JP2020045502A - Photo-hardening method of silicone rubber surface, and silicone rubber molded body - Google Patents

Photo-hardening method of silicone rubber surface, and silicone rubber molded body Download PDF

Info

Publication number
JP2020045502A
JP2020045502A JP2019237645A JP2019237645A JP2020045502A JP 2020045502 A JP2020045502 A JP 2020045502A JP 2019237645 A JP2019237645 A JP 2019237645A JP 2019237645 A JP2019237645 A JP 2019237645A JP 2020045502 A JP2020045502 A JP 2020045502A
Authority
JP
Japan
Prior art keywords
silicone rubber
irradiated
molded body
hardening
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019237645A
Other languages
Japanese (ja)
Inventor
樋口 浩一
Koichi Higuchi
浩一 樋口
木村 恒雄
Tsuneo Kimura
恒雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019237645A priority Critical patent/JP2020045502A/en
Publication of JP2020045502A publication Critical patent/JP2020045502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a photo-hardening method of a silicone rubber surface capable of hardening a silicone rubber surface to an abrasion resistant surface while leaving a rubber property feeling without changing glossiness, and further capable of improving oil penetrability resistance of the rubber, and a method of producing a silicone rubber molded body having a hardened surface.SOLUTION: The photo-hardening method of a silicone rubber surface includes a hardening process (A) of irradiating the surface of a silicone rubber molded body with vacuum ultraviolet light having a wavelength of not greater than 200 nm by an irradiation energy range of 10-3,000 mJ/cmby means of, for example, a xenon excimer lamp and the like to form an oxidized layer by a photooxidation reaction on the irradiated part.SELECTED DRAWING: Figure 1

Description

本発明は、シリコーンゴム表面の光硬質化方法およびシリコーンゴム成型体に関する。   The present invention relates to a method for photohardening a silicone rubber surface and a molded silicone rubber.

従来、シリコーンゴム成型物品では、ゴム表面に文字、文様、刻印、着色、印刷などを施して意匠性を付与することが行われている。これら意匠性表面は、衣服や指などとの接触にさらされて摩耗し、かすれて判読できなくなる等で意匠性が損なわれるという問題があった。
このため、シリコーンゴム表面の耐摩耗性を向上させるべく、ゴム表面に、低摩擦性を付与できる硬質シリコーンコーティングを施すことが提案されている。
2. Description of the Related Art Conventionally, in a silicone rubber molded article, a design is imparted by giving characters, patterns, stamps, coloring, printing, and the like to a rubber surface. There is a problem that these design surfaces are worn by being exposed to contact with clothes, fingers, and the like, and become faint and unreadable, thereby deteriorating the design characteristics.
Therefore, in order to improve the wear resistance of the silicone rubber surface, it has been proposed to apply a hard silicone coating capable of imparting low friction to the rubber surface.

例えば、特許文献1では、フェニルブロックポリマーに、少量のジメチルポリシロキサンを添加した表面滑り性を有する塗膜が開示されているが、この塗膜には、ゴムに追従できずにクラックを生じるという問題がある。
また、特許文献2〜4では、高強度でかつ表面滑り性の塗膜を与える組成物として、R3SiO1/2単位およびSiO4/2単位からなるオルガノシロキサンと官能基含有シリル基で分子鎖末端が封鎖されたジオルガノポリシロキサンの縮合物とをベースにした縮合硬化型組成物が開示されているものの、塗膜の表面耐摩耗性については言及されていない。
なお、特許文献2の組成物において、湿式シリカ、乾式シリカ等の充填剤添加による表面凹凸付与、フェニルブロックポリマー添加による表面硬質化、チタン酸エステル添加による表面凹凸化等を検討したが、いずれも表面の耐摩耗性の効果は得られず、表面粘着やクラック発生等の不具合を生じてしまうことがわかった。
For example, Patent Literature 1 discloses a coating film having a surface sliding property in which a small amount of dimethylpolysiloxane is added to a phenyl block polymer, but this coating film cannot crack rubber and causes cracks. There's a problem.
Patent Documents 2 to 4 disclose, as a composition for providing a high-strength and surface-slidable coating film, an organosiloxane composed of R 3 SiO 1/2 units and SiO 4/2 units and a functional group-containing silyl group. Although a condensation-curable composition based on a condensate of a diorganopolysiloxane having a blocked chain end is disclosed, no mention is made of the surface abrasion resistance of the coating film.
In addition, in the composition of Patent Document 2, we investigated surface unevenness by adding fillers such as wet silica and dry silica, surface hardening by adding a phenyl block polymer, and surface unevenness by adding a titanate ester. It was found that the effect of abrasion resistance on the surface was not obtained, and defects such as surface sticking and crack generation occurred.

このように、上記各特許文献のような、シリコーンコーティングを塗工する方法では、光沢のある表面外観となってしまい、ゴム質感や手触りを損なってしまうばかりでなく、硬質シリコーンコーティングでは伸びをほとんど有しないため、成型品、ガスケットおよびパッキン等の変形や、伸びに追従できず、表面割れやクラックが生じてしまう。
また、コーティングでは、煩雑な工程が必要となるうえに、樹脂基材と一体成型されたシリコーンゴム成型物では熱による樹脂の変質が問題となる。
しかも、付加型コーティングでは成型品由来、環境由来の付加毒の影響による硬化不良、表面べたつきが発生する虞もあった。
さらに、シリコーンゴムでは、汗の成分である水分、塩分、油分等がシリコーンゴムに浸透、透過し、接点障害やタッチ感の低下を引き起こすことが問題になる場合もあるが、シリコーンコーティングによる保護層では、これらの問題を解決することはできなかった。
As described above, the method of applying a silicone coating as in each of the above-mentioned patent documents results in a glossy surface appearance, which not only impairs the rubber texture and feel, but also hardly increases the elongation with a hard silicone coating. Since it does not have this, it cannot follow deformation and elongation of a molded product, a gasket, a packing, and the like, and surface cracks and cracks occur.
In addition, in coating, a complicated process is required, and in a silicone rubber molded article integrally molded with a resin base material, deterioration of the resin due to heat becomes a problem.
In addition, with the additional coating, there is a possibility that poor curing and surface stickiness may occur due to the influence of additional poisons derived from molded products and the environment.
Furthermore, in the case of silicone rubber, moisture, salt, oil, etc., which are components of sweat, penetrate and permeate into the silicone rubber, which may cause problems such as contact failure and reduced touch feeling. Then, these problems could not be solved.

特開2010−100667号公報JP 2010-100667 A 特開2004−143331号公報JP 2004-143331 A 特許第5521905号公報Japanese Patent No. 5521905 特許第5644556号公報Japanese Patent No. 5644456

本発明は、上記事情に鑑みなされたものであり、シリコーンゴム表面を光沢変化なくゴム質感を残したまま、耐摩耗性表面へと硬質化し得、さらに、ゴムの耐油浸透性をも向上させ得るシリコーンゴム表面の光硬質化方法および硬質化された表面を有するシリコーンゴム成型体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to harden a silicone rubber surface to a wear-resistant surface while leaving a rubbery texture without a change in gloss, and furthermore, it is possible to improve the oil penetration resistance of rubber. It is an object of the present invention to provide a method for hardening a silicone rubber surface with light and a method for manufacturing a silicone rubber molded body having a hardened surface.

本発明者らは、上記課題を解決すべく鋭意検討した結果、シリコーンゴムに対して真空紫外光を所定の照射エネルギーにて照射することで、シリコーンゴム表面に光酸化反応による酸化層が形成され、ゴム表面が光沢の上昇なくゴムのタック等の質感や手触りなど維持したまま硬質化できるのみならず、硬質化したゴム表面が優れた耐摩耗性を有することを見出し、本発明を完成した。   The present inventors have conducted intensive studies to solve the above-described problems, and as a result, by irradiating silicone rubber with vacuum ultraviolet light at a predetermined irradiation energy, an oxide layer is formed on the silicone rubber surface by a photo-oxidation reaction. The present inventors have found that not only can the rubber surface be hardened while maintaining the texture and feel such as rubber tack without increasing the gloss, and that the hardened rubber surface has excellent wear resistance, and the present invention has been completed.

すなわち、本発明は、
1. シリコーンゴム成型体の表面に波長200nm以下の真空紫外光を照射エネルギー10〜3,000mJ/cm2の範囲で照射し、照射した部分に光酸化反応による酸化層を形成して硬質化する工程(A)を備えることを特徴とするシリコーンゴム表面の光硬質化方法、
2. 前記真空紫外光を、不活性ガス雰囲気下で照射する1のシリコーンゴム表面の光硬質化方法、
3. 前記真空紫外光の光源が、キセノンエキシマランプである1または2のシリコーンゴム表面の光硬質化方法、
4. 前記工程(A)で光照射された前記シリコーンゴム成型体を、150℃以下の温度で熟成する工程(B)を備える1〜3のいずれかのシリコーンゴム表面の光硬質化方法、
5. シリコーンゴム成型体の表面に波長200nm以下の真空紫外光を照射エネルギー10〜3,000mJ/cm2の範囲で照射し、照射した部分に光酸化反応による酸化層を形成して硬質化する工程(A)を備えることを特徴とする硬質化された表面を有するシリコーンゴム成型体の製造方法、
6. 前記工程(A)で光照射された前記シリコーンゴム成型体を、150℃以下の温度で加熱する工程(B)を備える5の硬質化された表面を有するシリコーンゴム成型体の製造方法、
7. その表面の少なくとも一部に光酸化層を有するシリコーンゴム成型体
を提供する。
That is, the present invention
1. A step of irradiating the surface of the silicone rubber molded article with vacuum ultraviolet light having a wavelength of 200 nm or less at an irradiation energy of 10 to 3,000 mJ / cm 2 , forming an oxidized layer by a photo-oxidation reaction on the irradiated portion, and hardening ( A) A method for photohardening a silicone rubber surface, comprising:
2. (1) a method for hardening the surface of silicone rubber by irradiating the vacuum ultraviolet light under an inert gas atmosphere;
3. A method for hardening the surface of silicone rubber according to 1 or 2, wherein the light source of the vacuum ultraviolet light is a xenon excimer lamp;
4. The method for hardening the surface of the silicone rubber according to any one of 1 to 3, further comprising a step (B) of aging the silicone rubber molded body irradiated with light in the step (A) at a temperature of 150 ° C. or less;
5. A step of irradiating the surface of the silicone rubber molded article with vacuum ultraviolet light having a wavelength of 200 nm or less at an irradiation energy of 10 to 3,000 mJ / cm 2 , forming an oxidized layer by a photo-oxidation reaction on the irradiated portion, and hardening ( A) A method for producing a molded silicone rubber having a hardened surface, comprising:
6. 5. The method for producing a silicone rubber molded article having a hardened surface according to 5, comprising: a step (B) of heating the silicone rubber molded article irradiated with light in the step (A) at a temperature of 150 ° C. or lower.
7. A silicone rubber molded article having a photo-oxidized layer on at least a part of its surface is provided.

本発明のシリコーンゴム表面の光硬質化方法によれば、シリコーンゴム成型体に、指触感の変化、光沢の上昇、およびクラックのない耐摩耗性表面を簡便に形成することができる。
本発明の方法で得られた硬質化された表面を有するシリコーンゴム成型体は、各種電子機器の保護カバー、携帯電話、スマートフォンやリモコン等のキーパッド、電子写真複写機やプリンター等のシリコーンゴム製ロールなどに好適に利用できる。
According to the method for hardening the surface of silicone rubber of the present invention, a wear-resistant surface free from changes in finger feel, increase in gloss, and cracks can be easily formed on the molded silicone rubber.
The silicone rubber molded body having a hardened surface obtained by the method of the present invention can be used for protective covers of various electronic devices, keypads for mobile phones, smartphones and remote controllers, and silicone rubber for electrophotographic copiers and printers. It can be suitably used for rolls and the like.

本発明の光硬質化方法の一実施形態に係る概略工程図である。It is a schematic process drawing concerning one embodiment of an optical hardening method of the present invention.

以下、本発明について具体的に説明する。
本発明に係るシリコーンゴム表面の光硬質化方法は、シリコーンゴム成型体の表面に波長200nm以下の真空紫外光を照射エネルギー10〜3,000mJ/cm2の範囲で照射し、照射した部分に光酸化反応による酸化層を形成して硬質化する工程(A)を備える。
このように、波長200nm以下の真空紫外光による高エネルギー線を照射することで、シリコーンゴム表面分子中の側鎖有機基の大部分が切断されるうえ、酸素を介してSi−O−Si結合が形成されてゴム表面が硬質化されて、耐摩耗性が向上すると考えられる。
Hereinafter, the present invention will be described specifically.
In the method for hardening the silicone rubber surface according to the present invention, the surface of the silicone rubber molded body is irradiated with vacuum ultraviolet light having a wavelength of 200 nm or less at an irradiation energy of 10 to 3,000 mJ / cm 2 , and the irradiated portion is irradiated with light. The method includes a step (A) of forming an oxide layer by an oxidation reaction to harden the layer.
By irradiating high-energy rays with vacuum ultraviolet light having a wavelength of 200 nm or less in this manner, most of the side chain organic groups in the silicone rubber surface molecules are cut, and the Si—O—Si bond is formed via oxygen. Is formed, the rubber surface is hardened, and the wear resistance is considered to be improved.

本発明で用いられるシリコーンゴムとしては、特に限定されるものではなく、その具体例としては、従来各種シリコーンゴム成型品の成型に使用されている過酸化物加硫によるミラブル型シリコーンゴム、ヒドロシリル化架橋による射出成型用液状シリコーンゴム等が挙げられ、また成型体の形状も任意である。
シリコーンゴム表面の形状にも特に制限はなく、平面でも曲面でもよく、文字やイラスト等の刻印や印刷が施されていてもよい。このような意匠性を施した表面に対して、本発明の光硬質化を行うと、摩耗や傷付き等によりその意匠性が損なわれることが抑制されるため、特に有効である。
The silicone rubber used in the present invention is not particularly limited. Specific examples thereof include a peroxide-curable millable silicone rubber conventionally used for molding various silicone rubber molded articles, and hydrosilation. Examples include liquid silicone rubber for injection molding by cross-linking, and the shape of the molded body is also arbitrary.
The shape of the silicone rubber surface is not particularly limited, and may be flat or curved, and may be engraved or printed with characters or illustrations. Light hardening of the present invention on a surface having such a design is particularly effective because the design is prevented from being impaired due to abrasion, scratching and the like.

真空紫外光の照射エネルギーは、上述したような光酸化反応を生じさせて酸化層を形成して表面を硬質化し、耐摩耗性を向上できる限り特に限定されるものではないが、十分な光酸化反応を生じさせて表面を硬質化させるとともに、過剰な光反応を抑制して、ゴム表面の光沢の上昇を抑え、また、ゴム質感の低下を防止するという観点から、10〜3,000mJ/cm2の範囲が好ましく、100〜2,500mJ/cm2がより好ましく、300〜2,500mJ/cm2がより一層好ましく、400〜2,500mJ/cm2がさらに好ましい。
真空紫外光の照射時間は、照射エネルギーの強度や、後述する酸化層の厚さ等によって変動するものであるため一概に規定することはできないが、上述した照射エネルギーの範囲であれば、通常、5秒から1時間であり、10秒〜30分が好ましい。
The irradiation energy of the vacuum ultraviolet light is not particularly limited as long as the photooxidation reaction as described above is caused to form an oxide layer to harden the surface and improve the wear resistance. From the viewpoint of causing a reaction to harden the surface and suppressing an excessive photoreaction, suppressing an increase in the gloss of the rubber surface and preventing a decrease in the texture of the rubber, 10 to 3,000 mJ / cm. 2 is preferable, 100 to 2,500 mJ / cm 2 is more preferable, 300 to 2,500 mJ / cm 2 is more preferable, and 400 to 2,500 mJ / cm 2 is further preferable.
Irradiation time of vacuum ultraviolet light, the intensity of the irradiation energy, and can vary depending on the thickness of the oxide layer described below, etc., can not be unconditionally defined, but if it is in the range of the irradiation energy described above, usually, 5 seconds to 1 hour, preferably 10 seconds to 30 minutes.

真空紫外光を照射するための光源の具体例としては、キセノン(Xe)エキシマランプ(中心波長172nm)、Krエキシマランプ(146nm)、Arエキシマランプ(126nm)、ArBrエキシマランプ(165nm)、ArClエキシマランプ(175nm)、ArFエキシマランプ(193nm)、F2エキシマレーザー(153nm)、低圧水銀ランプ(185nm)、シンクロトロン放射光等が挙げられるが、なかでも汎用的に利用されているXeエキシマランプが好ましい。   Specific examples of a light source for irradiating vacuum ultraviolet light include a xenon (Xe) excimer lamp (center wavelength 172 nm), a Kr excimer lamp (146 nm), an Ar excimer lamp (126 nm), an ArBr excimer lamp (165 nm), and an ArCl excimer. Lamps (175 nm), ArF excimer lamps (193 nm), F2 excimer lasers (153 nm), low-pressure mercury lamps (185 nm), synchrotron radiation, and the like are preferred. Among them, a Xe excimer lamp widely used is preferable. .

真空紫外光を照射する雰囲気や圧力範囲としては、上述したような光酸化反応を生じさせて酸化層を形成して表面を硬質化し、耐摩耗性を向上できる限り特に限定されるものではない。
照射雰囲気としては、大気(空気)下でも不活性ガス雰囲気下でもよいが、酸素存在下にて照射を行うと真空紫外光の強度が低下するため、不活性ガス雰囲気下が好ましい。また、酸素体積比でいうと、18vol%以下が好ましく、特に10vol%以下がより好ましく、5vol%以下がより一層好ましい。
照射時の圧力範囲としては、真空から常圧であればよいが、真空(減圧)とするには、真空ポンプなどの機器や設備が必要となるばかりでなく、工程も多くなることから、常圧が好ましい。
The atmosphere and pressure range for irradiating the vacuum ultraviolet light are not particularly limited as long as the photooxidation reaction as described above is caused to form an oxide layer to harden the surface and improve abrasion resistance.
The irradiation atmosphere may be under air (air) or under an inert gas atmosphere. However, when irradiation is performed in the presence of oxygen, the intensity of vacuum ultraviolet light is reduced. In terms of oxygen volume ratio, it is preferably 18 vol% or less, particularly preferably 10 vol% or less, and still more preferably 5 vol% or less.
The pressure range during the irradiation may be from vacuum to normal pressure. However, vacuum (reduced pressure) requires not only equipment and facilities such as a vacuum pump, but also increases the number of steps. Pressure is preferred.

シリコーンゴム成型体において、真空紫外光を照射する範囲は特に限定されるものではなく、成型体全面に照射しても、上述した意匠が施された特定の範囲のみに照射してもよい。
特定範囲のみに照射する場合は、照射が必要ない部分を公知のマスキング材にて適宜マスキングしてもよい。
In the silicone rubber molded body, the range for irradiating the vacuum ultraviolet light is not particularly limited, and the silicone rubber molded body may be irradiated on the entire surface of the molded body, or may be irradiated only on the specific area on which the above-described design is applied.
In the case of irradiating only a specific range, a portion not requiring irradiation may be appropriately masked with a known masking material.

本発明の光硬質化方法で、シリコーンゴム成型体の表面に形成される酸化層の厚さは特に限定されるものではないが、ゴム表面に十分な耐摩耗性を付与するとともに、ゴム表面における光沢増加、割れやクラックの発生、ゴム触感の喪失等を防止するという観点から、0.1nm〜1μmが好ましく、0.2nm〜500nmがより好ましい。
なお、硬質化の指標としては、学振式摩耗試験機において、200g荷重の摩耗子先端面に幅20mm、長さ40mmのJIS L 0803に準拠したネル布を取付け、シリコーンゴム表面上を50mmの間を毎分30回で4,000往復させた際の摩耗前後での算術平均粗さの差(ΔRa)で表され、算術平均粗さの差(ΔRa)が、0.2μm以下が好ましく、0.1μm以下がより好ましい。
In the light hardening method of the present invention, the thickness of the oxide layer formed on the surface of the silicone rubber molded body is not particularly limited, and while imparting sufficient abrasion resistance to the rubber surface, From the viewpoint of preventing an increase in gloss, generation of cracks and cracks, loss of rubber touch, and the like, the thickness is preferably from 0.1 nm to 1 μm, more preferably from 0.2 nm to 500 nm.
As an index of hardening, in a Gakushin abrasion tester, a flannel cloth conforming to JIS L 0803 having a width of 20 mm and a length of 40 mm was attached to the tip of a wear element with a load of 200 g, and a 50 mm-long silicone rubber surface was attached. The difference in arithmetic average roughness (ΔRa) before and after abrasion when 4,000 reciprocations are performed 30 times per minute between intervals is represented by an arithmetic average roughness difference (ΔRa) of preferably 0.2 μm or less, 0.1 μm or less is more preferable.

さらに、本発明の方法では、上述した工程(A)で光照射したシリコーンゴム成型体を熟成する工程(B)を備えていてもよい。
このように工程(A)後に熟成することで、SiOHなどの酸素含有末端同士の結合を促進させてSi−O−Si結合が形成されるため、より硬質化できる。
熟成温度としてはSiOHの結合が促進される範囲であれば、特に限定されるものではないが、20〜150℃の範囲が好適である。
熟成時間としても特に限定されるものではないが、上述した温度範囲であれば、10分から5時間程度であり、30分から2時間が好ましい。
熟成雰囲気としては、真空紫外光照射と同様であり、照射時の雰囲気下でもよいが、大気下が好ましい。
Further, the method of the present invention may include a step (B) of maturing the silicone rubber molded body irradiated with light in the step (A) described above.
By aging after the step (A), bonding between oxygen-containing terminals such as SiOH is promoted to form Si—O—Si bonds.
The aging temperature is not particularly limited as long as the bonding of SiOH is promoted, but is preferably in the range of 20 to 150 ° C.
Although the aging time is not particularly limited, it is about 10 minutes to 5 hours, preferably 30 minutes to 2 hours in the above-mentioned temperature range.
The aging atmosphere is the same as the vacuum ultraviolet light irradiation, and may be the atmosphere at the time of irradiation, but preferably under the air.

次に、図面を参照しつつ、本発明の光硬質化方法の一実施形態を説明する。
図1に示されるように、シリコーンゴム成型体11の表面の一部に、波長200nm以下の真空紫外光12を照射する。
これにより、シリコーンゴム成型体11の真空紫外光照射表面にて光酸化反応が生じ、酸化層11Aが形成されるとともに耐摩耗性表面へと硬質化し、硬質化された表面を有するシリコーンゴム成型体11が得られる。
なお、真空紫外光の照射方向、照射部位、およびシリコーンゴム成型体の形状等は、上記実施形態のものに限られず、任意のものとすることができる。
Next, an embodiment of the photohardening method of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a part of the surface of the silicone rubber molded body 11 is irradiated with vacuum ultraviolet light 12 having a wavelength of 200 nm or less.
As a result, a photo-oxidation reaction occurs on the surface of the silicone rubber molded body 11 irradiated with the vacuum ultraviolet light, thereby forming an oxide layer 11A and hardening to a wear-resistant surface, and the silicone rubber molded body having a hardened surface 11 is obtained.
In addition, the irradiation direction of the vacuum ultraviolet light, the irradiation site, the shape of the silicone rubber molded body, and the like are not limited to those in the above-described embodiment, and may be arbitrary.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[実施例1]
液状シリコーンゴム(KET−6026−70A/B、信越化学工業(株)製)を用いてLIM成型を行い、厚さ2mm、150mm×150mm形状のシートRAを作製した。
次いで、窒素雰囲気下(酸素濃度1vol%以下)、キセノンエキシマランプ照射ユニット(SCQ05、ウシオ電機(株)製)を用いて中心波長172nmの真空紫外光を照射強度10mW/cm2、照射時間1分、照射エネルギー600mJ/cm2の条件で照射し、シリコーンゴムシートAを得た。
[Example 1]
LIM molding was performed using liquid silicone rubber (KET-6026-70A / B, manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare a sheet RA having a thickness of 2 mm and a shape of 150 mm × 150 mm.
Then, under a nitrogen atmosphere (oxygen concentration: 1 vol% or less), using a xenon excimer lamp irradiation unit (SCQ05, manufactured by Ushio Inc.), a vacuum ultraviolet light having a center wavelength of 172 nm, irradiation intensity of 10 mW / cm 2 , irradiation time of 1 minute Irradiation was performed at an irradiation energy of 600 mJ / cm 2 to obtain a silicone rubber sheet A.

[実施例2]
照射エネルギーを1,200mJ/cm2とした以外は、実施例1と同様にしてシリコーンゴムシートBを得た。
[Example 2]
A silicone rubber sheet B was obtained in the same manner as in Example 1, except that the irradiation energy was changed to 1,200 mJ / cm 2 .

[実施例3]
照射エネルギーを2,400mJ/cm2とした以外は、実施例1と同様にしてシリコーンゴムシートCを得た。
[Example 3]
A silicone rubber sheet C was obtained in the same manner as in Example 1, except that the irradiation energy was changed to 2,400 mJ / cm 2 .

[実施例4]
照射雰囲気を真空下(1.3kPa)とし、照射エネルギーを450mJ/cm2とした以外は、実施例1と同様にしてシリコーンゴムシートDを得た。
[Example 4]
A silicone rubber sheet D was obtained in the same manner as in Example 1, except that the irradiation atmosphere was set to a vacuum (1.3 kPa) and the irradiation energy was set to 450 mJ / cm 2 .

[実施例5]
実施例4で得られたシリコーンゴムシートDを、照射終了後、大気下で120℃のオーブンにて1時間加熱してシリコーンゴムシートEを得た。
[Example 5]
After the irradiation, the silicone rubber sheet D obtained in Example 4 was heated in an oven at 120 ° C. for 1 hour under the atmosphere to obtain a silicone rubber sheet E.

[比較例1]
照射エネルギーを3,600mJ/cm2とした以外は、実施例1と同様にしてシリコーンゴムシートRBを得た。
[Comparative Example 1]
A silicone rubber sheet RB was obtained in the same manner as in Example 1, except that the irradiation energy was changed to 3,600 mJ / cm 2 .

[比較例2]
シリコーンコーティング材(X−33−258、信越化学工業(株)製)をケイドライ 132−S(日本製紙クレシア(株)製)に含浸させ、実施例1と同様にして作製したシリコーンゴムRAに塗布し、温度25℃、相対湿度45%下で2日間硬化させ、シリコーンゴムシートRCを得た。
[Comparative Example 2]
A silicone coating material (X-33-258, manufactured by Shin-Etsu Chemical Co., Ltd.) is impregnated into Keidry 132-S (manufactured by Nippon Paper Crecia Co., Ltd.) and applied to silicone rubber RA produced in the same manner as in Example 1. Then, the mixture was cured at a temperature of 25 ° C. and a relative humidity of 45% for 2 days to obtain a silicone rubber sheet RC.

[比較例3]
シリコーンコーティング材(X−33−258、信越化学工業(株)製)を、シリコーンコーティング材(X−93−1755−1、信越化学工業(株)製)に変更した以外は、比較例3と同様にしてシリコーンゴムシートRDを得た。
[Comparative Example 3]
Comparative Example 3 except that the silicone coating material (X-33-258, manufactured by Shin-Etsu Chemical Co., Ltd.) was changed to the silicone coating material (X-93-1755-1, manufactured by Shin-Etsu Chemical Co., Ltd.). Similarly, a silicone rubber sheet RD was obtained.

上記実施例1〜5および比較例1〜3で作製したシリコーンゴムシートおよび実施例1で作製したシリコーンゴムシートRA(比較例4)について、下記項目を評価した。結果を表1,2に示す。
〔目視外観〕
光沢変化および表面割れの有無を目視で観察した。
〔顕微鏡観察〕
20倍の光学顕微鏡にてクラックの有無を観察した。
〔指触感〕
シート表面を指触にて確認した。
〔摩耗試験後の外観〕
学振式摩耗試験機(HEIDON 18 Scraching Intensity Tester、新東科学(株)製)を用い、200g荷重の摩耗子先端面に幅20mm、長さ40mmのJIS L 0803に準拠したネル布を取付け、シリコーンゴムシート表面上を50mmの間を毎分30回で4,000往復させた後のシート表面の摩耗跡を目視で観察し、下記レベルに基づいて判断した。
レベル4:摩耗跡なし(シートRAと変わらない)
レベル3:摩耗跡があまり目立たない
レベル2:摩耗跡が目立つ
レベル1:摩耗跡がはっきり判る
〔耐油浸透性〕
フェノールレッドで着色したステアリン酸をシリコーンゴム表面に塗布し、80℃のオーブン中に72時間保持した後、シリコーンゴムを切断し、その断面の着色性を観察した。
〔算術平均粗さの差(ΔRa)〕
レーザー顕微鏡(VK−8710、(株)キーエンス製)を用い、シリコーンゴム表面の摩耗前後の表面形状を測定した。観察エリアは100μmにて、算術平均面粗さ(Ra)を測定し、摩耗前後の平均粗さの差(ΔRa)を求めた。
The following items were evaluated for the silicone rubber sheets produced in Examples 1 to 5 and Comparative Examples 1 to 3 and the silicone rubber sheet RA (Comparative Example 4) produced in Example 1. The results are shown in Tables 1 and 2.
(Visual appearance)
The change in gloss and the presence or absence of surface cracks were visually observed.
(Microscope observation)
The presence or absence of cracks was observed with a 20 × optical microscope.
(Touch feeling)
The sheet surface was confirmed by finger touch.
(Appearance after wear test)
Using a Gakushin type abrasion tester (HEIDON 18 Scratching Intensity Tester, manufactured by Shinto Kagaku Co., Ltd.), a flannel cloth conforming to JIS L 0803 having a width of 20 mm and a length of 40 mm was attached to the tip of the wear element with a load of 200 g, After reciprocating 4,000 reciprocations at 30 times per minute between 50 mm on the surface of the silicone rubber sheet, wear marks on the sheet surface were visually observed, and judged based on the following levels.
Level 4: No wear marks (same as sheet RA)
Level 3: Wear marks are not very noticeable Level 2: Wear marks are noticeable Level 1: Wear marks are clearly visible [oil penetration resistance]
Stearic acid colored with phenol red was applied to the surface of the silicone rubber and kept in an oven at 80 ° C. for 72 hours, after which the silicone rubber was cut and the cross-section was observed for coloring.
[Difference in arithmetic average roughness (ΔRa)]
The surface shape of the silicone rubber surface before and after abrasion was measured using a laser microscope (VK-8710, manufactured by KEYENCE CORPORATION). The observation area was 100 μm, the arithmetic average surface roughness (Ra) was measured, and the difference in average roughness (ΔRa) before and after abrasion was determined.

Figure 2020045502
Figure 2020045502

Figure 2020045502
Figure 2020045502

表1に示されるように、実施例1〜3で作製したシートA〜Cの目視外観では、シートRA(比較例4)に比べて光沢の上昇はほとんどなく、割れや、クラックも観察されなかった。また、摩耗性試験後の目視観察では照射エネルギーが大きくなるにつれて摩耗跡は目立たなくなり、算術平均粗さの差(ΔRa)も小さくなった。さらに、耐油浸透性では着色し難くなった。
一方、照射エネルギーをより大きくした比較例1で得られたシートRBでは、摩耗跡は確認されなかったものの、光沢の上昇やクラック発生、指触感が硬いことが観察された。
真空下で照射した実施例4で得られたシートDでは、実施例1と同じ挙動を示し、さらに照射後に加熱を行った実施例5で得られたシートEでは、シートDよりも指触感は僅かに硬くなったが、光沢変化はなく、摩耗性試験での跡も確認されなかった。さらに、耐油浸透性でも着色は見られなかった。
これに対し、光照射の代わりにシリコーンコーティングを塗布することで摩耗性の向上を試みた比較例2,3で得られたシートRC,RDでは、摩耗性試験での傷付きにくさは向上したものの、光沢の上昇、指触感が硬くなり、耐油浸透性では僅かであるが着色がみられた。
As shown in Table 1, in the visual appearance of sheets A to C produced in Examples 1 to 3, there was almost no increase in gloss compared to sheet RA (Comparative Example 4), and no cracks or cracks were observed. Was. Further, in visual observation after the abrasion test, as the irradiation energy increased, the wear marks became less conspicuous, and the difference in arithmetic average roughness (ΔRa) also decreased. Furthermore, it became difficult to color with oil penetration resistance.
On the other hand, in the sheet RB obtained in Comparative Example 1 in which the irradiation energy was further increased, although abrasion marks were not confirmed, it was observed that gloss was increased, cracks were generated, and finger touch feeling was hard.
The sheet D obtained in Example 4 irradiated under vacuum shows the same behavior as that of Example 1, and the sheet E obtained in Example 5 heated after irradiation has a finger tactile sensation better than that of Sheet D. Although it became slightly hard, there was no change in gloss and no trace was observed in the abrasion test. Further, no coloring was observed even in oil penetration resistance.
On the other hand, the sheets RC and RD obtained in Comparative Examples 2 and 3 in which the silicone coating was applied instead of light irradiation to improve the abrasion were improved in the abrasion resistance in the abrasion test. However, the gloss was increased, the finger touch became hard, and the oil penetration resistance was slightly colored.

11 シリコーンゴム成型体
11A 酸化層
12 真空紫外光
11 molded silicone rubber 11A oxide layer 12 vacuum ultraviolet light

Claims (6)

シリコーンゴム成型体の表面における照射される部分の全面に波長200nm以下の真空紫外光を、不活性ガス雰囲気下または真空下で照射エネルギー400〜3,000mJ/cm2の範囲で照射し、照射した部分に光酸化反応による酸化層を形成して硬質化する工程(A)を備え、
前記真空紫外光の光源が、キセノンエキシマランプであることを特徴とするシリコーンゴム表面の光硬質化方法。
The entire surface of the irradiated portion on the surface of the silicone rubber molded body was irradiated with vacuum ultraviolet light having a wavelength of 200 nm or less in an inert gas atmosphere or under vacuum at an irradiation energy of 400 to 3,000 mJ / cm 2 , and irradiated. A step (A) of forming an oxide layer by a photo-oxidation reaction on a portion to harden the portion,
A method for hardening the surface of silicone rubber, wherein the light source of the vacuum ultraviolet light is a xenon excimer lamp.
前記照射エネルギーが、400〜2,500mJ/cm2である請求項1記載のシリコーンゴム表面の光硬質化方法。 2. The method according to claim 1, wherein the irradiation energy is 400 to 2,500 mJ / cm < 2 >. 酸素体積比で5vol%以下の雰囲気下で前記照射が行われる請求項1または2記載のシリコーンゴム表面の光硬質化方法。   The method according to claim 1 or 2, wherein the irradiation is performed in an atmosphere having an oxygen volume ratio of 5 vol% or less. 前記工程(A)で光照射された前記シリコーンゴム成型体を、150℃以下の温度で熟成する工程(B)を備える請求項1〜3のいずれか1項記載のシリコーンゴム表面の光硬質化方法。   The hardening of the silicone rubber surface according to any one of claims 1 to 3, further comprising a step (B) of aging the silicone rubber molded body irradiated with light in the step (A) at a temperature of 150 ° C or lower. Method. シリコーンゴム成型体の表面における照射される部分の全面に波長200nm以下の真空紫外光を、不活性ガス雰囲気下または真空下で照射エネルギー400〜3,000mJ/cm2の範囲で照射し、照射した部分に光酸化反応による酸化層を形成して硬質化する工程(A)を備え、
前記真空紫外光の光源が、キセノンエキシマランプであることを特徴とする硬質化された表面を有するシリコーンゴム成型体の製造方法。
The entire surface of the irradiated portion on the surface of the silicone rubber molded body was irradiated with vacuum ultraviolet light having a wavelength of 200 nm or less in an inert gas atmosphere or under vacuum at an irradiation energy of 400 to 3,000 mJ / cm 2 , and irradiated. A step (A) of forming an oxide layer by a photo-oxidation reaction on a portion to harden the portion,
A method for producing a molded silicone rubber having a hardened surface, wherein the light source of the vacuum ultraviolet light is a xenon excimer lamp.
前記工程(A)で光照射された前記シリコーンゴム成型体を、150℃以下の温度で熟成する工程(B)を備える請求項5記載の硬質化された表面を有するシリコーンゴム成型体の製造方法。   The method for producing a silicone rubber molded article having a hardened surface according to claim 5, comprising a step (B) of aging the silicone rubber molded article irradiated with light in the step (A) at a temperature of 150 ° C or lower. .
JP2019237645A 2019-12-27 2019-12-27 Photo-hardening method of silicone rubber surface, and silicone rubber molded body Pending JP2020045502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237645A JP2020045502A (en) 2019-12-27 2019-12-27 Photo-hardening method of silicone rubber surface, and silicone rubber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237645A JP2020045502A (en) 2019-12-27 2019-12-27 Photo-hardening method of silicone rubber surface, and silicone rubber molded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016041956A Division JP2017155182A (en) 2016-03-04 2016-03-04 Photo-hardening method of silicone rubber surface, and silicone rubber molded body

Publications (1)

Publication Number Publication Date
JP2020045502A true JP2020045502A (en) 2020-03-26

Family

ID=69899354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237645A Pending JP2020045502A (en) 2019-12-27 2019-12-27 Photo-hardening method of silicone rubber surface, and silicone rubber molded body

Country Status (1)

Country Link
JP (1) JP2020045502A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130836A (en) * 2005-11-09 2007-05-31 Ushio Inc Joining method
WO2009110152A1 (en) * 2008-03-04 2009-09-11 株式会社レニアス Transparent resin plate and method for producing the same
WO2016166227A1 (en) * 2015-04-16 2016-10-20 Dow Corning Corporation Surface modification of silicones

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130836A (en) * 2005-11-09 2007-05-31 Ushio Inc Joining method
WO2009110152A1 (en) * 2008-03-04 2009-09-11 株式会社レニアス Transparent resin plate and method for producing the same
WO2016166227A1 (en) * 2015-04-16 2016-10-20 Dow Corning Corporation Surface modification of silicones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. N. VASILETS ET AL.: "Improvement of themicro-wear resistance ofsilicone by vacuum ultraviolet irradiation", POLYMER, vol. 39, no. 13, JPN6020031922, 1 June 1998 (1998-06-01), GB, pages 2875 - 2881, ISSN: 0004534228 *

Similar Documents

Publication Publication Date Title
TWI633157B (en) Ultraviolet curable organic polysiloxane composition and method for producing plate
US5888656A (en) Cured silicone rubber article having a protective coating layer
WO2017150074A1 (en) Method for photo-hardening silicone rubber surface, and molded silicone rubber
EP0832936B1 (en) Photo-curable liquid silicone rubber compositions for templating mother molds
US7767754B2 (en) Silicone composition and process of making same
JP4938154B2 (en) Water pressure transfer method and water pressure transfer product
KR20200025050A (en) Floorings having excellent anti pollution and non-slip property
KR20180127922A (en) Low gloss cured composition improved contamination resistance, and preparation method thereof
KR20100065306A (en) Curable silicone composition
JPH10120906A (en) Optically clear silicone rubber
JP2015214637A (en) Method of adhering together thermoplastic resin substrate and organopolysiloxane resin
JP2010174235A (en) Curable silicone composition giving highly transparent cured silicone material
GB2279616A (en) Silicone resin keytops for membrane switches.
JP2008163282A (en) Method for production of semi-electroconductive silicone rubber member for electrophotographic device, and roll and belt for electrophotographic device having silicone rubber member
JP7201008B2 (en) Organopolysiloxane composition for release paper or release film
KR20010079516A (en) Release sheet for use with multicomponent reactive urethane systems and method of manufacture
JP2005060554A (en) Release agent composition for silicone adhesive and release sheet using the same
JP2020045502A (en) Photo-hardening method of silicone rubber surface, and silicone rubber molded body
JP5210700B2 (en) Method for producing silicone gel sheet
Bhandaru et al. Hydrophobic recovery of cross-linked polydimethylsiloxane films and its consequence in soft nano patterning
JP2022526262A (en) Composition for siloxane laminated modeling
JP7001014B2 (en) Adhesion method between diene rubber and silicone rubber
JP2004531620A (en) Substrate marking
JPH0562905B2 (en)
CN115698182A (en) Addition reaction-curable organopolysiloxane composition, and release paper and release film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629