JP2020044129A - Sweat detection device - Google Patents

Sweat detection device Download PDF

Info

Publication number
JP2020044129A
JP2020044129A JP2018175199A JP2018175199A JP2020044129A JP 2020044129 A JP2020044129 A JP 2020044129A JP 2018175199 A JP2018175199 A JP 2018175199A JP 2018175199 A JP2018175199 A JP 2018175199A JP 2020044129 A JP2020044129 A JP 2020044129A
Authority
JP
Japan
Prior art keywords
sweat
resistance value
resonance
resistance
perspiration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018175199A
Other languages
Japanese (ja)
Other versions
JP7126196B2 (en
Inventor
大地 佐藤
Daichi Sato
大地 佐藤
米澤 泰延
Yasunobu Yonezawa
泰延 米澤
服部 励治
Reiji Hattori
励治 服部
裕太郎 小野
Yutaro Ono
裕太郎 小野
奏人 大木
Yasuto Oki
奏人 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Kyushu University NUC
Original Assignee
Mazda Motor Corp
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Kyushu University NUC filed Critical Mazda Motor Corp
Priority to JP2018175199A priority Critical patent/JP7126196B2/en
Publication of JP2020044129A publication Critical patent/JP2020044129A/en
Application granted granted Critical
Publication of JP7126196B2 publication Critical patent/JP7126196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

To provide a sweat detection device capable of accurately detecting sweat of a living body.SOLUTION: A sweat detection device SD is a device for detecting sweat of a living body using a detection circuit including first and second electrodes 1 and 2 that insulation-coat principal surfaces 1sf and 2sf, and a guide element 3, and includes: a resistance-variable member 4 that varies a resistance value according to a liquid absorption amount; a resonance resistance measuring unit 5 for measuring a resonance resistance value of the detection circuit; and a sweat determination unit 62 for determining a sweat rate on the basis of the resonance resistance value measured by the resonance resistance measuring unit 5. The first and second electrodes 1 and 2 are juxtaposed through the resistance-variable member 4 while coming into contact with the resistance-variable member 4 on the surfaces other than the principal surfaces.SELECTED DRAWING: Figure 1

Description

本発明は、生体の汗、例えば車両の搭乗者における汗を検出する汗検出装置に関する。   The present invention relates to a sweat detection device for detecting sweat in a living body, for example, sweat in a vehicle occupant.

近年、人の、例えば緊張の有無等の精神状態や、例えば体調の良否等の身体状態を検知するために、汗が注目されている。この汗を検知する方法の一つとして、皮膚抵抗の測定が有り、例えば特許文献1に開示されている。   2. Description of the Related Art In recent years, attention has been paid to sweat in order to detect a mental state of a person, such as presence or absence of nervousness, and a physical state, such as physical condition. As one of the methods for detecting the sweat, there is a measurement of skin resistance, which is disclosed in Patent Document 1, for example.

この特許文献1に開示された皮膚抵抗測定装置は、人体の皮膚抵抗を測定する装置であって、第1および第2電極を有しており、人体が接触する接触面の表面が絶縁体で覆われている電極部と、周波数を変更可能に構成された高周波電源を有しており、前記高周波電源によって生成された交流電圧を前記第1電極に与える駆動回路と、前記第2電極と接続されており、前記第2電極の電流を検出し、検出した電流値を表す検出信号を出力する検出回路と、前記高周波電源から前記第1電極までの電気経路、または、前記第2電極から前記検出回路までの電気経路のいずれかに設けられた誘導素子と、前記高周波電源の周波数を変更制御するとともに、前記検出回路から前記検出信号を受ける制御部とを備え、前記制御部は、前記高周波電源の出力電圧と前記検出信号が示す電流値とを用いて、前記電極部に接触した人体のインピーダンスを求め、このインピーダンスと前記高周波電源の周波数との関係において、インピーダンスが極小となる周波数におけるインピーダンスの値を基にして、人体の皮膚抵抗を求める。   The skin resistance measuring device disclosed in Patent Literature 1 is a device for measuring skin resistance of a human body, has first and second electrodes, and a surface of a contact surface with which the human body contacts is made of an insulator. A driving circuit that has a covered electrode portion and a high-frequency power supply configured to be capable of changing a frequency, and that supplies an AC voltage generated by the high-frequency power supply to the first electrode; and a connection to the second electrode. A detection circuit that detects a current of the second electrode and outputs a detection signal indicating the detected current value; and an electric path from the high-frequency power supply to the first electrode, or the second electrode to the second electrode. An inductive element provided in any one of the electric paths to the detection circuit, and a control unit that changes and controls the frequency of the high-frequency power supply and receives the detection signal from the detection circuit; Power supply Using the force voltage and the current value indicated by the detection signal, the impedance of the human body in contact with the electrode unit is obtained, and in the relationship between this impedance and the frequency of the high-frequency power supply, the value of the impedance at a frequency at which the impedance is minimal. Is used to determine the skin resistance of the human body.

特開2016−220961号公報JP-A-2006-220961

ところで、前記特許文献1に開示された皮膚抵抗測定装置は、共振時のインピーダンスから皮膚抵抗を求め、皮膚電気活動(EDA、electrodermal activity)に基づき汗を検知しようとするものであるが、第1および第2電極に亘って接触している手指の動きによって共振抵抗値が変動してしまうことがあり、精度良く汗を検知することが難しい。   Meanwhile, the skin resistance measuring device disclosed in Patent Document 1 seeks skin resistance from impedance at the time of resonance, and attempts to detect sweat based on electrodermal activity (EDA). In addition, the resonance resistance value may fluctuate due to the movement of the finger in contact with the second electrode, and it is difficult to accurately detect sweat.

本発明は、上述の事情に鑑みて為された発明であり、その目的は、生体の汗をより精度良く検出できる汗検出装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sweat detection device that can detect sweat of a living body with higher accuracy.

本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる汗検出装置は、主面を絶縁被覆した第1および第2電極と誘導素子とを含む検出回路を用いて生体の汗を検出する汗検出装置であって、液体の吸収量に応じて抵抗値を変える抵抗可変部材と、前記検出回路の共振抵抗値を測定する共振抵抗測定部と、前記共振抵抗測定部で測定された共振抵抗値に基づいて発汗量を判定する汗判定部とを備え、前記第1および第2電極は、前記主面を除く他の面で前記抵抗可変部材に接触しつつ前記抵抗可変部材を介して並置される。   As a result of various studies, the present inventor has found that the above object is achieved by the present invention described below. That is, the sweat detection device according to one aspect of the present invention is a sweat detection device that detects sweat of a living body using a detection circuit including first and second electrodes whose main surfaces are insulated and coated and an inductive element, A resistance variable member that changes a resistance value in accordance with a liquid absorption amount, a resonance resistance measurement unit that measures a resonance resistance value of the detection circuit, and a sweat amount based on a resonance resistance value measured by the resonance resistance measurement unit. A sweat determination unit for determining, wherein the first and second electrodes are juxtaposed via the variable resistance member while being in contact with the variable resistance member on another surface other than the main surface.

このような汗検出装置における抵抗可変部材は、汗を吸収すると、その抵抗値が変化する。上記汗検出装置は、このような汗の吸収により抵抗値を変化させる前記抵抗可変部材を第1および第2電極間に備えるので、第1および第2電極に亘って接触している手指の動きにあまり影響されない、発汗の有無に応じた抵抗可変部材の抵抗値変化で、前記検出回路の共振抵抗値は、変化する。このため、上記汗検出装置は、前記検出回路の共振抵抗値を測定することで、発汗量、例えば発汗量0(発汗無し)と発汗量有り等の発汗の有無、をより精度良く検出できる。   When the resistance variable member in such a sweat detection device absorbs sweat, its resistance value changes. Since the sweat detection device includes the resistance variable member that changes the resistance value by absorbing the sweat between the first and second electrodes, the movement of the finger in contact with the first and second electrodes The resonance resistance value of the detection circuit changes due to a change in the resistance value of the resistance variable member according to the presence or absence of perspiration, which is not significantly affected by the perspiration. Therefore, the sweat detection device can more accurately detect the amount of perspiration, for example, the presence or absence of perspiration such as perspiration amount 0 (no perspiration) and perspiration amount, by measuring the resonance resistance value of the detection circuit.

他の一態様では、上述の汗検出装置において、前記検出回路は、共振周波数変化に対する共振抵抗変化を表す特性曲線を、前記抵抗可変部材の抵抗値に応じて互いに異なるように第1および第2特性曲線として2個を含み、前記汗判定部は、さらに、前記共振抵抗測定部で測定された共振抵抗値に基づいて、前記検出回路が動作している特性曲線を判定することによって、発汗量を判定する。   In another aspect, in the sweat detection device described above, the detection circuit includes a first and a second circuit that change a characteristic curve representing a change in resonance resistance with respect to a change in resonance frequency according to the resistance value of the variable resistance member. The characteristic curve includes two characteristic curves, and the sweat determination unit further determines the characteristic curve in which the detection circuit is operating based on the resonance resistance value measured by the resonance resistance measurement unit, thereby determining the amount of perspiration. Is determined.

このような汗検出装置における抵抗可変部材は、所定の第1発汗量(相対的に少量の発汗)を吸収した場合における抵抗値と、前記第1発汗量より多い所定の第2発汗量(相対的に大量の発汗)を吸収した場合における抵抗値とが異なる。上記汗検出装置は、吸収した発汗量により抵抗値を変化させる前記抵抗可変部材を第1および第2電極間に備えるので、発汗量に応じて前記検出回路の前記特性曲線は、変化する。このため、上記汗検出装置は、前記共振抵抗測定部で測定された共振抵抗値に基づいて、前記検出回路が動作している特性曲線を判定することによって、例えば前記第1発汗量であるか前記第2発汗量であるかで、発汗量を判定できる。   The resistance variable member in such a sweat detection device includes a resistance value when a predetermined first sweat amount (a relatively small amount of sweat) is absorbed, and a predetermined second sweat amount (relative amount) larger than the first sweat amount. Resistance when a large amount of perspiration is absorbed. Since the sweat detection device includes the resistance variable member that changes the resistance value according to the amount of sweat absorbed between the first and second electrodes, the characteristic curve of the detection circuit changes according to the amount of sweat. For this reason, the sweat detection device determines the characteristic curve in which the detection circuit is operating based on the resonance resistance value measured by the resonance resistance measurement unit. The amount of perspiration can be determined based on the second amount of perspiration.

他の一態様では、上述の汗検出装置において、前記汗判定部は、さらに、前記共振抵抗測定部で測定された共振抵抗値に基づいて、前記第1および第2特性曲線間の遷移時間または所定の時間での共振抵抗値の時間変化率を判定することによって、前記発汗量を判定する。   In another aspect, in the above-described sweat detection device, the sweat determination unit further includes a transition time between the first and second characteristic curves based on a resonance resistance value measured by the resonance resistance measurement unit. The amount of perspiration is determined by determining a time change rate of the resonance resistance value at a predetermined time.

このような汗検出装置は、さらに、前記第1および第2特性曲線間の遷移時間または所定の時間での共振抵抗値の時間変化率も考慮するので、前記発汗量をより精度良く判定できる。   Such a sweat detection device further considers the transition time between the first and second characteristic curves or the time change rate of the resonance resistance value at a predetermined time, so that the sweating amount can be determined with higher accuracy.

他の一態様では、これら上述の汗検出装置において、前記抵抗可変部材は、多孔質の樹脂部材である。   In another aspect, in the above-described sweat detection device, the resistance variable member is a porous resin member.

このような汗検出装置では、多孔質の樹脂部材で簡単に抵抗可変部材が実現できる。   In such a sweat detection device, a resistance variable member can be easily realized with a porous resin member.

他の一態様では、これら上述の汗検出装置において、車両用であって、前記生体は、車両に搭乗する搭乗者である。   In another aspect, in the above-described sweat detection device, the living body is a occupant riding in a vehicle for a vehicle.

このような汗検出装置は、搭乗者の汗を検出できる。   Such a sweat detection device can detect the occupant's sweat.

他の一態様では、これら上述の汗検出装置において、前記第1および第2電極は、前記搭乗者の手が触れる車両部位に配置される。   In another aspect, in the above-described sweat detection device, the first and second electrodes are arranged in a vehicle part touched by the occupant's hand.

このような汗検出装置は、前記第1および第2電極が前記搭乗者の手の触れる車両部位に配置されるので、搭乗者に意識させることなく自然に、搭乗者の汗を検出できる。   In such a sweat detection device, since the first and second electrodes are disposed in a vehicle part touched by the occupant, the occupant can naturally detect the occupant's sweat without being conscious of the occupant.

本発明にかかる汗検出装置は、生体の汗をより精度良く検出できる。   The sweat detection device according to the present invention can detect sweat of a living body with higher accuracy.

実施形態における汗検出装置の構成を示す図である。It is a figure showing composition of a sweat detecting device in an embodiment. 一例として、ステアリングハンドルに電極部を配設した場合を説明するための図である。It is a figure for explaining the case where an electrode part is arranged in a steering handle as an example. 検出回路に流れる電流経路を説明するための図である。FIG. 4 is a diagram for explaining a current path flowing through a detection circuit. 共振周波数変化に対する共振抵抗変化を表す特性曲線を示す図である。FIG. 4 is a diagram illustrating a characteristic curve representing a change in resonance resistance with respect to a change in resonance frequency. 抵抗可変部材に水道水を吸収させたタイミングの前後における共振抵抗変化を示す図である。It is a figure which shows the resonance resistance change before and after the timing which made the resistance variable member absorb tap water. 実施形態における汗検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the sweat detection apparatus in embodiment.

以下、図面を参照して、本発明の1または複数の実施形態が説明される。しかしながら、発明の範囲は、開示された実施形態に限定されない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。   Hereinafter, one or more embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the disclosed embodiments. In each of the drawings, components denoted by the same reference numerals indicate the same components, and the description thereof will be omitted as appropriate. In this specification, a generic name is denoted by a reference numeral with a suffix omitted, and an individual configuration is denoted by a reference numeral with a suffix.

図1は、実施形態における汗検出装置の構成を示す図である。図1Aは、主に、電極部周り部分を示す回路図であり、図1Bは、主に、前記電極部周り部分を除く他の部分のブロック図である。図2は、一例として、ステアリングハンドルに電極部を配設した場合を説明するための図である。図2Aは、正面図であり、図2Bは、図2Aに示すI−I断面線における断面図である。図3は、検出回路に流れる電流経路を説明するための図である。図3Aは、発汗の無い場合における検出回路に流れる電流経路α1(α1−1、α1−2)を示し、図3Bは、相対的に少量の発汗があって前記少量の汗が抵抗可変部材に吸収された場合における検出回路に流れる電流経路α2を示し、図3Cは、相対的に大量の発汗があって前記大量の汗が抵抗可変部材に吸収された場合における検出回路に流れる電流経路α3を示す。図4は、共振周波数変化に対する共振抵抗変化を表す特性曲線を示す図である。図4において、破線は、抵抗可変部材に相対的に少量の汗が吸収されている場合(通常時、少量発汗時)における第1特性曲線β1を表し、実線は、抵抗可変部材に相対的に大量の汗が吸収されている場合(吸収時、大量発汗時)における第2特性曲線β2を表す。図4の横軸は、HMzで表す共振周波数frであり、その縦軸は、kΩで表す共振抵抗(最小インピーダンス)Zminである。図5は、抵抗可変部材に水道水を吸収させたタイミングの前後における共振抵抗変化を示す図である。図5の横軸は、経過時間であり、その縦軸は、Ωで表す共振抵抗値Zminである。   FIG. 1 is a diagram illustrating a configuration of a sweat detection device according to the embodiment. FIG. 1A is a circuit diagram mainly showing a portion around the electrode portion, and FIG. 1B is a block diagram mainly showing another portion excluding the portion around the electrode portion. FIG. 2 is a diagram for explaining, as an example, a case where an electrode portion is provided on a steering handle. 2A is a front view, and FIG. 2B is a cross-sectional view taken along a line II in FIG. 2A. FIG. 3 is a diagram for explaining a current path flowing through the detection circuit. FIG. 3A shows a current path α1 (α1-1, α1-2) flowing through the detection circuit when there is no perspiration, and FIG. 3B shows a relatively small amount of perspiration, and the small amount of perspiration is applied to the resistance variable member. FIG. 3C shows a current path α2 flowing through the detection circuit when the absorption is performed, and FIG. 3C illustrates a current path α3 flowing through the detection circuit when the relatively large amount of sweat is absorbed by the resistance variable member. Show. FIG. 4 is a diagram illustrating a characteristic curve representing a change in resonance resistance with respect to a change in resonance frequency. In FIG. 4, the dashed line represents the first characteristic curve β1 when a relatively small amount of sweat is absorbed by the variable resistance member (normal time, small amount of sweating), and the solid line is relatively relative to the variable resistance member. FIG. 9 shows a second characteristic curve β2 when a large amount of sweat is absorbed (at the time of absorption and at the time of heavy sweating). The horizontal axis in FIG. 4 is the resonance frequency fr represented by HMz, and the vertical axis is the resonance resistance (minimum impedance) Zmin represented by kΩ. FIG. 5 is a diagram illustrating a change in resonance resistance before and after the timing when the tap water is absorbed by the variable resistance member. The horizontal axis in FIG. 5 is the elapsed time, and the vertical axis is the resonance resistance value Zmin represented by Ω.

実施形態における汗検出装置SDは、例えば、図1および図2に示すように、第1および第2電極1、2と、誘導素子3と、抵抗可変部材4と、共振抵抗測定部5と、制御処理部6と、出力部7とを備える。   The sweat detection device SD in the embodiment includes, for example, as shown in FIGS. 1 and 2, first and second electrodes 1 and 2, an inductive element 3, a variable resistance member 4, a resonance resistance measuring unit 5, A control processing unit 6 and an output unit 7 are provided.

第1電極1は、導電性を有する材料で形成された比較的に薄い板状(層状、膜状)の部材であり、その一方主面1sfは、電気的に絶縁性を有する絶縁材料で比較的に薄く形成された第1絶縁層(第1絶縁被膜)1aで被覆されている。   The first electrode 1 is a relatively thin plate-shaped (layered, film-shaped) member made of a conductive material, and its main surface 1sf is made of an electrically insulating material. It is covered with a first insulating layer (first insulating film) 1a formed as thin as possible.

第2電極2は、導電性を有する材料で形成された比較的に薄い板状(層状、膜状)の部材であり、その一方主面2sfは、電気的に絶縁性を有する絶縁材料で比較的に薄く形成された第2絶縁層(第1絶縁被膜)2aで被覆されている。   The second electrode 2 is a relatively thin plate-shaped (layered, film-shaped) member formed of a conductive material, and the main surface 2sf is made of an electrically insulating material. It is covered with a second insulating layer (first insulating film) 2a formed as thin as possible.

なお、第1絶縁層1aで被覆された第1電極1および第2絶縁層2aで被覆された第2電極2それぞれの各厚さは、約1mm以下であるが、図1および図2では、作図の都合上、強調して図示されている。また、第1電極1の前記一方「主面」1sfおよび第2電極2の前記一方「主面」2sfは、それぞれ、請求項における「主面」の一例に相当する。   The thickness of each of the first electrode 1 covered with the first insulating layer 1a and the second electrode 2 covered with the second insulating layer 2a is about 1 mm or less, but in FIG. 1 and FIG. For convenience of drawing, it is emphasized. Further, the one “main surface” 1sf of the first electrode 1 and the one “main surface” 2sf of the second electrode 2 each correspond to an example of a “main surface” in the claims.

抵抗可変部材4は、液体の吸収量に応じて抵抗値を変える部材である。抵抗可変部材4は、例えば、多孔質の樹脂部材(樹脂製の多孔体)であり、より具体的には、比較的良好な触感を与えることから、例えばスポンジ等である。多孔質の樹脂部材は、液体を吸収していない状態では、孔内には、空気等の気体が充填され、実質的に電気的に絶縁しているほど相対的に高抵抗値であり、一方、電解質を含む液体がその表面に付着すると、孔内の気体と前記液体とが置換することによって前記液体を吸収し、前記液体の吸収量の増加に従ってその抵抗値を減少させる。汗は、電解質を含む液体であるので、抵抗可変部材4は、その抵抗値を汗の吸収量に応じた値に変える。   The resistance variable member 4 is a member that changes a resistance value according to the amount of liquid absorbed. The resistance variable member 4 is, for example, a porous resin member (a porous body made of resin), and more specifically, is, for example, a sponge or the like because it gives a relatively good tactile sensation. In a state in which the porous resin member does not absorb liquid, the pores are filled with a gas such as air, and have a relatively high resistance value as they are substantially electrically insulated. When the liquid containing the electrolyte adheres to the surface, the gas in the pores is replaced with the liquid to absorb the liquid, and the resistance value decreases as the absorption amount of the liquid increases. Since the sweat is a liquid containing an electrolyte, the resistance variable member 4 changes its resistance value to a value corresponding to the amount of sweat absorbed.

これら第1および第2電極1、2は、第1および第2絶縁層1a、2aが外部に臨むように配置され、そして、抵抗可変部材4を介して並置される。第1電極1は、第1絶縁層1aで被覆された主面1sfを除く他の面、図1および図2に示す例では、紙面右側の側面(右側面)で抵抗可変部材4に接触している。より具体的には、抵抗可変部材4が通電可能な抵抗値である場合に、第1電極1は、前記右側面で、第1電極1と抵抗可変部材4との間で電気的に通電可能に接続される。第2電極2は、第2絶縁層2aで被覆された主面2sfを除く他の面、図1および図2に示す例では、紙面左側の側面(左側面)で抵抗可変部材4に接触している。より具体的には、抵抗可変部材4が通電可能な抵抗値である場合に、第2電極2は、前記左側面で、第2電極2と抵抗可変部材4との間で電気的に通電可能に接続される。   The first and second electrodes 1 and 2 are arranged so that the first and second insulating layers 1a and 2a face the outside, and are juxtaposed via a variable resistance member 4. The first electrode 1 contacts the variable resistance member 4 on the other surface except the main surface 1sf covered with the first insulating layer 1a, and in the example shown in FIGS. ing. More specifically, when the resistance variable member 4 has a resistance value at which current can flow, the first electrode 1 can electrically conduct between the first electrode 1 and the resistance variable member 4 on the right side surface. Connected to. The second electrode 2 contacts the variable resistance member 4 on the other surface except the main surface 2sf covered with the second insulating layer 2a, and in the example shown in FIGS. ing. More specifically, when the resistance variable member 4 has a resistance value that allows current to flow, the second electrode 2 can electrically conduct between the second electrode 2 and the resistance variable member 4 on the left side surface. Connected to.

このような第1電極1、第1絶縁層1a、抵抗可変部材4、第2電極2および第2絶縁層2aによって電極部Dが構成される。このような構成の電極部Dは、生体の汗を検出する場合、第1絶縁層1a、抵抗可変部材4および第2絶縁層2aの各表面に亘って生体が接触される。この電極部Dは、汗検出装置SDが車両用である場合に、車両に搭乗する、運転者や同乗者等の搭乗者(生体の一例)における腕や手等が触れる車両部位、好ましくは、汗腺が比較的発達している観点から、前記搭乗者の手(例えば掌や手指等)が触れる車両部位、例えばステアリングハンドル(ステアリングホイール)やドアトリム(例えばドアトリムのグリップハンドルやドアトリムのアームレスト等)等に配置される。図2には、電極部DがステアリングハンドルSHに配設されている例が示されている。ステアリングハンドルSHは、例えば、図2Aに示すように、円柱状の部材が円環状を呈している。図2Aは、ステアリングハンドルSHが中立位置である状態を示し、ステアリングハンドルSHにおける搭乗者(ここでは運転者)が握り操作の対象となる前記円環状の部分における第1周方向の一部に、図2Bに示すように、前記円柱状の第2周方向に第1および第2電極1、2が抵抗可変部材4を介して並置されるように電極部Dが配設されている。電極部Dの表面(第1絶縁層1a、抵抗可変部材4および第2絶縁層2aの各表面)とステアリングハンドルHSの表面とが面一となるように、ステアリングハンドルHSの電極部Dを配置するための凹所が形成され、電極部Dは、前記凹所に例えば接着剤ADによって貼着されて配設されている。なお、電極部Dは、前記円環状の全周に亘って配置されても良い。また、図2に示す例では、前記円柱状の周方向に配置されるため、第1および第2電極1、2ならびに抵抗可変部材4は、それぞれ、湾曲した板状であるが、配置場所によっては、その少なくともいずれかまたは共に平板状であっても良い。   The electrode portion D is configured by the first electrode 1, the first insulating layer 1a, the variable resistance member 4, the second electrode 2, and the second insulating layer 2a. When detecting the sweat of a living body, the electrode portion D having such a configuration is brought into contact with the living body over the surfaces of the first insulating layer 1a, the variable resistance member 4, and the second insulating layer 2a. When the sweat detection device SD is for a vehicle, the electrode portion D is a vehicle part that is touched by an arm or a hand of a driver (an example of a living body) such as a driver or a fellow passenger who gets on the vehicle, preferably, From the viewpoint that the sweat glands are relatively developed, the vehicle parts touched by the occupant's hands (for example, palms and fingers), such as steering handles (steering wheels) and door trims (for example, grip handles for door trims and armrests for door trims) Placed in FIG. 2 shows an example in which the electrode portion D is provided on the steering handle SH. As shown in FIG. 2A, for example, the steering handle SH has a columnar member having an annular shape. FIG. 2A shows a state in which the steering handle SH is in the neutral position, and a part of the annular portion of the steering handle SH which is to be gripped by the rider (here, the driver) in the first circumferential direction includes: As shown in FIG. 2B, an electrode portion D is provided so that the first and second electrodes 1 and 2 are juxtaposed via a resistance variable member 4 in the second circumferential direction of the columnar shape. The electrode portion D of the steering handle HS is arranged so that the surface of the electrode portion D (the respective surfaces of the first insulating layer 1a, the variable resistance member 4 and the second insulating layer 2a) and the surface of the steering handle HS are flush. The electrode portion D is disposed in the recess by, for example, being adhered with an adhesive AD. The electrode portion D may be arranged over the entire circumference of the ring. In the example shown in FIG. 2, since the first and second electrodes 1 and 2 and the variable resistance member 4 are each in the shape of a curved plate because they are arranged in the circumferential direction of the columnar shape, May be in the form of a flat plate.

抵抗可変部材4を配置するための、第1および第2電極1、2によって形成される離間空間における間隔(互いに並置された第1電極1と第2電極2との間の空隙における間隔)は、第1および第2電極1、2間に生体、例えば手指が入り込まない一方、十分に汗を吸収できて抵抗値が変化できることから、好ましくは、3mm〜5mmである。   The space in the space formed by the first and second electrodes 1 and 2 (the space in the gap between the first electrode 1 and the second electrode 2 juxtaposed to each other) for arranging the resistance variable member 4 is Since the living body, for example, a finger, does not enter between the first and second electrodes 1 and 2, it is preferably 3 mm to 5 mm because it can sufficiently absorb sweat and change the resistance value.

誘導素子3は、電極部Dに対して共振回路を構成するための素子であり、例えば、所定のインダクタンスLを持つコイル等である。   The inductive element 3 is an element for forming a resonance circuit with respect to the electrode section D, and is, for example, a coil having a predetermined inductance L.

共振抵抗測定部5は、これら上述の電極部Dと誘導素子3とを含む検出回路の共振抵抗を測定する装置である。より具体的には、共振抵抗測定部5は、交流電源51と、電流計52とを備える。交流電源51は、所定の周波数範囲、例えば500kHzないし4MHzの範囲で周波数を変更可能に構成され、制御処理部6に接続され、制御処理部6の制御に従って電極部Dに所定の電圧値で交流電力を供給する装置であり、例えば周波数可変で高周波電力を供給する高周波電源である。電流計52は、制御処理部6に接続され、電極部Dの電流値を測定する装置である。電流計52は、その測定した電流値を制御処理部6へ出力する。   The resonance resistance measurement unit 5 is a device that measures the resonance resistance of the detection circuit including the above-described electrode unit D and the inductive element 3. More specifically, the resonance resistance measuring unit 5 includes an AC power supply 51 and an ammeter 52. The AC power supply 51 is configured to be able to change the frequency within a predetermined frequency range, for example, in a range of 500 kHz to 4 MHz, is connected to the control processing unit 6, and controls the electrode unit D at a predetermined voltage value according to the control of the control processing unit 6. It is a device that supplies power, for example, a high-frequency power supply that supplies high-frequency power with variable frequency. The ammeter 52 is a device that is connected to the control processing unit 6 and measures the current value of the electrode unit D. The ammeter 52 outputs the measured current value to the control processing unit 6.

なお、共振抵抗測定部5と制御処理部6との接続は、有線であっても無線であっても良い。無線接続の場合では、例えば、Bluetooth(登録商標)規格やIrDA(Infrared Data Asscoiation)規格等の近距離無線通信が用いられて良い。   The connection between the resonance resistance measuring unit 5 and the control processing unit 6 may be wired or wireless. In the case of wireless connection, for example, short-range wireless communication such as the Bluetooth (registered trademark) standard or the IrDA (Infrared Data Association) standard may be used.

誘導素子3は、電極部Dにおける第1および第2電極1、2のいずれに接続されても良いが、図1に示す例では、その一方端子が第1電極1に接続され、その他方端子が共振抵抗測定部5の交流電源51を介して接地される。共振抵抗測定部5の電流計52は、その一方端子が第2電極2に接続され、その他方端子が接地される。   The inductive element 3 may be connected to any of the first and second electrodes 1 and 2 in the electrode section D, but in the example shown in FIG. 1, one terminal is connected to the first electrode 1 and the other terminal is connected. Are grounded via the AC power supply 51 of the resonance resistance measuring unit 5. The ammeter 52 of the resonance resistance measuring unit 5 has one terminal connected to the second electrode 2 and the other terminal grounded.

出力部7は、制御処理部6に接続され、制御処理部6の制御に従って、制御処理部6によって後述のように判定された発汗の有無や発汗量等を出力する装置であり、例えばCRTディスプレイ、LCD(液晶表示装置)および有機ELディスプレイ等の表示部(表示装置)や、プリンタ等の印刷装置等である。   The output unit 7 is a device that is connected to the control processing unit 6 and outputs the presence or absence of perspiration and the amount of perspiration determined by the control processing unit 6 as described later according to the control of the control processing unit 6, and includes, for example, a CRT display. , A display unit (display device) such as an LCD (liquid crystal display device) and an organic EL display, and a printing device such as a printer.

制御処理部6は、汗検出装置SDの各部5、7を当該機能に応じてそれぞれ制御し、例えば発汗量(例えば発汗量0(発汗無し)と発汗量有り等の発汗の有無や、相対的に小量の発汗量と相対的に大量の発汗量等の発汗量の大小)等の、生体の汗を検出するための回路である。制御処理部6は、例えば、CPU(Central Processing Unit)、記憶素子およびその周辺回路等を備えたマイクロコンピュータを備えて構成される。前記記憶素子は、例えば、不揮発性の記憶素子であるROM(Read Only Memory)や、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や、揮発性の記憶素子であって前記CPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等を備え、各種の所定のプログラムおよび各種の所定のデータを記憶する。前記各種の所定のプログラムには、例えば、汗検出装置SDの各部5、7を当該機能に応じてそれぞれ制御する制御プログラムや、共振抵抗測定部5で測定された共振抵抗値に基づいて汗の検出に関する所定の判定処理を行う汗判定プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、例えば後述の各閾値Thn等の、各プログラムを実行する上で必要なデータ等が含まれる。そして、制御処理部6は、前記制御処理プログラムが実行されることによって、制御部61および汗判定部62を前記CPUに機能的に備える。   The control processing unit 6 controls each of the units 5 and 7 of the sweat detection device SD in accordance with the function, for example, the amount of perspiration (for example, the presence or absence of perspiration such as perspiration 0 (no perspiration) and perspiration, and the relative This is a circuit for detecting perspiration of a living body (e.g., the amount of perspiration such as a small amount of perspiration and a relatively large amount of perspiration). The control processing unit 6 includes, for example, a microcomputer including a CPU (Central Processing Unit), a storage element, a peripheral circuit thereof, and the like. The storage element is, for example, a non-volatile storage element such as a ROM (Read Only Memory), a rewritable non-volatile storage element such as an EEPROM (Electrically Erasable Programmable Read Only Memory), or a volatile storage element. A random access memory (RAM) serving as a so-called working memory of the CPU, and stores various predetermined programs and various predetermined data. The various predetermined programs include, for example, a control program for controlling each of the units 5 and 7 of the sweat detection device SD according to the function or a sweat program based on the resonance resistance value measured by the resonance resistance measurement unit 5. A control processing program such as a sweat determination program for performing a predetermined determination process related to detection is included. The various types of predetermined data include, for example, data necessary for executing each program, such as thresholds Thn described below. The control processing unit 6 includes a control unit 61 and a sweat determination unit 62 in the CPU functionally by executing the control processing program.

制御部61は、汗検出装置SDの各部5、7を当該機能に応じてそれぞれ制御し、汗検出装置SD全体の制御を司るものである。   The control unit 61 controls each unit 5, 7 of the sweat detection device SD according to the function, and controls the entire sweat detection device SD.

汗判定部62は、共振抵抗測定部5で測定された共振抵抗値に基づいて汗の検出に関する所定の判定処理を行うものである。本実施形態では、汗判定部62は、前記共振抵抗測定部で測定された共振抵抗値に基づいて発汗量を判定する。   The sweat determination unit 62 performs a predetermined determination process regarding sweat detection based on the resonance resistance value measured by the resonance resistance measurement unit 5. In the present embodiment, the sweat determination unit 62 determines the amount of perspiration based on the resonance resistance value measured by the resonance resistance measurement unit.

より具体的には、汗判定部62は、次のように発汗の有無や発汗量を判定している。抵抗可変部材4は、上述のように、液体の吸収量に応じて抵抗値を可変する。より詳しくは、抵抗可変部材4は、液体の吸収が無い場合では、実質的に電気的に絶縁しているほど相対的に高抵抗値であり、液体の吸収量の増加に従ってその抵抗値を減少させる。抵抗可変部材4が多孔質の樹脂部材である場合では、液体の吸収が無い場合では、孔内には、空気等の気体が充填され、抵抗可変部材4は、実質的に電気的に絶縁しているほど相対的に高抵抗値(所定の第1抵抗値)であり、電解質を含む液体がその表面に付着すると、孔内の気体と前記液体とが置換することによって前記液体を吸収し、前記液体の吸収量の増加に従ってその抵抗値を減少させ、全孔内が前記液体で充填されると、通電可能なほど相対的に低抵抗値(前記第1抵抗値より低い所定の第2抵抗値)となる。逆に、通電可能な前記第2抵抗値の抵抗可変部材4は、吸収していた液体が乾燥により抜けて行くと、その抵抗値を増加させ、完全乾燥で、実質的に電気的に絶縁しているほどの前記第1抵抗値となる。   More specifically, the sweat determination unit 62 determines the presence or absence of perspiration and the amount of perspiration as follows. As described above, the resistance variable member 4 changes the resistance value according to the liquid absorption amount. More specifically, when there is no liquid absorption, the resistance variable member 4 has a relatively high resistance value as it is substantially electrically insulated, and its resistance value decreases as the liquid absorption amount increases. Let it. In the case where the resistance variable member 4 is a porous resin member, when there is no liquid absorption, the hole is filled with a gas such as air, and the resistance variable member 4 is substantially electrically insulated. Is relatively high resistance value (predetermined first resistance value), and when the liquid containing the electrolyte adheres to the surface thereof, the gas in the pores is replaced by the liquid to absorb the liquid, The resistance value is decreased in accordance with the increase in the absorption amount of the liquid, and when the entire hole is filled with the liquid, the resistance value is relatively low (a predetermined second resistance value lower than the first resistance value) so that current can flow. Value). Conversely, the variable resistance member 4 having the second resistance value, which can be energized, increases the resistance value when the absorbed liquid comes off due to drying, and completely drys, and becomes substantially electrically insulated. The first resistance value.

このため、第1および第2絶縁層1a、2aを介して第1および第2電極1、2に亘って生体LB、例えば手指LBが電極部Dに接触すると、発汗が無い場合では、抵抗可変部材4が実質的に電気的に絶縁しているほど相対的に高抵抗値であるので、図3Aに示すように、交流電源51から給電される電流は、交流電源51、誘導素子3、第1電極1、第1絶縁層1a、手指LB、第2絶縁層2a、第2電極2および電流計52の第1A経路α1−1および交流電源51、誘導素子3、第1電極1、第1絶縁層1aおよび生体LBの第1B経路α1−2(例えば生体LBを介してアースされる経路)で流れる。図3Aにおいて、Cs_TXは、第1絶縁層1aを介した第1電極1と手指LBとの間における静電容量であり、Cs_RXは、第2絶縁層2aを介した第2電極2と手指LBとの間における静電容量であり、Rsは、手指LBの抵抗値であり、Cbは、生体LBの静電容量であり、Rbは、生体LBの抵抗値である。   For this reason, when the living body LB, for example, the finger LB contacts the electrode portion D across the first and second electrodes 1 and 2 via the first and second insulating layers 1a and 2a, the resistance is variable when there is no perspiration. Since the resistance is relatively high as the member 4 is substantially electrically insulated, the current supplied from the AC power supply 51 is, as shown in FIG. One electrode 1, first insulating layer 1a, finger LB, second insulating layer 2a, second electrode 2 and first A path α1-1 of ammeter 52 and AC power supply 51, inductive element 3, first electrode 1, first electrode It flows through the insulating layer 1a and the first B path α1-2 of the living body LB (for example, a path grounded via the living body LB). In FIG. 3A, Cs_TX is the capacitance between the first electrode 1 and the finger LB via the first insulating layer 1a, and Cs_RX is the capacitance between the second electrode 2 and the finger LB via the second insulating layer 2a. , Rs is the resistance value of the finger LB, Cb is the capacitance of the living body LB, and Rb is the resistance value of the living body LB.

一方、生体LBが発汗し、その汗が抵抗可変部材4に付着して吸収されると、抵抗可変部材4の抵抗値が発汗の無い場合に較べて低下し、相対的に少量の発汗の場合、すなわち、抵抗可変部材4が所定の第1発汗量を吸収した場合では、図3Bに示すように、交流電源51から給電される電流は、交流電源51、誘導素子3、第1電極1、第1絶縁層1a、手指LB、第2絶縁層2a、第2電極2および電流計52の第2A経路α2−1および交流電源51、第1電極1、抵抗可変部材4、第2電極2および電流計52の第2B経路α2−2で流れる。図3Bにおいて、Cmは、抵抗可変部材4の静電容量であり、Rmは、抵抗可変部材4の抵抗値である。   On the other hand, when the living body LB sweats and the sweat adheres to the variable resistance member 4 and is absorbed, the resistance value of the variable resistance member 4 decreases as compared with the case where there is no perspiration. That is, when the resistance variable member 4 absorbs the predetermined first amount of perspiration, as shown in FIG. 3B, the current supplied from the AC power supply 51 is the AC power supply 51, the inductive element 3, the first electrode 1, The first insulating layer 1a, the finger LB, the second insulating layer 2a, the second electrode 2 and the second A path α2-1 of the ammeter 52 and the AC power supply 51, the first electrode 1, the resistance variable member 4, the second electrode 2, The current flows through the second B path α2-2 of the ammeter 52. 3B, Cm is the capacitance of the variable resistance member 4, and Rm is the resistance value of the variable resistance member 4.

このように発汗の有無によって抵抗可変部材4が絶縁状態から通電可能状態に変化し、上述のように電流経路が第1経路α1(α1−1、α1−2)から第2経路α2(α2−1、α2−2)に変化するので、共振抵抗値を閾値で判定することで発汗の有無が判定可能となる。より具体的には、汗判定部62は、共振抵抗測定部5で測定された共振抵抗値と、予め設定された所定の第1閾値Th1とを比較し、この比較の結果、共振抵抗測定部5で測定された共振抵抗値が前記所定の第1閾値Th1以上である場合に、発汗無しと判定し、共振抵抗測定部5で測定された共振抵抗値が前記所定の第1閾値Th1未満である場合に、発汗有りと判定する。共振抵抗値は、交流電源51の周波数を変更(走査、スイープ)しながら電流計52で電流値を測定し、電流計52が極値を検出した時点での電流値で、交流電源51の電圧値を除算した値で与えられる(共振抵抗値=(交流電源51の電圧値)/(極値での電流計52の測定電流値))。   As described above, the resistance variable member 4 changes from the insulated state to the energizable state depending on the presence or absence of perspiration, and the current path changes from the first path α1 (α1-1, α1-2) to the second path α2 (α2-) as described above. 1, α2-2), the presence or absence of perspiration can be determined by determining the resonance resistance value using a threshold value. More specifically, the sweat determination unit 62 compares the resonance resistance value measured by the resonance resistance measurement unit 5 with a predetermined first threshold value Th1, and as a result of the comparison, the resonance resistance measurement unit If the resonance resistance value measured at 5 is equal to or greater than the predetermined first threshold value Th1, it is determined that there is no perspiration, and if the resonance resistance value measured at the resonance resistance measurement unit 5 is less than the predetermined first threshold value Th1, In some cases, it is determined that sweating is present. The resonance resistance value is a current value measured by the ammeter 52 while changing (scanning, sweeping) the frequency of the AC power supply 51, and is a current value when the ammeter 52 detects an extreme value. It is given by the value obtained by dividing the value (resonance resistance value = (voltage value of AC power supply 51) / (measured current value of ammeter 52 at extreme value)).

抵抗可変部材4に代え、第1および第2絶縁層1a、2aと同一材料で第1絶縁層1aと第2絶縁層2aと互いに連結した場合、手指LBで発汗すると、この発汗によって手指LBの抵抗値Rsが低下し、共振周波数frが殆ど変化しない状態で共振抵抗値が低下するように変化するが、その変化は、小さいため、検出が難しい。また、手指LBの僅かな動きによっても共振抵抗値が変動してしまうため、共振抵抗値の変化が発汗に起因するか、手指LBの動きに起因するかを判別することも難しい。これに対し、本実施形態では、抵抗可変部材4を用いるので、発汗による手指LBの抵抗値Rsの変化に較べて、共振抵抗値を明確に変化させることができ、発汗の有無がより精度良く検出可能となる。   When the first insulating layer 1a and the second insulating layer 2a are connected to each other with the same material as the first and second insulating layers 1a and 2a instead of the variable resistance member 4, when the finger LB sweats, the sweat of the finger LB is generated due to the sweating. The resistance value Rs decreases, and the resonance frequency fr changes so as to decrease in a state where the resonance frequency fr hardly changes. However, the change is small, so that the detection is difficult. Further, since the resonance resistance value fluctuates even by a slight movement of the finger LB, it is difficult to determine whether the change in the resonance resistance value is caused by sweating or the movement of the finger LB. On the other hand, in the present embodiment, since the resistance variable member 4 is used, the resonance resistance value can be clearly changed as compared with the change in the resistance value Rs of the finger LB due to perspiration, and the presence or absence of perspiration is more accurately determined. It becomes detectable.

そして、生体LBが例えば相対的に大量に発汗するなど、抵抗可変部材4が前記第1発汗量より多い所定の第2発汗量(例えば抵抗可変部材4の上限量)を吸収した場合では、抵抗可変部材4の抵抗値Rmが低い抵抗値になり、図3Cに示すように、交流電源51から給電される電流は、主に、交流電源51、誘導素子3、第1電極1、抵抗可変部材4、第2電極2および電流計52の第3経路α3で流れる。   In the case where the resistance variable member 4 absorbs a predetermined second sweat amount (for example, the upper limit amount of the resistance variable member 4) larger than the first sweat amount, such as when the living body LB sweats a relatively large amount, for example, the resistance is reduced. As shown in FIG. 3C, the current supplied from the AC power supply 51 mainly includes the AC power supply 51, the inductive element 3, the first electrode 1, and the resistance variable member. 4, flows through the second electrode 2 and the third path α3 of the ammeter 52.

図3Bに示す相対的に少量の吸収の場合(通常時、少量吸収時)と、図3Cに示す相対的に大量の吸収の場合(付着時、大量吸収時)とにおいて、電極部Dでは、静電容量Cs_TXのコンデンサ、抵抗値Rsの抵抗および静電容量Cs_RXのコンデンサから成る直列回路に、静電容量Cmのコンデンサおよび抵抗値Rmの抵抗から成る並列回路が、並列に接続された回路が形成されるが、図3Cに示す大量吸収時では、上述のように、抵抗可変部材4での通電が優位となり、図3Bに示す少量吸収時に較べて図3Cに示す大量吸収時では、その合成静電容量Ccは、増加し、その合成抵抗値Rcは、減少する。その共振抵抗値(周波数走査での最小のインピーダンス値)Zminは、次式1で与えられる。
式1;Zmin=Rc・L/(L+Cc・Rc
In the case of relatively small amount of absorption shown in FIG. 3B (normal time, small amount of absorption) and in the case of relatively large amount of absorption shown in FIG. A circuit in which a parallel circuit including a capacitor having a capacitance Cm and a resistor having a resistance value Rm is connected in parallel to a series circuit including a capacitor having a capacitance Cs_TX, a resistance having a resistance value Rs, and a capacitor having a capacitance value Cs_RX. Although formed, at the time of large-volume absorption shown in FIG. 3C, as described above, the conduction in the variable resistance member 4 becomes dominant, and at the time of large-volume absorption shown in FIG. The capacitance Cc increases, and the combined resistance value Rc decreases. The resonance resistance value (minimum impedance value in frequency scanning) Zmin is given by the following equation 1.
Formula 1; Zmin = Rc · L / (L + Cc · Rc 2 )

一例として、図3Bに示す少量吸収時における合成静電容量Ccおよび合成抵抗値Rcをそれぞれ10.5pFおよび14kΩとし(Cc=10.5pF、Rc=14kΩ)、図3Cに示す大量吸収時における合成静電容量Ccおよび合成抵抗値Rcをそれぞれ22pFおよび2.4kΩとし(Cc=22pF、Rc=2.4kΩ)、上述の式1を用いてシミュレーションすると、図4に示す結果が得られる。図4において、破線で示す、共振周波数変化に対する共振抵抗変化を表す第1特性曲線β1が図3Bに示す少量吸収時におけるシミュレーション結果であり、実線で示す、共振周波数変化に対する共振抵抗変化を表す第2特性曲線β2が図3Cに示す大量吸収時におけるシミュレーション結果である。図4から分かるように、第1および第2特性曲線β1、β2は、それぞれ、共振周波数frの増加に従って共振抵抗値Zminも増加する。そして、第1および第2特性曲線β1、β2は、共振周波数frが同一である場合に、第2特性曲線β2の共振抵抗値Zminが第1特性曲線β1の共振抵抗値Zminより大きい関係である。   As an example, the combined capacitance Cc and the combined resistance value Rc at the time of small absorption shown in FIG. 3B are 10.5 pF and 14 kΩ, respectively (Cc = 10.5 pF, Rc = 14 kΩ), and the combination at the time of large absorption shown in FIG. 3C. When the capacitance Cc and the combined resistance value Rc are set to 22 pF and 2.4 kΩ, respectively (Cc = 22 pF, Rc = 2.4 kΩ), the simulation shown in FIG. 4 yields the results shown in FIG. In FIG. 4, a first characteristic curve β1 indicated by a broken line and representing a change in resonance resistance with respect to a change in resonance frequency is a simulation result at the time of absorption of a small amount shown in FIG. 3B. The two characteristic curves β2 are simulation results at the time of large-volume absorption shown in FIG. 3C. As can be seen from FIG. 4, in each of the first and second characteristic curves β1, β2, the resonance resistance value Zmin also increases as the resonance frequency fr increases. The first and second characteristic curves β1 and β2 have a relationship that the resonance resistance value Zmin of the second characteristic curve β2 is larger than the resonance resistance value Zmin of the first characteristic curve β1 when the resonance frequency fr is the same. .

このように共振周波数変化に対する共振抵抗変化を表す特性曲線βは、抵抗可変部材4に相対的に少量の汗が吸収されたか相対的に大量の汗が吸収されたか(すなわち、抵抗可変部材4の抵抗値変化)に応じて変化する。このため、共振抵抗値に基づいて特性曲線を判定することで発汗量が判定可能となる。より具体的には、電極部Dと誘導素子3とを含む検出回路は、上述のように、共振周波数変化に対する共振抵抗変化を表す特性曲線βを、抵抗可変部材4の抵抗値に応じて互いに異なるように第1および第2特性曲線β1、β2として2個を含み、汗判定部62は、共振抵抗測定部5で測定された共振抵抗値に基づいて、前記検出回路が動作している特性曲線を判定することによって、発汗量を判定する。より詳しくは、汗判定部62は、共振抵抗測定部5で測定された共振抵抗値が所定の第2閾値Th2未満である場合に、前記検出回路が第1特性曲線β1で動作していると判定して第1発汗量の発汗(相対的に少量の発汗)と判定し、共振抵抗測定部5で測定された共振抵抗値が第2閾値Th2以上である場合に、前記検出回路が第2特性曲線β2で動作していると判定して前記第1発汗量より多い第2発汗量の発汗(相対的に大量の発汗)と判定する。   As described above, the characteristic curve β representing the resonance resistance change with respect to the resonance frequency change indicates whether the resistance variable member 4 has absorbed a relatively small amount of sweat or a relatively large amount of sweat (that is, the resistance variable member 4 (Change in resistance). Therefore, the amount of perspiration can be determined by determining the characteristic curve based on the resonance resistance value. More specifically, the detection circuit including the electrode unit D and the inductive element 3 mutually changes the characteristic curve β representing the resonance resistance change with respect to the resonance frequency change according to the resistance value of the resistance variable member 4 as described above. The first and second characteristic curves β1 and β2 include two differently, and the sweat determination unit 62 determines the characteristic in which the detection circuit operates based on the resonance resistance value measured by the resonance resistance measurement unit 5. The amount of perspiration is determined by determining the curve. More specifically, the sweat determination unit 62 determines that the detection circuit is operating with the first characteristic curve β1 when the resonance resistance value measured by the resonance resistance measurement unit 5 is less than the second threshold value Th2. If the resonance resistance value measured by the resonance resistance measuring unit 5 is equal to or greater than the second threshold Th2, the detection circuit determines that the first perspiration amount is a perspiration (a relatively small amount of perspiration). It is determined that the operation is performed by the characteristic curve β2, and it is determined that the second sweat amount is larger than the first sweat amount (relatively large amount of sweat).

上述では、生体LBが少量で発汗する場合および大量に発汗する場合とで活動すれば、発汗量が判定できる。一方、少量の発汗が継続した結果、抵抗可変部材4が汗で充填され、抵抗可変部材4が大量に汗を吸収する場合も生じ得る。上述のように、共振抵抗値と第2閾値Th2との比較だけでは、共振抵抗測定部5で測定された共振抵抗値が第2閾値Th2以上である場合に、少量の発汗が継続し、前記検出回路が第1特性曲線β1から第2特性曲線β2への遷移中で動作している場合を含んでしまう。上述では、汗判定部62は、共振抵抗測定部5で測定された共振抵抗値が第2閾値Th2以上である場合に、前記検出回路が第2特性曲線β2でまたは第1特性曲線β1から第2特性曲線β2への遷移中で動作していると判定して前記第2発汗量の発汗(相対的に大量の発汗)と判定している。このため、より精度良く大量の発汗を判定するために、第1および第2特性曲線間の遷移時間あるいは所定の時間での共振抵抗値の時間変化率が用いられる。図5には、一実験例の結果が示されている。この実験では、所定の共振周波数で交流電源51から前記検出回路に給電した場合における共振抵抗値(最小のインピーダンス)の時間経過が観測され、実験開始後の約30秒のタイミングで大量発汗の汗に代え充分な水道水(水道水は通常電解質を含む)を抵抗可変部材4に付着させた。図5から分かるように、充分な水道水が抵抗可変部材4に付着されると、比較的、短時間で前記検出回路が第2特性曲線β2で動作するようになる。したがって、第1および第2特性曲線間の遷移時間を閾値で判定することで大量発汗か否かが判定できる。あるいは、所定の時間での共振抵抗値の時間変化率(傾き)を閾値で判定することで大量発汗か否かが判定できる。より具体的には、汗判定部62は、さらに、共振抵抗測定部5で測定された共振抵抗値に基づいて、第1および第2特性曲線β1、β2間の遷移時間または所定の時間での共振抵抗値の時間変化率を判定することによって、発汗量を判定する。より詳しくは、汗判定部62は、さらに、共振抵抗測定部5で測定された共振抵抗値に基づいて、共振抵抗値が所定の第1サブ閾値Ths1から前記第1サブ閾値より大きい所定の第2サブ閾値Ths2に到達するまでの時間を求め、前記求めた時間が所定の第3閾値Th3以下である場合に、前記第2発汗量の発汗(相対的に大量の発汗)と判定し、前記求めた時間が第3閾値Th3を超えている場合に、前記第2発汗量の発汗ではないと判定する。あるいは、汗判定部62は、さらに、共振抵抗測定部5で測定された共振抵抗値に基づいて、所定の時間での共振抵抗値の時間変化率を求め、前記求めた共振抵抗値の時間変化率が所定の第4閾値Th4以上である場合に、前記第2発汗量の発汗(相対的に大量の発汗)と判定し、前記求めた共振抵抗値の時間変化率が第4閾値Th4未満である場合に、前記第2発汗量の発汗ではないと判定する。   In the above description, the amount of perspiration can be determined if the living LB sweats in a small amount or in a large amount. On the other hand, as a result of continuing a small amount of perspiration, the variable resistance member 4 may be filled with sweat, and the variable resistance member 4 may absorb a large amount of sweat. As described above, only by comparing the resonance resistance value with the second threshold value Th2, when the resonance resistance value measured by the resonance resistance measurement unit 5 is equal to or more than the second threshold value Th2, a small amount of sweating continues, This includes the case where the detection circuit operates during the transition from the first characteristic curve β1 to the second characteristic curve β2. In the above description, when the resonance resistance value measured by the resonance resistance measuring unit 5 is equal to or more than the second threshold value Th2, the sweat determination unit 62 determines whether the detection circuit has the second characteristic curve β2 or the first characteristic curve β1 It is determined that the operation is being performed during the transition to the two characteristic curves β2, and it is determined that the second amount of sweating is a perspiration (relatively large amount of perspiration). For this reason, in order to determine a large amount of sweat more accurately, the transition time between the first and second characteristic curves or the time change rate of the resonance resistance value at a predetermined time is used. FIG. 5 shows the results of one experimental example. In this experiment, the passage of the resonance resistance value (minimum impedance) when power was supplied from the AC power supply 51 to the detection circuit at a predetermined resonance frequency was observed, and at about 30 seconds after the start of the experiment, a large amount of sweating was observed. Instead, sufficient tap water (tap water usually contains an electrolyte) was attached to the resistance variable member 4. As can be seen from FIG. 5, when sufficient tap water is attached to the resistance variable member 4, the detection circuit operates on the second characteristic curve β2 in a relatively short time. Therefore, by determining the transition time between the first and second characteristic curves with the threshold value, it is possible to determine whether or not a large amount of sweating occurs. Alternatively, it is possible to determine whether or not it is a large amount of sweating by determining a time change rate (slope) of the resonance resistance value at a predetermined time by a threshold value. More specifically, the sweat determination unit 62 further determines a transition time between the first and second characteristic curves β1 and β2 or a predetermined time based on the resonance resistance value measured by the resonance resistance measurement unit 5. The amount of perspiration is determined by determining the time change rate of the resonance resistance value. More specifically, the sweat determination unit 62 further determines, based on the resonance resistance value measured by the resonance resistance measurement unit 5, that the resonance resistance value is larger than the predetermined first sub-threshold Ths <b> 1 than the first sub-threshold. The time required to reach the second sub-threshold Ths2 is determined. If the determined time is equal to or less than the predetermined third threshold Th3, it is determined that the second amount of perspiration is a perspiration (relatively large amount of perspiration). When the obtained time exceeds the third threshold Th3, it is determined that the perspiration is not the second amount of perspiration. Alternatively, the sweat determination unit 62 further obtains a time change rate of the resonance resistance value for a predetermined time based on the resonance resistance value measured by the resonance resistance measurement unit 5, and determines the time change of the obtained resonance resistance value. When the rate is equal to or greater than a predetermined fourth threshold Th4, it is determined that the second amount of sweating is perspiration (relatively large amount of perspiration), and the time change rate of the obtained resonance resistance value is less than the fourth threshold Th4. In some cases, it is determined that the perspiration is not the second amount of perspiration.

これら上述の前記所定の第1ないし第4閾値Th1〜Th4、前記所定の第1および第2サブ閾値Ths1、Ths2、ならびに、前記所定の時間は、複数のサンプルから予め適宜に設定される。あるいは、これら前記所定の第1ないし第4閾値Th1〜Th4、前記所定の第1および第2サブ閾値Ths1、Ths2、ならびに、前記所定の時間は、第1絶縁層1aで被覆された第1電極1、第2絶縁層2aで被覆された第2電極2、および、抵抗可変部材4における各材料および各形状、ならびに、誘導素子3のインダクタンスL等を考慮することによって得られた設計値(シミュレーション値を含む)で設定されても良い。   The above-described first to fourth threshold values Th1 to Th4, the first and second sub-threshold values Ths1, Ths2, and the predetermined time are appropriately set in advance from a plurality of samples. Alternatively, the predetermined first to fourth thresholds Th1 to Th4, the predetermined first and second sub-thresholds Ths1, Ths2, and the predetermined time are the first electrodes covered with the first insulating layer 1a. 1. Design values (simulations) obtained by considering the materials and shapes of the second electrode 2 and the variable resistance member 4 covered with the second insulating layer 2a and the inductance L of the inductive element 3 and the like. Values (including values).

なお、このような第1および第2特性曲線間の遷移時間または所定の時間での共振抵抗値の時間変化率を用いる場合では、第1閾値Th1と第2閾値Th2とは、同値であっても良い(Th1=Th2)。このような場合では、共振抵抗値が第1閾値Th1(第2閾値Th2)以上である場合、汗判定部62は、発汗が無いと判定し、共振抵抗値が第1閾値Th1(第2閾値Th2)未満である場合であって所定の時間での共振抵抗値の時間変化率が第4閾値Th4未満である場合(または前記時間が第3閾値Th3を超えている場合)、汗判定部62は、少量の発汗が有ると判定し、共振抵抗値が第1閾値Th1(第2閾値Th2)未満である場合であって所定の時間での共振抵抗値の時間変化率が第4閾値Th4以上である場合(または前記時間が第3閾値Th3以下である場合)、汗判定部62は、大量の発汗が有ると判定する。言い換えれば、汗判定部62は、共振抵抗測定部5で測定された共振抵抗値が減少傾向を示して第1閾値Th1(第2閾値Th2)を下回った後に(図5において、ポイントT0からポイントT1へ)、増加傾向を示して第4閾値Th4以上の時間変化率で増加した場合に(図5において、ポイントT1からポイントT2へ、さらにポイントT3へ)、大量の発汗が有ると判定する。   When the transition time between the first and second characteristic curves or the time change rate of the resonance resistance value at a predetermined time is used, the first threshold value Th1 and the second threshold value Th2 are equal. (Th1 = Th2). In such a case, if the resonance resistance value is equal to or greater than the first threshold value Th1 (second threshold value Th2), the sweat determination unit 62 determines that there is no perspiration, and the resonance resistance value is reduced to the first threshold value Th1 (second threshold value Th2). Th2), if the time change rate of the resonance resistance value at a predetermined time is less than the fourth threshold Th4 (or if the time exceeds the third threshold Th3), the sweat determination unit 62 Is determined when there is a small amount of perspiration, the resonance resistance value is less than the first threshold value Th1 (second threshold value Th2), and the time change rate of the resonance resistance value in a predetermined time is equal to or greater than the fourth threshold value Th4. (Or the time is equal to or less than the third threshold Th3), the sweat determination unit 62 determines that there is a large amount of perspiration. In other words, the sweat determination unit 62 determines that the resonance resistance value measured by the resonance resistance measurement unit 5 has a tendency to decrease and falls below the first threshold Th1 (second threshold Th2) (in FIG. (To T1), when it shows an increasing tendency and increases at a time rate of change equal to or greater than the fourth threshold value Th4 (in FIG. 5, from point T1 to point T2, further to point T3), it is determined that there is a large amount of sweating.

次に、本実施形態の動作について説明する。図6は、実施形態における汗検出装置の動作を示すフローチャートである。ここでは、第1および第2サブ閾値Ths1、Ths2を必要としないので、共振抵抗値の時間変化率を用いる場合について説明するが、第1および第2特性曲線間の遷移時間を用いる場合についても同様に説明できる。また、車両には、車室内の温度を測定する温度計が備えられ、前記温度計は、制御処理部6に接続され、制御処理部6の制御に従って車室内の温度を測定し、その測定結果を制御処理部6へ出力している。   Next, the operation of the present embodiment will be described. FIG. 6 is a flowchart illustrating the operation of the sweat detection device according to the embodiment. Here, since the first and second sub-thresholds Ths1 and Ths2 are not required, the case where the time change rate of the resonance resistance value is used will be described. However, the case where the transition time between the first and second characteristic curves is used is also described. The same can be said. Further, the vehicle is provided with a thermometer for measuring the temperature in the passenger compartment. The thermometer is connected to the control processing unit 6, and measures the temperature in the passenger compartment according to the control of the control processing unit 6, and the measurement result is obtained. Is output to the control processing unit 6.

このような汗検出装置SDは、その電源が投入されると、必要な各部の初期化を実行し、その稼働を始める。その制御処理プログラムの実行によって、制御処理部6には、制御部61および汗判定部62が機能的に構成される。そして、汗検出装置SDは、予め設定された所定のサンプリング間隔おきに、次のように動作することで、生体LBの汗を検出している。   When the power of the sweat detection device SD is turned on, the necessary components are initialized, and the sweat detection device SD starts operating. By executing the control processing program, the control processing unit 6 has a control unit 61 and a sweat determination unit 62 functionally configured. The sweat detection device SD detects sweat in the living body LB by operating as follows at predetermined sampling intervals set in advance.

図6において、制御処理部6は、前記温度計で測定された車室内の温度変化△Tが予め設定された温度閾値T0未満であるか否かを判定する(S1)。発汗量で、精神状態に起因する発汗か、身体状態に起因する発汗かを判別することができると言われているが、生体LBの周囲温度(環境温度)によっても発汗するため、この処理S1は、生体LBの周囲温度に起因する発汗であるか否かを判定する処理である。この判定の結果、車室内の温度変化△Tが温度閾値T0以上である場合(No)では、制御処理部6は、今回のサンプリングタイミングでの処理を終了し、一方、前記判定の結果、車室内の温度変化△Tが温度閾値T0未満である場合(Yes)では、制御処理部6は、次に、処理S2を実行する。   In FIG. 6, the control processing unit 6 determines whether or not the temperature change ΔT in the cabin measured by the thermometer is less than a preset temperature threshold value T0 (S1). It is said that it is possible to determine whether the sweat is due to the mental condition or the sweat due to the physical condition based on the amount of sweat. However, since the sweat is caused also by the ambient temperature (environmental temperature) of the living body LB, this process S1 is performed. Is a process for determining whether or not sweating is caused by the ambient temperature of the living body LB. If the result of this determination is that the temperature change ΔT in the vehicle compartment is equal to or greater than the temperature threshold value T0 (No), the control processing unit 6 ends the process at the current sampling timing. When the temperature change ΔT in the room is less than the temperature threshold value T0 (Yes), the control processing unit 6 next executes a process S2.

この処理S2では、制御処理部6は、共振抵抗測定部5を用いて共振抵抗値を測定する(S2)。より具体的には、制御処理部6は、交流電源51の周波数を変更しながら電流計52で電流値を測定することによって、電流計52が極値を検出した時点での電流値を求め、この求めた電流値で、交流電源51の電圧値を除算することによって、その除算結果を共振抵抗値として求める。   In this process S2, the control processing unit 6 measures the resonance resistance value using the resonance resistance measurement unit 5 (S2). More specifically, the control processing unit 6 measures the current value with the ammeter 52 while changing the frequency of the AC power supply 51, thereby obtaining the current value at the time when the ammeter 52 detects the extreme value. By dividing the voltage value of the AC power supply 51 by the obtained current value, the result of the division is obtained as a resonance resistance value.

続いて、制御処理部6は、汗判定部62によって、この求めた共振抵抗値が第1閾値Th1以上であるか否かを判定する(S3)。この判定の結果、前記共振抵抗値が第1閾値Th1以上である場合(Yes)では、汗判定部62は、発汗していないと判定し、今回のサンプリングタイミングでの処理を終了する。なお、汗判定部62は、発汗が無いことを出力部7に出力した後に、今回のサンプリングタイミングでの処理を終了しても良い。一方、前記判定の結果、前記共振抵抗値が第1閾値Th1未満である場合(No)では、汗判定部62は、次に、処理S4を実行する。この実施形態では、一例として、第1閾値Th1(=第2閾値Th2)は、約255Ω〜275Ωであり、例えば260Ωに設定される。   Subsequently, the control processing unit 6 causes the sweat determination unit 62 to determine whether or not the obtained resonance resistance value is equal to or more than the first threshold Th1 (S3). If the result of this determination is that the resonance resistance value is equal to or greater than the first threshold value Th1 (Yes), the sweat determination unit 62 determines that sweating has not occurred and ends the processing at the current sampling timing. Note that the sweat determination unit 62 may end the processing at the current sampling timing after outputting to the output unit 7 that there is no perspiration. On the other hand, if the result of the determination is that the resonance resistance value is less than the first threshold value Th1 (No), then the sweat determination unit 62 executes the process S4. In this embodiment, as an example, the first threshold value Th1 (= second threshold value Th2) is approximately 255Ω to 275Ω, and is set to, for example, 260Ω.

この処理S4では、汗判定部62は、所定の時間での共振抵抗値の時間変化率を求め、この求めた共振抵抗値の時間変化率が第4閾値Th4以上であるか否かを判定する。この判定の結果、共振抵抗値の時間変化率が第4閾値Th4未満である場合(No)では、汗判定部62は、相対的に少量の発汗と判定し、次に、この少量の発汗が有ることを出力部7に出力し(S5)、今回のサンプリングタイミングでの処理を終了する。一方、前記判定の結果、共振抵抗値の時間変化率が第4閾値Th4以上である場合(Yes)では、汗判定部62は、相対的に大量の発汗と判定し、次に、この大量の発汗が有ることを出力部7に出力し(S6)、今回のサンプリングタイミングでの処理を終了する。この実施形態では、一例として、第4閾値Th4は、約30Ω/秒〜60Ω/秒であり、例えば30Ω/秒に設定される。なお、図示を省略するが、別の実験では、小量発汗時における共振抵抗値の最小値が194.53Ωであり、大量発汗時の共振抵抗値の最小値が336.86Ωであり、その小量発汗時から大量発汗時までの遷移時間が2.5秒という結果が得られており、これによれば共振抵抗値の時間変化率が56.932Ωであり、約60Ωである。   In this process S4, the sweat determination unit 62 obtains the time change rate of the resonance resistance value at a predetermined time, and determines whether the obtained time change rate of the resonance resistance value is equal to or more than the fourth threshold Th4. . As a result of this determination, if the time rate of change of the resonance resistance value is less than the fourth threshold Th4 (No), the sweat determination unit 62 determines that the perspiration is a relatively small amount, and then this small amount of perspiration is detected. Is output to the output unit 7 (S5), and the process at the current sampling timing ends. On the other hand, as a result of the determination, if the time rate of change of the resonance resistance value is equal to or greater than the fourth threshold value Th4 (Yes), the sweat determination unit 62 determines that the perspiration is a relatively large amount. The fact that sweating is present is output to the output unit 7 (S6), and the processing at the current sampling timing is terminated. In this embodiment, as an example, the fourth threshold value Th4 is approximately 30Ω / sec to 60Ω / sec, and is set to, for example, 30Ω / sec. Although not shown, in another experiment, the minimum value of the resonance resistance value at the time of a small amount of sweating was 194.53Ω, and the minimum value of the resonance resistance value at the time of a large amount of sweating was 336.86Ω. The transition time from the time of heavy sweating to the time of heavy sweating was 2.5 seconds. According to this, the time change rate of the resonance resistance value was 56.932Ω, which was about 60Ω.

以上説明したように、本実施形態における汗検出装置SDは、上述のような汗の吸収により抵抗値を変化させる抵抗可変部材4を第1および第2電極1、2間に備えるので、第1および第2電極1、2に亘って接触している手指の動きにあまり影響されない、発汗の有無に応じた抵抗可変部材4の抵抗値変化で、前記検出回路の共振抵抗値は、変化する。このため、上記汗検出装置SDは、前記検出回路の共振抵抗値を測定することで、発汗の有無をより精度良く検出できる。   As described above, the sweat detection device SD according to the present embodiment includes the resistance variable member 4 that changes the resistance value by absorbing sweat between the first and second electrodes 1 and 2 as described above. The resonance resistance value of the detection circuit changes due to a change in the resistance value of the resistance variable member 4 according to the presence or absence of perspiration, which is hardly affected by the movement of the finger in contact with the second electrodes 1 and 2. Therefore, the sweat detection device SD can more accurately detect the presence or absence of perspiration by measuring the resonance resistance value of the detection circuit.

上記汗検出装置SDは、上述のような吸収した発汗量により抵抗値を変化させる抵抗可変部材4を第1および第2電極1、2間に備えるので、発汗量に応じて前記検出回路の特性曲線β(図4に示す例では第1および第2特性曲線β1、β2)は、変化する。このため、上記汗検出装置SDは、共振抵抗測定部5で測定された共振抵抗値に基づいて、前記検出回路が動作している特性曲線を判定することによって、例えば相対的に少量の発汗(第1発汗量の発汗)であるか相対的に大量の発汗(第2発汗量の発汗)であるかで、発汗量を判定できる。   Since the sweat detection device SD includes the resistance variable member 4 that changes the resistance value according to the amount of sweat absorbed as described above, between the first and second electrodes 1 and 2, the characteristics of the detection circuit according to the amount of sweat are determined. The curve β (the first and second characteristic curves β1, β2 in the example shown in FIG. 4) changes. Therefore, the sweat detection device SD determines, for example, a characteristic curve in which the detection circuit is operating based on the resonance resistance value measured by the resonance resistance measurement unit 5, and thereby, for example, a relatively small amount of sweat ( The amount of perspiration can be determined based on whether the perspiration is a first amount of perspiration or a relatively large amount of perspiration (a second amount of perspiration).

ところで、発汗量で、精神状態に起因する発汗か、身体状態に起因する発汗かを判別することができると言われているが、前記特許文献1に開示された皮膚抵抗測定装置では、発汗量を検出することが難しく、発汗の原因を検知することが難しい。また、皮膚抵抗値と発汗量との相関関係を調べることによって、皮膚抵抗値を発汗量に変換することも検討したが、抵抗可変部材4を備えずに第1絶縁層1aと第2絶縁層2aとを連結した第1および第2電極1、2の構成において、互いに連結された第1および第2絶縁層1a、2aを介して第1および第2電極1、2に亘って接触している手指LBの僅かな動きによって共振抵抗値が変動してしまい、皮膚抵抗値と発汗量との相関関係を調べることが難しく、皮膚抵抗値を発汗量に変換することが難しかった。しかしながら、本実施形態における汗検出装置SDは、上述のように、抵抗可変部材4を備える構成としたので、発汗量を判定できる。   By the way, it is said that it is possible to determine whether the sweat is caused by a mental condition or a sweat caused by a physical condition based on the amount of sweat. However, in the skin resistance measuring device disclosed in Patent Document 1, the amount of sweat is determined. Is difficult to detect, and it is difficult to detect the cause of perspiration. Also, by examining the correlation between the skin resistance value and the amount of perspiration, it was considered to convert the skin resistance value into the amount of perspiration. However, the first insulating layer 1a and the second insulating layer 1 without the variable resistance member 4 were provided. In the configuration of the first and second electrodes 1 and 2 connected to each other, the first and second electrodes 1 and 2 are connected to each other via the first and second insulating layers 1a and 2a connected to each other. The resonance resistance value fluctuates due to the slight movement of the finger LB, and it is difficult to examine the correlation between the skin resistance value and the amount of perspiration, and it has been difficult to convert the skin resistance value into the amount of perspiration. However, since the sweat detection device SD according to the present embodiment is configured to include the resistance variable member 4 as described above, the sweat amount can be determined.

上記汗検出装置SDは、生体LBを第1および第2電極1、2間に亘って接触させれば良いので、非侵襲で発汗の有無や発汗量を検出できる。   The sweat detection device SD only needs to bring the living body LB into contact between the first and second electrodes 1 and 2, and thus can detect the presence or absence of sweat and the amount of sweat in a non-invasive manner.

上記汗検出装置SDは、さらに、第1および第2特性曲線β1、β2間の遷移時間または所定の時間での共振抵抗値の時間変化率も考慮するので、前記発汗量をより精度良く判定できる。   The sweat detection device SD further considers the transition time between the first and second characteristic curves β1 and β2 or the time change rate of the resonance resistance value at a predetermined time, so that the sweating amount can be determined with higher accuracy. .

上記汗検出装置SDは、車両に搭載される場合では、搭乗者の汗を検出できる。このような場合において、第1および第2電極1、2が搭乗者の手の触れる車両部位に配置されることで、上記汗検出装置SDは、搭乗者に意識させることなく自然に、搭乗者の汗を検出できる。   When mounted on a vehicle, the sweat detection device SD can detect a passenger's sweat. In such a case, since the first and second electrodes 1 and 2 are arranged in the vehicle part touched by the occupant, the sweat detection device SD naturally occupies the occupant without making the occupant aware. Sweat can be detected.

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。   Although the present invention has been described above appropriately and sufficiently through the embodiments with reference to the drawings in order to express the present invention, it is easy for those skilled in the art to modify and / or improve the above-described embodiments. It should be recognized that it is possible. Therefore, unless a modification or improvement performed by those skilled in the art is at a level that departs from the scope of the claims set forth in the claims, the modification or the improvement will not be included in the scope of the claims. Is interpreted as being included in

SD 汗検出装置
1 第1電極
1a 第1絶縁層
2 第2電極
2a 第2絶縁層
3 誘導素子
4 抵抗可変部材
5 共振抵抗測定部
6 制御処理部
7 出力部
51 交流電源(高周波電源)
52 電流計
61 制御部
62 汗判定部
SD Sweat detector 1 First electrode 1a First insulating layer 2 Second electrode 2a Second insulating layer 3 Inductive element 4 Variable resistance member 5 Resonance resistance measuring unit 6 Control processing unit 7 Output unit 51 AC power supply (high frequency power supply)
52 ammeter 61 control unit 62 sweat determination unit

Claims (6)

主面を絶縁被覆した第1および第2電極と誘導素子とを含む検出回路を用いて生体の汗を検出する汗検出装置であって、
液体の吸収量に応じて抵抗値を変える抵抗可変部材と、
前記検出回路の共振抵抗値を測定する共振抵抗測定部と、
前記共振抵抗測定部で測定された共振抵抗値に基づいて発汗量を判定する汗判定部とを備え、
前記第1および第2電極は、前記主面を除く他の面で前記抵抗可変部材に接触しつつ前記抵抗可変部材を介して並置される、
汗検出装置。
A sweat detection device for detecting sweat of a living body using a detection circuit including first and second electrodes having a main surface insulated and an inductive element,
A resistance variable member that changes a resistance value according to a liquid absorption amount,
A resonance resistance measurement unit that measures a resonance resistance value of the detection circuit,
A sweat determination unit that determines the amount of perspiration based on the resonance resistance value measured by the resonance resistance measurement unit,
The first and second electrodes are juxtaposed via the variable resistance member while being in contact with the variable resistance member on another surface other than the main surface,
Sweat detection device.
前記検出回路は、共振周波数変化に対する共振抵抗変化を表す特性曲線を、前記抵抗可変部材の抵抗値に応じて互いに異なるように第1および第2特性曲線として2個を含み、
前記汗判定部は、さらに、前記共振抵抗測定部で測定された共振抵抗値に基づいて、前記検出回路が動作している特性曲線を判定することによって、発汗量を判定する、
請求項1に記載の汗検出装置。
The detection circuit includes two characteristic curves representing a resonance resistance change with respect to a resonance frequency change as first and second characteristic curves so as to be different from each other according to a resistance value of the resistance variable member,
The sweat determination unit further determines the amount of perspiration by determining a characteristic curve on which the detection circuit is operating, based on the resonance resistance value measured by the resonance resistance measurement unit.
The sweat detection device according to claim 1.
前記汗判定部は、さらに、前記共振抵抗測定部で測定された共振抵抗値に基づいて、前記第1および第2特性曲線間の遷移時間または所定の時間での共振抵抗値の時間変化率を判定することによって、前記発汗量を判定する、
請求項2に記載の汗検出装置。
The sweat determination unit may further determine a time change rate of the resonance resistance value at a transition time between the first and second characteristic curves or a predetermined time based on the resonance resistance value measured by the resonance resistance measurement unit. By determining, the amount of perspiration is determined,
The sweat detection device according to claim 2.
前記抵抗可変部材は、多孔質の樹脂部材である、
請求項1ないし請求項3のいずれか1項に記載の汗検出装置。
The variable resistance member is a porous resin member,
The sweat detection device according to any one of claims 1 to 3.
車両用であって、
前記生体は、車両に搭乗する搭乗者である、
請求項1ないし請求項4のいずれか1項に記載の汗検出装置。
For vehicles,
The living body is a passenger riding a vehicle,
The sweat detection device according to any one of claims 1 to 4.
前記第1および第2電極は、前記搭乗者の手が触れる車両部位に配置される、
請求項5に記載の汗検出装置。
The first and second electrodes are disposed in a vehicle part touched by the occupant's hand,
The sweat detection device according to claim 5.
JP2018175199A 2018-09-19 2018-09-19 sweat detector Active JP7126196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175199A JP7126196B2 (en) 2018-09-19 2018-09-19 sweat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175199A JP7126196B2 (en) 2018-09-19 2018-09-19 sweat detector

Publications (2)

Publication Number Publication Date
JP2020044129A true JP2020044129A (en) 2020-03-26
JP7126196B2 JP7126196B2 (en) 2022-08-26

Family

ID=69900222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175199A Active JP7126196B2 (en) 2018-09-19 2018-09-19 sweat detector

Country Status (1)

Country Link
JP (1) JP7126196B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053875A (en) * 1991-06-25 1993-01-14 Matsushita Electric Ind Co Ltd Sensor for sweating
JP2008500080A (en) * 2004-05-25 2008-01-10 エルベ エレクトロメディツィン ゲーエムベーハー Method and measuring device for measuring transition impedance between two parts of a subdivided neutral electrode
JP2016533227A (en) * 2013-10-18 2016-10-27 ユニバーシティ・オブ・シンシナティ Sweat perception with a guarantee over time
US9579060B1 (en) * 2014-02-18 2017-02-28 Orbitol Research Inc. Head-mounted physiological signal monitoring system, devices and methods
JP2018051099A (en) * 2016-09-30 2018-04-05 国立大学法人九州大学 Living body skin resistance detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053875A (en) * 1991-06-25 1993-01-14 Matsushita Electric Ind Co Ltd Sensor for sweating
JP2008500080A (en) * 2004-05-25 2008-01-10 エルベ エレクトロメディツィン ゲーエムベーハー Method and measuring device for measuring transition impedance between two parts of a subdivided neutral electrode
JP2016533227A (en) * 2013-10-18 2016-10-27 ユニバーシティ・オブ・シンシナティ Sweat perception with a guarantee over time
US9579060B1 (en) * 2014-02-18 2017-02-28 Orbitol Research Inc. Head-mounted physiological signal monitoring system, devices and methods
JP2018051099A (en) * 2016-09-30 2018-04-05 国立大学法人九州大学 Living body skin resistance detector

Also Published As

Publication number Publication date
JP7126196B2 (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP6310439B2 (en) Contact judgment processing device
US10501107B2 (en) Method and device for detecting steering wheel contact
JP2005525163A5 (en)
US5453929A (en) Control system with driver monitor
US11172887B2 (en) Vehicular airbag device
JPWO2015186295A1 (en) Electrostatic grip detection device
US20110125002A1 (en) Signal detecting device for detecting a difference signal for an electrical measurement of a vital parameter of a living being, electrode arrangement and method
JP5549872B2 (en) Heating system
US8774896B2 (en) Electrocardiograph with subject contact detection based on signal difference
JP2017188458A (en) Holding detection device
US20150054773A1 (en) Feedback for grounding independent haptic electrovibration
WO2019225252A1 (en) Surface skin material and steering wheel
JP6233848B2 (en) Proximity and contact sensor devices in automotive handles
EP3111838B1 (en) Input device, fiber sheet, clothing, biometric information detection device
JP2018142411A (en) Grip sensor, steering wheel and vehicle
JP7126196B2 (en) sweat detector
JP2016066338A (en) Touch sensor
US20200377138A1 (en) Grip
CN113071504A (en) Method and device for detecting hand-off and health of driver, steering wheel and protective sleeve
JP6015534B2 (en) Biological information measuring apparatus and biological information measuring method
JP2018190212A (en) Touch input device
JP2018051099A (en) Living body skin resistance detector
JP2021018692A (en) Capacitive sensor
KR102406101B1 (en) Methods for identifying components and their occupied contacts
JP2017187893A (en) Manipulation sensing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220805

R150 Certificate of patent or registration of utility model

Ref document number: 7126196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150