JP2020045803A - Ejector - Google Patents

Ejector Download PDF

Info

Publication number
JP2020045803A
JP2020045803A JP2018174256A JP2018174256A JP2020045803A JP 2020045803 A JP2020045803 A JP 2020045803A JP 2018174256 A JP2018174256 A JP 2018174256A JP 2018174256 A JP2018174256 A JP 2018174256A JP 2020045803 A JP2020045803 A JP 2020045803A
Authority
JP
Japan
Prior art keywords
nozzle
flow
downstream
conical
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018174256A
Other languages
Japanese (ja)
Other versions
JP7172331B2 (en
Inventor
松原 健
Takeshi Matsubara
健 松原
賢哲 安嶋
Kentetsu Yasujima
賢哲 安嶋
岩崎 正道
Masamichi Iwasaki
正道 岩崎
育孝 讃岐
Yasutaka Sanuki
育孝 讃岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018174256A priority Critical patent/JP7172331B2/en
Publication of JP2020045803A publication Critical patent/JP2020045803A/en
Application granted granted Critical
Publication of JP7172331B2 publication Critical patent/JP7172331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide an ejector capable of suppressing a reduction in the ejector efficiency by restricting the occurrence of a swirl in a joint part where a drive flow discharged from a nozzle and a suction flow are joined.SOLUTION: At a joint part 22 of a body 20, an inner peripheral tapered face 20a is provided whose inner diameter is gradually smaller toward the downstream. In the joint part 22, there is a fixed guide member 30. The guide member 30 has a conical pipe 31 forming an inside conical flow path L10 whose inner diameter is gradually smaller toward the downstream using the shaft center of a nozzle 10 as a central axis C to form an outside conical flow path L20 between the outer peripheral face of the conical pipe 31 and the inner peripheral tapered face 20a of the body 20.SELECTED DRAWING: Figure 1

Description

本発明は、ノズルから吐出した駆動流と吸引流とを合流する合流部における渦の発生を抑えてエジェクタ効率の低下を抑止することができるエジェクタに関する。   The present invention relates to an ejector capable of suppressing generation of a vortex at a junction where a driving flow and a suction flow discharged from a nozzle merge, thereby suppressing a decrease in ejector efficiency.

例えば、冷媒を循環させる回路にはエジェクタを備えたものがある。エジェクタは、先端の開口から駆動流が噴射されるノズルと、ノズルの周囲を取り囲むように配置され、ノズルの先端開口延長上となる部位に駆動流との合流部が設けられた本体部と、本体部の内部に開口するように接続された吸引管路とを備えて構成されている。このエジェクタでは、ノズルの先端開口から冷媒を駆動流として噴射すると、吸引管路を通じて冷媒が吸引流として本体部の内部に吸引され、吸引流が合流部において駆動流に合流されて下流のディフューザに至る(例えば、特許文献1参照)。   For example, some circuits for circulating a refrigerant include an ejector. The ejector has a nozzle from which the driving flow is ejected from the opening at the distal end, and a main body portion arranged so as to surround the periphery of the nozzle and provided with a junction with the driving flow at a position on the extension of the opening at the distal end of the nozzle, And a suction conduit connected to open inside the main body. In this ejector, when the refrigerant is ejected as a drive flow from the opening at the tip of the nozzle, the refrigerant is sucked into the inside of the main body as a suction flow through a suction pipe, and the suction flow is merged with the drive flow at the merging portion, and is transmitted to the downstream diffuser. (See, for example, Patent Document 1).

特開2002−22295号公報JP 2002-22295 A

ところで、ノズルから吐出した駆動流は、合流部で吸引流と合流して混合部に流入するが、流路軸の傾きやズレ、あるいは噴流の広がりにより、流れの一部が混合部入口付近の合流部壁面に衝突し、合流部壁面に沿って逆流する渦が発生し、渦損失が生じる(図5参照)。また、吸引流は、駆動流を吐出するノズルを本体部のない中空部に配置する関係上、一般に、本体部の側面からから流入する。このため、駆動流の流路軸を通る面内だけでなく、流路軸に直交する面内にも流れ(二次流れ)が生じ、渦損失が生じる(図6参照)。この結果、混合部では渦の発生によって損失が生じ、エジェクタ効率が低下してしまうという課題があった。   By the way, the driving flow discharged from the nozzle merges with the suction flow at the merging portion and flows into the mixing portion. However, due to the inclination or deviation of the flow channel axis or the spread of the jet, a part of the flow is near the mixing portion inlet. A vortex that collides with the wall surface of the junction and flows backward along the wall surface of the junction generates vortex loss (see FIG. 5). Further, the suction flow generally flows in from the side surface of the main body because the nozzle for discharging the driving flow is disposed in a hollow portion having no main body. For this reason, a flow (secondary flow) occurs not only in a plane passing through the flow path axis of the driving flow but also in a plane orthogonal to the flow path axis, and vortex loss occurs (see FIG. 6). As a result, there is a problem that a loss occurs due to the generation of the vortex in the mixing section, and the ejector efficiency is reduced.

本発明は、上記に鑑みてなされたものであって、ノズルから吐出した駆動流と吸引流とを合流する合流部における渦の発生を抑えてエジェクタ効率の低下を抑止することができるエジェクタを提供することを目的とする。   The present invention has been made in view of the above, and provides an ejector capable of suppressing generation of a vortex at a junction where a driving flow discharged from a nozzle and a suction flow merge with each other, thereby suppressing a decrease in ejector efficiency. The purpose is to do.

上述した課題を解決し、目的を達成するために、本発明にかかるエジェクタは、先端の開口から駆動流が噴射されるノズルと、前記ノズルの周囲を取り囲むように配置され、前記ノズルの先端開口の延長上となる部位に駆動流との合流部が設けられた本体部と、を備え、前記ノズルの先端開口から駆動流を噴射することにより吸引流入口を通じて吸引流を前記本体部の内部に吸引し、前記合流部において駆動流と吸引流とを合流させ、合流した駆動流と吸引流とを混合させる下流の混合部に導出するエジェクタであって、前記本体部の前記合流部には下流に向けて漸次内径が小さくなる内周テーパ面が設けられ、前記合流部内に固定されたガイド部材を有し、前記ガイド部材は、前記ノズルの軸心を中心軸とし、下流に向けて漸次内径が小さくなる内側円錐流路を形成する円錐管を有し、前記円錐管の外周面と前記本体部の前記内周テーパ面との間に外側円錐流路を形成することを特徴とする。   In order to solve the above-described problem and achieve the object, an ejector according to the present invention includes a nozzle from which a driving flow is injected from an opening at a tip, and an ejector that is disposed so as to surround a periphery of the nozzle. A main body portion provided with a joining portion with the driving flow at a portion that is an extension of the main body portion, and the suction flow is injected into the main body portion through the suction inflow port by ejecting the driving flow from the tip opening of the nozzle. An ejector that sucks, merges the driving flow and the suction flow at the merging section, and leads out to a downstream mixing section that mixes the merged driving stream and the suction flow, wherein the ejector is downstream to the merging section of the main body. An inner peripheral taper surface that gradually reduces the inner diameter is provided, and has a guide member fixed in the merging portion.The guide member has a central axis about the axis of the nozzle, and has a gradually decreasing inner diameter toward the downstream. Is small It has a conical tube forming the inner conical flow path comprising, and forming an outer conical flow path between the outer surface and the inner peripheral tapered surface of the body portion of the conical tube.

また、本発明にかかるエジェクタは、上記の発明において、前記ガイド部材は、前記ノズルと前記合流部の下流端面とからそれぞれ離隔して配置されることを特徴とする。   The ejector according to the present invention is characterized in that, in the above invention, the guide member is arranged separately from the nozzle and a downstream end face of the junction.

また、本発明にかかるエジェクタは、上記の発明において、前記円錐管の上流側開口は前記ノズルの先端開口よりも下流側に設けられることを特徴とする。   The ejector according to the present invention is characterized in that, in the above invention, the upstream opening of the conical tube is provided downstream of the tip opening of the nozzle.

また、本発明にかかるエジェクタは、上記の発明において、前記円錐管の上流側開口の径は前記ノズルの先端開口の径よりも大きいことを特徴とする。   The ejector according to the present invention is characterized in that, in the above invention, the diameter of the upstream opening of the conical tube is larger than the diameter of the tip opening of the nozzle.

また、本発明にかかるエジェクタは、上記の発明において、前記円錐管の下流側開口の径は前記合流部の下流側開口の径よりも小さいことを特徴とする。   The ejector according to the present invention is characterized in that, in the above invention, the diameter of the downstream opening of the conical tube is smaller than the diameter of the downstream opening of the junction.

また、本発明にかかるエジェクタは、上記の発明において、前記ガイド部材は、前記円錐管の外周テーパ面と前記本体部の前記内周テーパ面との間の外側円錐流路を複数の流路に分割する分割壁を有することを特徴とする。   Further, in the ejector according to the present invention, in the above invention, the guide member includes an outer conical flow path between the outer peripheral tapered surface of the conical tube and the inner peripheral tapered surface of the main body, which is formed into a plurality of flow paths. It has a dividing wall for dividing.

また、本発明にかかるエジェクタは、上記の発明において、前記分割壁は前記中心軸に対して放射状に形成されたことを特徴とする。   The ejector according to the present invention is characterized in that, in the above invention, the dividing wall is formed radially with respect to the central axis.

また、本発明にかかるエジェクタは、上記の発明において、前記分割壁は前記内周テーパ面と当接する部分に外周テーパ面を有することを特徴とする。   In the ejector according to the present invention, in the above invention, the divided wall has an outer peripheral tapered surface at a portion in contact with the inner peripheral tapered surface.

本発明によれば、ノズルから吐出した駆動流と吸引流とを合流する合流部における渦の発生を抑えてエジェクタ効率の低下を抑止することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the vortex in the junction which joins the drive flow and the suction flow discharged from the nozzle can be suppressed, and the fall of ejector efficiency can be suppressed.

図1は、本発明の実施の形態であるエジェクタの断面側面図である。FIG. 1 is a sectional side view of an ejector according to an embodiment of the present invention. 図2は、図1に示したエジェクタのA−A線断面図である。FIG. 2 is a sectional view taken along line AA of the ejector shown in FIG. 図3は、図1に示したガイド部材の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the guide member shown in FIG. 図4は、ノズル、ガイド部材及び混合部の間の開口口径の関係と、駆動流及び吸引流の流れを示す図である。FIG. 4 is a diagram illustrating the relationship between the opening diameters of the nozzle, the guide member, and the mixing unit, and the flows of the driving flow and the suction flow. 図5は、従来のエジェクタの構成及び合流部内の駆動流及び吸引流の流れを示す図である。FIG. 5 is a diagram showing a configuration of a conventional ejector and a flow of a driving flow and a suction flow in a merging section. 図6は、図5に示したエジェクタのB−B線断面図である。FIG. 6 is a sectional view taken along line BB of the ejector shown in FIG.

以下、添付図面を参照しながら本発明に係るエジェクタの好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of an ejector according to the present invention will be described in detail with reference to the accompanying drawings.

図1及び図2は、本発明の実施の形態であるエジェクタの要部を示したものである。ここで例示するエジェクタは、図には明示していないが、冷媒の循環回路に適用され、第1の冷媒経路を流通する冷媒を駆動流として第2の冷媒経路を流通する冷媒の吸引を行うもので、ノズル10、本体部20、ガイド部材30を備えている。なお、図3は、ガイド部材30の構成を示す斜視図である。   1 and 2 show a main part of an ejector according to an embodiment of the present invention. The ejector exemplified here is applied to a refrigerant circulation circuit, which is not shown in the drawing, and performs suction of the refrigerant flowing through the second refrigerant path by using the refrigerant flowing through the first refrigerant path as a driving flow. The apparatus includes a nozzle 10, a main body 20, and a guide member 30. FIG. 3 is a perspective view showing the configuration of the guide member 30.

ノズル10は、中心部に冷媒通路11を有した円筒状を成すものである。ノズル10の先端部は、先端(図1において右側)に向けて漸次外径が減少するテーパ状を成し、かつ内部の冷媒通路11についても先端に向けて漸次内径が減少するように構成してある。図には明示していないが、このノズル10の冷媒通路11には、基端部に第1の冷媒経路が接続してある。   The nozzle 10 has a cylindrical shape having a refrigerant passage 11 at the center. The tip of the nozzle 10 has a tapered shape in which the outer diameter gradually decreases toward the tip (right side in FIG. 1), and the inner diameter of the internal refrigerant passage 11 also decreases gradually toward the tip. It is. Although not explicitly shown in the drawing, a first refrigerant path is connected to a base end of the refrigerant path 11 of the nozzle 10.

本体部20は、中心部が中空で断面が円形の柱状を成すものである。本体部20の中空部には、吸引通路部21、合流部22及び混合部23が設けてある。吸引通路部21は、ノズル10の外径よりも太径となる一様の内径を有した部分であり、本体部20の基端部分に設けてある。合流部22は、吸引通路部21の先端に連続し、ノズル10の先端から、先端に向けて漸次内径が減少するようにテーパ状に形成した部分である。混合部23は、合流部22の先端に連続し、一様の内径を有した部分である。さらに、混合部23の先端には、先端に向けて漸次内径が増大するディフューザ部(昇圧部)24が接続してある。   The main body 20 has a columnar shape with a hollow center and a circular cross section. In the hollow part of the main body part 20, a suction passage part 21, a merging part 22, and a mixing part 23 are provided. The suction passage portion 21 is a portion having a uniform inner diameter that is larger than the outer diameter of the nozzle 10, and is provided at a base end portion of the main body portion 20. The joining portion 22 is a portion that is continuous with the tip of the suction passage portion 21 and is formed in a tapered shape so that the inner diameter gradually decreases from the tip of the nozzle 10 toward the tip. The mixing section 23 is a section that is continuous with the tip of the junction section 22 and has a uniform inner diameter. Further, a diffuser section (boost section) 24 whose inner diameter gradually increases toward the distal end is connected to the distal end of the mixing section 23.

合流部22には、ガイド部材30が設けられる。本体部20の合流部22には下流に向けて漸次内径が小さくなる内周テーパ面20aが設けられる。ガイド部材30は、合流部22内であって合流部22の上流端面SAと合流部22の下流端面SBとからそれぞれ離隔して配置され、ノズル10の軸心を中心軸Cとし、下流に向けて漸次内径が小さくなる円錐管31と、円錐管31の外周テーパ面31aと本体部20の内周テーパ面20aとの間の外側円錐流路L20を中心軸Cに対して放射状に複数の流路に分割する分割壁32とを有する。なお、上流端面SAは、本体部20の中空部であって、ノズル10の先端を通り、ノズル10の軸心(中心軸C)と直交する平面である。また、下流端面SBは、混合部23の上流側開口端面である。図1〜図3では、4つの分割壁32を設けているので、外側円錐流路L20は、円錐管31の周回りに4分割される。なお、円錐管31の管内は、内側円錐流路L10を形成する。   A guide member 30 is provided at the junction 22. An inner peripheral tapered surface 20a whose inner diameter gradually decreases toward the downstream side is provided at the junction 22 of the main body 20. The guide member 30 is disposed inside the junction 22 and separated from the upstream end surface SA of the junction 22 and the downstream end surface SB of the junction 22, with the axis of the nozzle 10 as the central axis C, and directed downstream. A plurality of flows radially with respect to the central axis C are formed in a conical pipe 31 whose inner diameter gradually decreases and an outer conical flow path L20 between an outer tapered surface 31a of the conical tube 31 and an inner tapered surface 20a of the main body 20. And a dividing wall 32 for dividing into roads. Note that the upstream end surface SA is a hollow portion of the main body 20, and is a plane that passes through the tip of the nozzle 10 and is orthogonal to the axis (center axis C) of the nozzle 10. Further, the downstream end face SB is an upstream open end face of the mixing section 23. In FIGS. 1 to 3, since the four divided walls 32 are provided, the outer conical flow path L <b> 20 is divided into four around the circumference of the conical tube 31. The inside of the conical tube 31 forms an inner conical flow path L10.

ガイド部材30は、合流部22内で、分割壁32の外側テーパ面32aと本体部20の内周テーパ面20aとが当接した状態で設けられる。   The guide member 30 is provided in the junction 22 with the outer tapered surface 32a of the dividing wall 32 and the inner peripheral tapered surface 20a of the main body 20 in contact with each other.

図4に示すように、ガイド部材30の内側円錐流路L10の上流側開口径d2は、ノズル10の先端開口径d1よりも大きく形成されている。また、ガイド部材30の内側円錐流路L10の下流側開口径d3は、混合部23の上流側開口径d4よりも小さく形成されている。なお、上流側開口径d2は、下流側開口径d3よりも大きい。   As shown in FIG. 4, the upstream opening diameter d2 of the inner conical flow path L10 of the guide member 30 is formed to be larger than the tip opening diameter d1 of the nozzle 10. Further, the downstream opening diameter d3 of the inner conical flow path L10 of the guide member 30 is formed smaller than the upstream opening diameter d4 of the mixing section 23. The upstream opening diameter d2 is larger than the downstream opening diameter d3.

したがって、内側円錐流路L10及び外側円錐流路L20は、ともに下流に向けて流路断面積が小さくなる。そして、ガイド部材30の内側円錐流路L10の上流側開口径d2は、ノズル10の先端開口径d1よりも大きく形成されているため、内側円錐流路L10には駆動流が流れ、外側円錐流路L20には吸引流が流れる。さらに、外側円錐流路L20を流れる吸引流は、分割壁32によって中心軸C方向に整流される。   Therefore, both the inner conical flow path L10 and the outer conical flow path L20 have a flow path cross-sectional area that decreases toward the downstream side. Since the upstream opening diameter d2 of the inner conical flow path L10 of the guide member 30 is formed larger than the tip opening diameter d1 of the nozzle 10, the driving flow flows through the inner conical flow path L10 and the outer conical flow The suction flow flows through the path L20. Further, the suction flow flowing through the outer conical flow path L20 is rectified in the direction of the central axis C by the dividing wall 32.

従来のエジェクタは、図5に示すように、合流部22にガイド部材30を設けていなかったので、ノズル10から吐出する駆動流の噴流は、流れの一部が混合部23の入口付近の内周テーパ面20aに衝突し、内周テーパ面20aに沿って逆流する渦F11が発生し、渦損失が生じていた。また、吸引流が本体部20の側面から流入すると、図6に示すように、中心軸Cに直交する面内にも流れ(二次流れ)による渦F12が発生し、渦損失が生じていた。   In the conventional ejector, as shown in FIG. 5, the guide member 30 is not provided at the merging section 22, so that the jet of the driving flow discharged from the nozzle 10 has a part of the flow near the inlet of the mixing section 23. The vortex F11 collides with the peripheral tapered surface 20a and flows backward along the inner peripheral tapered surface 20a, and vortex loss occurs. When the suction flow flows in from the side surface of the main body 20, a vortex F12 due to the flow (secondary flow) is also generated in a plane orthogonal to the central axis C as shown in FIG. .

これに対し、本実施の形態では、図4に示すように、ノズル10から吐出する駆動流の噴流は、内側円錐流路L10内に導入されるため、内側円錐流路L10の内壁面によって噴流の広がりを抑えることができることから、渦F11の発生による渦損失を抑制することができる。   On the other hand, in the present embodiment, as shown in FIG. 4, since the jet of the driving flow discharged from the nozzle 10 is introduced into the inner conical flow path L10, the jet flow is generated by the inner wall surface of the inner conical flow path L10. Vortex loss due to the generation of the vortex F11 can be suppressed.

また、外側円錐流路L20は、分割壁32によって周方向に分割されているため、外側円錐流路L20を通る吸引流は、中心軸C方向に整流されるため、二次流れによる渦F12の発生による渦損失を抑制することができる。   Further, since the outer conical flow path L20 is divided in the circumferential direction by the dividing wall 32, the suction flow passing through the outer conical flow path L20 is rectified in the direction of the central axis C. Vortex loss due to generation can be suppressed.

さらに、吸引流は外側円錐流路L20を流れるため、吸引流の圧力損失増大を抑制することができる。   Further, since the suction flow flows through the outer conical flow path L20, an increase in pressure loss of the suction flow can be suppressed.

本実施の形態では、これらの作用によってエジェクタ効率の低下を抑止することができる。   In the present embodiment, a decrease in ejector efficiency can be suppressed by these actions.

なお、上述した実施の形態では、冷媒の循環回路に適用され、第1の冷媒経路を流通する冷媒を駆動流として第2の冷媒経路を流通する冷媒の吸引を行うエジェクタを例示しているが、その他の流体を駆動流及び吸引流とする回路に適用することも可能である。この場合、流体としては気体もしくは液体であっても良いし、液体と気体との気液二相混合流体であっても構わない。   In the above-described embodiment, the ejector is applied to the refrigerant circulation circuit, and the ejector that suctions the refrigerant flowing through the second refrigerant path using the refrigerant flowing through the first refrigerant path as a driving flow is exemplified. It is also possible to apply the present invention to a circuit in which another fluid is used as a driving flow and a suction flow. In this case, the fluid may be gas or liquid, or may be a gas-liquid two-phase mixed fluid of liquid and gas.

また、円錐管31、内側円錐流路L10及び外側円錐流路L20の形状は完全な円錐形状である必要はなく、本明細書記載の実施の形態で示したような円錐形状の一部である円錐台形状が含まれることはもちろん、円錐形状の一部壁面部に凹凸や空隙を設けたものや、頂角が異なる複数の円錐を途中で結合した形状、徐々に頂角が異なるように先端方向に向かって丸みを帯びさせた形状なども含まれる。さらに、目的に応じて多角錐など他の錐体形状を適宜用いてもよい。また、上述した実施の形態では、ガイド部材30が4つの分割壁32を設けていたが、これに限らず、分割壁32は、3つ以上であればよい。また、分割壁32を、内周テーパ面20aに取り付け、円錐管31の外周面と分割壁32の内側テーパ面とを結合するようにしてもよい。   Further, the shapes of the conical tube 31, the inner conical flow path L10, and the outer conical flow path L20 need not be a perfect conical shape, but are a part of the conical shape as described in the embodiment described in this specification. Not only includes a truncated cone shape, but also a conical shape with irregularities and voids in the wall surface, a shape in which multiple cones with different apical angles are joined in the middle, a tip with a gradually different apex angle Shapes that are rounded toward the direction are also included. Further, other pyramid shapes such as a polygonal pyramid may be appropriately used according to the purpose. In the above-described embodiment, the guide member 30 has the four divided walls 32. However, the present invention is not limited to this, and the number of the divided walls 32 may be three or more. Alternatively, the dividing wall 32 may be attached to the inner peripheral tapered surface 20a, and the outer peripheral surface of the conical tube 31 may be connected to the inner tapered surface of the dividing wall 32.

なお、上記の実施の形態及び変形例で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置及び構成要素の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。   In addition, each configuration illustrated in the above-described embodiment and modified examples is a schematic function, and does not necessarily need to be physically configured as illustrated. In other words, the form of distribution / integration of each device and component is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various usage situations. Can be configured.

10 ノズル
11 冷媒通路
20 本体部
20a 内周テーパ面
21 吸引通路部
22 合流部
23 混合部
24 ディフューザ部
30 ガイド部材
31 円錐管
31a 外周テーパ面
32 分割壁
32a 外側テーパ面
C 中心軸
d1 先端開口径
d2 上流側開口径
d3 下流側開口径
d4 上流側開口径
F11,F12 渦
L10 内側円錐流路
L20 外側円錐流路
SA 上流端面
SB 下流端面
DESCRIPTION OF SYMBOLS 10 Nozzle 11 Refrigerant passage 20 Main part 20a Inner peripheral taper surface 21 Suction passage part 22 Merging part 23 Mixing part 24 Diffuser part 30 Guide member 31 Conical tube 31a Outer peripheral taper surface 32 Dividing wall 32a Outer taper surface C Central axis d1 Tip opening diameter d2 Upstream opening diameter d3 Downstream opening diameter d4 Upstream opening diameter F11, F12 Vortex L10 Inner conical flow path L20 Outer conical flow path SA Upstream end face SB Downstream end face

Claims (8)

先端の開口から駆動流が噴射されるノズルと、
前記ノズルの周囲を取り囲むように配置され、前記ノズルの先端開口の延長上となる部位に駆動流との合流部が設けられた本体部と、
を備え、前記ノズルの先端開口から駆動流を噴射することにより吸引流入口を通じて吸引流を前記本体部の内部に吸引し、前記合流部において駆動流と吸引流とを合流させ、合流した駆動流と吸引流とを混合させる下流の混合部に導出するエジェクタであって、
前記本体部の前記合流部には下流に向けて漸次内径が小さくなる内周テーパ面が設けられ、
前記合流部内に固定されたガイド部材を有し、
前記ガイド部材は、前記ノズルの軸心を中心軸とし、下流に向けて漸次内径が小さくなる内側円錐流路を形成する円錐管を有し、
前記円錐管の外周面と前記本体部の前記内周テーパ面との間に外側円錐流路を形成することを特徴とするエジェクタ。
A nozzle from which a driving flow is jetted from an opening at the tip,
A main body portion disposed so as to surround the periphery of the nozzle, and provided with a joining portion with the driving flow at a portion on an extension of a tip opening of the nozzle,
A suction flow is sucked into the main body through a suction inflow port by injecting a driving flow from a tip opening of the nozzle, and the driving flow and the suction flow are merged at the merging portion, and the merged driving flow is provided. Ejecting to a downstream mixing unit for mixing the suction flow and the suction flow,
The merging portion of the main body portion is provided with an inner peripheral tapered surface whose inner diameter gradually decreases toward the downstream,
Having a guide member fixed in the junction,
The guide member has a conical tube that forms an inner conical flow path with the inner axis being the central axis of the nozzle and having a gradually decreasing inner diameter toward the downstream,
An ejector, wherein an outer conical flow path is formed between an outer peripheral surface of the conical tube and the inner peripheral tapered surface of the main body.
前記ガイド部材は、前記ノズルと前記合流部の下流端面とからそれぞれ離隔して配置されることを特徴とする請求項1に記載のエジェクタ。   2. The ejector according to claim 1, wherein the guide member is disposed separately from the nozzle and a downstream end surface of the junction. 3. 前記円錐管の上流側開口は前記ノズルの先端開口よりも下流側に設けられることを特徴とする請求項1または請求項2に記載のエジェクタ。   The ejector according to claim 1, wherein an upstream opening of the conical tube is provided downstream of a tip opening of the nozzle. 前記円錐管の上流側開口の径は前記ノズルの先端開口の径よりも大きいことを特徴とする請求項1〜3のいずれか一つに記載のエジェクタ。   The ejector according to any one of claims 1 to 3, wherein the diameter of the upstream opening of the conical tube is larger than the diameter of the tip opening of the nozzle. 前記円錐管の下流側開口の径は前記合流部の下流側開口の径よりも小さいことを特徴とする請求項1〜4のいずれか一つに記載のエジェクタ。   The ejector according to any one of claims 1 to 4, wherein a diameter of a downstream opening of the conical tube is smaller than a diameter of a downstream opening of the junction. 前記ガイド部材は、前記円錐管の外周テーパ面と前記本体部の前記内周テーパ面との間の外側円錐流路を複数の流路に分割する分割壁を有することを特徴とする請求項1〜5のいずれか一つに記載のエジェクタ。   The said guide member has a dividing wall which divides the outer conical flow path between the outer peripheral taper surface of the said conical pipe and the said inner peripheral taper surface of the said main-body part into several flow paths, The Claim 1 characterized by the above-mentioned. The ejector according to any one of claims 1 to 5, wherein 前記分割壁は前記中心軸に対して放射状に形成されたことを特徴とする請求項6に記載のエジェクタ。   The ejector according to claim 6, wherein the dividing wall is formed radially with respect to the central axis. 前記分割壁は前記内周テーパ面と当接する部分に外周テーパ面を有することを特徴とする請求項6または7に記載のエジェクタ。   The ejector according to claim 6, wherein the divided wall has an outer peripheral tapered surface at a portion that contacts the inner peripheral tapered surface.
JP2018174256A 2018-09-18 2018-09-18 Ejector Active JP7172331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018174256A JP7172331B2 (en) 2018-09-18 2018-09-18 Ejector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018174256A JP7172331B2 (en) 2018-09-18 2018-09-18 Ejector

Publications (2)

Publication Number Publication Date
JP2020045803A true JP2020045803A (en) 2020-03-26
JP7172331B2 JP7172331B2 (en) 2022-11-16

Family

ID=69899502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018174256A Active JP7172331B2 (en) 2018-09-18 2018-09-18 Ejector

Country Status (1)

Country Link
JP (1) JP7172331B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226392A (en) * 2008-02-26 2009-10-08 Air Water Sol Kk Gas jet nozzle
US20130232723A1 (en) * 2010-09-14 2013-09-12 Pasquale Catalfamo Pneumatic vacuum cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226392A (en) * 2008-02-26 2009-10-08 Air Water Sol Kk Gas jet nozzle
US20130232723A1 (en) * 2010-09-14 2013-09-12 Pasquale Catalfamo Pneumatic vacuum cleaner

Also Published As

Publication number Publication date
JP7172331B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6487041B2 (en) Atomizer nozzle
RU2501610C1 (en) Nozzle with uniform atomising cone
JP5871740B2 (en) Ejector
WO2013029475A1 (en) Composite jet mixer
CN103115027A (en) Supersonic velocity circular flow nozzle with injector
WO2013174240A1 (en) A combined jet with multiple pipes
JP6268135B2 (en) Micro bubble shower device
JP6442048B2 (en) Two-fluid nozzle
JP6714651B2 (en) Gas-liquid mixing device
JP6835450B2 (en) Fine bubble generation nozzle
JP2020045803A (en) Ejector
JP2009531641A (en) Burner equipment
JP7238345B2 (en) Ejector
JP7236681B2 (en) dry ice injector
JP2003205256A (en) Nozzle
JP2745981B2 (en) Refrigerant flow divider
TWM535534U (en) Showerhead structure
JP7243096B2 (en) Ejector
JP2017221919A (en) Fine bubble generator, shower head and mixed phase fluid processing device
JP5870302B2 (en) shower head
US20190032679A1 (en) Ejector, ejector production method, and method for setting outlet flow path of diffuser
JP2019141828A (en) Fine bubble generation nozzle
JP2016087575A (en) Spray nozzle
JP7342558B2 (en) ejector
US20100221989A1 (en) Fan nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150