JP2020042968A - Power storage device module - Google Patents

Power storage device module Download PDF

Info

Publication number
JP2020042968A
JP2020042968A JP2018168992A JP2018168992A JP2020042968A JP 2020042968 A JP2020042968 A JP 2020042968A JP 2018168992 A JP2018168992 A JP 2018168992A JP 2018168992 A JP2018168992 A JP 2018168992A JP 2020042968 A JP2020042968 A JP 2020042968A
Authority
JP
Japan
Prior art keywords
power storage
secondary battery
case
storage device
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018168992A
Other languages
Japanese (ja)
Inventor
悠史 近藤
Yuji Kondo
悠史 近藤
信司 鈴木
Shinji Suzuki
信司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018168992A priority Critical patent/JP2020042968A/en
Publication of JP2020042968A publication Critical patent/JP2020042968A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a power storage device module capable of detecting thermal runaway in a power storage device.SOLUTION: In a secondary battery module 10, as a power storage device module, including a plurality of secondary batteries 11, each as a power storage device, connected in parallel therein, each secondary battery 11 includes an electrode assembly and a case 21 receiving the electrode assembly therein. The secondary battery module 10 includes: detection wiring 41 arranged while being in contact with the cases 21 of all of the secondary batteries 11, and supplied with current, portions in contact with the cases 21 being electrically connected with each other; and a detector 43 detecting the conduction state of the detection wiring 41.SELECTED DRAWING: Figure 4

Description

本発明は、複数の蓄電装置が並列接続された蓄電装置モジュールに関する。   The present invention relates to a power storage device module in which a plurality of power storage devices are connected in parallel.

従来から、複数の蓄電装置としての二次電池が並列接続された蓄電装置モジュールとしての二次電池モジュールが知られている。各二次電池は、複数の電極が積層された電極組立体と、電極組立体を収容するケースと、電極組立体と電気を授受するとともにケースの内外を繋ぐ電極端子とを備える。複数の二次電池は、電極端子がバスバーによって連結されることにより並列接続される。   BACKGROUND ART Conventionally, a secondary battery module as a power storage device module in which a plurality of secondary batteries as power storage devices is connected in parallel has been known. Each secondary battery includes an electrode assembly in which a plurality of electrodes are stacked, a case accommodating the electrode assembly, and electrode terminals that exchange electricity with the electrode assembly and connect the inside and outside of the case. The plurality of secondary batteries are connected in parallel by connecting the electrode terminals by bus bars.

このような二次電池では、内部短絡や過充放電などによって、二次電池を構成する特定部材が発熱し、この特定部材の発熱により、他の部材が発熱し、他の部材の発熱により、更に別の部材が発熱するというように、発熱反応が制御不能に繰り返される状態(熱暴走)に陥ることがある。二次電池が熱暴走した状態では、二次電池の温度は自発的に上昇し続ける。   In such a secondary battery, due to an internal short circuit or overcharging / discharging, a specific member constituting the secondary battery generates heat, and the heat generated by the specific member causes other members to generate heat. In some cases, the exothermic reaction repeats uncontrollably (heat runaway), such as another member generating heat. When the secondary battery has run out of heat, the temperature of the secondary battery continues to rise spontaneously.

特許文献1には、このような熱暴走を抑制するための二次電池モジュールの構成が開示されている。特許文献1に開示の二次電池モジュールでは、二次電池モジュールを構成する各二次電池がヒューズを有する。このため、二次電池モジュールを構成する複数の二次電池のうち、少なくとも1つの二次電池において流れる電流が異常になると、電流が異常となった二次電池のヒューズが溶断する。これにより、電流が異常となった二次電池における電流の流れが停止される。その結果、電流が異常となった二次電池の熱暴走が抑制される。   Patent Literature 1 discloses a configuration of a secondary battery module for suppressing such thermal runaway. In the secondary battery module disclosed in Patent Document 1, each secondary battery constituting the secondary battery module has a fuse. Therefore, when the current flowing through at least one of the secondary batteries constituting the secondary battery module becomes abnormal, the fuse of the secondary battery having the abnormal current is blown. Thereby, the current flow in the secondary battery in which the current has become abnormal is stopped. As a result, thermal runaway of the secondary battery having an abnormal current is suppressed.

特開2016−18688号公報JP 2016-18688 A

しかしながら、各二次電池がヒューズを有する構成とすることで二次電池の熱暴走を抑制したとしても、熱暴走の発生が完全に抑制されるとは限らない。よって、二次電池の熱暴走の検出が求められている。   However, even if each secondary battery has a configuration having a fuse, even if thermal runaway of the secondary battery is suppressed, occurrence of thermal runaway is not always completely suppressed. Therefore, detection of thermal runaway of the secondary battery is required.

本発明は、上記課題を解決するためになされたものであり、その目的は、蓄電装置の熱暴走を検出できる蓄電装置モジュールを提供することにある。   SUMMARY An advantage of some aspects of the invention is to provide a power storage device module that can detect a thermal runaway of a power storage device.

上記問題点を解決するための蓄電装置モジュールは、複数の蓄電装置が並列接続された蓄電装置モジュールであって、前記蓄電装置はそれぞれ、電極組立体と、前記電極組立体を収容するケースとを有し、全ての前記蓄電装置のケースに接触した状態で配置されるとともに、電流が供給され、前記ケースに接触する部分同士が電気的に接続された検出用部材と、前記検出用部材の導通状態を検出する検出部と、を備えることを要旨とする。   A power storage device module for solving the above problems is a power storage device module in which a plurality of power storage devices are connected in parallel, and each of the power storage devices includes an electrode assembly and a case for housing the electrode assembly. A detection member, which is disposed in contact with the cases of all of the power storage devices, is supplied with current, and is electrically connected to portions that are in contact with the case, and is electrically connected to the detection members. And a detection unit that detects a state.

複数の蓄電装置のうち、少なくとも1つの蓄電装置が熱暴走すると、熱暴走した蓄電装置のケースは高温になる。このため、全ての蓄電装置のケースに接触した状態で配置された検出用部材は、熱暴走により高温になったケースの熱によって溶断し、検出用部材に電流が流れなくなる。つまり、検出用部材の導通状態が不通となる。よって、検出部により検出用部材の導通状態を検出することで、蓄電装置の熱暴走を検出できる。   When at least one power storage device among the plurality of power storage devices undergoes thermal runaway, the temperature of the case of the thermal storage device that has undergone thermal runaway becomes high. For this reason, the detection members arranged in contact with the cases of all the power storage devices are melted by the heat of the case that has become hot due to thermal runaway, and no current flows to the detection members. That is, the conduction state of the detection member is interrupted. Therefore, thermal runaway of the power storage device can be detected by detecting the conduction state of the detection member by the detection unit.

また、上記蓄電装置モジュールについて、前記検出用部材は、導電部材と、絶縁性材料によって形成され、前記導電部材を被覆する被覆部とを有し、前記被覆部が前記ケースと接触するのが好ましい。   In the above power storage device module, it is preferable that the detection member has a conductive member and a covering portion formed of an insulating material and covering the conductive member, and the covering portion is in contact with the case. .

また、上記蓄電装置モジュールについて、前記検出用部材は、線状であるのが好ましい。
また、上記蓄電装置モジュールについて、前記検出用部材は、板状であるのが好ましい。
In the above power storage device module, the detection member is preferably linear.
In the above power storage device module, it is preferable that the detection member has a plate shape.

上記問題点を解決するための蓄電装置モジュールは、複数の蓄電装置が並列接続された蓄電装置モジュールであって、前記蓄電装置はそれぞれ、電極組立体と、前記電極組立体を収容するケースと、前記ケースの壁部に存在し、前記ケース内の圧力が開放圧に達した場合に開裂し、前記ケース内の圧力を前記ケース外に開放させる圧力開放弁とを有し、全ての前記蓄電装置の圧力開放弁と対向して配置されるとともに、電流が供給され、前記圧力開放弁と対向する部分同士が電気的に接続された検出用部材と、前記検出用部材の導通状態を検出する検出部と、を備えることを要旨とする。   A power storage device module for solving the above problems is a power storage device module in which a plurality of power storage devices are connected in parallel, each of the power storage devices is an electrode assembly, and a case that houses the electrode assembly, A pressure release valve that is present on the wall of the case and is opened when the pressure in the case reaches the release pressure, and releases the pressure in the case to the outside of the case; A detection member which is arranged to face the pressure release valve, is supplied with current, and has a portion electrically connected to the portion facing the pressure release valve, and a detection member for detecting a conduction state of the detection member. And a unit.

複数の蓄電装置のうち、少なくとも1つの蓄電装置が熱暴走すると、熱暴走した蓄電装置の圧力開放弁は開裂し、開裂した部分から高温のガスが噴出する。このため、全ての蓄電装置の圧力開放弁と対向して配置される検出用部材は、開裂した圧力開放弁によって物理的に切断されるか、又は噴出した高温のガスによって溶断し、検出用部材に電流が流れなくなる。つまり、検出用部材の導通状態が不通となる。よって、検出部により検出用部材の導通状態を検出することで、蓄電装置の熱暴走を検出できる。   When at least one of the plurality of power storage devices undergoes thermal runaway, the pressure release valve of the thermally runaway power storage device is opened, and high-temperature gas is ejected from the opened portion. For this reason, the detection members arranged opposite to the pressure release valves of all the power storage devices are physically cut by the split pressure release valves, or are melted by the jetted high-temperature gas, and are thus detected. No current flows through That is, the conduction state of the detection member is interrupted. Therefore, thermal runaway of the power storage device can be detected by detecting the conduction state of the detection member by the detection unit.

また、上記蓄電装置モジュールについて、前記検出用部材は、前記ケースに接触した状態で前記圧力開放弁と対向して配置されるのが好ましい。
また、上記蓄電装置モジュールについて、前記検出用部材は、前記ケースから離間した状態で前記圧力開放弁と対向して配置されるのが好ましい。
Further, in the power storage device module, it is preferable that the detection member is disposed to face the pressure release valve in a state of being in contact with the case.
Further, in the power storage device module, it is preferable that the detection member is disposed to face the pressure release valve in a state where the detection member is separated from the case.

また、上記蓄電装置モジュールについて、前記検出部が前記検出用部材の導通状態を不通であると検出した場合に、前記蓄電装置の充電又は放電を停止させるのが好ましい。   In the power storage device module, it is preferable that charging or discharging of the power storage device is stopped when the detection unit detects that the conduction state of the detection member is not in communication.

本発明によれば、蓄電装置の熱暴走を検出できる。   According to the present invention, thermal runaway of a power storage device can be detected.

二次電池モジュールの斜視図。FIG. 3 is a perspective view of a secondary battery module. 二次電池の断面図。FIG. 4 is a cross-sectional view of a secondary battery. 第1の実施形態の二次電池モジュールの平面図。FIG. 2 is a plan view of the secondary battery module according to the first embodiment. 第1の実施形態の二次電池モジュールの作用を示す平面図。FIG. 4 is a plan view showing the operation of the secondary battery module according to the first embodiment. 第2の実施形態の二次電池モジュールを示す斜視図。FIG. 5 is a perspective view showing a secondary battery module according to a second embodiment. 第2の実施形態の二次電池モジュールの作用を示す斜視図。FIG. 9 is an exemplary perspective view showing the operation of the secondary battery module according to the second embodiment;

(第1の実施形態)
以下、蓄電装置モジュールを二次電池モジュールに具体化した第1の実施形態を図1〜図4にしたがって説明する。
(First embodiment)
Hereinafter, a first embodiment in which a power storage device module is embodied as a secondary battery module will be described with reference to FIGS.

図1に示すように、蓄電装置モジュールとしての二次電池モジュール10は、複数(本実施形態では8つ)の蓄電装置としての二次電池11を備える。二次電池モジュール10は、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)等の車両に搭載され、電動機などへの供給電力を蓄えるのに用いられる。本実施形態の二次電池11は、リチウムイオン二次電池である。   As shown in FIG. 1, a secondary battery module 10 as a power storage device module includes a plurality (eight in the present embodiment) of secondary batteries 11 as power storage devices. The secondary battery module 10 is mounted on a vehicle such as an EV (Electric Vehicle) or a PHV (Plug in Hybrid Vehicle), and is used to store power supplied to an electric motor and the like. The secondary battery 11 of the present embodiment is a lithium ion secondary battery.

図2に示すように、各二次電池11は、ケース21と、ケース21に収容された電極組立体22と、ケース21に収容された図示しない電解液とを備える。ケース21は、有底四角筒状のケース本体23と、ケース本体23の開口部23aを閉塞する矩形平板状の蓋24とを有する。ケース本体23及び蓋24はそれぞれ、ケース21の壁部を構成している。ケース本体23と蓋24は、何れも金属製(例えば、ステンレスやアルミニウム)である。ケース本体23は、矩形板状の底壁23bと、底壁23bの一対の長側縁部から立設された長側壁23cと、底壁23bの一対の短側縁部から立設された短側壁23dとを有する。本実施形態の二次電池11は、その外観が角型をなす角型電池である。   As shown in FIG. 2, each secondary battery 11 includes a case 21, an electrode assembly 22 housed in the case 21, and an electrolytic solution (not shown) housed in the case 21. The case 21 has a case main body 23 having a bottomed quadrangular cylindrical shape, and a rectangular flat lid 24 for closing an opening 23 a of the case main body 23. The case body 23 and the lid 24 each constitute a wall of the case 21. The case body 23 and the lid 24 are both made of metal (for example, stainless steel or aluminum). The case body 23 has a rectangular plate-shaped bottom wall 23b, a long side wall 23c standing upright from a pair of long side edges of the bottom wall 23b, and a short side standing upright from a pair of short side edges of the bottom wall 23b. And a side wall 23d. The secondary battery 11 of the present embodiment is a prismatic battery having a rectangular appearance.

図示しないが、電極組立体22は、複数の正極の電極と、複数の負極の電極と、複数のセパレータとを備える。電極組立体22は、正極の電極と負極の電極との間にセパレータを介在させ、かつ相互に絶縁させた状態で積層した層状構造を備える。正極の電極と、負極の電極と、セパレータとが積層される方向を積層方向とする。正極及び負極の電極はそれぞれ、矩形シート状の集電体と、集電体の両面に存在する活物質層とを有する。また、正極及び負極の電極はそれぞれ、集電体の一辺の一部から突出したタブを有する。タブは、活物質層が存在せず、集電体そのもので構成されている。正極及び負極の電極は、正極のタブが積層方向に沿って列状に配置され、負極のタブが積層方向に沿って列状に配置されるように積層される。   Although not shown, the electrode assembly 22 includes a plurality of positive electrodes, a plurality of negative electrodes, and a plurality of separators. The electrode assembly 22 has a layered structure in which a separator is interposed between a positive electrode and a negative electrode, and the layers are stacked in a state where they are insulated from each other. The direction in which the positive electrode, the negative electrode, and the separator are stacked is referred to as a stacking direction. Each of the positive electrode and the negative electrode has a rectangular sheet-shaped current collector and active material layers present on both surfaces of the current collector. Each of the positive electrode and the negative electrode has a tab protruding from a part of one side of the current collector. The tab has no active material layer and is formed of the current collector itself. The positive electrode and the negative electrode are stacked such that the positive electrode tabs are arranged in rows along the stacking direction, and the negative electrode tabs are arranged in rows along the stacking direction.

電極組立体22は、正極のタブが寄せ集められて積層された正極タブ群25aと、負極のタブが寄せ集められて積層された負極タブ群25bとを備える。電極組立体22において、正極タブ群25a及び負極タブ群25bが存在する端面をタブ側端面22aとする。タブ側端面22aは、蓋24の内面と対向する。   The electrode assembly 22 includes a positive electrode tab group 25a in which positive electrode tabs are gathered and stacked, and a negative electrode tab group 25b in which negative electrode tabs are gathered and stacked. In the electrode assembly 22, the end face on which the positive electrode tab group 25a and the negative electrode tab group 25b exist is referred to as a tab side end face 22a. The tab-side end surface 22a faces the inner surface of the lid 24.

各二次電池11は、電極組立体22と電気を授受する正極端子構造26a及び負極端子構造26bを備える。正極端子構造26aは、正極タブ群25aと電気的に接続された板状の正極接続部材27aと、正極接続部材27aと電気的に接続された正極端子28aとを備える。同様に、負極端子構造26bは、負極タブ群25bと電気的に接続された板状の負極接続部材27bと、負極接続部材27bと電気的に接続された負極端子28bとを備える。正極端子28a及び負極端子28bはそれぞれ、基部281と、基部281から突出する軸部282とを有する。正極端子28aの基部281は、ケース21の内部にて正極接続部材27aと接続され、負極端子28bの基部281は、ケース21の内部にて負極接続部材27bと接続されている。各軸部282は、基部281とは反対側の端部が蓋24を貫通してケース21の外部に突出することで、ケース21の内外を繋ぐ。正極端子28a及び負極端子28bはそれぞれ、軸部282におけるケース21の外部に突出した部分の外周面に雄ねじ溝を有し、雄ねじ溝にナット29が螺合されることにより、蓋24に固定されている。また、正極端子28a及び負極端子28bはそれぞれ、軸部282における基部281とは反対側の端面から基部281に向けて形成されるとともに、内周面に雌ねじ溝を有する連結孔282aを備える。   Each secondary battery 11 includes a positive electrode terminal structure 26a and a negative electrode terminal structure 26b that exchange electricity with the electrode assembly 22. The positive electrode terminal structure 26a includes a plate-shaped positive electrode connection member 27a electrically connected to the positive electrode tab group 25a, and a positive electrode terminal 28a electrically connected to the positive electrode connection member 27a. Similarly, the negative electrode terminal structure 26b includes a plate-shaped negative electrode connection member 27b electrically connected to the negative electrode tab group 25b, and a negative electrode terminal 28b electrically connected to the negative electrode connection member 27b. Each of the positive electrode terminal 28a and the negative electrode terminal 28b has a base 281 and a shaft 282 protruding from the base 281. The base 281 of the positive terminal 28a is connected to the positive connecting member 27a inside the case 21, and the base 281 of the negative terminal 28b is connected to the negative connecting member 27b inside the case 21. Each shaft portion 282 connects the inside and the outside of the case 21 by having the end opposite to the base portion 281 penetrate the lid 24 and protrude to the outside of the case 21. Each of the positive electrode terminal 28a and the negative electrode terminal 28b has a male screw groove on an outer peripheral surface of a portion of the shaft portion 282 protruding outside the case 21, and is fixed to the lid 24 by screwing a nut 29 into the male screw groove. ing. Each of the positive electrode terminal 28a and the negative electrode terminal 28b is formed from an end surface of the shaft portion 282 opposite to the base 281 toward the base 281 and includes a connection hole 282a having a female screw groove on an inner peripheral surface.

各二次電池11は、蓋24に圧力開放弁30を備える。圧力開放弁30は、ケース21の内部でガスが発生した際、ケース21内の圧力が上昇し過ぎないように、ケース21内の圧力が所定の圧力である開放圧に達した場合に開裂する。圧力開放弁30が開裂すると、開裂した部分からケース21内のガスがケース21外に噴出する。これにより、ケース21内の圧力がケース21外に開放される。   Each secondary battery 11 includes a pressure release valve 30 on the lid 24. The pressure release valve 30 ruptures when the pressure in the case 21 reaches a predetermined release pressure so that the pressure in the case 21 does not increase excessively when gas is generated inside the case 21. . When the pressure release valve 30 ruptures, the gas in the case 21 blows out of the case 21 from the ruptured portion. Thereby, the pressure in the case 21 is released to the outside of the case 21.

このような二次電池11では、内部短絡や過充電などにより、二次電池11を構成する特定部材が発熱し、この特定部材の発熱により、他の部材が発熱し、他の部材の発熱により、更に別の部材が発熱するというように、発熱反応が制御不能に繰り返される状態(熱暴走)に陥ることがある。例えば、ケース21内の異物やクリープ現象によってセパレータが破れ、正極電極と負極電極とが短絡すると、正極電極と負極電極との間で電流が流れ、発熱する。そして、所定の温度(約120〜130度)まで達すると、負極電極の表面に形成されたSEI被膜が熱分解し、このSEI被膜の熱分解によって露出した負極電極の表面に電解液が付着することで、電解液は還元分解するとともに、ケース21内にはガスが発生する。このようにして発熱反応が繰り返される。二次電池11が熱暴走すると、電解液の還元分解によって生じたガスにより、ケース21の内部の圧力が高まる。このため、二次電池11の圧力開放弁30が開裂し、圧力開放弁30の開裂した部分からケース21内の高温のガスが噴出する。二次電池11の熱暴走によって圧力開放弁30が作動して噴出するガスの温度は、約600度であり、二次電池11が熱暴走していない時にケース21内の圧力が上昇することで圧力開放弁30が作動して噴出するガスの温度(約50度以下)よりも十分高い。また、二次電池11の温度は自発的に上昇し続けるため、電極組立体22及び電解液を収容するケース21も高温になる。なお、熱暴走した二次電池11において、圧力開放弁30は、ケース21が高温になる前に作動する。   In such a secondary battery 11, a specific member constituting the secondary battery 11 generates heat due to an internal short circuit or overcharge, and other members generate heat due to the heat generated by the specific member. In some cases, the exothermic reaction may be uncontrollably repeated (heat runaway) such that another member generates heat. For example, when the separator is broken by the foreign matter in the case 21 or the creep phenomenon and the positive electrode and the negative electrode are short-circuited, a current flows between the positive electrode and the negative electrode to generate heat. When the temperature reaches a predetermined temperature (about 120 to 130 ° C.), the SEI film formed on the surface of the negative electrode is thermally decomposed, and the electrolyte adheres to the surface of the negative electrode exposed by the thermal decomposition of the SEI film. As a result, the electrolytic solution undergoes reductive decomposition, and gas is generated in the case 21. The exothermic reaction is repeated in this way. When the secondary battery 11 runs away from heat, the pressure inside the case 21 increases due to the gas generated by the reductive decomposition of the electrolytic solution. For this reason, the pressure release valve 30 of the secondary battery 11 is opened, and the high-temperature gas in the case 21 is ejected from the opened portion of the pressure release valve 30. The temperature of the gas ejected by operating the pressure release valve 30 due to the thermal runaway of the secondary battery 11 is about 600 degrees, and the pressure in the case 21 increases when the secondary battery 11 is not thermally runaway. The temperature is sufficiently higher than the temperature (approximately 50 degrees or less) of the gas ejected by the operation of the pressure release valve 30. Further, since the temperature of the secondary battery 11 continues to rise spontaneously, the temperature of the electrode assembly 22 and the case 21 containing the electrolytic solution also become high. Note that, in the secondary battery 11 that has undergone thermal runaway, the pressure release valve 30 operates before the temperature of the case 21 becomes high.

図1及び図3に示すように、8つの二次電池11は、各ケース21の長側壁23c同士が対向するように一列に配列される。二次電池11が配列される方向を配列方向とし、8つの二次電池11を、配列方向の一端側から他端側に向かって1〜8番の二次電池11a〜11hとする。1番の二次電池11aと2番の二次電池11bとは、正極端子28a同士及び負極端子28b同士が配列方向に隣り合うように配置される。3番の二次電池11cと4番の二次電池11d、5番の二次電池11eと6番の二次電池11f、及び7番の二次電池11gと8番の二次電池11hについても同様に、正極端子28a同士及び負極端子28b同士が配列方向に隣り合うように配置される。また、3番の二次電池11cの正極端子28aは、2番の二次電池11bの負極端子28bと隣り合い、4番の二次電池11dの正極端子28aは、5番の二次電池11eの負極端子28bと隣り合う。6番の二次電池11fの正極端子28aは、7番の二次電池11gの負極端子28bと隣り合う。   As shown in FIGS. 1 and 3, the eight secondary batteries 11 are arranged in a row so that the long side walls 23 c of each case 21 face each other. The direction in which the secondary batteries 11 are arranged is referred to as an arrangement direction, and the eight secondary batteries 11 are referred to as first to eighth secondary batteries 11a to 11h from one end side to the other end side in the arrangement direction. The first secondary battery 11a and the second secondary battery 11b are arranged such that the positive terminals 28a and the negative terminals 28b are adjacent to each other in the arrangement direction. The third secondary battery 11c, the fourth secondary battery 11d, the fifth secondary battery 11e, the sixth secondary battery 11f, the seventh secondary battery 11g, and the eighth secondary battery 11h are also provided. Similarly, the positive terminals 28a and the negative terminals 28b are arranged so as to be adjacent to each other in the arrangement direction. The positive terminal 28a of the third secondary battery 11c is adjacent to the negative terminal 28b of the second secondary battery 11b, and the positive terminal 28a of the fourth secondary battery 11d is connected to the fifth secondary battery 11e. Next to the negative electrode terminal 28b. The positive terminal 28a of the sixth secondary battery 11f is adjacent to the negative terminal 28b of the seventh secondary battery 11g.

8つの二次電池11は、複数枚(本実施形態では3枚)の板状のバスバー31〜33によって連結されることで並列接続される。第1のバスバー31は、1番の二次電池11aの負極端子28b、2番の二次電池11bの負極端子28b、3番の二次電池11cの正極端子28a、及び4番の二次電池11dの正極端子28aによって貫通された状態である。第2のバスバー32は、3番の二次電池11cの負極端子28b、4番の二次電池11dの負極端子28b、5番の二次電池11eの正極端子28a、及び6番の二次電池11fの正極端子28aによって貫通された状態である。第3のバスバー33は、5番の二次電池11eの負極端子28b、6番の二次電池11fの負極端子28b、7番の二次電池11gの正極端子28a、及び8番の二次電池11hの正極端子28aによって貫通された状態である。そして、第1〜第3のバスバー31〜33が各正極端子28a及び各負極端子28bによって貫通された状態で、ボルト34が各軸部282の連結孔282aの雌ねじ溝に螺合されることにより、二次電池11同士は連結される。本実施形態では、8つの二次電池11は、並列接続された2つ1組の二次電池11が、4組直列接続された状態となる。   The eight secondary batteries 11 are connected in parallel by being connected by a plurality of (three in this embodiment) plate-shaped bus bars 31 to 33. The first bus bar 31 includes a negative terminal 28b of the first secondary battery 11a, a negative terminal 28b of the second secondary battery 11b, a positive terminal 28a of the third secondary battery 11c, and a fourth secondary battery. This is a state penetrated by the positive electrode terminal 28a of 11d. The second bus bar 32 includes a negative terminal 28b of the third secondary battery 11c, a negative terminal 28b of the fourth secondary battery 11d, a positive terminal 28a of the fifth secondary battery 11e, and a sixth secondary battery. This is a state penetrated by the positive electrode terminal 28a of 11f. The third bus bar 33 includes a negative terminal 28b of a fifth secondary battery 11e, a negative terminal 28b of a sixth secondary battery 11f, a positive terminal 28a of a seventh secondary battery 11g, and an eighth secondary battery. 11h is a state penetrated by the positive electrode terminal 28a. Then, in a state where the first to third bus bars 31 to 33 are penetrated by the respective positive electrode terminals 28a and the respective negative electrode terminals 28b, the bolts 34 are screwed into the female screw grooves of the connection holes 282a of the respective shaft portions 282. , The secondary batteries 11 are connected to each other. In the present embodiment, the eight secondary batteries 11 are in a state in which four sets of two secondary batteries 11 connected in parallel are connected in series.

図3に示すように、二次電池モジュール10は、二次電池11の熱暴走を検出するための検出装置40を備える。検出装置40は、検出用部材としての検出用配線41を備える。検出用配線41は、導電部材としての導線(本実施形態ではアルミニウム線)41aと、導線41aを被覆する被覆部41bとを有する。被覆部41bは、絶縁性を有する材料(本実施形態では、樹脂)によって形成される。検出用配線41は、二次電池モジュール10を構成する全ての二次電池11に接触した状態で配置される。本実施形態では、検出用配線41は、被覆部41bが8つの二次電池11のケース本体23の一方の短側壁23dの外面と接触するように配置される。検出用配線41において各ケース21に接触する部分同士は、導線41aによって電気的に接続されている。検出用配線41の径は、二次電池11の熱暴走によって高温になったケース21の熱により、溶断する程度の径に設定される。   As shown in FIG. 3, the secondary battery module 10 includes a detection device 40 for detecting thermal runaway of the secondary battery 11. The detection device 40 includes a detection wire 41 as a detection member. The detection wiring 41 has a conductive wire (aluminum wire in the present embodiment) 41a as a conductive member, and a covering portion 41b that covers the conductive wire 41a. The covering portion 41b is formed of a material having an insulating property (a resin in the present embodiment). The detection wiring 41 is arranged in contact with all the secondary batteries 11 constituting the secondary battery module 10. In the present embodiment, the detection wiring 41 is arranged such that the covering portion 41b contacts the outer surface of one short side wall 23d of the case main body 23 of the eight secondary batteries 11. Portions of the detection wiring 41 that are in contact with the respective cases 21 are electrically connected to each other by a conductive wire 41a. The diameter of the detection wiring 41 is set to a diameter such that the detection wiring 41 is melted by the heat of the case 21 which has become high temperature due to thermal runaway of the secondary battery 11.

検出装置40は、導線41aに電流を流すための電源42と、導線41aの導通状態から二次電池11の熱暴走を検出する検出部43とを備える。本実施形態の検出部43は、導線41aを流れる電流を測定する電流計44と、電流計44に接続された判定部45とを有する。電源42及び電流計44はそれぞれ、導線41aに直列接続されている。判定部45は、電流計44が測定した電流から導線41aの導通状態を判定する。判定部45は、電流計44が測定した電流が0(ゼロ)である場合に、導線41aの導通状態が不通であると判定する。判定部45は、二次電池11の充放電を制御する制御装置46に信号接続されている。判定部45は、導線41aの導通状態が不通であると判定すると、制御装置46に信号を送信する。   The detecting device 40 includes a power supply 42 for supplying a current to the conducting wire 41a, and a detecting unit 43 for detecting a thermal runaway of the secondary battery 11 from a conduction state of the conducting wire 41a. The detection unit 43 of the present embodiment includes an ammeter 44 for measuring a current flowing through the conductor 41a, and a determination unit 45 connected to the ammeter 44. The power supply 42 and the ammeter 44 are each connected in series to the conductor 41a. The determination unit 45 determines the conduction state of the conductive wire 41a from the current measured by the ammeter 44. When the current measured by the ammeter 44 is 0 (zero), the determination unit 45 determines that the conduction state of the conductive wire 41a is not conducting. The determination unit 45 is signal-connected to a control device 46 that controls charging and discharging of the secondary battery 11. When the determining unit 45 determines that the conduction state of the conductive wire 41a is disconnected, it transmits a signal to the control device 46.

第1の実施形態の作用について説明する。
図3に示すように、8つの二次電池11が熱暴走していない場合、導線41aには電源42から供給された電流が流れる。このため、電流計44は、導線41aを流れる電流を測定し、判定部45は、電流計44が導線41aの電流を測定していることから、導線41aが導通していると判定する。よって、判定部45は、制御装置46に信号を送信しない。
The operation of the first embodiment will be described.
As shown in FIG. 3, when the eight secondary batteries 11 do not run out of heat, the current supplied from the power supply 42 flows through the conductor 41a. For this reason, the ammeter 44 measures the current flowing through the conductor 41a, and the determination unit 45 determines that the conductor 41a is conducting because the ammeter 44 measures the current of the conductor 41a. Therefore, the determination unit 45 does not transmit a signal to the control device 46.

図4に示すように、例えば、8つの二次電池11のうち、5番の二次電池11eが熱暴走すると、熱暴走した5番の二次電池11eのケース21は高温になる。このため、各二次電池11のケース21に接触して配置された検出用配線41は、高温になった5番の二次電池11eのケース21の熱により溶断し、導線41aに電流が流れなくなる。よって、電流計44が測定する電流値は0(ゼロ)となり、判定部45は、導線41aの導通状態が不通であると判定し、制御装置46に信号を送信する。制御装置46は、判定部45から信号を受信すると、二次電池11の充電又は放電を停止させる。   As shown in FIG. 4, for example, when the fifth secondary battery 11 e out of the eight secondary batteries 11 undergoes thermal runaway, the case 21 of the fifth secondary battery 11 e that has undergone thermal runaway becomes hot. For this reason, the detection wiring 41 arranged in contact with the case 21 of each secondary battery 11 is melted and cut off by the heat of the case 21 of the fifth secondary battery 11e, which has become hot, and a current flows through the conductor 41a. Disappears. Therefore, the current value measured by the ammeter 44 becomes 0 (zero), and the determination unit 45 determines that the conduction state of the conductive wire 41a is disconnected, and transmits a signal to the control device 46. Upon receiving the signal from the determination unit 45, the control device 46 stops charging or discharging the secondary battery 11.

第1の実施形態の効果について説明する。
(1−1)二次電池モジュール10を構成する複数の二次電池11のうち、少なくとも1つの二次電池11が熱暴走すると、熱暴走した二次電池11のケース21は高温になる。このため、全ての二次電池11のケース21に接触した状態で配置された検出用配線41は、熱暴走により高温になったケース21の熱によって溶断し、検出用配線41の導線41aに電流が流れなくなる。つまり、導線41aの導通状態が不通となる。よって、検出部43により導線41aの導通状態を検出することで、二次電池11の熱暴走を検出できる。
The effect of the first embodiment will be described.
(1-1) When at least one of the plurality of secondary batteries 11 constituting the secondary battery module 10 undergoes thermal runaway, the temperature of the case 21 of the secondary battery 11 that has undergone thermal runaway becomes high. For this reason, the detection wires 41 arranged in contact with the cases 21 of all the secondary batteries 11 are melted by the heat of the case 21 which has been heated to a high temperature due to thermal runaway, and current flows through the conductor 41 a of the detection wires 41. Stops flowing. That is, the conduction state of the conducting wire 41a is interrupted. Therefore, the thermal runaway of the secondary battery 11 can be detected by detecting the conduction state of the conducting wire 41a by the detecting unit 43.

また、二次電池11の熱暴走を検出する方法として、例えば、全ての二次電池11に温度センサを設け、温度センサによって熱暴走を検出する方法が考えられる。しかしながら、この方法では、二次電池モジュール10を構成する二次電池11の数と同数の温度センサを用意する必要があり、高コストになる。また、複数個置きに温度センサを設けることで低コスト化することもできるが、温度センサが設けられた二次電池11とは別の二次電池11が熱暴走した場合、熱暴走を検出できるのは、熱暴走した二次電池11のケース21から、温度センサが設けられた二次電池11のケース21まで熱が伝わった後になる。よって、熱暴走の検出に遅れが生じる。これに対し、本実施形態では、全ての二次電池11のケース21に接触するように1本の検出用配線41を配置し、検出用配線41の導線41aの導通状態を検出するだけで、二次電池11の熱暴走を検出できる。よって、低コストかつ早急に二次電池11の熱暴走を検出できる。   Further, as a method for detecting thermal runaway of the secondary batteries 11, for example, a method in which temperature sensors are provided in all the secondary batteries 11 and thermal runaway is detected by the temperature sensors can be considered. However, in this method, it is necessary to prepare the same number of temperature sensors as the number of the secondary batteries 11 constituting the secondary battery module 10, resulting in high cost. Although the cost can be reduced by providing a temperature sensor for every two or more, a thermal runaway can be detected when a secondary battery 11 different from the secondary battery 11 provided with the temperature sensor has thermal runaway. This occurs after heat is transferred from the case 21 of the secondary battery 11 that has run out of heat to the case 21 of the secondary battery 11 provided with a temperature sensor. Therefore, the detection of the thermal runaway is delayed. On the other hand, in the present embodiment, one detection wiring 41 is arranged so as to be in contact with the cases 21 of all the secondary batteries 11, and only the conduction state of the conductor 41 a of the detection wiring 41 is detected. Thermal runaway of the secondary battery 11 can be detected. Therefore, thermal runaway of the secondary battery 11 can be detected quickly and at low cost.

また、二次電池11の熱暴走を検出する他の方法として、例えば、並列接続された複数の二次電池11の両端の電圧を測定し、測定された電圧によって熱暴走を検出する方法も考えられる。しかしながら、この方法では、並列接続された複数の二次電池11のうち、1つでも熱暴走していない二次電池11が存在すると電圧異常が生じず、熱暴走を検出できない。これに対し、本実施形態では、全ての二次電池11のケース21に接触するように1本の検出用配線41を配置するため、並列接続された複数の二次電池11のうちの1つが熱暴走した場合であっても検出できる。   As another method of detecting thermal runaway of the secondary battery 11, for example, a method of measuring the voltage across both ends of a plurality of secondary batteries 11 connected in parallel and detecting thermal runaway based on the measured voltage is also considered. Can be However, in this method, if any one of the plurality of secondary batteries 11 connected in parallel does not undergo thermal runaway, no voltage abnormality occurs and thermal runaway cannot be detected. On the other hand, in the present embodiment, since one detection wiring 41 is arranged to be in contact with the cases 21 of all the secondary batteries 11, one of the plurality of secondary batteries 11 connected in parallel is connected. Even if a thermal runaway occurs, it can be detected.

(1−2)熱暴走した二次電池11のケース21の熱によって検出用配線41を溶断させる。このため、後述する第2の実施形態のように、二次電池11の熱暴走により圧力開放弁30が開裂し、開裂した部分から噴出した高温のガスによって、検出用配線41を溶断させる場合と比較して、二次電池11の熱暴走を安定的に検出できる。   (1-2) The detection wiring 41 is blown by the heat of the case 21 of the secondary battery 11 that has run away from heat. For this reason, as in the second embodiment described later, the pressure release valve 30 is split by thermal runaway of the secondary battery 11 and the detection wire 41 is blown off by high-temperature gas ejected from the split portion. In comparison, the thermal runaway of the secondary battery 11 can be stably detected.

(1−3)検出用配線41の導線41aは、絶縁性材料からなる被覆部41bによって被覆されている。このため、導線41aを流れる電流が二次電池11のケース21に流れることを回避できる。   (1-3) The conducting wire 41a of the detection wiring 41 is covered with a covering portion 41b made of an insulating material. Therefore, it is possible to prevent the current flowing through the conductive wire 41 a from flowing through the case 21 of the secondary battery 11.

(1−4)検出用部材は、検出用配線41であるため、検出用部材を板状とする場合と比較して溶断しやすい。よって、二次電池11の熱暴走を早急に検出できる。
(1−5)検出部43が導線41aの導通状態が不通であると検出した場合、すなわち二次電池11の熱暴走を検出した場合、制御装置46によって、二次電池11の充電又は放電を停止させることができる。
(1-4) Since the detection member is the detection wire 41, the detection member is easily blown compared to the case where the detection member has a plate shape. Therefore, thermal runaway of the secondary battery 11 can be detected immediately.
(1-5) When the detecting unit 43 detects that the conduction state of the conducting wire 41a is not conducting, that is, when detecting the thermal runaway of the secondary battery 11, the control device 46 causes the charging or discharging of the secondary battery 11 to be performed. Can be stopped.

(第2の実施形態)
以下、二次電池モジュールを具体化した第2の実施形態を図5及び図6にしたがって説明する。なお、第1の実施形態と同じ構成については説明を省略する。
(Second embodiment)
Hereinafter, a second embodiment that embodies the secondary battery module will be described with reference to FIGS. The description of the same configuration as that of the first embodiment is omitted.

図5に示すように、検出装置40の検出用配線41は、全ての二次電池11の圧力開放弁30と対向する状態で配置される。本実施形態では、検出用配線41は、図示しない支持部によって、各二次電池11の蓋24から離間した状態で支持される。検出用配線41において各圧力開放弁30と対向する部分同士は、導線41aによって電気的に接続されている。検出用配線41の径、及び圧力開放弁30と検出用配線41との距離は、二次電池11の熱暴走により圧力開放弁30が開裂した際に、開裂した部分から噴出した高温のガスによって、検出用配線41が溶断可能な程度の径及び距離に設定される。   As shown in FIG. 5, the detection wiring 41 of the detection device 40 is disposed so as to face the pressure release valves 30 of all the secondary batteries 11. In the present embodiment, the detection wiring 41 is supported by a support (not shown) in a state where it is separated from the lid 24 of each secondary battery 11. The portions of the detection wiring 41 that face each pressure release valve 30 are electrically connected by a conductive wire 41a. The diameter of the detection wiring 41 and the distance between the pressure release valve 30 and the detection wiring 41 are determined by the high-temperature gas ejected from the cleaved portion when the pressure release valve 30 is ruptured due to thermal runaway of the secondary battery 11. The diameter and the distance are set to such an extent that the detection wiring 41 can be blown.

第2の実施形態の作用について説明する。
図6に示すように、例えば、8つの二次電池11のうち、5番の二次電池11eが熱暴走すると、熱暴走した5番の二次電池11eの圧力開放弁30は開裂し、開裂した部分から高温のガスが噴出する。このため、各二次電池11の圧力開放弁30と対向して配置された検出用配線41は、噴出した高温のガスの熱により溶断し、導線41aに電流が流れなくなる。よって、電流計44が測定する電流値は0(ゼロ)となり、判定部45は、導線41aの導通状態が不通であると判定する。
The operation of the second embodiment will be described.
As shown in FIG. 6, for example, when the fifth rechargeable battery 11 e out of the eight rechargeable batteries 11 runs out of heat, the pressure release valve 30 of the fifth rechargeable battery 11 e that has run out of heat is opened, and the splitting is performed. Hot gas gushes from the part. For this reason, the detection wiring 41 arranged opposite to the pressure release valve 30 of each secondary battery 11 is blown off by the heat of the ejected high-temperature gas, so that no current flows through the conductive wire 41a. Therefore, the current value measured by the ammeter 44 is 0 (zero), and the determination unit 45 determines that the conduction state of the conductive wire 41a is disconnected.

第2の実施形態の効果について説明する。
(2−1)二次電池モジュール10を構成する複数の二次電池11のうち、少なくとも1つの二次電池11が熱暴走すると、熱暴走した二次電池11の圧力開放弁30は開裂し、開裂した部分から高温のガスが噴出する。このため、全ての二次電池11の圧力開放弁30と対向して配置される検出用配線41は、噴出した高温のガスによって溶断し、検出用配線41の導線41aに電流が流れなくなる。つまり、導線41aの導通状態が不通となる。よって、検出部43により導線41aの導通状態を検出することで、二次電池11の熱暴走を検出できる。
The effect of the second embodiment will be described.
(2-1) When at least one of the plurality of secondary batteries 11 constituting the secondary battery module 10 undergoes thermal runaway, the pressure release valve 30 of the thermal runaway secondary battery 11 is opened, Hot gas gushes from the cleaved part. For this reason, the detection wires 41 arranged to face the pressure release valves 30 of all the secondary batteries 11 are blown by the ejected high-temperature gas, so that no current flows through the conductive wires 41 a of the detection wires 41. That is, the conduction state of the conducting wire 41a is interrupted. Therefore, the thermal runaway of the secondary battery 11 can be detected by detecting the conduction state of the conducting wire 41a by the detecting unit 43.

また、二次電池11の熱暴走を検出する方法として、例えば、全ての二次電池11に温度センサを設け、温度センサによって熱暴走を検出する方法が考えられる。しかしながら、この方法では、二次電池モジュール10を構成する二次電池11の数と同数の温度センサを用意する必要があり、高コストになる。また、複数個置きに温度センサを設けることで低コスト化することもできるが、温度センサが設けられた二次電池11とは別の二次電池11が熱暴走した場合、熱暴走を検出できるのは、熱暴走した二次電池11のケース21から、温度センサが設けられた二次電池11のケース21まで熱が伝わった後になる。よって、熱暴走の検出に遅れが生じる。これに対し、本実施形態では、全ての二次電池11の圧力開放弁30と対向するように1本の検出用配線41を配置し、検出用配線41の導線41aの導通状態を検出するだけで、二次電池11の熱暴走を検出できる。よって、低コストかつ早急に二次電池11の熱暴走を検出できる。   Further, as a method for detecting thermal runaway of the secondary batteries 11, for example, a method in which temperature sensors are provided in all the secondary batteries 11 and thermal runaway is detected by the temperature sensors can be considered. However, in this method, it is necessary to prepare the same number of temperature sensors as the number of the secondary batteries 11 constituting the secondary battery module 10, resulting in high cost. Although the cost can be reduced by providing a temperature sensor for every two or more, a thermal runaway can be detected when a secondary battery 11 different from the secondary battery 11 provided with the temperature sensor has thermal runaway. This occurs after heat is transferred from the case 21 of the secondary battery 11 that has run out of heat to the case 21 of the secondary battery 11 provided with a temperature sensor. Therefore, the detection of the thermal runaway is delayed. On the other hand, in the present embodiment, one detection wiring 41 is arranged so as to face the pressure release valves 30 of all the secondary batteries 11, and only the conduction state of the conductor 41 a of the detection wiring 41 is detected. Thus, thermal runaway of the secondary battery 11 can be detected. Therefore, thermal runaway of the secondary battery 11 can be detected quickly and at low cost.

また、二次電池11の熱暴走を検出する他の方法として、例えば、並列接続された複数の二次電池11の両端の電圧を測定し、測定された電圧によって熱暴走を検出する方法も考えられる。しかしながら、この方法では、並列接続された複数の二次電池11のうち、1つでも熱暴走していない二次電池11が存在すると電圧異常が生じず、熱暴走を検出できない。これに対し、本実施形態では、全ての二次電池11の圧力開放弁30と対向するように1本の検出用配線41を配置するため、並列接続された複数の二次電池11のうちの1つが熱暴走した場合であっても検出できる。   As another method of detecting thermal runaway of the secondary battery 11, for example, a method of measuring the voltage across both ends of a plurality of secondary batteries 11 connected in parallel and detecting thermal runaway based on the measured voltage is also considered. Can be However, in this method, if any one of the plurality of secondary batteries 11 connected in parallel does not undergo thermal runaway, no voltage abnormality occurs and thermal runaway cannot be detected. On the other hand, in the present embodiment, since one detection wiring 41 is arranged so as to face the pressure release valves 30 of all the secondary batteries 11, among the plurality of secondary batteries 11 connected in parallel, Even if one of them runs out of heat, it can be detected.

(2−2)本実施形態では、開裂した圧力開放弁30から噴出したガスによって検出用配線41を溶断させる。熱暴走した二次電池11において、圧力開放弁30は、ケース21が高温になる前に作動する。このため、第1の実施形態のように、熱暴走した二次電池11のケース21の熱によって検出用配線41を溶断させる場合と比較して、二次電池11の熱暴走を早急に検出することができる。   (2-2) In the present embodiment, the detection wiring 41 is blown off by the gas ejected from the split pressure release valve 30. In the secondary battery 11 that has undergone thermal runaway, the pressure release valve 30 operates before the temperature of the case 21 becomes high. For this reason, the thermal runaway of the secondary battery 11 is detected more quickly than in the case where the detection wiring 41 is blown off by the heat of the case 21 of the secondary battery 11 that has runaway as in the first embodiment. be able to.

(2−3)検出用部材は、検出用配線41であるため、検出用部材を板状とする場合と比較して溶断しやすい。よって、二次電池11の熱暴走を早急に検出できる。
(2−4)検出部43が導線41aの導通状態が不通であると検出した場合、すなわち二次電池11の熱暴走を検出した場合、制御装置46によって、二次電池11の充電又は放電を停止させることができる。
(2-3) Since the detection member is the detection wire 41, the detection member is easily blown compared to the case where the detection member has a plate shape. Therefore, thermal runaway of the secondary battery 11 can be detected immediately.
(2-4) When the detecting unit 43 detects that the conduction state of the conducting wire 41a is not conducting, that is, when detecting the thermal runaway of the secondary battery 11, the control unit 46 controls the charging or discharging of the secondary battery 11. Can be stopped.

第1及び第2の実施形態は、以下のように変更して実施することができる。第1の実施形態、第2の実施形態、及び変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。   The first and second embodiments can be modified and implemented as follows. The first embodiment, the second embodiment, and the modifications can be implemented in combination with each other within a technically consistent range.

○ 二次電池モジュール10を構成する二次電池11の数は、2つ以上であれば、適宜変更してよい。ただし、二次電池11は並列接続されているものとする。
○ 二次電池モジュール10において、少なくとも一部の二次電池11が並列接続されるのであれば、接続態様は適宜変更してよい。
The number of the secondary batteries 11 constituting the secondary battery module 10 may be appropriately changed as long as it is two or more. However, it is assumed that the secondary batteries 11 are connected in parallel.
In the secondary battery module 10, if at least some of the secondary batteries 11 are connected in parallel, the connection mode may be changed as appropriate.

○ 第1及び第2の実施形態では、二次電池モジュール10を構成する8つの二次電池11のうち、1つの二次電池11が熱暴走する場合について説明したが、2つ以上の二次電池11が同時に熱暴走する場合も有り得る。   In the first and second embodiments, the case where one of the eight secondary batteries 11 constituting the secondary battery module 10 undergoes thermal runaway has been described, but two or more secondary batteries 11 The battery 11 may run away at the same time.

○ 二次電池モジュール10を構成する二次電池11は、一列に配列されていなくてもよく、二次電池11の配置態様は適宜変更してよい。
○ ケース21の形状は、直方体状に限定されず、適宜変更してよい。例えば、ケース21は、有底円筒状のケース本体23と、ケース本体23の開口部23aを閉塞する円板状の蓋24とを有する円柱状であってもよい。
(Circle) the secondary batteries 11 which comprise the secondary battery module 10 do not need to be arranged in a line, and the arrangement mode of the secondary batteries 11 may be changed suitably.
The shape of the case 21 is not limited to a rectangular parallelepiped, and may be changed as appropriate. For example, the case 21 may have a cylindrical shape having a bottomed cylindrical case main body 23 and a disc-shaped lid 24 for closing the opening 23a of the case main body 23.

○ ケース21に収容される電極組立体22は、上記実施形態で説明した、いわゆる積層型の電極組立体に限定されず、巻回型の電極組立体であってもよい。
○ 圧力開放弁30は、ケース本体23に設けられていてもよい。
The electrode assembly 22 housed in the case 21 is not limited to the so-called stacked electrode assembly described in the above embodiment, but may be a wound electrode assembly.
The pressure release valve 30 may be provided in the case main body 23.

○ 導線41aの導通状態を検出する方法は適宜変更してよい。例えば、検出部43としてのテスタによって、導線41aの導通状態を検出してもよい。
○ 第1の実施形態において、検出用部材の導電部材は、線状に限定されず、板状であってもよい。検出用部材の板厚は、二次電池11の熱暴走によって高温になったケース21の熱により、検出用部材が溶断する程度の厚みに設定される。この場合、検出用部材が線状である場合と比較して、二次電池11のケース21と検出用部材との接触面積が増えるため、熱暴走により高温になったケース21の熱が検出用部材に伝わりやすくなる。
The method of detecting the conduction state of the conductive wire 41a may be changed as appropriate. For example, the conduction state of the conductive wire 41a may be detected by a tester as the detection unit 43.
In the first embodiment, the conductive member of the detection member is not limited to a linear shape, and may be a plate shape. The thickness of the detection member is set to such a thickness that the detection member is blown by the heat of the case 21 which has become high temperature due to the thermal runaway of the secondary battery 11. In this case, since the contact area between the case 21 of the secondary battery 11 and the detection member is increased as compared with the case where the detection member is linear, the heat of the case 21 that has become hot due to thermal runaway is used for the detection. It is easy to transmit to the member.

○ 導線41aの材料は、導電性を有し、かつケース21の熱又は圧力開放弁30から噴出した高温のガスによって溶断する程度の低融点であればよく、アルミニウムに限定されない。導線41aの材料は、例えば、錫や低融点合金、導電性プラスチックでもよい。   The material of the conductive wire 41a is not limited to aluminum and has only to have a low melting point that has conductivity and is melted by heat of the case 21 or high-temperature gas ejected from the pressure release valve 30. The material of the conductive wire 41a may be, for example, tin, a low melting point alloy, or a conductive plastic.

○ 導線41aは、被覆部41bによって被覆されていなくてもよい。
○ 第1の実施形態において、ケース21における検出用配線41が接触する部分は、ケース本体23の短側壁23dの外面に限定されず、底壁23bや長側壁23cの外面でもよいし、蓋24の外面でもよい。
(Circle) the conducting wire 41a does not need to be covered with the covering part 41b.
In the first embodiment, the portion of the case 21 that contacts the detection wiring 41 is not limited to the outer surface of the short side wall 23d of the case body 23, and may be the outer surface of the bottom wall 23b or the long side wall 23c, or the cover 24. May be on the outside.

○ 第2の実施形態において、検出用配線41は、各二次電池11の蓋24の外面と接触した状態で圧力開放弁30と対向するように配置されていてもよい。この場合、検出用配線41と圧力開放弁30との距離は近くなる。このため、二次電池モジュール10を構成する複数の二次電池11のうち、少なくとも1つの二次電池11が熱暴走し、圧力開放弁30が開裂すると、検出用配線41は、熱暴走により開裂した圧力開放弁30によって物理的に切断され、検出用配線41の導線41aに電流が流れなくなる。また、上述したように、圧力開放弁30は、ケース21が高温になる前に作動する。よって、第1の実施形態のように、熱暴走した二次電池11のケース21の熱によって検出用配線41を溶断させる場合と比較して、二次電池11の熱暴走を早急に検出することができる。   In the second embodiment, the detection wiring 41 may be arranged so as to face the pressure release valve 30 in a state of being in contact with the outer surface of the lid 24 of each secondary battery 11. In this case, the distance between the detection wiring 41 and the pressure release valve 30 is short. Therefore, when at least one of the secondary batteries 11 among the plurality of secondary batteries 11 constituting the secondary battery module 10 undergoes thermal runaway and the pressure release valve 30 is opened, the detection wiring 41 is opened due to thermal runaway. The pressure relief valve 30 is physically disconnected by the pressure relief valve 30, so that no current flows through the conductor 41 a of the detection wiring 41. Further, as described above, the pressure release valve 30 operates before the temperature of the case 21 becomes high. Therefore, it is possible to detect the thermal runaway of the secondary battery 11 more quickly than in the case where the detection wiring 41 is blown off by the heat of the case 21 of the secondary battery 11 that has run away as in the first embodiment. Can be.

○ 二次電池モジュール10は、全ての二次電池11のケース21の底壁23bに接触する状態で配置された冷却用板材を備えていてもよい。冷却用板材は、例えばアルミニウムの板材であり、冷却用板材の下側に冷却水を流すことによって二次電池11を冷却する。この冷却用板材を検出用部材の導電部材として機能させてもよい。   The secondary battery module 10 may include a cooling plate disposed in contact with the bottom wall 23 b of the case 21 of all the secondary batteries 11. The cooling plate is, for example, an aluminum plate, and cools the secondary battery 11 by flowing cooling water below the cooling plate. The cooling plate may function as a conductive member of the detection member.

○ 二次電池モジュール10は、電源42を備えていなくてもよい。この場合、二次電池11の熱暴走の検出とは別の用途で車両に搭載された電源によって、導線41aに電流を流す。   The secondary battery module 10 does not have to include the power supply 42. In this case, a current is supplied to the conductive wire 41a by a power source mounted on the vehicle for a purpose different from the detection of thermal runaway of the secondary battery 11.

○ 検出部43によって二次電池11の熱暴走が検出された後の対応は適宜変更してよい。例えば、二次電池モジュール10が消火装置を備えている場合、判定部45が消火装置に対して信号を送信することで、消火装置は、二次電池モジュール10の消火を行ってもよい。また、例えば、制御装置46は、車両の窓を開けたり、車両のドアの施錠を解除したりしてもよいし、車両の表示部に、車両からの避難を促す警告を表示させてもよい。   The response after the detection section 43 detects the thermal runaway of the secondary battery 11 may be changed as appropriate. For example, when the secondary battery module 10 includes a fire extinguishing device, the fire extinguishing device may extinguish the secondary battery module 10 by transmitting a signal to the fire extinguishing device. Further, for example, the control device 46 may open the window of the vehicle, unlock the door of the vehicle, or display a warning to evacuate the vehicle on the display unit of the vehicle. .

○ 二次電池11は、リチウムイオン二次電池に限定されず、ニッケル水素二次電池など、他の二次電池であってもよい。要は、正極用の活物質と負極用の活物質との間をイオンが移動するとともに電荷の授受を行うものであればよい。   The secondary battery 11 is not limited to a lithium ion secondary battery, but may be another secondary battery such as a nickel hydride secondary battery. In short, any material may be used as long as ions move between the positive electrode active material and the negative electrode active material and transfer charges.

○ 蓄電装置は、例えばキャパシタなど、二次電池以外の蓄電装置にも適用可能である。   The power storage device can be applied to a power storage device other than a secondary battery, such as a capacitor.

10…蓄電装置モジュールとしての二次電池モジュール、11…蓄電装置としての二次電池、21…ケース、23…壁部としてのケース本体、24…壁部としての蓋、22…電極組立体、30…圧力開放弁、41…検出用部材としての検出用配線、41a…導電部材としての導線、41b…被覆部、43…検出部。
DESCRIPTION OF SYMBOLS 10 ... Rechargeable battery module as a power storage device module, 11 ... Secondary battery as a power storage device, 21 ... Case, 23 ... Case main body as a wall, 24 ... Lid as a wall, 22 ... Electrode assembly, 30 ... pressure release valve, 41 ... detection wiring as a detection member, 41a ... conductive wire as a conductive member, 41b ... coating part, 43 ... detection part.

Claims (8)

複数の蓄電装置が並列接続された蓄電装置モジュールであって、
前記蓄電装置はそれぞれ、電極組立体と、前記電極組立体を収容するケースとを有し、
全ての前記蓄電装置のケースに接触した状態で配置されるとともに、電流が供給され、前記ケースに接触する部分同士が電気的に接続された検出用部材と、
前記検出用部材の導通状態を検出する検出部と、
を備えることを特徴とする蓄電装置モジュール。
A power storage device module in which a plurality of power storage devices are connected in parallel,
Each of the power storage devices has an electrode assembly and a case for housing the electrode assembly,
A detection member that is arranged in contact with the cases of all of the power storage devices, is supplied with current, and has portions electrically connected to the case, electrically connected to each other,
A detection unit that detects a conduction state of the detection member,
A power storage device module comprising:
前記検出用部材は、導電部材と、絶縁性材料によって形成され、前記導電部材を被覆する被覆部とを有し、前記被覆部が前記ケースと接触する請求項1に記載の蓄電装置モジュール。   2. The power storage device module according to claim 1, wherein the detection member has a conductive member and a covering portion formed of an insulating material and covering the conductive member, and the covering portion contacts the case. 3. 前記検出用部材は、線状である請求項1又は請求項2に記載の蓄電装置モジュール。   The power storage device module according to claim 1, wherein the detection member is linear. 前記検出用部材は、板状である請求項1又は請求項2に記載の蓄電装置モジュール。   The power storage device module according to claim 1, wherein the detection member has a plate shape. 複数の蓄電装置が並列接続された蓄電装置モジュールであって、
前記蓄電装置はそれぞれ、電極組立体と、前記電極組立体を収容するケースと、前記ケースの壁部に存在し、前記ケース内の圧力が開放圧に達した場合に開裂し、前記ケース内の圧力を前記ケース外に開放させる圧力開放弁とを有し、
全ての前記蓄電装置の圧力開放弁と対向して配置されるとともに、電流が供給され、前記圧力開放弁と対向する部分同士が電気的に接続された検出用部材と、
前記検出用部材の導通状態を検出する検出部と、
を備えることを特徴とする蓄電装置モジュール。
A power storage device module in which a plurality of power storage devices are connected in parallel,
Each of the power storage devices is an electrode assembly, a case accommodating the electrode assembly, and a wall portion of the case, which is opened when the pressure in the case reaches an opening pressure, and the power storage device is opened in the case. A pressure release valve for releasing pressure outside the case,
A detection member that is arranged to face the pressure release valves of all of the power storage devices, is supplied with current, and has a portion that faces the pressure release valves electrically connected to each other,
A detection unit that detects a conduction state of the detection member,
A power storage device module comprising:
前記検出用部材は、前記ケースに接触した状態で前記圧力開放弁と対向して配置される請求項5に記載の蓄電装置モジュール。   The power storage device module according to claim 5, wherein the detection member is arranged to face the pressure release valve while being in contact with the case. 前記検出用部材は、前記ケースから離間した状態で前記圧力開放弁と対向して配置される請求項5に記載の蓄電装置モジュール。   The power storage device module according to claim 5, wherein the detection member is arranged to face the pressure release valve while being separated from the case. 前記検出部が前記検出用部材の導通状態を不通であると検出した場合に、前記蓄電装置の充電又は放電を停止させる請求項1〜請求項7の何れか一項に記載の蓄電装置モジュール。
The power storage device module according to any one of claims 1 to 7, wherein the detection unit stops charging or discharging the power storage device when detecting that the conduction state of the detection member is not conducted.
JP2018168992A 2018-09-10 2018-09-10 Power storage device module Pending JP2020042968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168992A JP2020042968A (en) 2018-09-10 2018-09-10 Power storage device module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168992A JP2020042968A (en) 2018-09-10 2018-09-10 Power storage device module

Publications (1)

Publication Number Publication Date
JP2020042968A true JP2020042968A (en) 2020-03-19

Family

ID=69798614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168992A Pending JP2020042968A (en) 2018-09-10 2018-09-10 Power storage device module

Country Status (1)

Country Link
JP (1) JP2020042968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444752A (en) * 2020-11-06 2021-03-05 超威电源集团有限公司 Automatic connection detection device and connection method for lead-acid storage battery
CN113119737A (en) * 2021-04-28 2021-07-16 中国第一汽车股份有限公司 Power battery thermal runaway monitoring device and method and power battery system
WO2023027535A1 (en) * 2021-08-26 2023-03-02 주식회사 엘지에너지솔루션 Battery pack having improved safety

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444752A (en) * 2020-11-06 2021-03-05 超威电源集团有限公司 Automatic connection detection device and connection method for lead-acid storage battery
CN112444752B (en) * 2020-11-06 2024-01-26 超威电源集团有限公司 Automatic connection detection device and connection method for lead-acid storage battery
CN113119737A (en) * 2021-04-28 2021-07-16 中国第一汽车股份有限公司 Power battery thermal runaway monitoring device and method and power battery system
WO2023027535A1 (en) * 2021-08-26 2023-03-02 주식회사 엘지에너지솔루션 Battery pack having improved safety

Similar Documents

Publication Publication Date Title
US11462799B2 (en) Battery module having gas discharge structure
CN110199406B (en) Battery system
US9653724B2 (en) Secondary battery, and secondary battery module and secondary battery pack comprising the same
US10992013B2 (en) Battery system for a vehicle and method for detecting an overheat situation of the battery system
US10050315B2 (en) Battery module with fusible conductors
US11251500B2 (en) Battery module and battery pack
EP2768047B1 (en) Battery pack having improved safety
KR101950463B1 (en) Battery Module Having Prove for Sensing Expansion of Battery Cell
TWI734880B (en) Bettery cell and bettery pack
RU2468477C2 (en) Accumulator battery of middle or large size of increased security
EP3633754B1 (en) Battery system for a vehicle and method for detecting an overheat situation of the battery system
EP2793295A2 (en) Rechargeable battery
JP2020515002A (en) Battery module, battery pack including the same, and automobile
JP2020042968A (en) Power storage device module
WO2024187888A1 (en) Battery cell, battery, and electric apparatus
US10044014B2 (en) Battery unit comprising a plurality of electrochemical cells and battery module comprising a plurality of battery units
EP2772962B1 (en) Rechargeable Battery
KR20160134341A (en) Battery module
JP2023505049A (en) Battery packs, battery racks containing same and power storage devices
CN209169322U (en) Cover plate assembly for battery core and the battery core with it
KR20120056812A (en) Middle or Large-sized Battery Pack of Improved Safety
KR20160142629A (en) Battery module
JP2023551995A (en) Battery module with pressure sensor for thermal runaway detection
US20240072399A1 (en) Disconnection device and short-circuiting device comprising a heat-activatable element
EP3989356A1 (en) Battery, battery module and battery pack