmitted light containing a large amount of P-polarized light components). The light is separated into S-polarized light (reflected light containing a large amount of S-polarized component) reflected by the film 31.

第2光学部材22と第3光学部材23との界面(第2光学部材22の下側長辺をなす面と第3光学部材23の下底をなす面とによって構成される接合面)には、第3偏光分離膜33が設けられている。第3偏光分離膜33は、第1偏光分離膜31を透過した光の一部(S偏光の光)を反射し、残りの一部(P偏光の光)を透過させる。第3偏光分離膜33は両光学部材(22、23)の界面のうち、第1偏光分離膜31を透過したP偏光の光路に設けられていればよい。本実施形態では、第3偏光分離膜33は第2光学部材22と第3光学部材23との界面の全域に設けられている。   The interface between the second optical member 22 and the third optical member 23 (the joint surface formed by the surface forming the lower long side of the second optical member 22 and the lower bottom surface of the third optical member 23) , A third polarized light separating film 33. The third polarized light separating film 33 reflects a part (S-polarized light) of the light transmitted through the first polarized light separating film 31, and transmits the remaining part (P-polarized light). The third polarized light separating film 33 may be provided on the optical path of the P-polarized light transmitted through the first polarized light separating film 31 at the interface between the two optical members (22, 23). In the present embodiment, the third polarization separation film 33 is provided on the entire area of the interface between the second optical member 22 and the third optical member 23.

第3偏光分離膜33は第1偏光分離膜31に平行に設けられている。従って、第3偏光分離膜33についての入射面は第1偏光分離膜31についての入射面と同一である。第3偏光分離膜33も第1偏光分離膜31と同様に、振動電場が入射面内にあるP偏光の光を透過させ、振動電場が入射面に垂直振動するS偏光の光を反射させる。即ち、第3偏光分離膜33は第1偏光分離膜31を透過した光を、第3偏光分離膜33を透過するP偏光の光と第3偏光分離膜33で反射するS偏光の光とに分離する。   The third polarization separation film 33 is provided in parallel with the first polarization separation film 31. Therefore, the entrance plane for the third polarization separation film 33 is the same as the entrance plane for the first polarization separation film 31. Similarly to the first polarization separation film 31, the third polarization separation film 33 allows the oscillating electric field to transmit the P-polarized light existing in the incident plane, and reflects the S-polarized light whose oscillating electric field oscillates perpendicularly to the incident plane. That is, the third polarization separation film 33 converts the light transmitted through the first polarization separation film 31 into P-polarized light transmitted through the third polarization separation film 33 and S-polarized light reflected by the third polarization separation film 33. To separate.

第1光学部材21の1対の側辺をなす表面及び第3光学部材23の1対の側辺をなす表面には反射防止膜41が設けられている。これにより、偏光ビームスプリッタ10は180度対称の回転対称の形状、且つ左右対称の形状になっている。   An anti-reflection film 41 is provided on a pair of side surfaces of the first optical member 21 and a pair of side surfaces of the third optical member 23. Thus, the polarization beam splitter 10 has a 180-degree rotationally symmetrical shape and a left-right symmetrical shape.

これらの偏光分離膜(31〜33)は、AlF、MgF、NaAlF、LaF、GdF及びYF等のフッ化物、又は、SiO、AlO、HfO、ZrO、Ta及びTiO等の酸化物、ZnS等の硫化物、及び、半導体からなる群から選択される少なくとも1つの材料を含んでいる。本実施形態(図3)では、偏光分離膜(31〜33)はHfOとSiOとからなっている。これらの材料の中から紫外線波長域から赤外線波長域の波長の入射光に対して光吸収の小さい膜材料を選択するとよい。これにより、紫外線波長域から赤外線波長域の広い波長域に偏光ビームスプリッタ10を適用可能になる。 These polarization separation films (31 to 33) are made of fluorides such as AlF 3 , MgF 2 , Na 3 AlF 6 , LaF 3 , GdF 3 and YF 3 , or SiO 2 , AlO 3 , HfO 2 , ZrO 2 , It contains at least one material selected from the group consisting of oxides such as Ta 2 O 5 and TiO 2 , sulfides such as ZnS, and semiconductors. In the present embodiment (FIG. 3), the polarization separation films (31 to 33) are made of HfO 2 and SiO 2 . From these materials, it is preferable to select a film material having a small light absorption for incident light having a wavelength in the ultraviolet wavelength range to the infrared wavelength range. Thereby, the polarizing beam splitter 10 can be applied to a wide wavelength range from the ultraviolet wavelength range to the infrared wavelength range.

これらの光学部材(21〜23)は、サファイア、フッ化カルシウム、フッ化マグネシウム及びZnSe等の光学結晶、又は、合成石英及びBK7等の光学ガラス、YAGセラミック等のセラミック、及び、半導体からなる群から選択される少なくとも1つの材料を含んでいる。本実施形態では、これらの光学部材(21〜23)が合成石英で形成されている。これらの材料の中から紫外線波長域から赤外線波長域の波長の入射光に対して光吸収の小さい光学材料を選択するとよい。これにより、紫外線波長域から赤外線波長域の広い波長域に偏光ビームスプリッタ10を適用可能になる。   These optical members (21 to 23) are made of optical crystals such as sapphire, calcium fluoride, magnesium fluoride and ZnSe, or optical glasses such as synthetic quartz and BK7, ceramics such as YAG ceramics, and semiconductors. At least one material selected from the group consisting of: In the present embodiment, these optical members (21 to 23) are formed of synthetic quartz. From these materials, it is preferable to select an optical material having a small light absorption with respect to incident light having a wavelength in a range from the ultraviolet wavelength range to the infrared wavelength range. Thereby, the polarizing beam splitter 10 can be applied to a wide wavelength range from the ultraviolet wavelength range to the infrared wavelength range.

これらの光学部材(21〜23)の互いに隣接するもの同士は、オプティカルコンタクト、表面活性化接合、拡散接合及び接着剤による接合のいずれかによって互いに接合されている。接着剤は光吸収性の低いものがよい。これにより、入射光6が紫外線波長域から赤外線波長域の波長を有していても、光学部材(21〜23)の接合面によって光が吸収されることが抑制される。そのため、紫外線波長域から赤外線波長域の広い波長域に偏光ビームスプリッタ10を適用可能になる。   Adjacent ones of these optical members (21 to 23) are bonded to each other by any one of optical contact, surface activation bonding, diffusion bonding, and bonding with an adhesive. The adhesive preferably has low light absorption. Thereby, even if the incident light 6 has a wavelength in the range from the ultraviolet wavelength range to the infrared wavelength range, the absorption of light by the bonding surfaces of the optical members (21 to 23) is suppressed. Therefore, the polarizing beam splitter 10 can be applied to a wide wavelength range from the ultraviolet wavelength range to the infrared wavelength range.

従って、入射光6が紫外線波長域から赤外線波長域の波長を有していても、偏光分離膜(31〜33)や光学部材(21〜23)、光学部材(21〜23)の接合面によって光が吸収されることが抑制される。そのため、偏光ビームスプリッタ10は紫外線波長域から赤外線波長域の広い波長域に適用可能である。   Therefore, even if the incident light 6 has a wavelength in the range from the ultraviolet wavelength range to the infrared wavelength range, depending on the polarization separation films (31 to 33), the optical members (21 to 23), and the bonding surfaces of the optical members (21 to 23). Light absorption is suppressed. Therefore, the polarization beam splitter 10 can be applied to a wide wavelength range from the ultraviolet wavelength range to the infrared wavelength range.

入射表面11から入射した光は第1偏光分離膜31によって透過する光と反射する光とに分離される。第1偏光分離膜31を透過した光は第3偏光分離膜33によって透過する光と反射する光とに分離される。第3偏光分離膜33を透過した光は、第3光学部材23の台形の側辺の一方をなす、入射表面11に対向する位置に入射表面11と平行に設けられた第1出射表面12から第1出射表面12に対して垂直に出射する。即ち、第1出射表面12から出射する光の光軸は入射光6の光軸と同一である。   The light incident from the incident surface 11 is separated by the first polarization splitting film 31 into light that is transmitted and light that is reflected. The light transmitted through the first polarization separation film 31 is separated by the third polarization separation film 33 into light that is transmitted and light that is reflected. The light transmitted through the third polarization separation film 33 is transmitted from the first emission surface 12 provided on one of the trapezoidal sides of the third optical member 23 at a position facing the incidence surface 11 in parallel with the incidence surface 11. The light exits perpendicular to the first exit surface 12. That is, the optical axis of the light emitted from the first emission surface 12 is the same as the optical axis of the incident light 6.

一方、第1偏光分離膜31で反射した光は、第1光学部材21の台形の上底をなす面(全反射面14)で全反射する。全反射面14で反射した光は、入射光6の光軸と平行に第2偏光分離膜32に入射し、第2偏光分離膜32によって透過する光と反射する光とに分離される。第2偏光分離膜32は、第1偏光分離膜31と第1光学部材21と第2光学部材22との界面の全域に設けられた偏光分離膜のうち、全反射面14で反射した光の光路(の領域)に設けられたものを意味する。即ち、第2偏光分離膜32は、第1偏光分離膜31と実質的に同一であり、P偏光の光を透過させ、S偏光の光を反射させる。   On the other hand, the light reflected by the first polarization splitting film 31 is totally reflected by the trapezoidal upper base surface of the first optical member 21 (total reflection surface 14). The light reflected by the total reflection surface 14 enters the second polarization separation film 32 in parallel with the optical axis of the incident light 6, and is separated by the second polarization separation film 32 into light that is transmitted and light that is reflected. The second polarized light separating film 32 is formed of the polarized light separating film provided on the entire area of the interface between the first polarized light separating film 31 and the first optical member 21 and the second optical member 22. Means provided in (area of) the optical path. That is, the second polarized light separating film 32 is substantially the same as the first polarized light separating film 31, and transmits P-polarized light and reflects S-polarized light.

このように第1偏光分離膜31と第2偏光分離膜32とが同一平面上に設けられているため、第1偏光分離膜31及び第2偏光分離膜32の両側に配置される第1光学部材21及び第2光学部材22の加工が容易である。その上、第1偏光分離膜31と第2偏光分離膜32とを高い精度で平行にすることができる。   Since the first polarization separation film 31 and the second polarization separation film 32 are provided on the same plane as described above, the first optical elements disposed on both sides of the first polarization separation film 31 and the second polarization separation film 32 are provided. Processing of the member 21 and the second optical member 22 is easy. In addition, the first polarization separation film 31 and the second polarization separation film 32 can be made parallel with high accuracy.

第2偏光分離膜32で反射した光は、第1光学部材21の台形の1対の側辺のうち、入射表面11と異なる側に設けられた入射表面11に直交する第2出射表面13から第2出射表面13に対して垂直に出射する。即ち、第2出射表面13から出射する光の光軸は、入射光6及び第1出射表面12からの出射光の光軸に直交している。また、第1光学部材21の台形の高さが第2光学部材22の短辺の長さの1/2であることから、第2出射表面13から出射する光の光軸は、第2光学部材22の中心にて入射光6の光軸に直交している。なお、第3光学部材23が第1光学部材21と同一形状であるため、第2光学部材22の中心は偏光ビームスプリッタ10の中心をなす。   The light reflected by the second polarization splitting film 32 is transmitted from the second exit surface 13 orthogonal to the incident surface 11 provided on a side different from the incident surface 11 among the pair of trapezoidal sides of the first optical member 21. The light exits perpendicularly to the second exit surface 13. That is, the optical axis of the light emitted from the second emission surface 13 is orthogonal to the optical axes of the incident light 6 and the light emitted from the first emission surface 12. Further, since the height of the trapezoid of the first optical member 21 is 短 of the length of the short side of the second optical member 22, the optical axis of the light emitted from the second emission surface 13 is the second optical member. The center of the member 22 is orthogonal to the optical axis of the incident light 6. Since the third optical member 23 has the same shape as the first optical member 21, the center of the second optical member 22 forms the center of the polarization beam splitter 10.

偏光分離膜は、数十層の膜を積層して厚膜にすることでS偏光の反射率を大きくすることが可能である。そのため、S偏光の透過率を低減すること(偏光分離膜を透過するP偏光の光に混ざるS偏光の光を低減すること)は比較的容易である。一方、P偏光透過率を大きくするためには、ブリュースター条件を満たすように膜の屈折率と膜厚とを調整する必要があり、P偏光の残留反射を低減すること(偏光分離膜で反射するS偏光の光に混ざるP偏光の光を低減すること)は比較的難しい。そのため、S偏光の光に混ざるP偏光の光が多くなる傾向がある。   The polarization separation film can increase the reflectance of S-polarized light by stacking several tens of layers to form a thick film. Therefore, it is relatively easy to reduce the transmittance of the S-polarized light (reduce the S-polarized light mixed with the P-polarized light transmitted through the polarization separation film). On the other hand, in order to increase the transmittance of P-polarized light, it is necessary to adjust the refractive index and the thickness of the film so as to satisfy the Brewster condition. (Reducing P-polarized light mixed with S-polarized light) is relatively difficult. Therefore, there is a tendency that P-polarized light mixed with S-polarized light increases.

図3は、偏光分離膜(31〜33)の光の透過特性を示すグラフである。横軸は波長を示し、縦軸は光の透過率を示している。図3に示されるように、偏光分離膜の光の透過率は波長に応じて変化する。S偏光の光の透過率は、波長が540nm以下では約0%であり、波長が540nmを超えると、波長が長くなるに従って増加し、波長が590nmの辺りで最も大きくなり(99%以上)、それを超えると低下する。一方、P偏光の光の透過率は、波長が475nmの辺りで最も小さく(10%程度)、波長が475nmから長くなるに従って単調増加し、波長が520nmの辺りで最大(約99.5%)となる。   FIG. 3 is a graph showing light transmission characteristics of the polarization separation films (31 to 33). The horizontal axis indicates wavelength, and the vertical axis indicates light transmittance. As shown in FIG. 3, the light transmittance of the polarization separation film changes according to the wavelength. The transmittance of the S-polarized light is about 0% when the wavelength is 540 nm or less, and increases as the wavelength becomes longer when the wavelength exceeds 540 nm, and becomes the largest around 590 nm (99% or more). If it exceeds that, it will decrease. On the other hand, the transmittance of P-polarized light is the smallest around a wavelength of 475 nm (about 10%), monotonically increases as the wavelength increases from 475 nm, and reaches a maximum (about 99.5%) around a wavelength of 520 nm. Becomes

ここで、P偏光透過率をTpとし、P偏光反射率をRpとし、S偏光透過率をTsとし、S偏光反射率をRsとする。図3に示される特性を有する偏光分離膜では、波長532nmの光について、Tp=99.5%、Rp=0.5%、Ts=0.1%、Rs=99.9%となる。   Here, the P-polarized light transmittance is Tp, the P-polarized light reflectance is Rp, the S-polarized light transmittance is Ts, and the S-polarized light reflectance is Rs. In the polarization separation film having the characteristics shown in FIG. 3, for light having a wavelength of 532 nm, Tp = 99.5%, Rp = 0.5%, Ts = 0.1%, and Rs = 99.9%.

この場合、第2出射表面13から出射されるS偏光の光に混ざるP偏光の光は、Rp×Rp=0.5%×0.5%=0.0025%(S偏光の消光比:46dB)となる。このように、本実施形態では第1偏光分離膜31で反射した光が第2偏光分離膜32で再度偏光分離するため、第1偏光分離膜31のみで反射した場合(Rp=0.5%(消光比:23dB))に比べ、S偏光の消光比が2倍になる。   In this case, the P-polarized light mixed with the S-polarized light emitted from the second emission surface 13 is Rp × Rp = 0.5% × 0.5% = 0.0025% (extinction ratio of S-polarized light: 46 dB) ). As described above, in this embodiment, since the light reflected by the first polarization separation film 31 is again polarized and separated by the second polarization separation film 32, the light is reflected only by the first polarization separation film 31 (Rp = 0.5%). (Extinction ratio: 23 dB)), the extinction ratio of S-polarized light is doubled.

なお、第1出射表面12から出射されるP偏光の光に混ざるS偏光の光は、Ts×Ts=0.1%×0.1%=10−4%(P偏光の消光比:60dB)であり、P偏光の消光比は十分小さい。仮に、第2光学部材22と第3光学部材23との界面に第3偏光分離膜33が設けられていない場合には、第1出射表面12から出射されるP偏光の光に混ざるS偏光の光は、Ts=0.1%(P偏光の消光比:30dB)である。この場合でも、1回反射の場合のS偏光の光の消光比(23dB)に比べると、P偏光の消光比は高い。本実施形態では、第1偏光分離膜31を透過したP偏光の光の光路に第1偏光分離膜31と平行な第3偏光分離膜33が設けられているため、第1出射表面12から出射するP偏光の消光比が60dBになる。 The S-polarized light mixed with the P-polarized light emitted from the first emission surface 12 is Ts × Ts = 0.1% × 0.1% = 10 −4 % (extinction ratio of P-polarized light: 60 dB). And the extinction ratio of P-polarized light is sufficiently small. If the third polarization separation film 33 is not provided at the interface between the second optical member 22 and the third optical member 23, the S-polarized light mixed with the P-polarized light emitted from the first emission surface 12 Light has Ts = 0.1% (extinction ratio of P-polarized light: 30 dB). Even in this case, the extinction ratio of P-polarized light is higher than the extinction ratio of S-polarized light in the case of single reflection (23 dB). In the present embodiment, since the third polarized light separating film 33 parallel to the first polarized light separating film 31 is provided in the optical path of the P-polarized light transmitted through the first polarized light separating film 31, the light exits from the first exit surface 12. The extinction ratio of P-polarized light becomes 60 dB.

このように、複数の光学部材(21〜23)を接合してなる1つの偏光ビームスプリッタ10では、光学部材(21〜23)の加工精度に応じて高い光軸精度を実現できる。従って、光軸を合わせるために複数の偏光ビームスプリッタ間のアライメントを調整する必要がない。   As described above, in one polarization beam splitter 10 formed by joining a plurality of optical members (21 to 23), high optical axis accuracy can be realized according to the processing accuracy of the optical members (21 to 23). Therefore, there is no need to adjust the alignment between the plurality of polarizing beam splitters in order to align the optical axes.

本実施形態では、偏光ビームスプリッタ10が、側面視にて、台形をなす第1光学部材21と、第1光学部材21の下底の面に接合された長方形をなす第2光学部材22と、第2光学部材22の下側長辺の面に接合された台形をなす第3光学部材23とを含む。そして、入射表面11及び第1出射表面12が第1光学部材21の側辺に設けられ、第1偏光分離膜31及び第2偏光分離膜32が第1光学部材21と第2光学部材22との界面に設けられ、第2出射表面13が第3光学部材23の側辺の一方に設けられている。そのため、第1〜第3光学部材23の形状が簡単であり、これらの光学部材(21〜23)の加工が容易である上、これらの光学部材(21〜23)を高い精度で製造可能である。また、偏光ビームスプリッタ10のアライメント調整も容易である。   In the present embodiment, the polarizing beam splitter 10 includes a first optical member 21 having a trapezoidal shape in a side view, and a second optical member 22 having a rectangular shape joined to a lower bottom surface of the first optical member 21. And a trapezoidal third optical member 23 joined to the lower long side surface of the second optical member 22. Then, the entrance surface 11 and the first exit surface 12 are provided on the side of the first optical member 21, and the first polarization separation film 31 and the second polarization separation film 32 are formed by the first optical member 21 and the second optical member 22. And the second emission surface 13 is provided on one of the sides of the third optical member 23. Therefore, the shape of the first to third optical members 23 is simple, the processing of these optical members (21 to 23) is easy, and the optical members (21 to 23) can be manufactured with high accuracy. is there. Further, the alignment adjustment of the polarizing beam splitter 10 is also easy.

また、本実施形態では、第1偏光分離膜31で反射したS偏光の光を反射させる反射面が全反射面14であるため、反射面を第1光学部材21に容易に形成することができる。   In the present embodiment, since the reflection surface that reflects the S-polarized light reflected by the first polarization separation film 31 is the total reflection surface 14, the reflection surface can be easily formed on the first optical member 21. .

更に本実施形態では、第1出射表面12から出射されるP偏光の光軸と第2出射表面13から出射されるS偏光の光軸とがなす偏光分離角が90°である。そのため、S偏光の光とP偏光の光とを利用する他の光学素子を偏光ビームスプリッタ10の周りに設ける際に、それらの光学素子のアライメント調整が容易である。即ち、偏光ビームスプリッタ10の利用性が高い。   Further, in the present embodiment, the polarization separation angle formed by the optical axis of the P-polarized light emitted from the first emission surface 12 and the optical axis of the S-polarized light emitted from the second emission surface 13 is 90 °. Therefore, when other optical elements utilizing the S-polarized light and the P-polarized light are provided around the polarization beam splitter 10, the alignment of these optical elements can be easily adjusted. That is, the usability of the polarization beam splitter 10 is high.

上記のように、偏光ビームスプリッタ10は紫外線波長域から赤外線波長域の広い波長域に適用可能である。そのため、光源5を紫外線波長域から赤外線波長域の波長の光を発するものにすれば、紫外線波長域から赤外線波長域の波長の光が高い消光比をもってS波とP波とに分離可能である。   As described above, the polarizing beam splitter 10 is applicable to a wide wavelength range from the ultraviolet wavelength range to the infrared wavelength range. Therefore, if the light source 5 emits light in the wavelength range from the ultraviolet wavelength range to the infrared wavelength range, the light in the wavelength range from the ultraviolet wavelength range to the infrared wavelength range can be separated into the S wave and the P wave with a high extinction ratio. .

≪第2実施形態≫
次に、図4を参照して第2実施形態に係る偏光ビームスプリッタ10について説明する。なお、第1実施形態と形態又は機能が同一又は同様の要素には同一の符号を付し、重複する説明は省略する。以降の実施形態においても同様とする。
<< 2nd Embodiment >>
Next, a polarization beam splitter 10 according to a second embodiment will be described with reference to FIG. Note that the same or similar elements as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. The same applies to the following embodiments.

本実施形態の偏光ビームスプリッタ10では、第1光学部材21の下底をなす面及び第3光学部材23の下底をなす面に1対の第4光学部材24が接合されている。図示例の第4光学部材24は側面視で長方形(即ち、板状)とされている。第4光学部材24と第1光学部材21又は第3光学部材23との界面には、第1偏光分離膜31で反射した光の一部を反射し、残りの一部を透過させる第4偏光分離膜34が設けられている。即ち、第1偏光分離膜31で反射したS偏光の光を反射させる反射面が、第1実施形態の全反射面14に代わり、第4偏光分離膜34によって構成されている。ここで、第4偏光分離膜34は、両光学部材の界面のうち、第1偏光分離膜31で反射した光の光路(の領域)に設けられたものを意味する。本実施形態では、上記の界面の全域に偏光分離膜が設けられている。偏光ビームスプリッタ10は、第1実施形態と同様に180度対称の回転対称且つ左右対称の形状をなしている。   In the polarization beam splitter 10 of the present embodiment, a pair of fourth optical members 24 are joined to a surface forming a lower bottom of the first optical member 21 and a surface forming a lower bottom of the third optical member 23. The fourth optical member 24 in the illustrated example has a rectangular shape (that is, a plate shape) in a side view. At the interface between the fourth optical member 24 and the first optical member 21 or the third optical member 23, the fourth polarized light that reflects a part of the light reflected by the first polarization separation film 31 and transmits the remaining part. A separation film 34 is provided. That is, the reflection surface that reflects the S-polarized light reflected by the first polarization separation film 31 is configured by the fourth polarization separation film 34 instead of the total reflection surface 14 of the first embodiment. Here, the fourth polarized light separating film 34 means a film provided in (an area of) the optical path of the light reflected by the first polarized light separating film 31 at the interface between the two optical members. In the present embodiment, a polarization splitting film is provided on the entire area of the interface. The polarization beam splitter 10 has a 180-degree rotationally symmetrical and left-right symmetrical shape as in the first embodiment.

このように、第1偏光分離膜31で反射した光を反射する反射面は、互いに隣接する2つの光学部材の接合面間に設けられた第4偏光分離膜34からなる。そのため、第1偏光分離膜31で反射したP偏光の光に含まれるS偏光の光が、第4偏光分離膜34での偏光分離によって低減される。即ち、P偏光の光は、偏光分離膜で3重に偏光分離することにより、より高い消光比をもっても第2出射表面13から出射する。   As described above, the reflection surface that reflects the light reflected by the first polarization separation film 31 includes the fourth polarization separation film 34 provided between the joining surfaces of two optical members adjacent to each other. Therefore, the S-polarized light included in the P-polarized light reflected by the first polarization separation film 31 is reduced by the polarization separation in the fourth polarization separation film 34. In other words, the P-polarized light is emitted from the second emission surface 13 even with a higher extinction ratio by performing triple polarization separation by the polarization separation film.

具体的には、第2出射表面13から出射されるS偏光の光に混ざるP偏光の光は、Rp×Rp×Rp=0.5%×0.5%×0.5%=1.3×10−5%(S偏光の消光比:69dB)となる。このように、本実施形態ではP偏光の光が第1偏光分離膜31、第2偏光分離膜32及び第4偏光分離膜34で3重に偏光分離するため、第1実施形態の全反射面14の場合(消光比:46dB)に比べ、S偏光の消光比が1.5倍になる。 Specifically, the P-polarized light mixed with the S-polarized light emitted from the second emission surface 13 is Rp × Rp × Rp = 0.5% × 0.5% × 0.5% = 1.3. × 10 −5 % (extinction ratio of S-polarized light: 69 dB). As described above, in this embodiment, the P-polarized light is triple-polarized and separated by the first, second, and third polarization separation films 31, 32, and 34. Therefore, the total reflection surface of the first embodiment is used. The extinction ratio of S-polarized light is 1.5 times that of the case of 14 (extinction ratio: 46 dB).

≪第3実施形態≫
次に、図5及び図6を参照して第3実施形態に係る偏光ビームスプリッタ10について説明する。図5は、第1実施形態に係る偏光ビームスプリッタ10を例にした、迷光の発生原理の説明図である。図5に示されるように、第1偏光分離膜31で反射した光にはP偏光の光も含まれており、この光が全反射面14で反射して第2偏光分離膜32に照射される。すると、P偏光の光の多くが第2偏光分離膜32を透過し、第2光学部材22の右側の面(長方形の短辺をなす面)で全反射する。そのため、このP偏光の光は、偏光分離膜を透過しながら全反射面14で全反射を繰り返し、偏光ビームスプリッタ10の内部に迷光として残留する。
<< 3rd Embodiment >>
Next, a polarization beam splitter 10 according to a third embodiment will be described with reference to FIGS. FIG. 5 is an explanatory diagram of the generation principle of stray light, taking the polarization beam splitter 10 according to the first embodiment as an example. As shown in FIG. 5, the light reflected by the first polarization separation film 31 also includes P-polarized light, and this light is reflected by the total reflection surface 14 and irradiated on the second polarization separation film 32. You. Then, most of the P-polarized light passes through the second polarization separation film 32 and is totally reflected by the right surface (the surface forming the short side of the rectangle) of the second optical member 22. Therefore, the P-polarized light is repeatedly reflected by the total reflection surface 14 while passing through the polarization separation film, and remains as stray light inside the polarization beam splitter 10.

この問題に対処するため、本実施形態の偏光ビームスプリッタ10では、図6に示されるように、第2実施形態の1対の第4光学部材24の代わりに1対の光吸収部材43が設けられ、第1光学部材21又は第3光学部材23と光吸収部材43との界面に偏光分離膜34が形成されている。また、第2光学部材22の短辺をなす面にも、1対の光吸収部材43が設けられ、第2光学部材22と1対の光吸収部材43との界面のそれぞれに第5偏光分離膜35が形成されている。光吸収部材43は、例えば、黒色石英ガラス等からなる。本実施形態の偏光ビームスプリッタ10も180度対称の回転対称且つ左右対称の形状をなしている。   To deal with this problem, in the polarization beam splitter 10 of the present embodiment, as shown in FIG. 6, a pair of light absorbing members 43 is provided instead of the pair of fourth optical members 24 of the second embodiment. In addition, a polarization separation film 34 is formed on the interface between the first optical member 21 or the third optical member 23 and the light absorbing member 43. Further, a pair of light absorbing members 43 is also provided on the surface forming the short side of the second optical member 22, and the fifth polarization separation is provided at each of the interfaces between the second optical member 22 and the pair of light absorbing members 43. A film 35 is formed. The light absorbing member 43 is made of, for example, black quartz glass. The polarization beam splitter 10 of the present embodiment also has a 180-degree rotationally symmetric and left-right symmetrical shape.

このように、本実施形態では、第4偏光分離膜34を透過したP偏光の残留光の光路に光吸収部材43が設けられている。そのため、第4偏光分離膜34を透過したP偏光の残留光が迷光となって偏光ビームスプリッタ10の内部に残留することが抑制される。   As described above, in the present embodiment, the light absorbing member 43 is provided in the optical path of the P-polarized residual light transmitted through the fourth polarization separation film 34. Therefore, the residual P-polarized light transmitted through the fourth polarization separation film 34 is prevented from becoming stray light and remaining inside the polarization beam splitter 10.

また、第4偏光分離膜34で反射し、第2偏光分離膜32を透過したP偏光の残留光の光路にも光吸収部材43が設けられている。そのため、第2偏光分離膜32を透過したP偏光の残留光が迷光となって偏光ビームスプリッタ10の内部に残留することも抑制される。   Also, a light absorbing member 43 is provided on the optical path of the P-polarized residual light reflected by the fourth polarization separation film 34 and transmitted through the second polarization separation film 32. Therefore, the residual light of the P-polarized light transmitted through the second polarization separation film 32 is also prevented from becoming stray light and remaining inside the polarization beam splitter 10.

≪第4実施形態≫
次に、図7を参照して第4実施形態に係る偏光ビームスプリッタ10について説明する。本実施形態の偏光ビームスプリッタ10では、第1光学部材21の下底をなす面及び第3光学部材23の下底をなす面に接合された1対の第4光学部材24が、側面視にて、接合面を斜面とする直角二等辺三角形をなしている。そして、直角を挟む2辺をなす面(表面)に、反射防止膜41が設けられている。本実施形態においても、偏光ビームスプリッタ10は180度対称の回転対称且つ左右対称の形状をなしている。本実施形態においても第2実施形態と同様に、第4光学部材24と第1光学部材21又は第3光学部材23との界面には第4偏光分離膜34が設けられている。
<< 4th Embodiment >>
Next, a polarization beam splitter 10 according to a fourth embodiment will be described with reference to FIG. In the polarization beam splitter 10 of the present embodiment, the pair of fourth optical members 24 joined to the lower base of the first optical member 21 and the lower base of the third optical member 23 are arranged in a side view. To form a right-angled isosceles triangle with the joining surface as a slope. An anti-reflection film 41 is provided on a surface (front surface) forming two sides sandwiching the right angle. Also in this embodiment, the polarization beam splitter 10 has a 180-degree rotationally symmetrical and left-right symmetrical shape. In the present embodiment, similarly to the second embodiment, a fourth polarization separation film 34 is provided at the interface between the fourth optical member 24 and the first optical member 21 or the third optical member 23.

第1偏光分離膜31で反射し、第4偏光分離膜34を透過したP偏光の残留光は、図中上側の第4光学部材24の反射防止膜41が設けられた面に垂直に入射し、この面から外部に出射する。一方、第4偏光分離膜34で反射し、第2偏光分離膜32を透過したP偏光の残留光は、45度の入射角で入射する第2光学部材22の短辺をなす面で全反射する。その後、このP偏光の残留光は、第3偏光分離膜33及び第4偏光分離膜34を順に透過して図中下側の第4光学部材24の反射防止膜41が設けられた面に垂直に入射し、この面から外部に出射する。   The P-polarized residual light reflected by the first polarization separation film 31 and transmitted through the fourth polarization separation film 34 is perpendicularly incident on the surface of the upper fourth optical member 24 on which the antireflection film 41 is provided. From the surface. On the other hand, the P-polarized residual light reflected by the fourth polarized light separating film 34 and transmitted through the second polarized light separating film 32 is totally reflected on the surface forming the short side of the second optical member 22 which enters at an incident angle of 45 degrees. I do. After that, the residual light of the P-polarized light sequentially passes through the third polarized light separating film 33 and the fourth polarized light separating film 34 and is perpendicular to the surface of the fourth optical member 24 on the lower side in the figure where the antireflection film 41 is provided. And exits from this surface.

このように、第4偏光分離膜34を透過したP偏光の残留光の光路(図中上側の第4光学部材24の表面)と、第2偏光分離膜32を透過したP偏光の残留光の光路(図中下側の第4光学部材24の表面)とに、光軸に垂直な面が形成され、これらの面に反射防止膜41が設けられている。そのため、第4偏光分離膜34や第3偏光分離膜33を透過したP偏光の残留光が迷光となって偏光ビームスプリッタ10の内部に残留することが抑制される。   As described above, the optical path of the P-polarized residual light transmitted through the fourth polarization separation film 34 (the surface of the upper fourth optical member 24 in the drawing) and the P-polarized residual light transmitted through the second polarization separation film 32 Surfaces perpendicular to the optical axis are formed on the optical path (the surface of the fourth optical member 24 on the lower side in the figure), and the antireflection film 41 is provided on these surfaces. Therefore, the residual P-polarized light transmitted through the fourth polarization separation film 34 and the third polarization separation film 33 is prevented from becoming stray light and remaining inside the polarization beam splitter 10.

≪第5実施形態≫
次に、図8を参照して第5実施形態に係る偏光ビームスプリッタ10について説明する。本実施形態の偏光ビームスプリッタ10では、第4実施形態(図7)の構成に加え、第2光学部材22の短辺をなす1対の面にも、側面視にて接合面を斜面とする直角二等辺三角形をなす1対の第5光学部材25が設けられている。第5光学部材25と第2光学部材22との界面にも、P偏光の光を透過させ、S偏光の光を反射させる第5偏光分離膜35が設けられている。また、第2光学部材22に接合された1対の第5光学部材25の直角を挟む2辺をなす面(表面)にも、反射防止膜41が設けられている。本実施形態においても、偏光ビームスプリッタ10は180度対称の回転対称且つ左右対称の形状になっている。
<< 5th Embodiment >>
Next, a polarization beam splitter 10 according to a fifth embodiment will be described with reference to FIG. In the polarization beam splitter 10 of the present embodiment, in addition to the configuration of the fourth embodiment (FIG. 7), the joining surface is formed as an inclined surface in a pair of surfaces forming the short side of the second optical member 22 in a side view. A pair of fifth optical members 25 forming a right-angled isosceles triangle are provided. A fifth polarization separating film 35 that transmits P-polarized light and reflects S-polarized light is also provided at the interface between the fifth optical member 25 and the second optical member 22. Further, an antireflection film 41 is also provided on a surface (front surface) forming two sides sandwiching the right angle of the pair of fifth optical members 25 joined to the second optical member 22. Also in the present embodiment, the polarization beam splitter 10 has a 180-degree rotationally symmetric and left-right symmetric shape.

本実施形態では、第4偏光分離膜34を透過したP偏光の残留光は、その光路(図中上側の第4光学部材24の表面)に光軸に垂直に設けられた反射防止膜41から外部に出射する。一方、第4偏光分離膜34で反射し、第2偏光分離膜32を透過したP偏光の残留光は、45度の入射角で入射する第2光学部材22の短辺をなす面で第5偏光分離膜35を透過する。その後、P偏光の残留光は、図中右側の第5光学部材25の反射防止膜41が設けられた面に垂直に入射してこの面から外部に出射する。そのため、第4偏光分離膜34を透過したP偏光の残留光や第4偏光分離膜34で反射したP偏光の残留光が迷光となって偏光ビームスプリッタ10の内部に残留することが抑制される。   In the present embodiment, the P-polarized residual light transmitted through the fourth polarization separation film 34 is transmitted from an anti-reflection film 41 provided on the optical path (the surface of the upper fourth optical member 24 in the figure) perpendicular to the optical axis. Emitted to the outside. On the other hand, the P-polarized residual light reflected by the fourth polarization separation film 34 and transmitted through the second polarization separation film 32 has a fifth surface on the short side of the second optical member 22 which enters at an incident angle of 45 degrees. The light passes through the polarization separation film 35. Thereafter, the P-polarized residual light is perpendicularly incident on the surface of the fifth optical member 25 on the right side where the antireflection film 41 is provided, and exits from this surface. Therefore, the residual P-polarized light transmitted through the fourth polarization splitting film 34 and the residual P-polarized light reflected by the fourth polarization splitting film 34 are prevented from remaining as stray light inside the polarization beam splitter 10. .

≪第6実施形態≫
次に、図9を参照して第6実施形態に係る偏光ビームスプリッタ10について説明する。本実施形態の偏光ビームスプリッタ10では、第1実施形態(図1)の偏光ビームスプリッタ10に対し、第2光学部材22の短辺をなす1対の面と、第3光学部材23の上底をなす面とに、光吸収部材43が接合されている点が相違している。光吸収部材43は、例えば、黒色石英ガラス等からなる。第1光学部材21の上底をなす面は、第1実施形態と同様に全反射面14となっている。本実施形態の偏光ビームスプリッタ10は、回転対称の形状ではなく、左右対称の形状である。
<< 6th Embodiment >>
Next, a polarization beam splitter 10 according to a sixth embodiment will be described with reference to FIG. The polarization beam splitter 10 of the present embodiment is different from the polarization beam splitter 10 of the first embodiment (FIG. 1) in that a pair of surfaces forming the short sides of the second optical member 22 and the upper bottom of the third optical member 23 are provided. The difference is that the light absorbing member 43 is joined to the surface forming the. The light absorbing member 43 is made of, for example, black quartz glass. The surface forming the upper bottom of the first optical member 21 is the total reflection surface 14 as in the first embodiment. The polarization beam splitter 10 of the present embodiment is not a rotationally symmetric shape but a left-right symmetric shape.

第1偏光分離膜31で反射した光は、第1光学部材21の台形の上底をなす面(全反射面14)で全反射して第2偏光分離膜32に入射し、第2偏光分離膜32によって透過する光と反射する光とに分離される。第2偏光分離膜32を透過した光の大部分は、第2光学部材22の図中右側の面に設けられた光吸収部材43によって吸収される。第2偏光分離膜32を透過した光の一部が図中右側の光吸収部材43で反射したとしても、この光は第3光学部材23に接合された図中下側の光吸収部材43によって吸収される。   The light reflected by the first polarization splitting film 31 is totally reflected by the trapezoidal upper bottom surface of the first optical member 21 (the total reflection surface 14) and is incident on the second polarization splitting film 32, where the second polarization splitting is performed. The light is separated into transmitted light and reflected light by the film 32. Most of the light transmitted through the second polarization separation film 32 is absorbed by the light absorbing member 43 provided on the right surface of the second optical member 22 in the drawing. Even if a part of the light transmitted through the second polarization separation film 32 is reflected by the light absorbing member 43 on the right side in the figure, this light is transmitted by the lower light absorbing member 43 joined to the third optical member 23 in the figure. Absorbed.

このように本実施形態では、全反射面14で反射して第2偏光分離膜32を透過したP偏光の残留光の光路に光吸収部材43が設けられている。そのため、全反射面14で反射したP偏光の残留光が迷光となって偏光ビームスプリッタ10の内部に残留することが抑制される。   As described above, in the present embodiment, the light absorbing member 43 is provided on the optical path of the P-polarized residual light reflected by the total reflection surface 14 and transmitted through the second polarization separation film 32. Therefore, it is possible to suppress the residual P-polarized light reflected on the total reflection surface 14 from becoming stray light and remaining inside the polarization beam splitter 10.

≪第7実施形態≫
次に、図10を参照して第7実施形態に係る偏光ビームスプリッタ10について説明する。本実施形態の偏光ビームスプリッタ10では、第3光学部材23が、第4実施形態(図7)や第5実施形態(図8)の第4光学部材24と同じ形状(即ち、側面視で直角二等辺三角形)且つ同じ大きさをしている。第3光学部材23は、第2光学部材22に対して下側長辺の図中右側に斜辺を対向させて接合されている。第3光学部材23の直角を挟む2辺をなす面のうち、第1出射表面12をなす図中右側の面には反射防止膜41が設けられている。
{Seventh embodiment}
Next, a polarization beam splitter 10 according to a seventh embodiment will be described with reference to FIG. In the polarization beam splitter 10 of the present embodiment, the third optical member 23 has the same shape as the fourth optical member 24 of the fourth embodiment (FIG. 7) or the fifth embodiment (FIG. 8) (ie, a right angle in side view). Isosceles triangle) and the same size. The third optical member 23 is joined to the second optical member 22 with its oblique side facing the right side of the lower long side in the drawing. An anti-reflection film 41 is provided on a surface on the right side of the drawing, which forms the first emission surface 12, of two surfaces sandwiching the right angle of the third optical member 23.

このように、第3光学部材23が第2光学部材22の下側長辺に接合された斜辺を有する三角形をなし、第2出射表面13が第3光学部材23の斜辺と異なる辺に設けられている。そのため、第3光学部材23が小さくなり、偏光ビームスプリッタ10が小型・軽量化される。   In this manner, the third optical member 23 forms a triangle having a hypotenuse joined to the lower long side of the second optical member 22, and the second emission surface 13 is provided on a side different from the hypotenuse of the third optical member 23. ing. Therefore, the size of the third optical member 23 is reduced, and the size and weight of the polarization beam splitter 10 are reduced.

他の実施形態では、第2偏光分離膜32を透過したP偏光の残留光が外部に出射するように、第3光学部材23の直角を挟む2辺をなす面のうち、図中左側の面にも反射防止膜41が設けられていてもよい。また、図示例では第1光学部材21の上底をなす面が全反射面14となっているが、この面に第4偏光分離膜34を設けて第4光学部材24を接合してもよい。   In another embodiment, of the two sides sandwiching the right angle of the third optical member 23, the surface on the left side in the drawing such that the P-polarized residual light transmitted through the second polarization separation film 32 is emitted to the outside. May also be provided with an anti-reflection film 41. In the illustrated example, the surface forming the upper bottom of the first optical member 21 is the total reflection surface 14. However, a fourth polarization separating film 34 may be provided on this surface to join the fourth optical member 24. .

≪第8実施形態≫
次に、図11を参照して第8実施形態に係る偏光ビームスプリッタ10について説明する。本実施形態の偏光ビームスプリッタ10では、第2光学部材22の短辺の長さが上記実施形態の1/2とされており、第3光学部材23の側面視での大きさが第7実施形態(図10)の2倍とされている。
<< Eighth Embodiment >>
Next, a polarization beam splitter 10 according to an eighth embodiment will be described with reference to FIG. In the polarization beam splitter 10 of the present embodiment, the length of the short side of the second optical member 22 is の of that of the above embodiment, and the size of the third optical member 23 in the side view is the seventh embodiment. It is twice as large as the form (FIG. 10).

このような構成とされることにより、第2光学部材22を小さくすることが可能になり、偏光ビームスプリッタ10が小型・軽量化される。   With such a configuration, the second optical member 22 can be reduced in size, and the polarization beam splitter 10 can be reduced in size and weight.

≪第9実施形態≫
次に、図12を参照して第9実施形態に係る偏光ビームスプリッタ10について説明する。本実施形態の偏光ビームスプリッタ10では、第2光学部材22が第1光学部材21と同じ形状(即ち、側面視で下底に対してそれぞれ45°をなす1対の側辺を有する台形)且つ同じ大きさをしている。第2光学部材22は、第1光学部材21に対して下底同士を対向させて接合されている。第3光学部材23は、第7実施形態(図10)と同じ形状且つ同じ大きさとされている。従って、偏光ビームスプリッタ10は側面視でダイヤモンド形状になっている。
<< Ninth embodiment >>
Next, a polarization beam splitter 10 according to a ninth embodiment will be described with reference to FIG. In the polarization beam splitter 10 of the present embodiment, the second optical member 22 has the same shape as the first optical member 21 (that is, a trapezoid having a pair of sides forming 45 ° with respect to the lower bottom in side view) and They are the same size. The second optical member 22 is joined to the first optical member 21 with the lower bases facing each other. The third optical member 23 has the same shape and the same size as the seventh embodiment (FIG. 10). Therefore, the polarizing beam splitter 10 has a diamond shape in a side view.

第2光学部材22の1対の側辺のうち、第1出射表面12と同じ右側の側辺をなす面には反射防止膜41が設けられている。第2偏光分離膜32を透過したP偏光の残留光は、第2光学部材22の右側の側辺をなす面から外部に出射する。そのため、第2偏光分離膜32を透過したP偏光の残留光は迷光にならない。   An anti-reflection film 41 is provided on a surface of the pair of sides of the second optical member 22 that forms the same right side as the first emission surface 12. The P-polarized residual light that has passed through the second polarization separation film 32 is emitted to the outside from the surface forming the right side of the second optical member 22. Therefore, the residual P-polarized light transmitted through the second polarization separation film 32 does not become stray light.

このように本実施形態では、第2光学部材22が第1光学部材21の下底に接合された一辺(下底)及びこれに対向する下底に平行な対辺(上底)を有する四角形(台形)をなす。また、第3光学部材23が第2光学部材22の対辺(上底)に接合された斜辺を有する三角形をなす。これらの構成により、第2光学部材22及び第3光学部材23を小さくして偏光ビームスプリッタ10を小型・軽量化することができる。   As described above, in this embodiment, the second optical member 22 has a side (lower bottom) joined to the lower bottom of the first optical member 21 and a square (upper bottom) having the opposite side parallel to the lower bottom (upper bottom). Trapezoid). Further, the third optical member 23 forms a triangle having an oblique side joined to the opposite side (upper bottom) of the second optical member 22. With these configurations, the polarizing beam splitter 10 can be reduced in size and weight by making the second optical member 22 and the third optical member 23 smaller.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。上記実施形態の構成の一部を適宜組み合わせてもよい。この他、各部材や部位の具体的構成や配置、数量、角度、材料、波長など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。一方、上記実施形態に示した各構成要素は必ずしも全てが必須ではなく、適宜選択することができる。   Although the description of the specific embodiments has been completed above, the present invention can be widely modified without being limited to the above embodiments. A part of the configuration of the above embodiment may be appropriately combined. In addition, the specific configuration, arrangement, quantity, angle, material, wavelength, and the like of each member and portion can be appropriately changed within a range not departing from the gist of the present invention. On the other hand, all of the components shown in the above embodiment are not necessarily essential, and can be appropriately selected.

1 偏光分離装置
5 光源
6 入射光
10 偏光ビームスプリッタ
11 入射表面
12 第1出射表面
13 第2出射表面
14 全反射面(反射面)
21 第1光学部材
22 第2光学部材
23 第3光学部材
24 第4光学部材
25 第5光学部材
31 第1偏光分離膜
32 第2偏光分離膜
33 第3偏光分離膜
34 第4偏光分離膜(反射面)
35 第5偏光分離膜
41 反射防止膜
43 光吸収部材
DESCRIPTION OF SYMBOLS 1 Polarization separation apparatus 5 Light source 6 Incident light 10 Polarization beam splitter 11 Incident surface 12 First exit surface 13 Second exit surface 14 Total reflection surface (reflection surface)
Reference Signs List 21 first optical member 22 second optical member 23 third optical member 24 fourth optical member 25 fifth optical member 31 first polarized light separating film 32 second polarized light separating film 33 third polarized light separating film 34 fourth polarized light separating film ( Reflective surface)
35 Fifth polarization splitting film 41 Antireflection film 43 Light absorbing member

Claims (13)

複数の光学部材を接合してなる偏光ビームスプリッタであって、
所定の方向から入射光を入射させる入射表面と、
前記入射表面から入射した光の光路に設けられた第1偏光分離膜と、
前記第1偏光分離膜を透過したP偏光の光を出射させる第1出射表面と、
前記第1偏光分離膜で反射したS偏光の光を反射させる反射面と、
前記反射面で反射した前記S偏光の光の光路に設けられた第2偏光分離膜と、
前記第2偏光分離膜で反射した前記S偏光の光を出射させる第2出射表面とを備えることを特徴とする偏光ビームスプリッタ。
A polarizing beam splitter formed by joining a plurality of optical members,
An incident surface on which incident light is incident from a predetermined direction,
A first polarization separation film provided in an optical path of light incident from the incident surface;
A first emission surface for emitting P-polarized light transmitted through the first polarization separation film;
A reflection surface for reflecting the S-polarized light reflected by the first polarization separation film;
A second polarization separation film provided in an optical path of the S-polarized light reflected by the reflection surface;
A second emission surface for emitting the S-polarized light reflected by the second polarization separation film.
前記第1偏光分離膜と前記第2偏光分離膜とが同一平面上に設けられていることを特徴とする請求項1に記載の偏光ビームスプリッタ。   The polarization beam splitter according to claim 1, wherein the first polarization separation film and the second polarization separation film are provided on the same plane. 前記第1偏光分離膜を透過した前記P偏光の光の光路に前記第1偏光分離膜と平行に設けられた第3偏光分離膜を更に備えることを特徴とする請求項2に記載の偏光ビームスプリッタ。   The polarization beam according to claim 2, further comprising a third polarization separation film provided in parallel with the first polarization separation film in an optical path of the P-polarized light transmitted through the first polarization separation film. Splitter. 複数の前記光学部材が、側面視において、台形をなす第1光学部材と、前記第1光学部材の下底に接合された長辺を有する長方形をなす第2光学部材と、前記第2光学部材の前記長辺に対向する対辺に接合された下底を有する台形をなす第3光学部材とを含み、
前記入射表面及び前記第2出射表面が前記第1光学部材の側辺に設けられ、
前記第1偏光分離膜及び前記第2偏光分離膜が前記第1光学部材と前記第2光学部材との界面に設けられ、
前記第1出射表面が前記第3光学部材の側辺の一方に設けられていることを特徴とする請求項2又は請求項3に記載の偏光ビームスプリッタ。
A plurality of optical members having a trapezoidal shape in a side view, a second optical member having a long side joined to a lower bottom of the first optical member, and a second optical member having a rectangular shape; A third optical member having a trapezoidal shape having a lower bottom joined to the opposite side opposite to the long side,
The entrance surface and the second exit surface are provided on a side of the first optical member,
The first polarization separation film and the second polarization separation film are provided at an interface between the first optical member and the second optical member,
4. The polarization beam splitter according to claim 2, wherein the first emission surface is provided on one of sides of the third optical member. 5.
複数の前記光学部材が、側面視において、台形をなす第1光学部材と、前記第1光学部材の下底に接合された一辺及びこれに対向する前記一辺に平行な対辺を有する四角形をなす第2光学部材と、前記第2光学部材の前記対辺に接合された斜辺を有する三角形をなす第3光学部材とを含み、
前記入射表面及び前記第2出射表面が前記第1光学部材の側辺に設けられ、
前記第1偏光分離膜及び前記第2偏光分離膜が前記第1光学部材と前記第2光学部材との界面に設けられ、
前記第1出射表面が前記第3光学部材の前記斜辺と異なる辺に設けられていることを特徴とする請求項2又は請求項3に記載の偏光ビームスプリッタ。
The plurality of optical members are a first optical member having a trapezoidal shape in a side view, and a quadrangular shape having one side joined to a lower base of the first optical member and an opposite side parallel to the one side opposed thereto. A second optical member and a third optical member having a triangular shape having a hypotenuse joined to the opposite side of the second optical member,
The entrance surface and the second exit surface are provided on a side of the first optical member,
The first polarization separation film and the second polarization separation film are provided at an interface between the first optical member and the second optical member,
The polarization beam splitter according to claim 2, wherein the first emission surface is provided on a side different from the oblique side of the third optical member.
前記反射面が全反射面であることを特徴とする請求項1〜請求項5のいずれかに記載の偏光ビームスプリッタ。   The polarizing beam splitter according to claim 1, wherein the reflection surface is a total reflection surface. 前記反射面が、互いに隣接する2つの前記光学部材の界面に設けられた第4偏光分離膜からなることを特徴とする請求項1〜請求項5のいずれかに記載の偏光ビームスプリッタ。   The polarization beam splitter according to any one of claims 1 to 5, wherein the reflection surface is formed of a fourth polarization separation film provided at an interface between two optical members adjacent to each other. 前記反射面で反射して前記第2偏光分離膜を透過した前記P偏光の残留光の光路に設けられた光吸収部材を更に備えることを特徴とする請求項1〜請求項6のいずれかに記載の偏光ビームスプリッタ。   7. The light-absorbing member according to claim 1, further comprising a light absorbing member provided on an optical path of the residual light of the P-polarized light that has been reflected by the reflection surface and transmitted through the second polarization separation film. A polarizing beam splitter as described. 前記第4偏光分離膜を透過した前記P偏光の残留光の光路に設けられた反射防止膜又は光吸収部材を更に備えることを特徴とする請求項7に記載の偏光ビームスプリッタ。   The polarization beam splitter according to claim 7, further comprising an antireflection film or a light absorbing member provided on an optical path of the residual light of the P-polarized light transmitted through the fourth polarization separation film. 前記第1出射表面から出射される前記P偏光の光軸と前記第2出射表面から出射される前記S偏光の光軸とがなす偏光分離角が90°であることを特徴とする請求項1〜請求項9のいずれかに記載の偏光ビームスプリッタ。   2. The polarization separation angle between the optical axis of the P-polarized light emitted from the first emission surface and the optical axis of the S-polarized light emitted from the second emission surface is 90 °. The polarizing beam splitter according to claim 9. 前記第1偏光分離膜及び前記第2偏光分離膜が、フッ化物、酸化物、硫化物及び半導体からなる群から選択された少なくとも1つの材料を含むことを特徴とする請求項1〜請求項10のいずれかに記載の偏光ビームスプリッタ。   The first polarization separation film and the second polarization separation film include at least one material selected from the group consisting of a fluoride, an oxide, a sulfide, and a semiconductor. The polarizing beam splitter according to any one of the above. 複数の前記光学部材が、光学結晶、光学ガラス、セラミック及び半導体からなる群から選択された少なくとも1つの材料を含むことを特徴とする請求項1〜請求項11のいずれかに記載の偏光ビームスプリッタ。   The polarization beam splitter according to claim 1, wherein the plurality of optical members include at least one material selected from the group consisting of an optical crystal, an optical glass, a ceramic, and a semiconductor. . 互いに隣接する2つの前記光学部材が、オプティカルコンタクト、表面活性化接合、拡散接合及び接着剤による接合のいずれかによって互いに接合されていることを特徴とする請求項1〜請求項12のいずれかに記載の偏光ビームスプリッタ。   The two optical members adjacent to each other are joined to each other by any one of optical contact, surface activation joining, diffusion joining, and joining with an adhesive. A polarizing beam splitter as described.
JP2018174450A 2018-09-19 2018-09-19 Polarization beam splitter Pending JP2020046525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018174450A JP2020046525A (en) 2018-09-19 2018-09-19 Polarization beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018174450A JP2020046525A (en) 2018-09-19 2018-09-19 Polarization beam splitter

Publications (1)

Publication Number Publication Date
JP2020046525A true JP2020046525A (en) 2020-03-26

Family

ID=69901381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018174450A Pending JP2020046525A (en) 2018-09-19 2018-09-19 Polarization beam splitter

Country Status (1)

Country Link
JP (1) JP2020046525A (en)

Similar Documents

Publication Publication Date Title
US20200166766A1 (en) Hybrid polarizing beam splitter
US20110216396A1 (en) High durability color combiner
US9563073B2 (en) Combined splitter, isolator and spot-size converter
US10175401B2 (en) Dual-purpose, absorptive, reflective wire grid polarizer
JP4510547B2 (en) Polarization separating element and projection apparatus having the same
JP2010230856A (en) Polarization conversion device an polarized illumination optical device, and liquid crystal projector
US20130010360A1 (en) Compact optical integrator
US10620520B2 (en) Wavelength conversion element, wavelength conversion system, light source apparatus, and projector
JP2830534B2 (en) Polarization conversion element
JP2010015126A (en) Polarization conversion element, polarized light illumination optical element, and liquid crystal projector
US20120307167A1 (en) Polarization converting element, polarization converting unit, and projection-type imaging device
JP2016090801A (en) Optical device and display device
JP2020046525A (en) Polarization beam splitter
US20230048432A1 (en) Polarization splitting device, polarization splitting structure and projection device
JP4789541B2 (en) Polarization separation element
JP2007093964A (en) Polarization conversion element
JP2014026148A (en) Total reflection type polarizer
JP2007212694A (en) Beam splitter
US11212495B2 (en) Wavelength conversion element, light source device, and projector
CN112130407B (en) Wavelength conversion element, light source device, and projector
JP2010181717A (en) Polarizing illumination optical element
TW201305713A (en) Projection system
JP4893264B2 (en) Light source device and image display device
JPS59228610A (en) Polarizing prism
US20220334459A1 (en) Optical engine unit and projection system