JP2020046350A - Method for catching sign of bloom generation at early stage - Google Patents

Method for catching sign of bloom generation at early stage Download PDF

Info

Publication number
JP2020046350A
JP2020046350A JP2018176243A JP2018176243A JP2020046350A JP 2020046350 A JP2020046350 A JP 2020046350A JP 2018176243 A JP2018176243 A JP 2018176243A JP 2018176243 A JP2018176243 A JP 2018176243A JP 2020046350 A JP2020046350 A JP 2020046350A
Authority
JP
Japan
Prior art keywords
surface structure
fat
bloom
height
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018176243A
Other languages
Japanese (ja)
Other versions
JP7123713B2 (en
Inventor
祐子 芦田
Yuko Ashida
祐子 芦田
佐藤 亮太郎
Ryotaro Sato
亮太郎 佐藤
直宏 唐谷
Naohiro Karatani
直宏 唐谷
暁 森田
Akira Morita
暁 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Fuji Oil Holdings Inc
Original Assignee
Fuji Oil Co Ltd
Fuji Oil Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd, Fuji Oil Holdings Inc filed Critical Fuji Oil Co Ltd
Priority to JP2018176243A priority Critical patent/JP7123713B2/en
Publication of JP2020046350A publication Critical patent/JP2020046350A/en
Application granted granted Critical
Publication of JP7123713B2 publication Critical patent/JP7123713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Confectionery (AREA)
  • Edible Oils And Fats (AREA)

Abstract

To provide a method capable of predicting whether or not bloom of a fat composition, especially oily food can be generated more quickly and at an earlier stage on the basis of an observation method for a surface fine structure in a fat composition of which fat is a continuous phase.SOLUTION: Disclosed is a method for catching a sign of bloom generation using at least one change of a surface structure B or a surface structure B' of the surface microstructure as an index in a fat composition whose fat is a continuous phase. The surface structure B refers to a fat crystal convex structure which is generated more upward than the reference surface and whose height is low and breadth is wide, and the surface structure B' refers to a concave structure engraved more downward than the reference surface around the surface structure B, respectively.SELECTED DRAWING: Figure 7

Description

本発明は、油脂が連続相である油脂組成物における表面微細構造の観察方法に関する。   The present invention relates to a method for observing a surface microstructure in a fat or oil composition in which the fat or oil is a continuous phase.

チョコレートの研究は歴史が深く、なかでもブルームは最大の関心事として,過去,数多く検討されてきた。ブルームとは、何らかの要因でチョコレートの表面に存在する油脂が、結晶化し白化する現象である。
チョコレートにおいてブルームは品質として劣ると評価されるため、一般には、保存中にこのブルームが発生しないか、品質評価において重要な項目のひとつとなっている。
一般的な方法としては目視評価が用いられているが、評価者の経験による誤差を生じる懸念がある。
Chocolate research has a long history, and Bloom has been considered a number of issues in the past as its greatest concern. Bloom is a phenomenon in which fats and oils present on the surface of chocolate for some reason crystallize and whiten.
Bloom is evaluated as inferior in chocolate, so that it does not generally occur during storage or is one of the important items in quality evaluation.
As a general method, visual evaluation is used, but there is a concern that errors may occur due to the experience of the evaluator.

ブルームの発生を経時的に観察して過去の検討対象と比較する場合には、写真を用いて比較する場合が多いが、チョコレートの表面を光量や反射、色調などを同じ条件にて撮影する必要があり、技術的に難しい。また、目視で評価できる段階まである程度の期間が必要であり、必然的に保存試験は長期間になるため、変化をいち早く捉える目的で、温度を変化させる加速試験(サイクルテスト)が行われる場合もある。
一方で、製品開発の場面では、CBE(Cocoa Butter Equivalent:1,3位飽和、2位不飽和の対称型トリアシルグリセロールに富み、カカオバターと任意の割合で混合できる)や、CBR(Cocoa Butter Replacer:ラウリン系のハードバターでカカオバターへの相溶性は低い)、CBS(cocoa butter substitute:高エライジン酸タイプ及び低トランス非ラウリンタイプのハードバター)などの油脂や、乳化剤を主とした添加物の効果をみる場合、種類が増えるほど、その差を目視で捉えることは難しくなる。
When observing the occurrence of bloom over time and comparing it with past studies, comparison is often made using photographs, but it is necessary to photograph the surface of chocolate under the same conditions such as light amount, reflection, color tone etc. There are technical difficulties. In addition, a certain period of time is required until the stage of visual evaluation, and the storage test is inevitably long, so sometimes an accelerated test (cycle test) that changes the temperature is performed for the purpose of catching the change quickly. is there.
On the other hand, in the case of product development, CBE (Cocoa Butter Equivalent: rich in 1,3- and 2-unsaturated symmetric triacylglycerols and can be mixed with cocoa butter at any ratio) and CBR (Cocoa Butter Equivalent) Replacer: Additive mainly composed of fats and oils such as laurin-based hard butter with low compatibility with cocoa butter, CBS (cocoa butter substitute: high elaidic acid type and low trans non-laurin type hard butter), and emulsifiers. When looking at the effect of, as the types increase, it becomes more difficult to grasp the difference visually.

これまで技術においては、SPM(走査型プローブ顕微鏡:Scanning Probe Microscope)を用いて、チョコレート表面の発生初期のブルームについて、液油の噴出からブルームの成長までをナノレベルで観察することには成功している。(非特許文献1、2)
特許文献1ではチョコレートの「光沢」を表面の凹凸の作用であるとして、光沢の有無と表面の凹凸の関係を見る為に、SPMを用いてチョコレート表面の観測を試みている。
しかし、SPMはその測定原理の都合上、発生初期のナノレベルでの形態変化を見ることは可能だが、広い視野における変化を捉えることは難しい。また、SPMは超微形態の計測が可能である一方、操作の習熟が必要であり、汎用性に欠ける問題があった。
一方、プロフィロメトリーや LV−SEM(低真空走査型電子顕微鏡)で表面の状態を観察し、凹凸を調べるという報告がある。(非特許文献3、特許文献2)
また、非特許文献4ではさらに、プロフィロメトリーの測定結果から、その形状画像と得られた roughness and waviness で評価している。
これらの論文や発明では、ツヤの評価に用いられる「表面粗さ」の指標を用いてブルームの発生、成長による表面構造の変化を評価しているものの、定量性に乏しい面があった。
Until now, the technology has succeeded in observing the bloom from the initial stage of the chocolate surface development, from the ejection of liquid oil to the growth of the bloom, at the nanometer level using a scanning probe microscope (SPM). ing. (Non-Patent Documents 1 and 2)
Patent Literature 1 considers the “gloss” of chocolate to be the effect of surface irregularities, and attempts to observe the chocolate surface using SPM in order to see the relationship between glossiness and surface irregularities.
However, SPM is capable of observing a morphological change at the nano level in the early stage of generation due to its measurement principle, but it is difficult to catch a change in a wide field of view. In addition, SPM can measure an ultra-fine form, but requires skill in operation, and has a problem of lack of versatility.
On the other hand, there is a report that the surface state is observed by profilometry or LV-SEM (low-vacuum scanning electron microscope) to check for irregularities. (Non-Patent Document 3, Patent Document 2)
Further, in Non-Patent Document 4, evaluation is made on the shape image and the obtained roughness and waviness from the measurement results of profilometry.
In these papers and inventions, the change in surface structure due to the occurrence and growth of bloom is evaluated using the index of "surface roughness" used for evaluation of luster, but has a poor quantitative property.

特表2007−512822号公報Japanese Unexamined Patent Publication No. 2007-512822 特表2003−534017号公報JP 2003-534017 A

Rousseau, D. On the porous mesostructure of milk chocolate viewed with atomic force miscroscopy, LWT Food Sci. Technol., (2006)39, 852-860.Rousseau, D. On the porous mesostructure of milk chocolate viewed with atomic force miscroscopy, LWT Food Sci. Technol., (2006) 39, 852-860. Rousseau and colleagues published their study in the Journal of the American Oil Chemists Society (Microscale Surface Roughening of Chocolate Viewed with Optical Profilometry. Journal of the American Oil Chemists Society, 2010;87(10):1127-1136).Rousseau and colleagues published their study in the Journal of the American Oil Chemists Society (Microscale Surface Roughening of Chocolate Viewed with Optical Profilometry.Journal of the American Oil Chemists Society, 2010; 87 (10): 1127-1136). P. Bondioli, A. Gasparoli, L. Della Bella and S. Tagliabue, Eur. J. Lipid Sci. Technol., 104, 777 (2002).P. Bondioli, A. Gasparoli, L. Della Bella and S. Tagliabue, Eur. J. Lipid Sci. Technol., 104, 777 (2002). Rizwan S. Khan, Derick Rousseau, Hazelnut oil migration in dark chocolate - Kinetic, thermodynamic and structural considerations, European Journal of Lipid Science and Technology 108(5):434 - 443 (2006).Rizwan S. Khan, Derick Rousseau, Hazelnut oil migration in dark chocolate-Kinetic, thermodynamic and structural considerations, European Journal of Lipid Science and Technology 108 (5): 434-443 (2006).

本発明の目的は、油脂が連続相である油脂組成物における表面微細構造の観察方法に関するものであり、より詳細には上記観察方法を元により迅速に油脂組成物、特に油性食品のブルームが起こりうるかをより早期に予測できる方法を提供することにある。 An object of the present invention relates to a method for observing a surface microstructure in an oil / fat composition in which the oil / fat is a continuous phase, and more specifically, a bloom of an oil / fat composition, particularly an oily food, occurs more quickly based on the above observation method. It is an object of the present invention to provide a method for predicting the possibility of an early stage.

本発明者らは、上記の点に鑑み鋭意研究した結果、表面微細構造の背が低く横幅が広い凸状構造である表面構造B又はその周辺に発生する基準面より下方に掘り込まれた凹状構造である表面構造B’の少なくとも一方の変化を観測することで、ブルームの予測することを見出し、本発明を完成させた。   The inventors of the present invention have conducted intensive studies in view of the above points, and have found that a concave structure dug below a reference surface generated on a surface structure B, which is a convex structure having a low surface microstructure and a wide width, or a periphery thereof. By observing at least one change in the surface structure B ′, which is the structure, it was found that bloom was predicted, and the present invention was completed.

即ち、本発明は、(1)としては、油脂が連続相である油脂組成物において、表面微細構造の表面構造B又は表面構造B’の少なくとも一方の変化を指標とする、ブルーム発生の予兆をとらえる方法であり、ただし、表面構造Bとは、基準面より上方に発生する背が低く横幅が広い油脂結晶の凸状構造を、表面構造B’は表面構造Bの周辺に基準面より下方に掘り込まれた凹状構造をそれぞれ指す。(2)としては、表面構造B又は表面構造B’の少なくとも一方の変化が体積変化である、(1)記載ブルーム発生の予兆をとらえる方法であり、(3)としては、3D Profilometer、LSM、SPM、AFM、SEM、CTから選択される一種以上の観測機器を用いる、請求項1ないし請求項2記載のブルーム発生の予兆をとらえる方法、に関するものである。   That is, the present invention provides, as (1), a sign of the occurrence of bloom, in which a change in at least one of the surface structure B and the surface structure B ′ of the surface microstructure is used as an index in an oil or fat composition in which the oil or fat is a continuous phase. However, the surface structure B is a convex structure of a fat crystal having a short height and a wide width generated above the reference plane, and the surface structure B ′ is formed around the surface structure B below the reference plane. Each refers to a dug concave structure. (2) A method of capturing a sign of the occurrence of bloom described in (1), wherein at least one change of the surface structure B or the surface structure B ′ is a change in volume, and (3) a method of capturing 3D profilometer, LSM, The present invention relates to a method for detecting a sign of bloom occurrence according to claim 1 or 2, wherein one or more kinds of observation instruments selected from SPM, AFM, SEM, and CT are used.

本発明によれば、表面微細構造の表面構造B又は表面構造B’の少なくとも一方の変化をを観測すること、より詳しくは体積変動を測定できる観測機器を用いて体積変動を観察することで、従来ではその発生を区別出来なかった表面構造Aと表面構造B又は表面構造B’を見分けること、そしてその大きさを体積や面積として定量的な評価が可能であることで、チョコレートの品質評価における、保存試験の大幅な期間短縮が可能である。 According to the present invention, by observing a change in at least one of the surface structure B or the surface structure B ′ of the surface microstructure, more specifically, by observing the volume change using an observation instrument that can measure the volume change, By distinguishing the surface structure A and the surface structure B or the surface structure B 'that could not be distinguished in the past, and the size can be quantitatively evaluated as a volume or area, in the quality evaluation of chocolate In addition, the period of the storage test can be significantly reduced.

表面構造の代表的な形状を示す模式図である。It is a schematic diagram which shows the typical shape of a surface structure. 表面構造の経時変化(表面構造A発生初期)を示す模式図である。It is a schematic diagram which shows a time-dependent change of a surface structure (early stage of surface structure A generation). 表面構造の経時変化(表面構造B発生初期)を示す模式図である。It is a schematic diagram which shows a time-dependent change of the surface structure (early stage of surface structure B generation). 表面構造の経時変化(表面構造B伸張期)を示す模式図である。It is a schematic diagram which shows the time-dependent change of surface structure (surface structure B extension period). LSM(レーザー画像)による表面構造の観測を示す図面代用写真である。It is a drawing substitute photograph which shows observation of a surface structure by LSM (laser image). LSM(高さ像)による表面構造の観測を示す図面代用写真である。It is a drawing substitute photograph which shows observation of the surface structure by LSM (height image). LSM(3D画像)による表面構造の観測を示す図面代用写真である。It is a drawing substitute photograph which shows observation of a surface structure by LSM (3D image). LSM(DIC像)による表面構造の観測を示す図面代用写真である。It is a drawing substitute photograph which shows the observation of the surface structure by LSM (DIC image). Cryo-SEM(観察倍率250倍)による表面構造Aを示す図面代用写真である。It is a drawing substitute photograph which shows the surface structure A by Cryo-SEM (observation magnification 250 times). Cryo-SEM(観察倍率2000倍)による表面構造Aを示す図面代用写真である。It is a drawing substitute photograph which shows the surface structure A by Cryo-SEM (2000-fold observation magnification). Cryo-SEM(観察倍率250倍)による表面構造Bを示す図面代用写真である。It is a drawing substitute photograph which shows the surface structure B by Cryo-SEM (observation magnification 250 times). Cryo-SEM(観察倍率2000倍)による表面構造Bを示す図面代用写真である。It is a drawing substitute photograph which shows the surface structure B by Cryo-SEM (2000 observation magnification). Cryo-SEM(観察倍率2000倍)による表面構造B’を示す図面代用写真である。It is a drawing substitute photograph which shows surface structure B 'by Cryo-SEM (2000-fold observation magnification). LSM(3D画像)による表面構造の経時変化の観測を示す図面代用写真である。It is a drawing substitute photograph which shows observation of the time-dependent change of the surface structure by LSM (3D image). LSM(3D画像)による断面プロファイルの位置を示す図面代用写真である。It is a drawing substitute photograph which shows the position of the cross section profile by LSM (3D image). LSMによる断面プロファイルを示す図面代用写真である。It is a drawing substitute photograph which shows the cross-sectional profile by LSM. 保存期間と最大山高さ・最大谷深さの関係を示す図である。It is a figure which shows the relationship between a preservation period and the maximum mountain height and the maximum valley depth. 保存期間と凸部・凹部の面積率の関係を示す図である。It is a figure which shows the relationship between a storage period and the area ratio of a convex part and a concave part. 保存期間と凸部・凹部の体積の関係を示す図である。It is a figure which shows the relationship between the storage period and the volume of a convex part and a concave part.

(油脂組成物)
油脂が連続相である油脂組成物を指す。連続相に含まれる形で固形分や水分が存在しても構わない。油脂組成物の表面構造は油脂が固化して結晶を為すことにより生じる為、測定時に固体脂の結晶部分が表面構造を持ってさえすればよく、その融点等は特に限定はされない。
また、観察対象の油脂組成物は油脂が連続相であり、結晶が成長することで表面構造が変化するものであれば、食品でなくても構わない。一例としては、ワックス表面、油性食品などが挙げられる。
表面構造が変化することで白化や斑状になると商品価値が既存する油脂組成物、一例としては、チョコレート様食品などは特に好適にもちいられる。
(Oil composition)
Refers to a fat composition in which the fat is a continuous phase. Solids and moisture may be present in the form contained in the continuous phase. Since the surface structure of the oil / fat composition is generated by solidification of the oil / fat to form crystals, it is only necessary that the crystal part of the solid fat has a surface structure at the time of measurement, and its melting point and the like are not particularly limited.
The fat or oil composition to be observed may not be a food as long as the fat or oil is a continuous phase and the surface structure is changed by growing crystals. Examples include wax surfaces, oily foods, and the like.
An oil / fat composition having a commercial value when it becomes whitened or mottled due to a change in the surface structure, for example, a chocolate-like food is particularly suitably used.

(油性食品・チョコレート)
なお、本発明において言うところの油性食品とは、油脂が連続相を為す食品であれば特に限定はされないが、一例を挙げると、チョコレートやチョコレート様食品、グレーズ様食品(糖を油脂中に分散させたもので上掛けなどの目的で用いられる)や、固形カレールーといったものが挙げられる。
またチョコレートは、「チョコレート類の表示に関する公正競争規約」(昭和46年3月29日、公正取引委員会告示第16号)による「チョコレート生地」及び「準チョコレート生地」を含むものであって、カカオ豆から調製したカカオマス、カカオ脂、ココアパウダー及び糖類を原料とし、必要により他の食用油脂、乳製品、香料等を加え、チョコレート製造の工程を経たものをいい、またカカオマスを使用しない所謂ホワイトチョコレート生地をも包含するものである。
さらにチョコレート様食品とは従来のチョコレート(製造の際にテンパリングと呼ばれる温度操作を必要とするものが多い)に加え、テンパリング操作の必要のない、所謂ノーテンパリングタイプチョコレートをも含めたものを指す。
(Oily food and chocolate)
The oily food in the present invention is not particularly limited as long as it is a food in which fats and oils form a continuous phase, but examples thereof include chocolate, chocolate-like foods, and glaze-like foods (sugars dispersed in fats and oils). Used for purposes such as overhanging) and solid curry roux.
Also, chocolate includes "chocolate dough" and "quasi-chocolate dough" according to the "Fair Competition Regulations on Labeling of Chocolate" (March 29, 1967, Notification No. 16 of the Fair Trade Commission). Cocoa mass prepared from cocoa beans, cocoa butter, cocoa powder and sugar as raw materials, if necessary, other edible oils and fats, dairy products, flavors, etc. are added, and those that have undergone the process of chocolate production are called so-called whites that do not use cocoa mass. It also includes chocolate dough.
Further, the chocolate-like food refers to foods that include so-called no-tempering type chocolates that do not require a tempering operation, in addition to conventional chocolates (many require a temperature operation called tempering at the time of production).

(保存条件)
時間の経過に伴い、油脂組成物中の油脂が結晶成長あるいは結晶転移などによって表面構造が変化する。その状態を保存、温度を保存温度という。保存温度は変動しても構わない。また油脂の融点を上回った状態でも、瞬時にすべての固体脂の結晶が融解して液状になるわけでなく一部は残存し、残存した結晶を種結晶として新たに結晶が成長して表面構造を形成する。さらには一度完全に融解した状態から冷却した状態からでも先の種結晶がある状態とは異なる結晶成長の表面構造ため、特にその保存温度の上限は限定されない。
また、結晶は保存温度が上下することで液状の油脂を媒介して促進するケースもあり、その製品の置かれる状況に即した温度変化の元で保存する、あるいはより過酷な条件で保存することでより早い段階で表面構造の変化を観察する事もあるため、保存中の温度は一定でなくても構わず、適宜設定することが出来る。
上記の温度を変動させる保存としてはサイクルテストと称されるものがあるが、その温度変化のパターンは適宜その油脂組成物の種類により適宜設定される。油脂組成物がチョコレートの場合の一例としては、17℃〜28℃、18℃〜25℃、18℃〜28℃、17℃〜32.5℃など様々なものがある。場合によってはチョコレート用油脂の融点を超える40℃に達温する場合もある。その場合でも、対象のチョコレートは完全に融解することはなく、固体脂結晶は残る。温度の移行は1〜2時間程度の時間をかけて遷移させ、24時間周期で繰り返すことが多い。
(Storage conditions)
Over time, the surface structure of the fat or oil in the fat or oil composition changes due to crystal growth or crystal transition. The state is called preservation, and the temperature is called preservation temperature. The storage temperature may fluctuate. In addition, even when the temperature exceeds the melting point of fats and oils, not all solid fat crystals are instantaneously melted to become a liquid, but some remain, and the remaining crystals are used as seed crystals to grow new crystals and surface structure. To form Furthermore, since the surface structure of the crystal growth is different from that in the state where the seed crystal is present even from the state where the seed crystal is completely melted once to the state where the seed crystal is cooled, the upper limit of the storage temperature is not particularly limited.
In some cases, the crystals are promoted by mediating liquid fats and oils by raising or lowering the storage temperature.Store the crystals under temperature changes according to the situation where the product is placed, or store them under more severe conditions. In some cases, a change in the surface structure may be observed at an earlier stage. Therefore, the temperature during storage may not be constant and can be set as appropriate.
The above-mentioned preservation for changing the temperature includes what is called a cycle test. The pattern of the temperature change is appropriately set according to the type of the fat or oil composition. Examples of the case where the fat or oil composition is chocolate include various kinds such as 17C to 28C, 18C to 25C, 18C to 28C, and 17C to 32.5C. In some cases, the temperature may reach 40 ° C., which is higher than the melting point of the fat for chocolate. Even then, the chocolate of interest does not completely melt and solid fat crystals remain. The transition of the temperature is performed over a period of about 1 to 2 hours, and is often repeated in a 24-hour cycle.

(油脂組成物の組成)
油脂の含有量は、油脂が連続相になっていて、油脂組成物の表面微細構造の変化を見る事ができれば、その含有量は特に限定されない。上限は油脂のみで構成されている100重量%でも構わない。一方で油脂が無いと油脂組成物にはなり得ないので少なくとも含有している必要がある。すなわち特にその含有量は限定されないが油脂が油脂生成物全体に対して10重量%以上100重量%以下、望ましくは20重量%以上である事が望ましい。
また、上記の通り、油脂が油脂生成物全体に対して100重量%であることありうるため、油脂組成物に用いられる固形分の量も限定されないし、0重量%でも構わない。また0重量%であることもあり得る為、固形分の種類も特には限定されない。油脂組成物が油性食品、例えばカレールーの場合は小麦粉やカレーに用いられる香辛料が微細に粉砕されたものが、油性食品の中でもチョコレートの場合には糖類や粉乳類、カカオ固形分、抹茶パウダー、果実パウダー、ナッツ類などが挙げられる。さらには油性食品の油脂が連続相になっていれば、別の食品と組み合わせたものであっても構わない。一例としては、ビスケットに貼り付けたチョコレートや、クッキー中に埋没したチョコレートチップなどが挙げられる。
(Composition of fat composition)
The content of the fat or oil is not particularly limited as long as the fat or oil is in a continuous phase and a change in the surface microstructure of the fat or oil composition can be seen. The upper limit may be 100% by weight composed of only fats and oils. On the other hand, if there is no oil or fat, it cannot be formed into an oil or fat composition, so it must be contained at least. That is, although the content is not particularly limited, it is desirable that the amount of the fat or oil is 10% by weight or more and 100% by weight or less, preferably 20% by weight or more based on the whole fat and oil product.
Further, as described above, since the fat or oil can be 100% by weight with respect to the whole fat or oil product, the amount of solid content used in the fat or oil composition is not limited, and may be 0% by weight. In addition, since it may be 0% by weight, the type of solid content is not particularly limited. If the oil or fat composition is an oily food, for example, curry roux, the spices used for flour and curry are finely ground, but among the oily foods, sugars and milk powder, chocolate, cocoa solids, matcha powder, fruits Powders, nuts and the like can be mentioned. Furthermore, as long as the fat or oil of the oily food is in a continuous phase, it may be combined with another food. Examples include chocolate pasted on biscuits and chocolate chips buried in cookies.

(油脂組成物の油脂)
油脂組成物に用いられる油脂の種類は分子構造が対称型のトリアシルグリセライドを主成分としテンパリング操作を必要とする(テンパー系)チョコレート様食品、ラウリン系、あるいは水素添加、ランダムエステル交換などの処理を経て得られるテンパリング操作を必要としない(ノーテンパー系)チョコレート様食品、液状の油脂を多く配合することで、柔らかい食感ものの高融点の油脂成分が凝集して堅い粒上組成物が発生しやすい(グレーニング)洋生チョコレート様食品、さらにそれらチョコレート食品を他の油性食品、たとえばショートニングなどチョコレート様食品に用いられている油脂とは異なる分子構造をもった油脂を多く含むもの、一例としてはチョコレートチップ入りクッキーなどのチョコレート部分が挙げられる。
油脂組成物の固体脂結晶が成長するに伴い表面構造が乱雑化し、表面の光の乱反射の割合が増える為、表面が白くなったり斑模様になったりする。これをブルームと呼んでいる。
なお、上記グレーニングも広義のブルームに含んで分類分けされているケースもあるが、本発明においては、白変につながる表面構造の変化に伴う現象に特に注目する為、単にブルームとした場合に、このグレーニングを含まないものとする。
(Oil of fat composition)
The type of fat used in the fat composition is a triacylglyceride having a symmetrical molecular structure as a main component, and a tempering operation is required (tempered). Chocolate-like food, laurin, or treatment such as hydrogenation or random transesterification. (Tempered) that does not require a tempering operation (no-tempered), and contains a large amount of liquid fats and oils, so that high-melting fats and oils with a soft texture are agglomerated to form a hard granular composition. (Graining) Western chocolate-like foods, and those chocolate foods that contain a lot of oils and fats having a molecular structure different from those used in other oil-based foods such as shortening, such as chocolate-like foods. Chocolate parts such as chips-containing cookies.
As the solid fat crystals of the oil / fat composition grow, the surface structure becomes disordered and the rate of irregular reflection of light on the surface increases, so that the surface becomes white or mottled. This is called bloom.
In addition, although the above-mentioned graining is also classified and included in bloom in a broad sense, in the present invention, in order to pay special attention to a phenomenon associated with a change in surface structure leading to whitening, it is simply referred to as bloom. Does not include this graining.

(表面微細構造の観察方法)
表面微細構造とは油脂組成物の連続相を成す油脂の結晶が成長して表面に現れたものをさす。本発明は表面微細構造のなかでも、表面構造B又は表面構造B’の少なくとも一方のの変化を指標とするため表面構造B又は表面構造B’以外の表面構造と見分けることで、ブルームを予測することができる。
そのためには、3次元を測定できる必要がある。ここで3次元とは油脂組成物の表面を構成する平面に沿った方向である2軸(該平面に属し、特定の横方向(x軸)と、同じく該平面に属し、その縦方向に対して垂直である縦方向(y軸))と、該平面に対して垂直(すなわちx軸とy軸に対して垂直である高さ方向(z軸)のそれぞれを測定することができる観測方法が必要である。
(Method for observing surface microstructure)
The surface microstructure refers to a crystal in which a fat or oil forming a continuous phase of the fat or oil composition grows and appears on the surface. The present invention predicts bloom by distinguishing from the surface structure other than the surface structure B or the surface structure B ′ in order to use the change of at least one of the surface structure B and the surface structure B ′ as an index among the surface microstructures. be able to.
For that purpose, it is necessary to be able to measure three dimensions. Here, three-dimensional refers to two axes (directions belonging to the plane and a specific horizontal direction (x-axis)) which are directions along a plane constituting the surface of the oil and fat composition, and also belonging to the plane and belonging to the vertical direction. Observation methods that can measure the vertical direction (y-axis), which is perpendicular to the plane, and the height direction (z-axis), which is perpendicular to the plane (ie, the x-axis and the y-axis). is necessary.

(表面微細構造の観測方法)
ここで表面微細構造を観測方法について詳細に説明する。対象物の表面微細構造を観測するのは、従来表面の基準面からの高さを測定する観測装置はこれまでにあった。一例としては「表面粗さ」を測定する従来型SPM、プロフィロメトリー、LV−SEMが挙げられる。しかし、実際には表面微細構造の変化は以下のような経過で変化するものであることが、本発明の体積変動を観察することで示され、これにより、既存の高さの測定では、表面微細構造の初動を見逃しかねない点から不十分である。また3次元(高さ方向)の情報が得られない2D Profilometer、Raman/FT-IRは望ましくない。
使用する機器は以下に記述する表面微細構造の体積変動を測定できるという要件を満たす機器であれば特に限定はされない。望ましくは3D Profilometer、SPM、AFM(原子間力顕微鏡:Atomic Force Microscope、SPMの一種)、SEM(走査型トンネル顕微鏡)、CT(Computed Tomography)は望ましく、特に3D Profilometer、そのなかでもLSM(Laser Scanning Microscopy)による測定が望ましい。
なお、従来技術においては、従来型のSPMは高さしか測れないため望ましくないとしたが、測定機器に付加的なオプションをつけることによって、体積変動を測定できるので、「表面微細構造の体積変動を測定できるという要件を満たす」限りにおいては、本発明の課題を解決する上で望ましい観測装置例とした。当然、従来型の高さしか測定できないタイプのSPMは高さ自体が高精度であっても、体積変動を測定できないと以下に示す、全く形状の異なる2つ以上の表面構造を見分けることができず、その利用は望ましくない。
また、観測装置において連続的な測定が難しいであったり、測定時に高真空がかかるなど、観測対象のサンプルにダメージがあるものも少なくなく、その点ではLSMは非破壊で繰り返し観察ができるため、特に望ましい。
(Surface microstructure observation method)
Here, a method for observing the surface microstructure will be described in detail. Conventionally, there has been an observation device for measuring the height of a surface from a reference plane for observing the surface microstructure of an object. Examples include conventional SPM for measuring "surface roughness", profilometry, and LV-SEM. However, it is shown by observing the volume fluctuation of the present invention that the change of the surface microstructure actually changes in the following course. This is insufficient because the initial movement of the microstructure may be missed. Also, 2D Profilometer and Raman / FT-IR, which cannot obtain three-dimensional (height direction) information, are not desirable.
The device to be used is not particularly limited as long as the device satisfies the requirement that the volume fluctuation of the surface microstructure described below can be measured. Preferably, 3D Profilometer, SPM, AFM (Atomic Force Microscope, a kind of SPM), SEM (Scanning Tunneling Microscope), CT (Computed Tomography) are preferable, and especially 3D Profilometer, especially LSM (Laser Scanning). Microscopy) is desirable.
In the prior art, the conventional SPM is not desirable because it can measure only the height. However, by adding an additional option to the measuring device, the volume fluctuation can be measured. As long as it satisfies the requirement that the measurement can be performed, an example of the observation apparatus which is desirable for solving the problem of the present invention is adopted. Naturally, conventional SPMs that can only measure height can discriminate two or more completely different surface structures, as shown below, if volume fluctuations cannot be measured, even if the height itself is highly accurate. And its use is undesirable.
In addition, it is difficult to make continuous measurements with an observation device, or a high vacuum is applied at the time of measurement, and there are many damages to the sample to be observed. At that point, the LSM can be repeatedly observed nondestructively. Especially desirable.

(表面微細構造の解析方法)
観測装置を用いて表面微細構造を測定した上で、解析装置によってその測定値を解析する必要がある。観察装置によっては、解析装置が付随しているものもあるが、縦横と高さの情報を得る事ができる観測装置を用いて得られた情報を解析することができれば特に限定はされない。一例としてはDigital Surf社の「MountainsMap(登録商標)」などが挙げられる。
これら解析方法により表面微細構造の3次元の情報は実際の画像情報による視認であったり、3次元の情報として以下の、表面微細構造の表面構造B又は表面構造B’の変化を捉え、その変化を指標としてブルームを予測することができる。
(Surface microstructure analysis method)
After measuring the surface microstructure using an observation device, it is necessary to analyze the measured value with an analysis device. Some observation devices are provided with an analysis device. However, there is no particular limitation as long as information obtained using an observation device capable of obtaining information on length, width, and height can be analyzed. An example is "MountainsMap (registered trademark)" by Digital Surf.
According to these analysis methods, the three-dimensional information of the surface microstructure is visually recognized by actual image information, or the following changes in the surface structure B or surface structure B ′ of the surface microstructure are captured as three-dimensional information, and the change is detected. Can be used as an index to predict bloom.

(表面微細構造の形状)
測定対象の表面微細構造を測定機器で測定した場合に得られる情報は以下のようなものであり、その対応を図1に示す。
測定対象の油脂組成物は観測対象となる表面を持っており、その表面において測定のたびに測定視野において表面構造の凹凸の少ない部位を複数指定し、その高さの平均にあたる位置に存在する仮想の面を基準面(図1中G)と称する。以下のSp、Svを規定する基準となる。
(Shape of surface microstructure)
The information obtained when the surface microstructure of the measurement object is measured by a measuring instrument is as follows, and the correspondence is shown in FIG.
The fat and oil composition to be measured has a surface to be observed, and each time the surface is measured, a plurality of portions with less unevenness of the surface structure are specified in the measurement field of view every time the measurement is performed. Is referred to as a reference plane (G in FIG. 1). This is a reference for defining the following Sp and Sv.

(表面微細構造の経時変化〜チョコレートを例に〜)
油脂組成物の表面微細構造の変化を見るにあたり、具体的な例として油性食品であるチョコレートを挙げて説明する。
チョコレートは経時的にその構成している油脂成分が結晶転移により粗大化する現象をおこし、表面微細構造の変化を積み重ねることで、ついには肉眼でも確認しうるブルームとなり、商品価値を毀損するに至る。
しかしながら、その微細表面構造の変化についてはごく初期段階の詳細な挙動がわかっていなかった。しかし本発明によりその一端が明らかになった。
一例としてテンパリング操作をせずにスイートチョコレートを固化、20℃にてその微細表面構造を観測した場合を例に、従来の高さのみの観察ではなく本発明の3次元の測定情報を用いること、特に体積変化による観察が適している事を示す。
(Change in surface microstructure over time-using chocolate as an example)
In examining the change in the surface microstructure of the oil / fat composition, a specific example of chocolate, which is an oily food, will be described.
Chocolate causes a phenomenon in which the fat component constituting it becomes coarser due to crystal transition with time, and by accumulating changes in the surface microstructure, it eventually becomes a bloom that can be confirmed with the naked eye, leading to damage to the commercial value .
However, the detailed behavior at the very beginning was not known about the change of the fine surface structure. However, the present invention has revealed one of them.
As an example, using the three-dimensional measurement information of the present invention instead of the conventional observation of only the height, for example, in the case of solidifying the sweet chocolate without performing the tempering operation and observing its fine surface structure at 20 ° C. This shows that observation by volume change is particularly suitable.

まず、保存の初期段階に結晶成長に伴う、面積に比して背の高い凸部(表面構造A、図中のA)が成長する。従来の高さによる観察では表面構造Aの最大山高さであるSpとして値が現れる。なお実際に等方性がある程度ある表面構造の場合は面積に比して背の高いというのは単に面積に相当する部分の径の最大長に比して背の高いと近似してかまわない。また、面積(径)に比してどの程度以上の背の高さをもって表面構造Aと表面構造B又は表面構造B’(後術)とを識別するかについては改めて規定する。(図2)
しかし、従来の考えでは知り得なかった背の低い凸部(表面構造B、図中のB)がこの直後より表面構造Aとは関係なく成長を始める。しかし従来の高さによる観測では、相変わらず表面構造Aの最大山高さであるSpが示されたままである。
表面構造Aも徐々に成長しており、Spは大きくなっていくが、表面構造Bは横方向に拡がっていく形で成長する為、Spは保存期間が進んでも、表面構造Aの最大山高さを示し続ける為、表面構造Bの存在は観測の数値上は全く現れない。なおこの時点では、外観上のブルームは肉眼では全くわからない。(図3)
First, in the initial stage of storage, a projection (surface structure A, A in the figure) that is taller than the area grows due to crystal growth. In observation by conventional height, a value appears as Sp, which is the maximum peak height of the surface structure A. Note that in the case of a surface structure having a certain degree of isotropicity, the fact that the surface is taller than the area may be approximated as being taller than the maximum length of the diameter of a portion corresponding to the area. Further, it is prescribed again how the height of the surface structure A is distinguished from the surface structure B or the surface structure B '(postoperative) with respect to the area (diameter). (Fig. 2)
However, short protrusions (surface structure B, B in the figure), which could not be known by the conventional idea, start to grow immediately after this irrespective of the surface structure A. However, the conventional observation with the height still shows Sp, which is the maximum peak height of the surface structure A.
The surface structure A also gradually grows, and Sp increases. However, since the surface structure B grows in the form of expanding in the lateral direction, Sp is maintained at a maximum peak height of the surface structure A even when the storage period is advanced. , The existence of the surface structure B does not appear at all in the numerical value of the observation. At this point, the bloom on the appearance is completely invisible to the naked eye. (Fig. 3)

表面構造Aも成長はしているものの、そのSpの上昇は頭打ちとなるが、表面構造Bは横方向に急速に拡がる。Spは相変わらず表面構造Aの最大山高さを示しているが、表面構造Bは低いながらも体積的には大きくなり、尚且つ、表面構造Bの成長により、周辺の表層近くの油脂が表面構造Bに吸い上げられる形で陥没し始める(表面構造B’、図中のB’ )(図4)。この場合はチョコレートである為、固形分が残り、広く拡がる表面構造Bと表面構造B’のそこに拡がる固形分が、急速に表面の反射能を低下させる。表面構造Bと表面構造B’はこのあと、徐々に広がり続けることでついには外観上も肉眼での観測にかかる程度の白化、いわゆるブルームとなる。 Although the surface structure A also grows, the increase in Sp reaches a plateau, but the surface structure B rapidly expands in the lateral direction. Sp still shows the maximum peak height of the surface structure A, but the surface structure B is large in volume, albeit low, and due to the growth of the surface structure B, the oil and fat near the surface layer around the surface structure B (FIG. 4) (FIG. 4). In this case, since the chocolate is chocolate, a solid content remains, and the solid content of the surface structure B and the surface structure B 'which spread widely spread rapidly lowers the reflectivity of the surface. After that, the surface structure B and the surface structure B ′ gradually continue to spread, so that the appearance finally becomes so-called bloom, which is a degree of whiteness that can be observed with the naked eye.

ここで、実際に目視によるブルームの主要因とみられるのが表面構造Bと表面構造B’であるが、表面構造Aとの高さが極端に違いすぎるため、高さによる測定にて観測されにくく、値として現れるのは表面構造Aの最大山高さである。また表面構造Aはこの場合はグレーニングと見られ、面の方向への成長はあまりせず、また高さ方向(Z軸)への方向への成長もある一定のところで頭打ちとなり、食感上粒状の異物感がある点で油脂組成物としての品質の低下要因の一つではあるが、外観上の影響としては主要因たりえない。
グレーニング(表面構造A)とブルームは別の機序によって発生しており、表面構造Aが発生したまま、表面の白化現象であるブルームには至らないケースがあり、表面構造Aだけではブルームの予測する材料とすることはできない。
よって、従来の高さのみの観察ではブルームにおける白変現象には直接関係が薄い表面構造Aの挙動はわかるのみであるが、本発明の3次元の測定情報を用いることで白変に直接影響のある表面構造Bと表面構造B’の挙動を捉えることができる。
Here, it is the surface structure B and the surface structure B ′ that are actually considered to be the main cause of the bloom by visual observation, but since the height of the surface structure A is extremely different from the surface structure A, it is difficult to be observed by the measurement based on the height. , Appearing as a value is the maximum peak height of the surface structure A. In this case, the surface structure A is considered to be grained, does not grow much in the direction of the surface, and also grows in the height direction (Z axis) at a certain point, and reaches a plateau. Although there is a feeling of granular foreign matter, this is one of the factors for lowering the quality of the oil and fat composition, but it cannot be a main factor in the appearance.
The graining (surface structure A) and the bloom are generated by different mechanisms. In some cases, the surface structure A does not lead to bloom, which is a whitening phenomenon of the surface, while the surface structure A is generated. It cannot be a predictable material.
Therefore, the conventional observation of only the height only shows the behavior of the surface structure A, which is not directly related to the whitening phenomenon in bloom, but directly affects whitening by using the three-dimensional measurement information of the present invention. The behaviors of the surface structure B and the surface structure B ′ having the presence can be grasped.

以上示したとおり、表面の微細構造には大きくわけて、主に高さ方向(Z軸)へ伸張する表面構造Aと、油脂組成物表面の基準面より(z軸)上方に発生する背が低く横幅が広い凸状の油脂結晶である表面構造Bと、さらに表面構造Bの周辺に、基準面より下方に掘り込まれた凹状構造である表面構造B’があり、この中で白化現象につながる表面微細構造の変化、すなわち表面構造Bを指標とすることでブルームを予測することができる。
なお、表面構造Bと表面構造B’は同じ機序で、表面構造Bの成長に伴い、表面構造B’が広く掘れていく。
As described above, the fine structure of the surface is largely divided into a surface structure A extending mainly in the height direction (Z-axis) and a spine generated above the reference surface (z-axis) of the fat / oil composition surface. There is a surface structure B, which is a convex oil and fat crystal having a low width and a wide width, and a surface structure B ', which is a concave structure dug below the reference plane, around the surface structure B. Bloom can be predicted by using the change of the connected surface microstructure, that is, the surface structure B as an index.
The surface structure B and the surface structure B ′ have the same mechanism, and the surface structure B ′ is dug widely as the surface structure B grows.

(表面構造Bおよび表面構造B’と表面構造Aの見分け方)
3次元を測定できる観察装置で得られた情報を解析装置により視覚化することで表面構造Bおよび表面構造B’を見出し、ブルームを予測することができる。
上記発生の機序に記載の通り、表面構造Aは基準面から先鋭的に突出しており、平滑な平面に突如現れる岩のような形状である。一方、表面構造Bは平面に油脂の結晶が横方向に薄く広がっており、草むらが繁茂しているような形状である。表面構造B’は表面構造Bが成長する材料として表面の油脂を吸い取った事により、固形分(チョコレートの場合は砂糖やカカオ固形分など)が露出し、あたかも表土が雨水で洗い流され、礫や小石がのこり露出した形状となる。
また、その表面構造Aと表面構造Bおよび表面構造B’とを見分けるには以下のような方法が考えられる。
すなわち、対象となる独立した表面構造の
(Z軸方向の最大長)/(x・y軸の属する平面上での最大長)比率が、0.1以上、望ましくは0.2以上、さらに望ましくは0.5以上ならば、それは表面構造A、0.1未満、望ましくは0.08未満、さらに望ましくは0.05未満ならば、それは表面構造Bと考えることができる。なお、Z軸方向の最大長は絶対値であり、負の方向(すなわち基準面以下に「掘れている」状態)であって構わず、表面構造B’についても表面構造Bと同様の基準で判断できる。
また、独立した個体とは高さ0の閉じた線により囲われた領域をさす。
(How to distinguish surface structure B and surface structure B 'from surface structure A)
The surface structure B and the surface structure B ′ can be found by visualizing information obtained by an observation device capable of measuring three dimensions by an analysis device, and bloom can be predicted.
As described in the mechanism of occurrence, the surface structure A protrudes sharply from the reference plane, and has a rock-like shape suddenly appearing on a smooth plane. On the other hand, the surface structure B has a shape in which the fat and oil crystals are spread thinly in the horizontal direction on a plane, and the grass is prosperous. The surface structure B 'is exposed as a material on which the surface structure B grows by absorbing fats and oils on the surface, so that solids (such as sugar and cocoa solids in the case of chocolate) are exposed, as if the topsoil was washed away by rainwater, Pebble will be exposed.
In order to distinguish the surface structure A from the surface structure B and the surface structure B ′, the following method can be considered.
That is, if the ratio of (maximum length in the Z-axis direction) / (maximum length on the plane to which the x and y axes belong) of the target independent surface structure is 0.1 or more, preferably 0.2 or more, and more preferably 0.5 or more. If it is a surface structure A, less than 0.1, preferably less than 0.08, more preferably less than 0.05, it can be considered a surface structure B. Note that the maximum length in the Z-axis direction is an absolute value, and may be in the negative direction (that is, “dug” below the reference plane), and the surface structure B ′ is based on the same reference as the surface structure B. I can judge.
In addition, an independent individual refers to a region surrounded by a closed line having a height of 0.

(体積変化によるブルームの予測)
上記の通り、3次元を測定できる観察装置で得られた情報を解析装置により視覚化することで表面構造B又は表面構造B’の少なくとも一方を見出し、表面構造Aを識別し、表面構造の変化のごく初期の段階でブルームにつながる表面構造の変化を予測することが可能であるが、体積変化によりブルームを予測する方法について記述する。
本発明においては、水準面から上方への凸部(図4におけるBの部位)と下方の凹部(図4におけるDの部位)の体積を測定できる測定方法を用いる事ことが望ましい。(図4におけるBの部位)また、経時的に上記凹部と凸部の体積を測定する事が望ましく、そのためには視野を同一な状態に固定した状態で、基準面(図1のG)からの凹部・凸部の体積が測定により得られることが望ましい。また、観測に望ましい機器は上記に挙げたが、プログラムを付加する事で高さ(z軸)情報だけでなく、表面の(x・y軸)位置情報測定する事が可能な観測または解析装置付加することで3次元情報を観測できるならば、特に機器については限定されない。
(Bloom prediction due to volume change)
As described above, at least one of the surface structure B and the surface structure B ′ is found by visualizing the information obtained by the observation device capable of measuring three dimensions by the analysis device, the surface structure A is identified, and the change in the surface structure is performed. Although it is possible to predict changes in the surface structure leading to bloom at a very early stage, a method for predicting bloom by volume change will be described.
In the present invention, it is desirable to use a measuring method capable of measuring the volume of the convex part (part B in FIG. 4) and the concave part (part D in FIG. 4) which are upward from the level surface. (Part B in FIG. 4) It is desirable to measure the volume of the concave portion and the convex portion over time. For this purpose, the visual field is fixed in the same state, and the reference surface (G in FIG. 1) is used. It is desirable that the volume of the concave / convex portions can be obtained by measurement. In addition, although the above-mentioned preferred instruments for observation are described above, an observation or analysis apparatus capable of measuring not only height (z-axis) information but also surface (x-y-axis) position information by adding a program. The device is not particularly limited as long as three-dimensional information can be observed by adding it.

(基準面(x・y軸)方向精度)
基準面方向とは図1のGに示されたとおり、上方への凸部と下方への凹部の高さを規定する基準面を構成する平面に沿った方向であり、基準面方向の解像度は表面構造Aが初発に発生するのを観測する必要がある、一方で基準面方向に広く拡がった形状である表面構造Bは表面構造Aより発生があとでかつ基準面方向の大きさは表面構造Aより大きい。従って表面構造Aが後述の高さを超えて成長した時点で確認できる事が望ましく、基準面方向の解像度は10μm以下、望ましくは5μm以下、さらに望ましくは1μm以下の精度で測定する事により体積変動を測定する事が望ましい。
(Reference plane (x / y axis) direction accuracy)
The reference plane direction is, as shown in FIG. 1G, a direction along a plane constituting a reference plane that defines the heights of the upwardly protruding portion and the downwardly concave portion, and the resolution in the reference plane direction is as follows. It is necessary to observe the first occurrence of the surface structure A. On the other hand, the surface structure B, which has a shape that is widely spread in the direction of the reference plane, is generated later than the surface structure A and the size of the surface structure in the reference plane direction is larger than that of the surface structure. Greater than A. Therefore, it is desirable that the surface structure A can be confirmed at the time when the surface structure A has grown beyond the height described later. The resolution in the reference plane direction is 10 μm or less, preferably 5 μm or less, and more preferably 1 μm or less. It is desirable to measure

(高さ(z軸方向)精度)
高さ(z軸方向)精度微細構造の高さの変動を1μm以下、望ましくは0.5μm以下、さらに望ましくは0.2μm以下の精度で測定する事により体積変動を測定する事が望ましい。
少なくとも1μmの精度があれば表面構造Bの体積変動を観測ことができる。また体積変動Aは体積変動B又は表面構造B’より遙かに大きいためその差異を十分に観測できる。
(Height (z-axis direction) accuracy)
Height (z-axis direction) Accuracy It is desirable to measure the fluctuation of the height of the microstructure with an accuracy of 1 μm or less, preferably 0.5 μm or less, and more preferably 0.2 μm or less, to measure the volume fluctuation.
If the accuracy is at least 1 μm, the volume fluctuation of the surface structure B can be observed. Since the volume fluctuation A is much larger than the volume fluctuation B or the surface structure B ′, the difference can be sufficiently observed.

(体積変動によるブルームの予測)
表面微細構造の体積変動を10μm以下、望ましくは5μm以下、さらに望ましくは1μm以下の精度で測定する事により体積変動を測定する事が望ましい。
この精度を持って、体積変動を観察する。チョコレートを例にした表面微細構造の経時変化の際に記載したが、表面構造Aは底面積の増加は緩やかながらその高さは急激に上昇し、そしてある程度のところで頭打ちとなる。すなわち表面構造Aの成長に伴う体積変動は高さ(z軸)の伸張に大きく依存している。一方表面構造Bは表面構造Aとは異なり、発生後高さの増加は緩やかながらその表面方向(x・y軸方向)に急激に上昇していく。すなわち表面構造B(並びに付随して起こる表面構造B’)の成長に伴う体積変動は面(x・y軸方向)の伸張に大きく依存しており、高さの1乗項依存の表面構造Aと面である2乗項依存の表面構造Bとでは表面構造Bの増大が極めて大きい。よって体積変動を見る方が表面構造Bの増大を捉えやすい。
特にその増大を捉えるに際して特定の規定はないが、グラフなどで急激な増加量の拡大が見られる点をもって予測が可能である。
(Bloom prediction due to volume fluctuation)
It is desirable to measure the volume variation of the surface microstructure by measuring the volume variation with an accuracy of 10 μm 3 or less, preferably 5 μm 3 or less, more preferably 1 μm 3 or less.
Observe volume fluctuations with this accuracy. As described in the case of the change of the surface microstructure with the lapse of time in the case of chocolate, the surface structure A has a gradual increase in the bottom area, a sharp rise in its height, and reaches a plateau at a certain point. That is, the volume fluctuation accompanying the growth of the surface structure A largely depends on the extension of the height (z axis). On the other hand, unlike the surface structure A, the surface structure B gradually increases in height in the surface direction (x and y axis directions), although the increase in height after generation is slow. That is, the volume fluctuation accompanying the growth of the surface structure B (and the accompanying surface structure B ′) largely depends on the extension of the plane (in the x and y axes directions), and the surface structure A which depends on the height of the first power term. And the surface structure B depending on the square term, which is a plane, the surface structure B greatly increases. Therefore, it is easier to see the increase in the surface structure B by looking at the volume fluctuation.
In particular, there is no specific rule for catching the increase, but it can be predicted from the fact that the amount of the increase is sharply increased in a graph or the like.

(面積変動によるブルームの予測)
また、上記の通り、3次元を測定できる観測装置で得られた情報を元に解析した体積変化によりブルームを予測出来る点は上述の通りだが、3次元の情報を元にした2次元(面積)変動によりブルームの予測をする方法について記述する。
すなわち高さのデータが正、すなわち基準面より上方に盛り上がっている部分の面積と、負、すなわち基準面より下方に掘り込まれている部分の面積の変動を観察することである。
上記機序の説明でもあるが、表面構造Aは高さの変動は急激に大きくなりその後頭打ちになる傾向があるが、その底面にあたる部分はさほど大きくならない。これは面積の増加が少ないということである。
一方、表面構造Bは高さの変動はそれほど大きくないもののその底面にあたる部分は急激に拡がっていく特徴がある。これは、面積の増加が大きいことを示している。
さらに表面構造B’も表面構造Bと同様に増加が大きく、しかも表面構造A自体には表面構造Bのような周囲をへこませる現象があまり起こらないため、そのZ軸が負の面積変動は表面構造Bの増大に直結しやすい点さらに望ましく用いる事ができる。
(Forecast of bloom due to area change)
In addition, as described above, the point that a bloom can be predicted by a volume change analyzed based on information obtained by an observation device capable of measuring three dimensions is as described above, but two dimensions (area) based on three dimensional information are as described above. Describe a method of predicting bloom based on fluctuations.
That is, it is to observe the change in the area of the portion where the height data is positive, that is, the area that is raised above the reference plane, and the area that is negative, that is, the area that is dug below the reference plane.
As described in the above mechanism, the surface structure A has a tendency that the fluctuation of the height rapidly increases and then flattens, but the portion corresponding to the bottom surface is not so large. This means that the increase in area is small.
On the other hand, the surface structure B is characterized in that although the fluctuation in height is not so large, the portion corresponding to the bottom surface rapidly expands. This indicates that the increase in area is large.
Further, the surface structure B ′ has a large increase similarly to the surface structure B, and the surface structure A itself does not cause a phenomenon such as the surface structure B that the surroundings are depressed so much. It can be more desirably used because it is easily connected to the increase in the surface structure B.

以上に示されるように、表面微細構造の表面構造B又は表面構造B’を観測すること、さらには体積変動を測定できる観測機器を用いて体積変動を観察することで、従来ではその発生を区別出来なかった表面構造Aと表面構造B又は表面構造B’を見分けること、そしてその大きさを体積や面積として定量的な評価が可能でとなることで、チョコレートの品質評価における、保存試験の大幅な期間短縮が可能となる。   As shown above, the observation of the surface structure B or surface structure B 'of the surface microstructure, and the observation of the volume fluctuation using an observation instrument capable of measuring the volume fluctuation, have conventionally distinguished the occurrence. By distinguishing the surface structure A and the surface structure B or the surface structure B ′ that could not be formed, and by being able to quantitatively evaluate the size as a volume or an area, the storage test in the quality evaluation of chocolate is greatly improved. It is possible to shorten the period.

以下、実施例を例示して本発明の効果を明瞭にするが、本発明の精神は以下の実施例に限定されるものではない。なお、例中、%及び部は重量基準を意味する。
実験例1(チョコレートの配合、製法)
市販のスイートチョコレート (不二製油株式会社製 油分35.3%)90重量部中に、ココアバター(商品名:ココアバター201 不二製油株式会社製)を10重量部加え、湯煎にて完全に溶解・混合後、30℃まで冷却してモールドに流し、10℃にて30分間固化させた。なお、保存初期の表面微細結晶の変化を捉える目的であるため、シード剤無添加、テンパリングなしの条件でチョコレートを作成した。
このチョコレートを20℃一定の実験室に移し、評価用の資料とした。
Hereinafter, the effects of the present invention will be clarified by illustrating examples, but the spirit of the present invention is not limited to the following examples. In addition,% and a part mean a weight basis in an example.
Experimental example 1 (mixing of chocolate, manufacturing method)
In 90 parts by weight of commercially available sweet chocolate (oil content: 35.3%, manufactured by Fuji Oil Co., Ltd.), 10 parts by weight of cocoa butter (trade name: Cocoa Butter 201, manufactured by Fuji Oil Co., Ltd.) is added, and completely immersed in a hot water bath. After dissolution and mixing, the mixture was cooled to 30 ° C., poured into a mold, and solidified at 10 ° C. for 30 minutes. In addition, since it was the purpose of grasping the change of the surface microcrystal in the early stage of preservation, chocolate was prepared under the conditions of no seeding agent added and no tempering.
The chocolate was transferred to a laboratory at a constant temperature of 20 ° C. and used as a material for evaluation.

(レーザー顕微鏡による定点観察)
レーザー顕微鏡(Laser Microscope(3D & Profile Measurement、以下 LSM),Keyence VK-X150(以下LSMと称する)を用い、視野を固定して定点観察を行った。LSMでは1度の計測でレーザー画像(図5)、高さ像(図6)、3D画像(図7)、微分干渉像(以下、DIC像と称し、表面の凹凸を端的に表示できる)(図8)の4種類の画像を取得できる。50倍のレンズを用いて縦4×横4の連続した画像を取得し、目的に応じて、単独または連結画像(16 画像連結)の 2つの方法で解析した。
観察時は雰囲気温度を 20℃±1℃に保ち、横1500×縦1000μmの視野を固定して7日間、経時的に計測した。観察データをもとに、Keyence の LSM 付属のマルチファイル解析アプリケーションを用いて、表面粗さ、凹凸(体積・表面積)を解析した。主に全体像を連結画像で、より詳細な解析を必要とする場合は、画像連結によるノイズを避けるため単独画像を用いた。
(Fixed point observation with laser microscope)
Using a laser microscope (Laser Microscope (3D & Profile Measurement, hereinafter referred to as LSM) and Keyence VK-X150 (hereinafter referred to as LSM), fixed-field observation was performed with the field of view fixed. 5), four types of images, a height image (FIG. 6), a 3D image (FIG. 7), and a differential interference image (hereinafter referred to as a DIC image, which can display surface irregularities simply) (FIG. 8) can be obtained. Using a 50 × lens, continuous images of 4 × 4 were obtained and analyzed according to two purposes: single images or connected images (16 images connected).
At the time of observation, the atmospheric temperature was kept at 20 ° C. ± 1 ° C., and a field of view of 1500 × 1000 μm was fixed, and the measurement was performed over time for 7 days. Based on the observation data, the surface roughness and unevenness (volume / surface area) were analyzed using the multi-file analysis application attached to Keyence's LSM. When the whole image is mainly a connected image and more detailed analysis is required, a single image is used to avoid noise due to image connection.

(Cryo-SEM による微細表面構造の形状観察)
保存試験終了後、保存試験8日後の試料(以降D+8と称する。ただし+のあとの数字は経過した日数)を切り出し、オスミウムプラズマコーター(HPC-20,HOLLOW CATHODE PLASMA CVD,真空デバイス)で、20mA×15sec 蒸着して観察試料とした。試料は、HITACHI SU3500 走査型電子顕微鏡(Gatan Alto-1000 Cryo-Unit)を用い、-160℃雰囲気下で観察を行った。
なお、LSM で定点観察した位置を探し出すことが難しいため、SEM では LSM の視野の近傍を観察することとした。なお、Cryo-SEM の観察エリアは、予め LSM で計測し、観察位置近傍の表面状態を確認している。
(Cryo-SEM observation of fine surface structure)
After the storage test is completed, a sample 8 days after the storage test (hereinafter referred to as D + 8, where the number after + is the number of days elapsed) is cut out, and 20 mA using an osmium plasma coater (HPC-20, HOLLOW CATHODE PLASMA CVD, vacuum device). × 15 sec. Evaporated to obtain an observation sample. The sample was observed under an atmosphere of -160 ° C using a HITACHI SU3500 scanning electron microscope (Gatan Alto-1000 Cryo-Unit).
Because it is difficult to find the position where the fixed point observation was performed by LSM, the SEM was to observe the vicinity of the LSM field of view. The observation area of the Cryo-SEM was measured in advance by LSM, and the surface condition near the observation position was confirmed.

Cryo-SEM による微細表面構造の形状観察は正確な高さこそその画像からはわかりにくいものの、その詳細な形状と表面方向に沿った大きさは十分に観察できる。観測装置の性状からはLSMと全く同じ視野を確保することはできないものの、LSMにて観察された表面構造A、表面構造B、表面構造B’と同じ分類に属するものの微細表面構造はこれにて明らかにできる。
図9・図10は9〜15μm最大長であり、切り立った岩のような形状の表面構造である。
図11・図12はすでに視野からあふれるほど大きく、最大長は200μm以上あり、草が生い茂るような形状の表面構造である。また図13には図12と同じ形状の表面構造と、あたかも表土が流出したあとに残る小岩や礫のような固形分が露出している表面構造である。よって表面構造Aは図9と図10、表面構造Bは図11と図12、表面構造B’は図13の形状であることがわかる。
Observation of the shape of the fine surface structure by Cryo-SEM is difficult to understand from the image, but the precise shape and size along the surface direction can be sufficiently observed. From the properties of the observation device, it is not possible to ensure the same field of view as the LSM, but the fine surface structure belonging to the same classification as the surface structure A, surface structure B, and surface structure B 'observed by the LSM is not I can clarify.
9 and 10 show a surface structure having a maximum length of 9 to 15 μm and shaped like a steep rock.
FIGS. 11 and 12 are already large enough to overflow the field of view, have a maximum length of 200 μm or more, and have a surface structure in a shape like grass growing. FIG. 13 shows a surface structure having the same shape as that of FIG. 12 and a surface structure in which solids such as small rocks and gravel remaining after the topsoil flows out are exposed. Therefore, it can be seen that the surface structure A has the shape shown in FIGS. 9 and 10, the surface structure B has the shape shown in FIGS. 11 and 12, and the surface structure B 'has the shape shown in FIG.

(LSMによる計測(3D画像))
D+0からD+5まで同位置の3D画像を図14に示す。
黒から濃灰色、灰色、薄灰色、白の順に白に近いほど構造的には高い位置を示す。(なお、本来の解析装置ではより視認性をよくする為にカラーでその高さを表現する事ができるが、本発明では黒から白へのグレー階調により高さ表現している。表面構造Aが多の構造に比して極端に大きい為、表面構造Bをより重点的に階調がでるようにグレー階調をコントロールしている。そのため表面構造Aは薄灰色で比較的階調がない表現にはなっているが、傾斜を持たせることで表面構造Aの大きさがわかるようになっている。
D+2から小さな粒状の構造が表面に現れ、日数が経過するごとにその数は増える。D+3で中央付近に生じた構造はD+4、D+5と同心円状に広がりを見せた。
(Measurement by LSM (3D image))
FIG. 14 shows a 3D image at the same position from D + 0 to D + 5.
From black to dark gray, gray, light gray, and white, the closer to white, the higher the structural position. (Although the original analyzer can express the height in color for better visibility, the present invention expresses the height by gray gradation from black to white. Since A is extremely large as compared with many structures, the gray gradation is controlled so that the gradation is obtained with more emphasis on the surface structure B. Therefore, the surface structure A is light gray and the gradation is relatively high. Although there is no expression, the size of the surface structure A can be understood by giving a slope.
From D + 2, a small granular structure appears on the surface, and the number increases with the passage of days. The structure formed near the center at D + 3 spreads concentrically with D + 4 and D + 5.

形態的特徴から、表面構造Aは背が高くなるものの成長は頭打ちとなり、その底部にあたる面積は大きく広がらない、一方表面構造Bおよび表面構造B’は表面に大きく広がり、そして表面構造を荒らしていくものと推定できる。ただし、この時点で表面はツヤがない程度でブルームは見当たらず、目視でブルームが確認できたのはD+8以降であった。
ここで表面構造Aと表面構造Bと目される独立した表面構造の(Z軸方向の最大長)/(x・y軸の属する平面上での最大長)を求める。
D+6の時点で3次元データを求める。もともと観測装置が3次元のデータを測定したうえで、付属の解析装置が解析、得られた3次元情報から、高さや3D画像を電子的に構成しているので、3D画像から適切な表面構造Aと表面構造Bとを結ぶ断面の形(図15、線分C1C2)で高さデータを取得する。(図16)
左端のピーク先鋭的なピークをピークA、中央の横幅が大きいものの高さは低いピークをピークBとする。ピークAの高さは15.56μm、幅は19.23μmであり、ピークBの高さ(深さ)は5.31μm、幅は179.62μm、ピークB’の高さは3.07μm、幅は385.90μmであった。
これより表面構造の(Z軸方向の最大長)/(x・y軸の属する平面上での最大長)は
幅がx・y軸の属する平面上での最大長に相当し(ただし、表面構造の形状が同心円上であるため、この断面における幅を最大長とみなしてかまわないとした。)、高さがZ軸方向の最大長に相当するため、それぞれピークAが0.809、ピークBが0.030、ピークB’ が0.008であった。
よって、ピークAは表面構造A、ピークは表面構造B、ピークB’は表面構造B’に分類される。
なお、この断面のデータら表面構造が表面構造AかBかを判別することはできるが、3D画像がわからないとピークの正しい最大山高さに断面を設定する事ができないため、断面の高さ情報からは、表面構造を元にしたブルームの発生を予測することは困難である。
Due to the morphological features, the surface structure A becomes taller but the growth reaches a plateau, and the area corresponding to the bottom does not greatly expand, while the surface structure B and the surface structure B ′ greatly spread over the surface and roughen the surface structure. It can be estimated that. However, at this time, no bloom was found at all, since the surface was not glossy, and the bloom was visually observed after D + 8.
Here, (maximum length in the Z-axis direction) / (maximum length on the plane to which the x and y axes belong) of the independent surface structures regarded as the surface structures A and B are obtained.
At time D + 6, three-dimensional data is obtained. Originally, the observation device measures three-dimensional data, and the attached analysis device analyzes and obtains the height and 3D image from the obtained 3D information electronically. Height data is acquired in the form of a cross section connecting A and the surface structure B (FIG. 15, line segment C1C2). (FIG. 16)
A sharp peak at the left end is referred to as a peak A, and a peak having a large central width but a low height is referred to as a peak B. The height of peak A was 15.56 μm and the width was 19.23 μm, the height (depth) of peak B was 5.31 μm, the width was 179.62 μm, and the height of peak B ′ was 3.07 μm and the width was 385.90 μm. Was.
From this, (maximum length in the Z-axis direction) / (maximum length on the plane to which the xy axes belong) of the surface structure corresponds to the maximum length on the plane to which the xy axes belong. Since the shape of the structure is concentric, the width in this section may be regarded as the maximum length.) Since the height corresponds to the maximum length in the Z-axis direction, the peak A is 0.809 and the peak B is 0.030 and peak B 'were 0.008.
Therefore, peak A is classified into surface structure A, peak is classified into surface structure B, and peak B 'is classified into surface structure B'.
In addition, it is possible to determine whether the surface structure is the surface structure A or B from the data of the cross section. However, if the 3D image is not known, the cross section cannot be set to the correct maximum peak height of the peak. Therefore, it is difficult to predict the occurrence of bloom based on the surface structure.

高さ像を演算する元となったデータ高さ(Sa、Sz、Sp、Sv)と、その高さデータより凸部位と凹部位の位置情報が得られる為、その凸・凹部位となる領域から面積率(視野に対する%)と、その領域における高さ情報から体積(μm)を得た。(表1)
以上、得られた情報で表面構造A(グレーニング)、表面構造B、表面構造B’を検知することが可能かを検証した。
Since the height information (Sa, Sz, Sp, Sv) from which the height image is calculated and the position information of the convex part and the concave part position are obtained from the height data, the area of the convex / concave position is obtained. And the volume (μm 3 ) was obtained from the area ratio (% with respect to the visual field) and the height information in that region. (Table 1)
As described above, it was verified whether it is possible to detect the surface structure A (graining), the surface structure B, and the surface structure B ′ based on the obtained information.

(LSM データ解析(表面粗さ))
まず、最大山高さSp、最大谷深さSv、それに段差Szに着目して、その値を経時的にその挙動を示した。
従来より用いられる表面粗さの指標である Sa(平均山高さ)、Sz(最大山高さ)のグラフを図17に示す。表面粗さ(Sa,Sz)、特に段差は、D+1〜D+2 にかけての変化が大きい。これは、形状の情報が変化するより早い。表面構造Aは保存2日目ですでに発生しており、Spは大きなピークが観測されているものの、その後に発生した表面構造B、表面構造B’は表面構造Aよりすべて小さい為、3日目以降のSpの上昇はすべて、表面構造Aによるものであった。また、表面構造B’も2日目にはその兆し、3日目には確実に見られ、4日目には表面全体に凸凹が急速に拡がるが、Svからはその様子はうかがい知ることができない。
表面構造AはDIC像(図9・図10)からも表面構造B・表面構造B’(図11・図12)、そしてその後表面全面に拡がるブルームとは異なるグレーニングであることが見て取れるため、表面構造AのSpの値の発生(1日目)・急上昇(2日目)をもって、最終的にブルームの発生の予兆と見ることはできない。
(LSM data analysis (surface roughness))
First, paying attention to the maximum peak height Sp, the maximum valley depth Sv, and the step Sz, the values are shown over time to show the behavior.
FIG. 17 shows graphs of Sa (average peak height) and Sz (maximum peak height) which are conventionally used indices of surface roughness. The surface roughness (Sa, Sz), particularly the step, changes greatly from D + 1 to D + 2. This is faster than the shape information changes. The surface structure A has already been generated on the second day of storage and Sp has a large peak. However, since the surface structures B and B ′ generated thereafter are all smaller than the surface structure A, three days have elapsed. All the increases in Sp after the eye were due to surface structure A. On the second day, the surface structure B 'also shows its signs, and on the third day, it is definitely seen. On the fourth day, the unevenness rapidly spreads over the entire surface, but it can be seen from Sv. Can not.
Since the surface structure A can be seen from the DIC images (FIGS. 9 and 10), the surface structure B and the surface structure B ′ (FIGS. 11 and 12), and the blooming that spreads over the entire surface thereafter can be seen as graining. The occurrence of the Sp value of the surface structure A (day 1) and a sharp rise (day 2) cannot be regarded as a final sign of the occurrence of bloom.

(LSM データ解析(体積・面積率))
計測データから凸部・凹部に分けて、その体積を図19、面積率を図18のグラフにしめす。なお面積率は視野に対する対象範囲の比率である。そして面積率とはいうものの、基準面から上(凸部位)あるいは、下(凹部位)であることは、特定の領域における高さを測定できないと凹凸のいずれかの部位かを判断できないため、3次元の測定値すべてがないと得られない測定方法である。
体積と面積率は共に、D+3から顕著に増加しており、特に体積は対数的な伸びを示した。これは、LSM 像での表面の変化の時期と一致している。さらに凹凸を分けて評価したところ、凹部に対し凸部の体積増加が著しい。
面積率では凹部の面積の増加の方が著しいが、これは表面構造Aが縦方向に成長しているためと思われた。体積では、圧倒的に凸部(表面構造B)の増加が著しいことが確認できた。
この結果から、ブルームの成長を定量的に評価するためには油脂の移動量(体積)での評価が、また高さ情報を加味した上での面積率の観察でも評価ができるとみられる。
(LSM data analysis (volume / area ratio))
FIG. 19 is a graph showing the volume and FIG. 18 is the area ratio of the convex and concave portions based on the measured data. The area ratio is the ratio of the target range to the visual field. And although it is the area ratio, being above (convex portion) or below (concave position) from the reference plane means that if it is not possible to measure the height in a specific region, it is impossible to judge whether it is any portion of unevenness, This measurement method cannot be obtained without all three-dimensional measurement values.
Both the volume and the area ratio increased remarkably from D + 3, and in particular, the volume showed logarithmic growth. This coincides with the time of surface change in the LSM image. When the unevenness was further evaluated separately, the volume of the convex portion was remarkably increased with respect to the concave portion.
In the area ratio, the increase in the area of the concave portion was more remarkable, but this was probably because the surface structure A was growing in the vertical direction. In the volume, it was confirmed that the number of protrusions (surface structure B) was remarkably increased.
From these results, it can be seen that in order to quantitatively evaluate the growth of bloom, the evaluation can be made based on the movement amount (volume) of the fat or oil, and also by observing the area ratio in consideration of the height information.

G:基準面
B:基準面から上方へ突出した部分(凸部)
D:基準面から下方へ陥入した部分(凹部)
Sp:領域内の凸部の最大山高さ
Sv:領域内の凹部の最大谷深さ
Sz: 最大高さ(段差)Sp+Svに相当する
Sa:平面からの凸凹の絶対値の平均、Sz/2に相当する
線分C1-C2:高さデータを取得した線分
G: Reference plane B: Part (projection) projecting upward from the reference plane
D: Portion recessed from the reference plane (recess)
Sp: the maximum peak height of the convex portion in the region Sv: the maximum valley depth of the concave portion in the region Sz: the maximum height (step) Sa corresponding to Sp + Sv: the average of the absolute value of the concave and convex from the plane, Sz / Line segment C1-C2 corresponding to 2: line segment from which height data was acquired

本発明により、表面微細構造の表面構造Bを観測すること、さらには体積変動を測定できる観測機器を用いて体積変動を観察することで、従来ではその発生を区別出来なかった面構造AとBを見分けること、そしてその大きさを体積や面積として定量的な評価が可能となることで、チョコレートの品質評価における、保存試験の大幅な期間短縮が可能となった。 According to the present invention, by observing the surface structure B of the surface microstructure, and further observing the volume fluctuation using an observation instrument capable of measuring the volume fluctuation, the surface structures A and B, whose generation could not be distinguished in the past, can be distinguished. By discriminating the quality of the chocolate and quantitatively evaluating the size as a volume or area, it was possible to significantly shorten a storage test period in chocolate quality evaluation.

Claims (3)

油脂が連続相である油脂組成物において、表面微細構造の表面構造B又は表面構造B’の少なくとも一方の変化を指標とする、ブルーム発生の予兆をとらえる方法。
ただし、表面構造Bとは、基準面より上方に発生する背が低く横幅が広い油脂結晶の凸状構造を、表面構造B’は表面構造Bの周辺に基準面より下方に掘り込まれた凹状構造をそれぞれ指す。
A method for capturing a sign of bloom occurrence in an oil / fat composition in which the oil / fat is a continuous phase, using a change in at least one of the surface structure B and the surface structure B ′ of the surface microstructure as an index.
However, the surface structure B is a convex structure of a fat crystal having a short height and a wide width generated above the reference surface, and the surface structure B ′ is a concave structure dug below the reference surface around the surface structure B. Refers to each structure.
表面構造B又は表面構造B’の少なくとも一方の変化が体積変化である、請求項1記載ブルーム発生の予兆をとらえる方法。 2. The method for predicting bloom occurrence according to claim 1, wherein the change in at least one of the surface structure B and the surface structure B 'is a volume change. 3D Profilometer、LSM、SPM、AFM、SEM、CTから選択される一種以上の観測機器を用いる、請求項1ないし請求項2記載のブルーム発生の予兆をとらえる方法。 3. The method for capturing a sign of bloom occurrence according to claim 1 or 2, wherein at least one observation device selected from a 3D profilometer, LSM, SPM, AFM, SEM, and CT is used.
JP2018176243A 2018-09-20 2018-09-20 How to catch early signs of bloom Active JP7123713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018176243A JP7123713B2 (en) 2018-09-20 2018-09-20 How to catch early signs of bloom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018176243A JP7123713B2 (en) 2018-09-20 2018-09-20 How to catch early signs of bloom

Publications (2)

Publication Number Publication Date
JP2020046350A true JP2020046350A (en) 2020-03-26
JP7123713B2 JP7123713B2 (en) 2022-08-23

Family

ID=69901289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018176243A Active JP7123713B2 (en) 2018-09-20 2018-09-20 How to catch early signs of bloom

Country Status (1)

Country Link
JP (1) JP7123713B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150050390A1 (en) * 2012-04-03 2015-02-19 Friesland Brands B.V. Chocolate with milk fat fractions
JP2015223115A (en) * 2014-05-28 2015-12-14 日清オイリオグループ株式会社 Non-temper type chocolate
JP2017176029A (en) * 2016-03-30 2017-10-05 不二製油株式会社 Oil and fat composition excellent in low temperature bloom resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150050390A1 (en) * 2012-04-03 2015-02-19 Friesland Brands B.V. Chocolate with milk fat fractions
JP2015223115A (en) * 2014-05-28 2015-12-14 日清オイリオグループ株式会社 Non-temper type chocolate
JP2017176029A (en) * 2016-03-30 2017-10-05 不二製油株式会社 Oil and fat composition excellent in low temperature bloom resistance

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"熱に弱いチョコレートのレーザー顕微鏡による表面観察", SHIMADZU APPLICATION NEWS, JPN6022021989, 1 September 2012 (2012-09-01), JP, pages 1 - 2, ISSN: 0004792118 *
A.M. HERMANSSON: "チョコレートの微細構造", 化学と生物, vol. 26, no. 8, JPN6022021987, pages 533 - 535, ISSN: 0004792117 *
金田泰佳 ほか: "チョコレートにおける結晶成長とファットブルーム", 日本結晶成長学会誌, vol. 41, no. 4, JPN6022021990, 2014, JP, pages 16 - 26, ISSN: 0004792119 *

Also Published As

Publication number Publication date
JP7123713B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
Delbaere et al. Relationship between chocolate microstructure, oil migration, and fat bloom in filled chocolates
Shahbazi et al. Application of Pickering emulsions in 3D printing of personalized nutrition. Part II: Functional properties of reduced-fat 3D printed cheese analogues
Svanberg et al. Effect of sugar, cocoa particles and lecithin on cocoa butter crystallisation in seeded and non-seeded chocolate model systems
Fernandes et al. Thermal, structural and rheological characteristics of dark chocolate with different compositions
Altimiras et al. Structure–fat migration relationships during storage of cocoa butter model bars: Bloom development and possible mechanisms
Palla et al. Effects of cooling temperature profiles on the monoglycerides oleogel properties: A rheo-microscopy study
Hodge et al. Fat bloom formation and characterization in milk chocolate observed by atomic force microscopy
Saputro et al. Rheological behaviour and microstructural properties of dark chocolate produced by combination of a ball mill and a liquefier device as small scale chocolate production system
Clercq et al. Influence of cocoa butter diacylglycerols on migration induced fat bloom in filled chocolates
Tran et al. Controlling the stability of chocolates through the incorporation of soft and hard StOSt‐rich fats
Kucharski et al. Depth dependence of nanoindentation pile-up patterns in copper single crystals
Dahlenborg et al. Effect of particle size in chocolate shell on oil migration and fat bloom development
Lapčíková et al. Physical characterization of the milk chocolate using whey powder
Beckett Chocolate flow properties
Wolf Chocolate flow properties
da Silva et al. Temperature, time and fat composition effect on fat bloom formation in dark chocolate
Zhao et al. Influence of non-fat particulate network on fat bloom development in a model chocolate
Toker et al. Chocolate flow behavior: Composition and process effects
CN115349555A (en) Emulsion gel fat and preparation method and application thereof
JP2020046350A (en) Method for catching sign of bloom generation at early stage
Mishra et al. Controlling lipid crystallization across multiple length scales by directed shear flow
Scharfe et al. Influence of minor oil components on sunflower, rice bran, candelilla, and beeswax oleogels
Shen et al. Effects of sucrose particle size on the microstructure and bloom behavior of chocolate model systems
Kinta et al. Morphology of chocolate fat bloom
Liu et al. Role of polysaccharide structure in the rheological, physical and sensory properties of low-fat ice cream

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180920

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7123713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150