JP2020043155A - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP2020043155A
JP2020043155A JP2018167582A JP2018167582A JP2020043155A JP 2020043155 A JP2020043155 A JP 2020043155A JP 2018167582 A JP2018167582 A JP 2018167582A JP 2018167582 A JP2018167582 A JP 2018167582A JP 2020043155 A JP2020043155 A JP 2020043155A
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
shield
resistance silicon
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018167582A
Other languages
Japanese (ja)
Other versions
JP7176306B2 (en
Inventor
章 富岡
Akira Tomioka
章 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018167582A priority Critical patent/JP7176306B2/en
Publication of JP2020043155A publication Critical patent/JP2020043155A/en
Application granted granted Critical
Publication of JP7176306B2 publication Critical patent/JP7176306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

To provide a transformer capable of reducing loss in a shield while suppressing manufacturing cost.SOLUTION: A transformer (1) includes: an iron core (10); a winding (20) wound around the iron core; a tank (30) for storing the iron core and the winding; and a shield (40) mounted along an internal surface of the tank and shielding a magnetic flux going toward the tank side. The shield is constituted by laminating high resistance silicon steel sheet (41) and low resistance silicon steel sheet (42) as a plurality of silicon steel sheets with relatively different specific resistance from each other. Use of high resistance silicon steel sheet reduces a current value of an eddy current to reduce loss at the shield and suppress the amount used of the high resistance silicon steel sheet circulated at a high cost, thereby achieving suppression of manufacturing cost.SELECTED DRAWING: Figure 1

Description

本発明は、変圧器に関し、特に、巻線から発生する漏れ磁束がタンク等に入射することをシールドで遮蔽することができる変圧器に関する。   The present invention relates to a transformer, and more particularly to a transformer that can shield a leakage magnetic flux generated from a winding from entering a tank or the like with a shield.

変圧器は、電磁誘導を利用して交流電力の電圧を変換する機器であり、磁気回路を構成する鉄心と、電気回路を構成する巻線とがタンク内に収容されて構成される。変圧器の運転時には、巻線からタンク内部に漏れ磁束が発生する。この漏れ磁束が鎖交するタンク壁では渦電流が生じ、タンク壁での局部過熱等の渦電流損失が発生する。このようなタンク壁での渦電流損失の発生を回避あるいは抑制すべく、特許文献1に開示されるように、タンク壁の内面と巻線との間に珪素鋼板を所定の厚みに積層した磁気シールドを設け、磁気シールドに漏れ磁束を誘導している。   A transformer is a device that converts the voltage of AC power using electromagnetic induction, and includes a core that constitutes a magnetic circuit and windings that constitute an electric circuit, which are housed in a tank. During operation of the transformer, magnetic flux leaks from the windings into the tank. An eddy current is generated on the tank wall where the leakage magnetic flux links, and eddy current loss such as local overheating on the tank wall occurs. In order to avoid or suppress the occurrence of eddy current loss in such a tank wall, as disclosed in Patent Document 1, a magnetic steel sheet having a predetermined thickness laminated between an inner surface of a tank wall and a winding is used. A shield is provided to induce magnetic flux leakage to the magnetic shield.

特開平6−69050号公報JP-A-6-69050

特許文献1にあっては、磁気シールドによってタンク壁に入射する漏れ磁束の量を抑制しているが、磁気シールドにおいても漏れ磁束が入射して渦電流損失が発生している。特に、大容量変圧器や高インピーダンス変圧器などでは漏れ磁束が大きく、また、巻線とタンク壁との距離を小さくする場合には磁気シールドに印加される漏れ磁束が大きくなるので、磁気シールドで大きな渦電流が発生して損失が大きくなる。ここで、本発明者は、磁気シールド全体の固有抵抗を高くすることで、渦電流を小さくして渦電流損失を抑制することを検討したが、この場合、材料費が増大して製造コストが上昇する、という問題がある。そこで、本発明者は、製造コストの上昇を抑えることができ、且つ、シールドでの漏れ磁束による渦電流損失を低減できる構成を発明した。   In Patent Literature 1, although the amount of leakage magnetic flux incident on the tank wall is suppressed by the magnetic shield, the leakage magnetic flux also enters the magnetic shield, causing eddy current loss. In particular, the leakage flux is large in large capacity transformers and high impedance transformers, and when the distance between the winding and the tank wall is reduced, the leakage flux applied to the magnetic shield increases. A large eddy current is generated and the loss increases. Here, the present inventor studied to reduce the eddy current and suppress the eddy current loss by increasing the specific resistance of the entire magnetic shield, but in this case, the material cost is increased and the manufacturing cost is reduced. There is a problem of rising. Therefore, the present inventor has invented a configuration capable of suppressing an increase in manufacturing cost and reducing eddy current loss due to magnetic flux leakage in the shield.

本発明は、かかる点に鑑みてなされたものであり、製造コストを抑制しつつ、シールドにおける損失を低減することができる変圧器を提供することを目的の一つとする。   SUMMARY An advantage of some aspects of the invention is to provide a transformer that can reduce a loss in a shield while suppressing manufacturing costs.

本発明における一態様の変圧器は、鉄心と、前記鉄心の周りに巻回された巻線と、前記鉄心及び前記巻線を収容するタンクと、前記タンクの内面に沿って設けられて該タンク側に向かう磁束を遮蔽するシールドとを備えた変圧器であって、前記シールドは、相対的に固有抵抗が異なる高抵抗珪素鋼板及び低抵抗珪素鋼板を積層して構成されることを特徴とする。   The transformer according to an aspect of the present invention includes an iron core, a winding wound around the iron core, a tank that houses the iron core and the winding, and a tank provided along an inner surface of the tank. And a shield for shielding magnetic flux toward the side, wherein the shield is formed by laminating a high-resistance silicon steel sheet and a low-resistance silicon steel sheet having relatively different specific resistances. .

本発明によれば、高抵抗珪素鋼板及び低抵抗珪素鋼板の2種類の珪素鋼板を積層してシールドを形成したので、シールド全体としての固有抵抗を小さくすることができる。これにより、漏れ磁束が印加されることでシールドに渦電流が発生しても、その電流値を小さくすることができシールドでの損失を低減することができる。しかも、シールドに2種類の珪素鋼板を用いることで、高価に流通される高抵抗珪素鋼板の使用量を抑制でき、材料コストの上昇を抑えることができる。   According to the present invention, since the shield is formed by laminating two types of silicon steel sheets, that is, a high-resistance silicon steel sheet and a low-resistance silicon steel sheet, the specific resistance of the entire shield can be reduced. Thereby, even if an eddy current is generated in the shield due to the application of the leakage magnetic flux, the current value can be reduced and the loss in the shield can be reduced. In addition, by using two types of silicon steel plates for the shield, the amount of high-resistance silicon steel plates that are distributed at a high price can be suppressed, and an increase in material costs can be suppressed.

本実施の形態に係る変圧器の概略構成を示す縦断面図である。It is a longitudinal section showing the schematic structure of the transformer concerning this embodiment. 本実施の形態のシールドを模式的に示す斜視図である。It is a perspective view which shows the shield of this Embodiment typically. 実施例及び比較例の測定結果を示すグラフである。It is a graph which shows the measurement result of an example and a comparative example.

以下、本発明の一実施の形態に係る変圧器について、添付の図面を参照しながら詳細に説明する。なお、以下においては、本発明を油入変圧器に適用する場合について説明する。しかしながら、本発明の適用対象は、油入変圧器に限定されるものではなく適宜変更が可能である。例えば、ガス絶縁変圧器に適用することもできる。   Hereinafter, a transformer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following, a case where the present invention is applied to an oil-immersed transformer will be described. However, the application object of the present invention is not limited to the oil-immersed transformer, and can be appropriately changed. For example, it can be applied to a gas-insulated transformer.

図1は、本実施の形態に係る変圧器の概略構成を示す縦断面図である。図1及び図2に示すように、変圧器1は、磁気回路を構成する鉄心10と、電気回路を構成する巻線20と、これら鉄心10及び巻線20を収容するタンク30とを含んで構成されている。   FIG. 1 is a longitudinal sectional view showing a schematic configuration of the transformer according to the present embodiment. As shown in FIGS. 1 and 2, the transformer 1 includes an iron core 10 that forms a magnetic circuit, a winding 20 that forms an electric circuit, and a tank 30 that houses the iron core 10 and the winding 20. It is configured.

鉄心10は、電磁鋼板を積層及び接合した構成を例示でき、複数本の脚部11(図1でが1本のみ図示)と、脚部11の上下位置に接合される上ヨーク部12及び下ヨーク部13とを備えている。   The iron core 10 can be exemplified by a configuration in which electromagnetic steel sheets are laminated and joined. The iron core 10 includes a plurality of legs 11 (only one is shown in FIG. 1), an upper yoke portion 12 joined to upper and lower positions of the legs 11, and a lower portion. And a yoke portion 13.

脚部11の周りに巻線20がそれぞれ巻回されて配置されている。巻線20は、外側巻線21及び内側巻線22が同心に配置されている。外側巻線21及び内側巻線22は、銅やアルミニウム等の導体を絶縁物で被覆してから、コイル状に複数ループ巻回されて形成される。ここで、巻線20の軸方向とは、円筒状となる巻線20の中心軸位置が延在する方向であり、図1における上下方向となる。   The windings 20 are respectively wound around the legs 11 and arranged. The winding 20 has an outer winding 21 and an inner winding 22 arranged concentrically. The outer winding 21 and the inner winding 22 are formed by coating a conductor such as copper or aluminum with an insulator, and then winding a plurality of loops in a coil shape. Here, the axial direction of the winding 20 is a direction in which the central axis position of the cylindrical winding 20 extends, and is the vertical direction in FIG.

タンク30は、鉄心10及び巻線20の上下に位置する頂壁31及び底壁32と、頂壁31及び底壁32の外周間で上下方向に延出する複数の側壁33と、を備えた鉄等の金属製の箱状に形成されている。本実施の形態の変圧器1は、タンク30内に不図示の絶縁油が満たされる油入変圧器であり、鉄心10及び巻線20がタンク30内にて絶縁油に含浸した状態となっている。   The tank 30 includes a top wall 31 and a bottom wall 32 located above and below the iron core 10 and the winding 20, and a plurality of side walls 33 extending vertically between outer peripheries of the top wall 31 and the bottom wall 32. It is formed in the shape of a box made of metal such as iron. The transformer 1 of the present embodiment is an oil-filled transformer in which the tank 30 is filled with an insulating oil (not shown), and the core 10 and the windings 20 are impregnated with the insulating oil in the tank 30. I have.

変圧器1にあっては、運転時に巻線20から漏れ磁束が発生し、かかる漏れ磁束がタンク30に向かって入射する方向に流れるが、漏れ磁束の入射によってタンク30に発生する渦電流損失を回避或いは抑制する必要がある。そこで、変圧器1においては、タンク30の側壁33と巻線20と間にシールド40を備えた構成としている。シールド40は、側壁33の内面に沿って配置されている。シールド40においても、タンク30内にて絶縁油に含浸した状態となっている。   In the transformer 1, leakage magnetic flux is generated from the winding 20 during operation and flows in a direction in which the leakage magnetic flux enters the tank 30. Eddy current loss generated in the tank 30 due to the incidence of the leakage magnetic flux is reduced. It must be avoided or suppressed. Therefore, the transformer 1 is configured to include the shield 40 between the side wall 33 of the tank 30 and the winding 20. The shield 40 is arranged along the inner surface of the side wall 33. The shield 40 is also impregnated with insulating oil in the tank 30.

変圧器において、シールド40は、巻線20から発生した漏れ磁束をシールド40自体に誘導してタンク30側に向かう漏れ磁束を遮蔽するものである。従って、シールド40においても漏れ磁束が印加され、かかる漏れ磁束によってシールド40に発生する渦電流損失を回避或いは抑制する要請がある。そこで、本実施の形態では、シールド40が図2に示すような構成を採用している。以下において、シールド40の構成について説明する。   In the transformer, the shield 40 guides the leakage magnetic flux generated from the winding 20 to the shield 40 itself to shield the leakage magnetic flux toward the tank 30. Therefore, a leakage magnetic flux is also applied to the shield 40, and there is a demand for avoiding or suppressing an eddy current loss generated in the shield 40 due to the leakage magnetic flux. Therefore, in the present embodiment, the shield 40 has a configuration as shown in FIG. Hereinafter, the configuration of the shield 40 will be described.

図2は、本実施の形態のシールドを模式的に示す斜視図である。図2に示すように、シールド40は、相対的に固有抵抗が異なる高抵抗珪素鋼板41及び低抵抗珪素鋼板42を積層して構成される。言い換えると、高抵抗珪素鋼板41は、低抵抗珪素鋼板42より高い固有抵抗となるように構成され、それらが積層されることでシールド40が形成されている。なお、高抵抗珪素鋼板41及び低抵抗珪素鋼板42は、それぞれタンク30を形成する金属よりも高い固有抵抗を有している。   FIG. 2 is a perspective view schematically illustrating the shield according to the present embodiment. As shown in FIG. 2, the shield 40 is configured by stacking a high-resistance silicon steel sheet 41 and a low-resistance silicon steel sheet 42 having relatively different specific resistances. In other words, the high-resistance silicon steel sheet 41 is configured to have a higher specific resistance than the low-resistance silicon steel sheet 42, and the shield 40 is formed by laminating them. The high-resistance silicon steel sheet 41 and the low-resistance silicon steel sheet 42 each have a higher specific resistance than the metal forming the tank 30.

高抵抗珪素鋼板41及び低抵抗珪素鋼板42は、それぞれ複数枚積層されてシールド40を形成する。高抵抗珪素鋼板41及び低抵抗珪素鋼板42は、無方向性珪素鋼板とされ、透磁率が数千〜数万の範囲のものが用いられる。   The shield 40 is formed by laminating a plurality of high-resistance silicon steel sheets 41 and low-resistance silicon steel sheets 42, respectively. The high-resistance silicon steel sheet 41 and the low-resistance silicon steel sheet 42 are non-oriented silicon steel sheets having a magnetic permeability in the range of thousands to tens of thousands.

シールド40においては、高抵抗珪素鋼板41が低抵抗珪素鋼板42より巻線20側に配置され、低抵抗珪素鋼板42がタンク30側に配置されている。高抵抗珪素鋼板41は、低抵抗珪素鋼板42と比べて積層方向の厚みが小さく形成されており、好ましくは、シールド40全体の半分以下、より好ましくは1/4の以下の厚みに設定される。   In the shield 40, the high resistance silicon steel sheet 41 is disposed closer to the winding 20 than the low resistance silicon steel sheet 42, and the low resistance silicon steel sheet 42 is disposed closer to the tank 30. The high-resistance silicon steel sheet 41 is formed to have a smaller thickness in the lamination direction than the low-resistance silicon steel sheet 42, and is preferably set to a thickness of half or less of the entire shield 40, more preferably 1/4 or less. .

高抵抗珪素鋼板41及び低抵抗珪素鋼板42の面内には、貫通穴43が形成され、該貫通穴43に各珪素鋼板41、42と電気的に短絡しないようにボルト等の締結具(不図示)を挿入して各珪素鋼板41、42が一体化される。それぞれの高抵抗珪素鋼板41及び低抵抗珪素鋼板42の積層間に、樹脂(不図示)を挟むと機械強度がより向上することとなり、また、樹脂に加えて板状部材を挟んでもよい。   Through holes 43 are formed in the planes of the high-resistance silicon steel sheet 41 and the low-resistance silicon steel sheet 42, and fasteners such as bolts (not shown) are formed in the through holes 43 so as not to electrically short-circuit with the silicon steel sheets 41 and 42. (Illustration) is inserted, and the respective silicon steel plates 41 and 42 are integrated. If a resin (not shown) is sandwiched between the laminations of the high-resistance silicon steel sheet 41 and the low-resistance silicon steel sheet 42, the mechanical strength is further improved, and a plate-shaped member may be sandwiched in addition to the resin.

シールド40においては、巻線20の軸方向が上下方向となるので、巻線20から発生する漏れ磁束が上端側から入射されて下端に向かって通過した後、該下端から巻線20の下端に入射するようになる。従って、各珪素鋼板41、42において漏れ磁束が流れる方向は上下方向となり、該方向にて各珪素鋼板41、42は同じ長さに形成されている。なお、巻線20からの漏れ磁束は、シールド40の上端からだけでなく上端より下方領域でも入射するようになり、シールド40での漏れ磁束の積算量は、上下方向中間部で最大となり、中間部から上下両端に向かって次第に小さくなる。かかる積算量の変化に応じ、使用材料の削減を図るべく、低抵抗珪素鋼板42が高抵抗珪素鋼板41と比べて上下方向の長さが短く形成されるようにしてもよい。   In the shield 40, since the axial direction of the winding 20 is the vertical direction, after the leakage magnetic flux generated from the winding 20 is incident from the upper end side and passes toward the lower end, the magnetic flux leaks from the lower end to the lower end of the winding 20. It becomes incident. Therefore, the direction in which the leakage magnetic flux flows in each of the silicon steel plates 41 and 42 is the vertical direction, and the silicon steel plates 41 and 42 are formed to have the same length in this direction. The leakage magnetic flux from the winding 20 is incident not only from the upper end of the shield 40 but also in a region below the upper end, and the integrated amount of the leakage magnetic flux in the shield 40 becomes maximum at the middle part in the vertical direction. From the part toward the upper and lower ends. The low-resistance silicon steel sheet 42 may be formed to be shorter in the vertical direction than the high-resistance silicon steel sheet 41 in order to reduce the amount of materials used in accordance with the change in the integrated amount.

ここで、上記シールド40についての効果を確認するため、条件が異なる実施例及び比較例にてシミュレーションを行った。実施例の変圧器では、シールド40にて、高抵抗珪素鋼板41として固有抵抗0.59μΩmの無方向性珪素鋼板(例えば、JIS規格 C2552 種類記号 50A230)を用いた。また、低抵抗珪素鋼板42として固有抵抗0.24μΩmの無方向性珪素鋼板(例えば、JIS規格 C2552 種類記号 50A800)を用いた。シールド40の積層方向の厚さ全体を100%としたときに、高抵抗珪素鋼板41の厚さを約16%、低抵抗珪素鋼板42の厚さを約84%とした。   Here, in order to confirm the effect of the shield 40, simulations were performed in Examples and Comparative Examples under different conditions. In the transformer of the embodiment, a non-oriented silicon steel sheet having a specific resistance of 0.59 μΩm (for example, JIS standard C2552, type code 50A230) was used as the high-resistance silicon steel sheet 41 in the shield 40. A non-oriented silicon steel sheet having a specific resistance of 0.24 μΩm (for example, JIS standard C2552, type code 50A800) was used as the low-resistance silicon steel sheet 42. Assuming that the entire thickness of the shield 40 in the stacking direction is 100%, the thickness of the high-resistance silicon steel sheet 41 is about 16%, and the thickness of the low-resistance silicon steel sheet 42 is about 84%.

一方、比較例の変圧器では、実施例に対し、シールド40に高抵抗珪素鋼板41を形成しない、つまり、シールド全てで低抵抗珪素鋼板42と同じ固有抵抗0.24μΩmの無方向性珪素鋼板を用いて形成した。シールド以外は、実施例と比較例とで同一構成とした。実施例及び比較例の変圧器について、同一環境下にて、同一条件にて運転し、タンク及びシールドでの漏れ磁束によって発生した損失を測定するシミュレーションを行った。その結果を図3のグラフに示す。なお、図3の測定結果は、比較例の変圧器全体での測定結果を「100%」とし、実施例の測定結果を比較例との比率で示す。図3のグラフ中、網点で表した部分がタンクでの損失であり、斜線で表した部分がシールドでの損失である。   On the other hand, in the transformer of the comparative example, a high-resistance silicon steel sheet 41 is not formed on the shield 40, that is, a non-directional silicon steel sheet having the same specific resistance of 0.24 μΩm as the low-resistance silicon steel sheet 42 in all the shields. Formed. Except for the shield, the example and the comparative example had the same configuration. The transformers of the example and the comparative example were operated under the same conditions and under the same conditions, and a simulation for measuring the loss generated by the leakage magnetic flux in the tank and the shield was performed. The results are shown in the graph of FIG. In the measurement results of FIG. 3, the measurement result of the entire transformer of the comparative example is set to “100%”, and the measurement result of the example is shown as a ratio to the comparative example. In the graph of FIG. 3, a portion represented by a halftone dot represents a loss in the tank, and a portion represented by hatching represents a loss in the shield.

実施例と比較例との対比において、変圧器全体の損失は、比較例に対して実施例が約75%となり、高抵抗珪素鋼板41を設けることでシールド40での渦電流及び渦電流損失が抑制されていることが理解できる。これは、固有抵抗を大きくすることで渦電流を小さくでき、シールド40での損失が抵抗と電流の2乗との積になることから、電流の減少によって損失の効果的な抑制を実現できたものである。なお、実施例と比較例とでタンクでの損失は概略同一となり、実施例のように高抵抗珪素鋼板41を設けてもタンクに対する漏れ磁束の遮蔽性能が維持されることも理解できる。   In comparison between the example and the comparative example, the loss of the entire transformer is about 75% of that of the comparative example, and the eddy current and the eddy current loss in the shield 40 are reduced by providing the high-resistance silicon steel sheet 41. It can be understood that it is suppressed. This is because the eddy current can be reduced by increasing the specific resistance, and the loss in the shield 40 becomes the product of the resistance and the square of the current. Therefore, the loss can be effectively suppressed by reducing the current. Things. In addition, it can be understood that the loss in the tank is substantially the same in the example and the comparative example, and that even when the high-resistance silicon steel plate 41 is provided as in the example, the leakage magnetic flux shielding performance for the tank is maintained.

このようにシールド40を高抵抗珪素鋼板41及び低抵抗珪素鋼板42によって形成することで、シールド40での渦電流損失を低減することができる。また、低抵抗珪素鋼板42に比べて高価となる高抵抗珪素鋼板41を使用するものの、その使用量を少なくして材料費削減を図り、製造コストを安価にすることができる。すなわち、本実施の形態では、シールド40での損失の抑制と製造コストの削減とを同時に達成することができる。   By forming the shield 40 from the high-resistance silicon steel sheet 41 and the low-resistance silicon steel sheet 42 in this manner, eddy current loss in the shield 40 can be reduced. Further, although the high-resistance silicon steel sheet 41, which is more expensive than the low-resistance silicon steel sheet 42, is used, the amount of the high-resistance silicon steel sheet 41 can be reduced to reduce the material cost and reduce the manufacturing cost. That is, in the present embodiment, it is possible to simultaneously suppress the loss in the shield 40 and reduce the manufacturing cost.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状、向きなどについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, orientation, and the like illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed without departing from the effects of the present invention. In addition, the present invention can be appropriately modified and implemented without departing from the scope of the object of the present invention.

上記実施の形態では、本発明を変圧器に適用した構成について説明したが、上述した作用効果が得られるのであれば、他の電力用静止器や電力変換装置に適用することも可能である。   In the above embodiment, the configuration in which the present invention is applied to the transformer has been described. However, as long as the above operation and effect can be obtained, the present invention can be applied to other power stationary devices and power conversion devices.

また、上記実施の形態にて図示した内容は、説明用に模式的に表したものであり、上述した作用効果を発揮できれば、鉄心10や巻線20、タンク30の形状等について変更してもよい。   In addition, the contents illustrated in the above-described embodiment are schematically shown for explanation, and if the above-described effects can be achieved, the shapes of the iron core 10, the winding 20, the tank 30, and the like may be changed. Good.

また、上記実施の形態では、シールド40として、相対的に固有抵抗が異なる珪素鋼板として高抵抗珪素鋼板41及び低抵抗珪素鋼板42の2種を積層したが、固有抵抗が異なる3種以上の珪素鋼板を積層してもよい。この場合、巻線20に近い位置ほど、固有抵抗を高くしたり、漏れ磁束が流れる方向の長さを長くしたり、積層方向の厚みを小さくしたりしてもよい。   Further, in the above-described embodiment, two types of silicon steel sheets having a relatively different specific resistance, that is, a high-resistance silicon steel sheet 41 and a low-resistance silicon steel sheet 42, are laminated as the shield 40. Steel plates may be laminated. In this case, as the position is closer to the winding 20, the specific resistance may be increased, the length in the direction in which the leakage magnetic flux flows, or the thickness in the stacking direction may be reduced.

また、シールド40の厚さ方向の向きは、低抵抗珪素鋼板42を巻線20側、高抵抗珪素鋼板41をタンク30側に変更してもよい。   The direction of the shield 40 in the thickness direction may be changed such that the low-resistance silicon steel plate 42 is on the winding 20 side and the high-resistance silicon steel plate 41 is on the tank 30 side.

1 変圧器
10 鉄心
20 巻線
30 タンク
40 シールド
41 高抵抗珪素鋼板
42 低抵抗珪素鋼板
DESCRIPTION OF SYMBOLS 1 Transformer 10 Iron core 20 Winding 30 Tank 40 Shield 41 High resistance silicon steel sheet 42 Low resistance silicon steel sheet

Claims (5)

鉄心と、前記鉄心の周りに巻回された巻線と、前記鉄心及び前記巻線を収容するタンクと、前記タンクの内面に沿って設けられて該タンク側に向かう磁束を遮蔽するシールドとを備えた変圧器であって、
前記シールドは、相対的に固有抵抗が異なる複数の珪素鋼板を積層して構成されることを特徴とする変圧器。
An iron core, a winding wound around the iron core, a tank accommodating the iron core and the winding, and a shield provided along an inner surface of the tank and shielding magnetic flux toward the tank. A transformer with
A transformer, wherein the shield is formed by stacking a plurality of silicon steel plates having relatively different specific resistances.
前記シールドは高抵抗珪素鋼板及び低抵抗珪素鋼板を含み、前記高抵抗珪素鋼板は前記低抵抗珪素鋼板よりも前記巻線に近い位置に配置されることを特徴とする請求項1に記載の変圧器。   2. The transformer according to claim 1, wherein the shield includes a high-resistance silicon steel sheet and a low-resistance silicon steel sheet, and the high-resistance silicon steel sheet is disposed closer to the winding than the low-resistance silicon steel sheet. 3. vessel. 前記高抵抗珪素鋼板及び前記低抵抗珪素鋼板は、それぞれ前記タンクより固有抵抗が高いことを特徴とする請求項1または請求項2に記載の変圧器。   3. The transformer according to claim 1, wherein the high-resistance silicon steel sheet and the low-resistance silicon steel sheet each have a higher specific resistance than the tank. 4. 前記低抵抗珪素鋼板は、前記高抵抗珪素鋼板と比べて磁束が流れる方向の長さが短く形成されていることを特徴とする請求項1ないし請求項3のいずれかに記載の変圧器。   4. The transformer according to claim 1, wherein the low-resistance silicon steel sheet is formed to have a shorter length in a direction in which a magnetic flux flows than the high-resistance silicon steel sheet. 5. 前記高抵抗珪素鋼板は、前記低抵抗珪素鋼板と比べて積層方向の厚みが小さく形成されていることを特徴とする請求項1ないし請求項4のいずれかに記載の変圧器。   The transformer according to any one of claims 1 to 4, wherein the high-resistance silicon steel sheet is formed to have a smaller thickness in the stacking direction than the low-resistance silicon steel sheet.
JP2018167582A 2018-09-07 2018-09-07 transformer Active JP7176306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167582A JP7176306B2 (en) 2018-09-07 2018-09-07 transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167582A JP7176306B2 (en) 2018-09-07 2018-09-07 transformer

Publications (2)

Publication Number Publication Date
JP2020043155A true JP2020043155A (en) 2020-03-19
JP7176306B2 JP7176306B2 (en) 2022-11-22

Family

ID=69798750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167582A Active JP7176306B2 (en) 2018-09-07 2018-09-07 transformer

Country Status (1)

Country Link
JP (1) JP7176306B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148920U (en) * 1982-03-31 1983-10-06 株式会社日立製作所 tank shield
JPS5998628U (en) * 1982-12-22 1984-07-04 株式会社日立製作所 Magnetic shield for oil-filled appliances
JPH09115747A (en) * 1995-10-16 1997-05-02 Meidensha Corp Noise eliminating device for stationary induction apparatus
JPH10116741A (en) * 1996-10-14 1998-05-06 Toshiba Corp Magnetic shield for stationary induction unit and fixing method therefor
JP2003163121A (en) * 2001-11-28 2003-06-06 Nippon Steel Corp Low noise transformer and reactor
JP2016063100A (en) * 2014-09-19 2016-04-25 株式会社日立製作所 Stationary induction electric unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148920U (en) * 1982-03-31 1983-10-06 株式会社日立製作所 tank shield
JPS5998628U (en) * 1982-12-22 1984-07-04 株式会社日立製作所 Magnetic shield for oil-filled appliances
JPH09115747A (en) * 1995-10-16 1997-05-02 Meidensha Corp Noise eliminating device for stationary induction apparatus
JPH10116741A (en) * 1996-10-14 1998-05-06 Toshiba Corp Magnetic shield for stationary induction unit and fixing method therefor
JP2003163121A (en) * 2001-11-28 2003-06-06 Nippon Steel Corp Low noise transformer and reactor
JP2016063100A (en) * 2014-09-19 2016-04-25 株式会社日立製作所 Stationary induction electric unit

Also Published As

Publication number Publication date
JP7176306B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP6333525B2 (en) Linear electromagnetic device
JP6195627B2 (en) Electromagnetic induction equipment
JP6613784B2 (en) Transformer core support structure and core support method
JP2012079951A (en) Reactor device
EP2187408B1 (en) Iron core reactor
JP6490355B2 (en) Reactor parts and reactors
KR101506698B1 (en) iron core winding assembly for transformer
EP2998971B1 (en) Power converter comprising and inductance device with shielding
JP2020043155A (en) Transformer
JP5177231B2 (en) Transformer used for arc welding machine and assembly method of transformer used for arc welding machine
CA2758282A1 (en) Power transformer with amorphous core
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
US10283260B2 (en) Transformer for reducing eddy current losses of coil
US6784781B1 (en) Reactor and ballast system
KR102555275B1 (en) iron core structure of transformer
JP6437849B2 (en) Three-phase electromagnetic equipment
KR20160121966A (en) Insulation structure of transformer winding
KR102135199B1 (en) Core and transformer using the same
KR200486562Y1 (en) Oil immersed transformer having magnetic shield
KR20170065077A (en) Core and transformer using the same
KR101193408B1 (en) A transformer for an inverter
Chaw et al. Design comparison for rectangular and round winding distribution transformer (1000 kVA)
JP6729160B2 (en) Transformer
WO2017217332A1 (en) Structure of iron core joint portion of electromagnetic device
KR101512072B1 (en) Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7176306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150